
SEMIGROUPS OF OPERATORS IN C(S) 
F. DENNIS SENTILLES 

1. Our study in this paper is two-fold: One is that of a semigroup of linear 
operators on the space C(S) of bounded continuous functions on a locally 
compact Hausdorfr space S, while the other is that of a transition function 
of measures in the Banach space M (S) of bounded regular Borel measures on 
S. I t will be seen that an informative and essentially non-restrictive theory of 
the former can be obtained when C(S) is given the strict topology rather than 
the usual supremum norm topology and that, in this setting, the natural 
relationship between semigroups and transition functions obtained when S is 
compact is maintained, essentially because the dual of C(S) with the strict 
topology is M(S). 

More specifically, we determine conditions under which the general theory 
of semigroups in locally convex spaces applies to our situation and establish a 
one-to-one relationship between semigroups on C(S) and certain transition 
functions in M(S). We show, furthermore, that such semigroups are uniquely 
determined by the infinitesimal generator of the semigroup of adjoint operators 
in the Banach space M(S). 

2. Definitions and notation. Our notation and terminology is that of [10] 
with a few exceptions which we now point out. If T is a topological space, then 
a mapping X: T —> M (S) will be called a continuous kernel if for each/ Ç C(S) 
and x 6 T the function X(/)(x) = jsf(y)^(%) (dy) = Jsfiy) X(x, dy) is 
bounded and continuous on T. From the uniform boundedness principle, 
||X|| = sup{ | |X(x) 11 : x G T} < oo. Departing from our terminology in [10] we 
say that the mapping X is tight if for each compact subset Q of T, {\(x) : x G Q] 
is an equicontinuous subset of M(S) as the dual of C(S)p (i.e., C(S) with the 
strict topology). According to [2, Theorem 2.2], this is equivalent to the 
statement that for each e > 0 there is a compact subset K of 5 such that 
|X(x)|(.S\i£) = |X|(x, S\K) < e for all x 6 Q. Furthermore, we note in 
reference to [3 ; 10] that it has been shown in [4] that the ft and ft' topologies 
are equivalent topologies on C(S). We also note from [1] that a collection B 
of operators in C{S)& is equicontinuous if given \p Ç C0(S) there is a <f> G Co (S) 
such that II0/H ^ 1 implies | | ^ r / | | ^ 1 for all T Ç B. 

A semigroup of operators on a locally convex space X is a collection 
{Tt: t > 0} of linear operators on X into itself such that TtTs = Tt+S for all 
t, s > 0. A transition function on 5 is a collection {\t: t > 0} of kernels on S 
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into M (S) such that À*+S(x, E) = $s h(y, E)\s(x, dy) for ail t, s > 0, x 6 5, 
and Borel sets £ . These integrals exist according to [10]. All terminology 
related to semigroups is taken from [7; 12]. 

3. Preliminary results. In this section we restate, for ease of reference, 
results already contained in [10]. 

THEOREM 3.1. (a) If A is a continuous operator on C(S)$ into C(T)$, then there 
is a unique tight continuous kernel X: T —> M(S) such that Af = X(/) for all 
f £ C(S), A*p = XO) for v e M(S) (where \(y)(E) = fT\(x, E)v(dx)) and 
A**f = X(/) for any bounded Borel measurable function on S. 

(b) If \: T —> M(S) is a tight continuous kernel, then the formula Af = \(f) 
defines a continuous operator on C(S)$ into C(T)p. 

(c) If S is a paracompact space, then any continuous kernel X: T —> M(S) is 
tight. 

We note that the hypothesis in (b) can be weakened. If X is tight and 
X(/) € C(T) for / Ç C0(S), then by [10, Theorem 4], X is a continuous kernel. 
Finally, Theorem 3.1 implies that s u p { p / | | : / € C(S), \\f\\ ^ 1} = ||X|| < oo. 
We set 11̂411 = ||X|| so that \\A\\ is the usual operator norm on A on C(S). 

Applying Theorem 3.1 to semigroups on C(5), we obtain the following 
representation and uniqueness theorem. 

THEOREM 3.2. (a) If {Tt: t > 0} is a semigroup of continuous operators on 
C(S)fi, then there is a unique transition function {\t: t > 0} of tight continuous 
kernels such that Ttf = \t(f) for all f G C(S). 

(b) Conversely, any transition function {\t: t > 0} of tight continuous kernels 
gives rise to a semigroup of continuous operators on C(S)$ by way of the formula 
TJ = X«(/). 

For a proof, apply Theorem 3.1 to each operator Tt and note that 

\t+s(x,E) = (TV,**) (E) = T*(T*x)(E) 

= Xt(\s(x))(E) = Js \t(y,E)\s(x,dy), 

where x is the unit point measure concentrated at x. 

We single out for special attention the following result. 

THEOREM 3.3. If S is paracompact and {\t: t > 0} is a transition function of 
continuous kernels, then Ttf = \t(f) is a semigroup of continuous linear operators 
in C(S)p. 

In particular then, if 5 is paracompact and if the semigroup arises from a 
transition function, as in the study of Markov processes, and leaves C(S) 
invariant, then it is a fortiori a semigroup of continuous operators in C(S)p. 
Hence for most transition functions considered in the literature, a study of 
the induced semigroup in C(S)p is natural and non-restrictive. 

One can also relate semigroups in C(S)p with Markov processes in S. For 
with the extension of Kolmogorov's work on extending probabilities found in 
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[8, p. 82], it follows that each transition function in M(S), with | | \ , | | = 1 and 
X*(x) non-negative for all t and x, gives rise to a Markov process, since we are 
dealing with regular measures. Hence a semigroup of positive strictly continu­
ous operators of norm one must arise from a Markov process. 

4. Semigroups of class (C0) in C(S)p. In this section we impose the "usual" 
conditions (that is, conditions analogous to those assumed when 5 is compact 
or when one studies semigroups in the Banach space Co(S)) on the semigroup 
{Tt: t > 0} of continuous operators in C(S)p and relate this situation to the 
general theory found in [12; 7]. 

More specifically, we will say that the semigroup {Tt: t > 0} in C(S) is of 
class (C) if: 

(1) lim^o Ttf(x) = f(x) for each x G S and each / G Co (S), 
(2) there exists a number a > 0 such that {Tt: t ^ a) is equicontinuous in 

C(S)0. 
We note that Yosida [12] defines a semigroup on a sequentially complete 

locally convex space to be of class (Co) if l im^ 0 Ttx = Ttox for all ^ 0 and 
all x G X and if {Tt: t> 0} is equicontinuous, where To is the identity operator. 
In the notation of [7], a class (Co) semigroup is referred to as a (r, r)-semi­
group. Note by Theorem 3.2 (a), that any class (C) semigroup is given by a 
unique transition function. 

I t is evident that a class (C) semigroup need not be class (Co), the trans­
lation semigroup [Ttf](x) = f(t + x) in C[0, oo) being a simple example of 
this. 

We begin with a generalization of a result found in [6, p. 36]. 

THEOREM 4.1. Let X be a locally convex space and let [Tt: t > 0} be a semigroup 
of linear operators in X such that {Tt: t ^ a} is equicontinuous for some a > 0. 
Let Xo — {x G X: Ttx —> x as t—>0},Xi = {x G X: Ttx —> x weakly as t —> 0}. 
Then, X0 = X if and only if Xi = X. 

Proof. Clearly we need only show that X\ = X implies X0 = X. 
Fix x* G X* and l e t / (0 = (Ttx, x*) for a fixed x G X\. T hen / i s continuous 

from the right at each number t > 0, and consequently the function / —» Ttx is 
weakly measurable for each x £ X = Xi. 

We claim that the values of this function t —» Ttx lie in a separable subspace 
of X save for all / in a set of Lebesgue measure 0. Let L be the closure of 
{21=1 aiTTix: rt is rational and a* is a complex number with rational real and 
imaginary parts}. Hence L is a closed, separable subspace of X. If Ttx g L for 
some t > 0, then there is an x* G X* such that (7\x, #*) = 1 while (y, x*) = 0 
for all y G L, a clear contradiction. 

It now follows from [11, Remark 1] and the hypothesis of equicontinuity 
that t —> r*x is continuous in X at all points / > 0. Hence X0 D {Ttx: t > 0}. 
Furthermore, X0 is a closed subspace of X and consequently by an argument 
similar to the above, X = X0. 
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Our principal result is the following. 

THEOREM 4.2. Let {Tt: t > 0} be a semigroup of operators in C{S)$ with 
transition function {\t: t > 0}. Let To denote the identity operator on C(S) and 
let X0 be its kernel. Finally, for a > 0 let Wa = [0, a] X S. The following are 
equivalent: 

(a) {Tt\ t > 0} is of class C; 
(b) The mapping /x: Wa —» M (S) given by fx(t, x) = \t(x) is tight and 

lim^o Ttf = f in the strict topology for all f G C(S); 
(c) [x is a tight continuous kernel; 
(d) M is tight and /*(/) G C(Wa) for all f G C0(5); 
(e) [Bf](t, x) = [Ttf](x) is a continuous linear operator on C(S)p into 

C(Wa)P. 
When S is paracompact, these are equivalent to: 
(c') fi is a continuous kernel; i.e., the mapping (t, x) —* [Ttf](x) is a bounded 

continuous function on Wafor each f G C(S). 

Proof. Suppose that (a) holds. By the semigroup property, {Tt: t ^ a} is 
equicontinuous for any a > 0. If Q C [0, a] X K with K compact in S, let 
$ G Co(S), <j> = 1 on K. Then there is a ^-neighbourhood V of zero such that 
\\<t>Ttf\\ S 1 for a l l / G V and * ̂  a. Hence if (/, *) G (2, then |M(/)(*, *0| = 
|X*(/)(*)| = |#(*)[7V](*)| ^ 1 for all / 6 V. Consequently, n is tight. To 
complete the proof that (b) follows from (a), fix x G S and let v(t, E) — 
fx((t, x), E). Then v is tight and by (a), v(/) is continuous at 0 for a l l / G C0(5). 
I t follows from the remark following Theorem 3.1 that v(f) is continuous at 0 
for all / G C(S). Hence [7V](x) ->/ (*) for all / G C(5) and x G 5 as / -> 0. 
Since {Ttf: t S CL} is bounded in the supremum norm, Ttf —»/ weakly as t —» 0 
for each / G C(S)p. Applying Theorem 4.1, we obtain (b). 

To see that (b) implies (c), note first that by (b) and the semigroup 
property, lim^_>ï0+ Ttf = Ttof uniformly on compact subsets of S. Let K be 
a compact subset of S. Then by (b) there is a ^-neighbourhood F of 0 such that 
if g G V, then \n(g)(t, x)\ < e for all (/, x) G [0, a] X if. Furthermore, there 
is a 5 > 0 such that 

Z V i / - / G F for 0 < ;0 - / < 8. 

Hence if x G K and 0 < t0 — t < 5, then 

\[Ttf](x) - [7\0/](*)| = \Tt[f - TtQ.tf](x)\ = | M ( / - r , 0 - f / ) (* ,* ) | < €. 

Therefore, l i m ^ 0 - TV = r , 0 / uniformly on compact subsets of S. Since S is 
locally compact, this proves (c). 

Clearly (c) implies (d). By Theorem 3.1(b) along with the remark following 
it, (d) implies (e). Finally, (e) implies (a) since continuity of Bf at (0, x) 
implies that Ttf —> / pointwise on S while continuity of B implies that 
{Tt: t rg a} is equicontinuous. 
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To complete the proof, note that Theorem 3.1(c) yields the equivalence of 
(c) and (c'). 

Before making use of these results, we need the following lemma. 

LEMMA 4.3. Let {Tt: t ^ 0} be a class (C) semigroup of operators in C(S)$. 
Then there exist numbers M, y > 0 such that \\Tt\\ ^ Meyt for t > 0. 

Proof. We consider the semigroup as a semigroup of bounded operators in 
the Banach space C(S) with the supremum norm topology. According to 
(12, p. 232), it suffices to show that {log||r*||: 0 < t g a} is bounded above 
for each number a > 0. However, since the supremum norm is bounded and 
the strictly bounded sets in C(S) coincide, according to [1], and since 
{Tt: 0 < / S CL] is equicontinuous in C(5)^, it follows that supo<^ a | |^ | | < oo. 

We will call the semigroup {Tt: t > 0} bounded if sup f>o||^|| < oo. 
By Lemma 4.3, any class (C) semigroup in C(S)p can be converted into a 
bounded semigroup upon multiplication by e~yt. Our next result generalizes 
the result of Dorroh [3, Theorem 2.5] and shows that if y is only slightly 
larger, we obtain a bounded class (Co) semigroup in C(S)p. 

THEOREM 4.4. Let {Tt: t > 0} be a bounded semigroup in C(S)p of class (C) 
with transition function {\t: t > 0}. Then {e~atTt: t > 0} is a class (Co) semi­
group in C(S)$ for every number a > 0. 

Proof. Let T = [0, oo) X S and define /x: T->M(S) by n(t, x) = \t(x). 
Since the semigroup is of class (C), Theorem 4.2(b) holds for all a > 0 and 
consequently n is tight. Furthermore, by property (c) and the assumption 
that sup| |r , | | = sup,||X,|| < oo, we have /*(/) G C(T) for each / G C(S). 
Hence Af = /*(/) is a continuous linear operator on C(S)& into C(T)$. Con­
sequently, if (j) G Co (5), there is a /^-neighbourhood F of 0 such that 
|ér^0(*)/x(/)(*, x)\ ^ 1 for all (t,x) G T a n d / f F. Hence, \\<j>e-^Ttf\\ ^ 1 
for all / G V and t > 0. That is, {e~atTt: t > 0} is equicontinuous in C(S)p. 
Finally, Theorem 4.2(b) also means that lim^o e~atTtf = f in the strict 
topology, completing the proof. 

This result tells us then that one can always convert the usual kind of semi­
group in C(S) into a class (Co) semigroup in C(S)p to which the general theory 
in [7; 12] applies. 

As a second application of Theorem 4.4, we consider a semigroup of maps in 
S as defined in [3] and obtain certain results therein (see [3, Theorems 2.2, 2.4, 
2.5, and 2.6]) quite easily. 

THEOREM 4.5. Let {<t>ù t ^ 0} be a semigroup of maps in S. Let [Ttf](x) = 
f((j)t(x)). The following are equivalent: 

(a) {Tt: t > 0} is of class (C); 
(b) {e~atTt: t > 0} is of class (Co) for each a > 0; 
(c) The map t —» <t>t(x) is continuous on [0, oo) for each x Ç S; 
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(d) The map (t, x) —» <t>t(x) is continuous on [0, oo) X S; 
(e) lim^o <t>t(x) = x for ea°h x € S, and for each a > 0 awd mcA compact 

set K C. S, U^fl 0«(^) is compact; 
(/) l im^o^(^ ) = # #wd {^: 2 rg a} is equicontinuous in C(S)$ for some 

a > 0. 

Proof. From Theorem 4.4, with A*(x) = <t>t(x), (a) implies (b). To see that 
(b) implies (c), fix (t0, x0), let Ube a neighbourhood of <£*0(xo) and le t / £ Co (5) 
be one at <j>t0(x0) and zero on S\U. Then there is a 5 > 0 such that \t — t0\ < 8 
implies | | / - (Ttf — Ttof)\\ < § and hence that \f • (</>t(xo) — 1)| < \ and 
therefore that fa (x0) € £/. 

We obtain the implication (c) implies (a) by restricting the semigroup 
{Tt: t > 0} to the invariant subspace CQ(S) and applying Theorem 4.1 under 
condition (c) to obtain \imt^t0\\Ttf — TtQf\\ = 0 for all / £ Co(S). This, 
along with an argument similar to the above, yields (d). 

Clearly (d) implies (e). To see that (e) implies (/) , let <f> 6 Co (5), 
Kn = {x: \<t>(x)\ ^ 1/n], ei = 1/||0||, and en = n - 1, for w ^ 2. Let 
G» = Ui^a &(*») and let F = {/ € C(5): \\f\\Qn £ en}. Then F is a /5-neigh-
bourhood of 0 a n d / 6 F implies |0(#)/(0*(#))| ^ 1 for £ ^ a. That is, / G F 
implies | | 0 r t / | | rg 1 for / ^ a so that {7^: / ^ a} is equicontinuous in C(S)0. 

Clearly (/) implies (a), completing the proof. 

5. The infinitesimal generator of the class (C) semigroup. In this 
section we relate the class (C) semigroup to its infinitesimal generator as well 
as to the infinitesimal generator of the related semigroup of adjoint operators. 
We first use Theorem 4.4 and the Hille-Yosida theorem to characterize the 
infinitesimal generator (see [7]) of a class (C) semigroup. 

THEOREM 5.1. The linear operator A defined on a subspace DA of C(S) is the 
infinitesimal generator of a uniquely determined class (C) semigroup of continuous 
operators in C(S)p if and only if 

(a) DA is dense in C(S)p, 
(b) A is sequentially closed in C{S)$, and 
(c) for some a > 0, there is an unbounded sequence Xn ^ 0 such that 

(\n + a — A)~l exists and 

is equicontinuous. 

Proof. Suppose that A satisfies (a), (b), and (c). The linear operator A — a, 
defined on DAl is the infinitesimal generator of a unique class (Co) semigroup 
of continuous operators in C(S)p, according to [7, Propositions 3.9 and 6.1], 
which we denote by {St: U 0). Clearly then {eatSt: t ^ 0} is a class (C) 
semigroup in C(S)$ with infinitesimal generator a + (A —a) = A. Further­
more, suppose that A generates another class (C) semigroup {Tt: t > 0}. 
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By Lemma 4.3 and Theorem 4.4, \e-ate^l%Tt\ t > 0} is a class (Co) semigroup 
whose generator is A — a — y. However, {e~ytSt: t > 0} is also a class (C0) 
semigroup whose generator is A — a — y. Hence Tt = eatSt for all t > 0, 
proving uniqueness. 

Conversely, if A is the generator of a class (C) semigroup, then again 
appealing to Lemma 4.3 and Theorem 4.4 there is a number a > 0 such that 
{e~atTt: t > 0} is a class (Co) semigroup. An appeal to [7, Proposition 6.1] 
completes the proof. 

We will now show that the class (C) semigroup is also uniquely determined 
by the infinitesimal generator of the semigroup of adjoint operators in M (S). 
This result is indicated by [6, Theorem 2.6] and its development. 

THEOREM 5.2. Let {Tt: t > 0} be a class (C) semigroup in C(S)$ and let 
{Ut: t > 0} be the semigroup of adjoint operators in M(S). The infinitesimal 
generator of {Uù t > 0} uniquely determines {Tt: t > 0}. 

Proof. Let A be the infinitesimal generator of { Ut: t > 0} and also of some 
other semigroup { Vt: t > 0} of adjoint operators of a class (C) semigroup 
{St: t > 0}. Referring to [7, Proposition 4.1], let r be the norm topology on 
M (S) and let a be the /3-weak* topology on M(S) ; i.e., the weak* topology on 
M(S) as the dual of C(S)0. I t follows that 

Xo = {M 6 M(S): r-lim Ut» = »} = {M G Jlf (5) : r-lim 7,M = /*} 

is the norm closure of DA in M(S). The Hille-Yosida theorem then tells us that 
the operator A uniquely determines a semigroup in the Banach space Xo. 
Hence H = {M: Utfi = Vtfi for all t > 0} D X0. 

Let Y0 = (MG M(5): o--lim^0((£/*/* — ii)/i) exists}. From the uniform 
boundedness principle, F0 C X0. Furthermore, Y0 is /3 weak* dense in 7kf(S). 
To see this, let /x G M (S) and note that 

where jua = J? Uty< dt and where these integrals exist in the sense of 
Theorem 3.1 (a) by virtue of the fact that {Tt: t > 0} is of class (C) ; this follows 
upon letting \(t) = Utp for 0 < t ^ a + h and X(0) = M-

It now follows that /xa G Y0 and (r-lim^o Ma = M- Hence Y0 is weak* dense 
in M(S) and since i7 is weak* closed and contains F0, it follows that H = M (S) 
and finally that Tt = S* on C(S) for all £ > 0. 

We close this section with an easily obtainable sufficient condition that a 
class (C) semigroup have a transition function consisting of probability 
measures. 

THEOREM 5.3. Let {Tt: t > 0} be a class (C) semigroup in C(S) with \\Tt\\ ^ 1 
for t > 0. If A is the infinitesimal generator of {Tt: t > 0} and if the identically 
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one function 1 Ç DA and Al = 0, then [Tt\ t > 0} is a semigroup of positive 
operators in C(S) whose transition function consists of probability measures. 

Proof. From [7, Proposition 3.10], 

\t(x, S) - 1 = Ttl - 1 = f 7V4(1) ds = 0. 

Hence each measure X*(x) assigns the measure 1 to 5 and has norm less than 
or equal to ||r*|| ^ 1. However, if \x Ç ikf(S) and ||/x|| = \x{S) = 1, then as is 
well known, /x is a probability measure. 
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