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Abstract

We propose a method for cutting down a random recursive tree that focuses on its
higher-degree vertices. Enumerate the vertices of a random recursive tree of size n
according to the decreasing order of their degrees; namely, let (v(i))n

i=1 be such that
deg (v(1)) ≥ · · · ≥ deg (v(n)). The targeted vertex-cutting process is performed by sequen-
tially removing vertices v(1), v(2), . . . , v(n) and keeping only the subtree containing the
root after each removal. The algorithm ends when the root is picked to be removed. The
total number of steps for this procedure, Kn, is upper bounded by Z≥D, which denotes the
number of vertices that have degree at least as large as the degree of the root. We prove
that ln Z≥D grows as ln n asymptotically and obtain its limiting behavior in probability.
Moreover, we obtain that the kth moment of ln Z≥D is proportional to (ln n)k. As a conse-
quence, we obtain that the first-order growth of Kn is upper bounded by n1−ln 2, which is
substantially smaller than the required number of removals if, instead, the vertices were
selected uniformly at random.
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1. Introduction

The idea of cutting random labeled trees was first introduced by Meir and Moon in 1970
and, soon after, they considered random recursive trees (abbreviated as RRTs) [42, 43]. The
original cutting procedure, for a given tree, is as follows. Start with a tree with n vertices.
Choose an edge uniformly at random and remove it, along with the cut subtree that does not
contain the root. Repeat until the remaining tree consists of only the root; at this point, we say
that the tree has been deleted.

Random recursive trees are rooted trees, where each vertex has a unique label, obtained by
the following procedure: Let T1 be a single vertex labeled 1. For n > 1 the tree Tn is obtained
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2 L. ESLAVA ET AL.

from the tree Tn−1 by adding an edge directed from a new vertex labeled n to a vertex with
label in {1, . . . , n − 1}, chosen uniformly at random and independent for each n. We say that
Tn has size n and that the degree of a vertex v is the number of edges directed towards v.

In this paper, we introduce a targeted vertex-cutting procedure for random recursive trees
that focuses on high-degree vertices (defined in Section 1.3). Our interest in this procedure
stems from the fact that it drastically reduces the number of cuts needed to destroy an RRT
compared to random cuts (see Proposition 1.1), while this model may serve as a proxy for
malicious attacks.

In the case of RRTs, the currently known properties of the structure of high-degree vertices
do not hold to the distinct strategies previously used for studying the cutting of random trees.
See [6] for a thorough survey on cutting procedures and other related processes on random
recursive trees up to 2014. We give a brief overview of these and more recent models of cutting
processes in Section 1.2.

To circumvent these difficulties, the core of the paper is drawn towards exploiting our
knowledge on the number of high-degree vertices in RRTs. In Section 1.1, we present our
main results, together with a brief description of their proof strategies. In Sections 1.2 and 1.3,
we give an overview of previous cutting models and define the targeted cutting model; we also
discuss in more detail the difficulties in studying the targeted cutting of RRTs and examine
the implications of Theorem 1.1 on the targeted cutting process. In a nutshell, Proposition 1.1
supports the heuristic that malicious attacks may hold a strategy to take better advantage of
some characteristics of the network. That is, the number of cuts required is significantly fewer
than in a completely random attack. The proofs of the main results, Theorems 1.1 and 1.2, are
presented in Sections 2 and 3, respectively. We close with simulations and further avenues of
research in Sections 4 and 5, respectively.

1.1. Main results

For d ∈N, we let Zd and Z≥d be the number of vertices in Tn that have degree d and
degree at least d, respectively (we omit the dependence on n for these variables throughout).
The variables (Zd)d≥0 are referred to as the degree sequence of Tn; its asymptotic joint dis-
tribution is described by the limiting normal distribution, as n → ∞, of certain urn models
in [32].

The tails of the degree sequence are predominantly studied in two different ranges. The
sequence (Zd+�log2 n�)d∈Z represents degrees close to the maximum degree. Its limiting joint
distribution is described (along suitable subsequences) by an explicit Poisson point process in
Z∪ {∞} in [2]; the lattice shift by log2 n stems from the fact that �n/ log2 n, the renormalized
maximum degree in Tn, converges almost surely (a.s.) to 1 [20]. More generally, high-degree
vertices are counted by Z≥c ln n, for c > 0, and their moments are described in [2]. The tech-
niques developed in [24] provide bounds on the total variation distance between Z≥c ln n and a
Poisson random variable with mean nα with a suitable α = α(c) for c ∈ (1, log2 n).

Our main results concern Z≥D, a tail of the degree sequence of Tn with random index. More
precisely, let D = D(n) denote the degree of the root in Tn and let Z≥D denote the number of
vertices with degree at least D. Although the root degree D is concentrated around ln n (see,
e.g., (2.5)), its tails do not vanish sufficiently fast. This leads us to consider the variable ln Z≥D

instead of directly analyzing Z≥D.
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Targeted cutting of RRT 3

The first theorem provides convergence in probability, after a normalization by ln n. Its proof
is based on the concentration of D and the first- and second-moment methods for suitable tails
Z≥d; see Section 2.

Theorem 1.1. Let γ := 1 − ln 2; then the following convergence in probability holds:

ln Z≥D

ln n
P−→ γ .

We also obtain matching asymptotics for the moments of ln Z≥D/ ln n.

Theorem 1.2. Let γ := 1 − ln 2. For any positive integer k,

E
[
(ln Z≥D)k] = (γ ln n)k(1 + o(1)).

To establish Theorem 1.2, we resort to a coupling between a random recursive tree Tn

of size n and a random recursive tree T (ε)
n of size n conditioned on D to take values in

((1 − ε) ln n, (1 + ε) ln n), for any given ε ∈ (0, 1); see Section 3.
Briefly described, the coupling is the following. Let n ∈N. For the construction of both Tn

and T (ε)
n , it suffices to define the parent of vertex i, for each 1 < i ≤ n. For each tree, we break

down this choice into two steps: First, sample a random Bernoulli to decide whether i attaches
to the root or not. Then the parent of i is either the root or a uniformly sampled vertex among
the rest of the possible parents. The Bernoulli variables corresponding to both Tn and T (ε)

n are
coupled in such a way that the root degree has the desired distribution. Additionally, if a given
vertex chooses a parent distinct from the root, then this choice is precisely the same for both
the unconditioned and conditioned trees.

1.2. The random cutting process and related models

There is a wide variety of random trees for which the cutting process has been analyzed.
The survey by Baur and Bertoin provides a detailed description of the advances from the intro-
duction of cutting processes in the 1970s up to 2014 [6]. In this section we provide a panoramic
overview of the references therein, recent progress on the k-cut model, and further literature
on resilience of networks more broadly.

The random cutting process described in the first part of the introduction naturally extends
to more complex processes on RRTs. For example, it leads to the Bolthausen–Sznitman coales-
cent in the case of RRTs [27]; the construction of both the cut-tree and the tree of component
sizes [5, 6, 8, 9]. The last two processes are tightly related to percolation clusters of the trees.

In this section we only provide details on the results for Xn, the number of cuts needed to
isolate the root of an RRT of size n, under random edge cuts. Using the splitting property, [43]
proved that, as n → ∞,

E[Xn] ln n

n
→ 1. (1.1)

The splitting property refers to the fact that if we remove an edge from an RRT, then the two
subtrees resulting from the split are in turn, conditionally on their sizes, independent RRTs.
This property has been also used in [23, 30, 45].

In particular, [45] improved (1.1) to convergence in probability by extending the analysis to
the cost of the random cutting procedure; that is, each cut has a cost in a function of the size of
the removed tree. The random variable Xn is recovered when the cost is a constant function.
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4 L. ESLAVA ET AL.

Finally, the limiting distribution of Xn, after a suitable rescaling, was obtained in [23] via
singularity analysis and in [30] using probabilistic and recursive methods. Namely,

Yn := (ln n)2

n
Xn − ln n − ln ln n

converges weakly to a complete asymmetric Cauchy variable Y with characteristic function
given by

ϕY (λ) := exp

{
iλ ln |λ| − π |λ|

2

}
.

Other methods of selecting edges in an RRT include using the order of the vertex labels. This
directly means that the number of removals to isolate the root is precisely the number of ver-
tices attached to it; however, more can be said about the cluster evolution if we do not discard
the cut trees during the process [6]. [35] modified the process with the objective of isolating
the last vertex added to the network. [36–38] focused specifically on isolating a distinguished
vertex; for example, the isolation of a leaf or isolating multiple distinguished vertices.

More recently, [14, 15] introduced the k-cut model, in which edges are selected uniformly
at random but these are removed only after their kth selection. After the initial results for paths
and some trees, this analysis has been applied to complete binary trees [16], Galton–Watson
trees [11], and the Brownian continuum random tree [46].

Broadly speaking, results on the k-cut process exploit a strategy based on counting records
[31, 33]. This strategy consists of noting that the number of cuts needed to destroy a tree is
equivalent to the number of records that arise from a random labeling of the edges. This method
has also been applied for split trees and binary trees [28, 29].

Cutting processes of random trees and graphs can serve as a proxy for the resilience of a
particular network to breakdowns, either from intentional attacks or fortuitous events. What
is considered a breakdown and resilience may differ depending on the context. In their work
on RRTs, Meir and Moon consider contamination from a certain source within an organism,
and we may think of the number of cuts as the necessary steps to isolate the source of the
contamination [43]. On the other hand, malicious attacks may refer to failures that arise from a
hacker or enemy trying to disconnect some given network of servers. Thus, malicious attacks
can be mathematically described by targeted cutting toward highly connected servers. These
ideas on resilience were posed in [17, 18] for scale-free graphs. Later, [12] compared random
versus malicious attacks on scale-free graphs; more precisely, the comparison is on the cluster
sizes in percolation versus cluster sizes after removing a constant number of the smallest-
labeled vertices.

As first described in [44], the Albert–Barabási random tree is part of the large class of
scale-free graphs that exhibit persistence of node centrality. That is, for any fixed k ∈N, there
is a finite time (a.s.) in the evolution of the Albert–Barabási random tree such that the identity
of the k largest degree vertices does not change. Interestingly for our purposes, RRTs do not
exhibit such persistence of node centrality; evidence of this fact can be found in [2]. [4] studied
the persistence of a large class of evolving networks.

Finally, we name a few similar procedures in more general graphs. [7] studied public
transport networks; [47] studied a broad range of dynamical processes, including birth–death
processes, regulatory dynamics, and epidemic processes on scale-free graphs and Erdös–Renyi
networks under two different targeted attacks, with both high-degree and low-degree vertices;
[3] compared different graph metrics, such as node betweenness, node centrality, and node
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degree, to measure network resilience to random and directed attacks. In the context of Galton–
Watson trees, cutting down trees has been predominantly studied from the perspective of vertex
cutting; that is, vertices are selected to be removed; see, e.g., [1, 10, 21].

1.3. Targeted cutting for RRTs

Let Tn be an RRT of size n and enumerate its vertices as (v(i))n
i=1 according to the decreas-

ing order of their degrees; that is, deg (v(1)) ≥ · · · ≥ deg (v(n)), breaking ties uniformly at
random. The targeted vertex-cutting process is performed by sequentially removing vertices
v(1), v(2), . . . , v(n) and keeping only the subtree containing the root after each removal (skip a
step if the chosen vertex has previously been removed). The procedure ends when the root is
picked to be removed.

Let Kn denote the number of vertex deletions before we select the root to be removed.
Similarly to the random cutting of trees, Kn corresponds to the number of (largest) records
on vertex degrees along paths from the root towards the leaves. However, there is a lack of
understanding of the structure of vertices with high degree. The study of the location of high-
degree vertices was initiated by the first author by establishing asymptotic results on the depth
of vertices conditioned to have high degrees [25]. The same approach was later extended to
include the label of such vertices [39]. Both the maximum degree and the label of a vertex
attaining such a maximum have been asymptotically described for a more general class of
weighted RRTs [26, 40, 41].

Also, the splitting property cannot be exploited in the targeted cutting procedure. In this
case, the first vertex that is deleted, v(1), is conditioned on having the largest degree. To the best
of our knowledge, the distribution of the size of the subtree rooted at v(1) remains unknown.

Now, recall that Z≥D denotes the number of vertices in Tn which have degree at least the
degree of the root. This random variable corresponds to the quenched worst-case scenario for
the deletion time of the targeted cutting. That is, once the tree has been sampled and all the
degrees are known, Z≥D is a natural upper bound for Kn: when all the vertices in the list which
have degree at least D have been deleted, then the root (and so the complete tree) has been
deleted.

Theorem 1.1 provides a stochastic upper bound for Kn, the deletion time of the targeted
cutting process in RRTs.

Proposition 1.1. The random number of cuts Kn in the targeted cutting of Tn satisfies, for any
ε > 0, Kn = Op(nγ+ε), where γ := 1 − ln 2. Namely, for each δ > 0, there are M = M(ε, δ) > 0
and N = N(ε, δ) ∈N such that, for all n ≥ N, P(Kn > Mnγ+ε) < δ.

Proof. Theorem 1.1 implies that the result is satisfied for ε, δ > 0. Indeed, let N be large
enough that P(Z≥D ≥ nγ+ε) < δ for n ≥ N. The result follows, setting M(ε, δ) = 1, since Kn ≤
Z≥D a.s. �

Note that removing a uniformly random edge is equivalent to removing a uniformly cho-
sen vertex other than the root. This difference may be neglected in the case of RRTs, so we
can compare (1.1), in its probability version, with Kn = Op(nγ+ε). While Proposition 1.1 pro-
vides only a stochastic upper bound for Kn, it proves that the targeted cutting deletion time is
significantly smaller compared to the deletion time for uniformly random removals (note that
1 − ln 2 ≈ 0.306 85).

The upper bound Kn ≤ Z≥D may not be tight for two reasons. First, some of the vertices in
the list may not be deleted, but rather removed when some ancestor is deleted, and second, the
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root may not be the last vertex, among those with the same degree, to be deleted. We perform
simulations that suggest Kn and Z≥D have the same growth order; see Section 4.

1.4. Notation

We use |A| to denote the cardinality of a set A. For n ∈N we write [n] := {1, 2, . . . , n} and,
for m < n, [m, n] = {m, m + 1, . . . , n}. For a, b, c, x ∈R with b, c > 0, we use x ∈ (a ± b)c
as an abbreviation for (a − b)c ≤ x ≤ (a + b)c. In what follows we denote natural and base 2
logarithms by ln and log, respectively. We often use the identity ln a = ln 2 · log a for a > 0.

For r ∈R and a ∈N define the falling factorial (r)a := r(r − 1) · · · (r − a + 1) and (r)0 = 1.
For real functions f , g we write f (x) = o(g(x)) when limx→∞ f (x)/g(x) = 0 and f (x) = O(g(x))

when |f (x)/g(x)| ≤ C for some C > 0. Convergence in probability will be written as
P−→. Hn

denotes the nth harmonic number Hn = ∑n
i=1 1/i. A rooted tree is a tree with a distinguished

vertex, which we call the root. We always consider the edges to be directed towards the root.
A directed edge e = uv is directed from u to v and, in this case, we say that v is the parent of u.
Given a rooted tree T and one of its vertices v, the degree of v in T , denoted by degT (v) = dT (v),
is the number of edges directed towards v. We say that T has size n if it has n vertices, and [n]
will denote the set of vertices of a tree of size n.

2. Deterministic tails of the degree sequence

Given a random recursive tree Tn, let Z≥d denote the number of vertices with degree at least
d, that is

Z≥d ≡ Z≥d(n) := |{v ∈ [n] : dTn (v) ≥ d}|. (2.1)

Recall that Z≥D has random index D = D(n) which corresponds to the degree of the root in
Tn. Our theorems build upon results on the convergence of the variables Z≥d; note that these
variables are non-increasing on d. The following two propositions are simplified versions of
[2, Proposition 2.1] and [24, Theorem 1.8], respectively.

Proposition 2.1. (Moments of Z≥d.) For any d ∈N, E[Z≥d] ≤ 2log n−d. Moreover, there exists
α > 0 such that, if d < 3

2 ln n and k ∈ {1, 2} then

E[(Z≥d)k] = 2( log n−d)k(1 + o(n−α)),

E
[
Z2≥d

] =E[Z≥d]2(1 + o(n−α)). (2.2)

Proposition 2.2. (Total variation distance.) Let 0 < ε < 1
3 . Then for (1 + ε) ln n < d < (1 +

3ε) ln n there exists α′ = α′(ε) > 0 such that dTV(Z≥d, Poi(E[Z≥d])) ≤ O(n−α
′
).

As we mentioned before, the error bounds in the previous propositions are not strong enough
to estimate the moments of Z≥D. Instead, we focus on the variable ln Z≥D. Furthermore, we
transfer the task of moment estimation, for Theorem 1.2, to E[(ln X)
] where instead of hav-
ing X = Z≥D we consider either 1 + Z≥m− or 1 + Z≥m+ for suitable values m± = c± ln n with
c− < 1 < c+.

The upper bound in the following proposition follows from a straightforward application
of Jensen’s inequality, together with Proposition 2.1, while the lower bound uses the refined
bounds given in Proposition 2.2.
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Proposition 2.3. Let ε ∈ (0, 1
3 ) and 
 ∈N. Let

m− :=
⌊(

1 − ε

2 ln 2

)
ln n

⌋
, m+ :=

⌈(
1 + ε

2 ln 2

)
ln n + 1

⌉
.

There exist α′ = α′(ε) > 0 and C
 = C
(ε) > 0 such that

E[(ln(1 + Z≥m− ))
] ≤ [(1 − ln 2 + ε) ln n]
 + C
, (2.3)

E[(ln(1 + Z≥m+ ))
] ≥ [(1 − ln 2 − ε) ln n]
(1 − O(n−α
′
)). (2.4)

Proof. First, let f (x) = (ln(x))
 and note that f ′′(x) ≤ 0 for x > e
−1. Hence, by Jensen’s
inequality, for any positive integer-valued random variable X,

E[(ln X)
] =E
[
(ln X)
1{X>e
−1}

] +E
[
(ln X)
1{X≤e
−1}

] ≤ (ln E[X])
 + (
 − 1)
.

Next, we use the upper bound in Proposition 2.1 for E[Z≥m− ]. Note that log n − m− ≤
(1 − ln 2 + ε/2) log n. Thus, E[1 + Z≥m− ] ≤ 1 + 2n1−ln 2+ε/2 ≤ n1−ln 2+ε, where the second
inequality holds for n ≥ n0 = n0(ε) large enough. Then

E[(ln(1 + Z≥m− ))
] ≤ [ ln E[1 + Z≥m− ]]
 + (
 − 1)
 ≤ [(1 − ln 2 + ε) ln n]
 + C
,

where C
 = supn≤n0
{(ln(1 + 2n1−ln 2+ε/2))
} + (
 − 1)
.

Next, let μ =E[Z≥m+ ] and let (X, X′) be random variables coupled so that X
D= Z≥m+ , X′ D=

Poi(μ), and P(X = X′) is maximized; that is, P(X �= X′) = dTV(X, X′). Note that

E[(ln(1 + X))
] ≥E
[
(ln(1 + X))
1[X>nγ−ε]

] ≥ (ln(nγ−ε))
P(X > nγ−ε);

then (2.4) boils down to lower bounding P(X > nγ−ε). Since X < n, by the coupling assump-
tion, we have

P(X > nγ−ε) ≥ P(nγ−ε < X′ < n) − P(X �= X′)
= 1 − P(X′ ≥ n) − P(X′ ≤ nγ−ε) − dTV(X, X′).

By Proposition 2.2, dTV(X, X′) = O(n−α
′
) for α′(ε) > 0. Using the Chernoff bounds for

the tails of a Poisson variable (see, e.g., [13, Section 2.2]) and that μ = nγ−ε/2(1 + o(1))
we have

P(X′ ≥ n) ≤
(

enγ−ε/2

n

)n

e−nγ−ε/2 ≤
(

enln 2

enln 2

)−n

,

P(X′ ≤ nγ−ε) ≤
(

enγ−ε/2

nγ−ε

)nγ−ε

e−nγ−ε/2 ≤
(

enε/2

enε/2

)−nγ−ε

;

both bounds are o(n−α
′
), so the proof is completed. �
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2.1. Proof of Theorem 1.1

We use the first- and second-moment methods, together with Proposition 2.1, the concen-
tration of D, and the fact that, for each n, Z≥m is non-increasing in m.

Proof of Theorem 1.1. For completeness, we show that D is concentrated around ln n (in
fact, it is asymptotically normal; see, e.g., [22, Section 3.1.1, (6.3)] or [19, Section 3]). Indeed,
D is a sum of independent Bernoulli random variables (Bi)1<i≤n, each with mean 1/(i − 1), and
so E[D] = Hn−1 > ln n. From the fact that Hn − ln n is a decreasing sequence we infer that, for
any 0 < ε < 3

2 and n sufficiently large, |D − Hn−1| ≤ (ε/2)Hn−1 implies |D − ln n| ≤ ε ln n.
Using the contrapositive of this statement and Bernstein’s inequality (see, e.g., [34, Theorem
2.8]) we obtain, for n large enough,

P(D /∈ (1 ± ε) ln n) ≤ P(|D − Hn−1| > (ε/2)Hn−1) ≤ 2 exp

{
− ε2

12
Hn−1

}
≤ 2n−ε2/12. (2.5)

Recall that γ = 1 − ln 2. It suffices to prove that, for every ε > 0,

lim
n→∞ P(Z≥D /∈ (nγ−ε, nγ+ε)) = 0.

We infer from (2.5) that P(Z≥D /∈ (nγ−ε, nγ+ε), D /∈ (1 ± ε) ln n) vanishes as n grows.
Let m− := m−(ε) = �(1 − ε) ln n� and m+ := m+(ε) = �(1 + ε) ln n�. Using the mono-

tonicity of Z≥m on m, we have

P(Z≥D /∈ (nγ−ε, nγ+ε), D ∈ (1 ± ε) ln n) ≤ P(Z≥m− ≥ nγ+ε) + P(Z≥m+ ≤ nγ−ε), (2.6)

so it remains to show that both terms on the right-hand side of (2.6) vanish. First, using
that ln n = ln 2 · log n and so log n − (1 ± ε) ln n = (1 − ln 2 ∓ ε ln 2) log n, we infer from
Proposition 2.1 that

1

2
nγ−ε ln 2(1 − o(n−α)) ≤E[Z≥m+ ] ≤E[Z≥m− ] ≤ 2nγ+ε ln 2.

Markov’s inequality then gives P(Z≥m− ≥ nγ+ε) ≤ 2n−εγ → 0. Next, let θ be defined so that
nγ−ε = θE[Z≥m+ ]; in particular, θ ≤ 2n−εγ . The Paley–Zygmund inequality gives

P(Z≥m+ > nγ−ε) ≥ P(Z≥m+ > θE[Z≥m+ ]) ≥ (1 − θ )2E[Z≥m+ ]2

E
[
Z2≥m+

] ,

which tends to 1 as n → ∞ by the upper bound for θ and (2.2). This implies that
P(Z≥m+ ≤ nγ−ε) vanishes, as desired. �

3. Control of D through a coupling

Let n ∈N. Write In for the set of increasing trees of size n; namely, labeled rooted trees
with label set [n] such that the vertex labels are increasing along any path starting from the
root. It is straightforward to verify that the law of Tn is precisely the uniform distribution
on In.

Consider the following construction of an increasing tree of size n. Let (bi)1<i≤n and
(yi)1<i≤n be integer-valued sequences such that b2 = y2 = 1, bi ∈ {0, 1}, and 2 ≤ yi ≤ i − 1 for
3 ≤ i ≤ n. Let the vertex labeled 1 be the root and, for each 1 < i ≤ n, let vertex i be connected
to vertex 1 if bi = 1; otherwise, let vertex i be connected to vertex yi.
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The following coupling is exploited in the proof of Theorem 1.2. Define random
vectors (Bi)1<i≤n,

(
B(ε)

i

)
1<i≤n, and (Yi)1<i≤n as follows. Let (Bi)1<i≤n be independent

Bernoulli(1/(i − 1)) random variables, let
(
B(ε)

i

)
1<i≤n have the law of (Bi)1<i≤n conditioned

on
∑n

i=2 Bi ∈ (1 ± ε) ln(n), and let (Yi)1<i≤n be independent random variables such that Y2 = 1
a.s. and Yi is uniform over {2, . . . , i − 1} for 3 ≤ i ≤ n. We assume that the vector (Yi)1<i≤n is
independent from the rest, while the coupling of (Bi)1<i≤n and

(
B(ε)

i

)
1<i≤n is arbitrary.

The tree obtained from (Bi)1<i≤n, (Yi)1<i≤n, and the construction above has the distribution
of an RRT. To see this, write vi for the parent of vertex i; then 1 ≤ vi < i for each 1 < i ≤ n. First,
note that each vi is independent from the rest since (Bi)1<i≤n and (Yi)1<i≤n are independent.
Next, we show that vi is chosen uniformly at random from {1, 2, . . . , i − 1}. First, we have
v2 = 1 almost surely. For 2 ≤ 
 < i ≤ n, by the independence of Bi and Yi, we have

P(vi = 1) = P(Bi = 1) = 1

i − 1
= P(Bi = 0, Yi = 
) = P(vi = 
);

therefore, the tree obtained has the law of an RRT and so we denote it by Tn. Analogously,
write T (ε)

n for the tree obtained from
(
B(ε)

i

)
1<i≤n and (Yi)1<i≤n, and let D(ε) be the degree of its

root.
By the definition of D and the construction above we have D = ∑n

i=2 Bi. Thus, conditioning
on

∑n
i=2 Bi means, under this construction, conditioning Tn on the root degree D. In particular,

the distribution of
(
B(ε)

i

)
1<i≤n is defined so that T (ε)

n has the distribution of an RRT of size n

conditioned on D(ε) ∈ (1 ± ε) ln(n).
The condition D(ε) ∈ (1 ± ε) ln n corresponds to an event of probability close to 1 and so the

degree sequences of Tn and T (ε)
n do not differ by much. Hence, the proof strategy of Theorem

1.2 is to estimate the moments E[(ln Z≥D)k] using the monotonicity of Z≥d, by conditioning
on D ∈ (1 ± ε) ln n while retaining Z≥d instead of Z(ε)

≥d; see (3.9)–(3.11).
The following two propositions make this idea rigorous. For d ≥ 0, let

Wd = 1 + Z(ε)
≥d

1 + Z≥d
,

where Z≥d is defined as in (2.1) and, similarly, let Z(ε)
≥d := ∣∣{v ∈ T (ε)

n : d
T(ε)

n
(v) ≥ d

}∣∣.
The key in the proof of Proposition 3.1 lies in (3.3), which yields an upper bound on the

number of vertices that have differing degrees in Tn and T (ε)
n under the coupling. In turn, this

allows us to infer bounds on the ratio Wd that hold with high probability and are uniform in d.

Proposition 3.1. Let ε, δ ∈ (0, 1) and 0 ≤ d ≤ (1 + ε) ln n. There are C > 0, β = β(ε) > 0, and
n0 = n0(δ) such that, for n ≥ n0, under the coupling described above, P(Wd ∈ (1 ± δ)) ≥ 1 −
Cn−β .

Proof. Let m+ = �(1 + ε) ln n�, so that Z≥d ≥ Z≥m+ . By Chebyshev’s inequality and (2.2),
for c ∈ (0, 1),

P(Z≥m+ ≤ cE[Z≥m+ ]) ≤ P(|Z≥m+ −E[Z≥m+ ]| ≥ (1 − c)E[Z≥m+ ]) = o(n−α). (3.1)

Rewrite

Wd = 1 + Z(ε)
≥d − Z≥d

1 + Z≥d
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to see that Wd ∈ (1 ± δ) is equivalent to
∣∣Z(ε)

≥d − Z≥d
∣∣ ∈ [0, δ(1 + Z≥d)). Hence, it suffices to

show that there is n0(δ) ∈N such that, for n ≥ n0,

{Z≥m+ ≥ cE[Z≥m+ ], D ∈ (1 ± ε) ln n} ⊂ {∣∣Z(ε)
≥d − Z≥d

∣∣ ≤ δ(1 + Z≥d)
}
, (3.2)

which, by a contrapositive argument, together with (2.5) and (3.1), yields, for β =
min {α, ε2/12} > 0,

P
(∣∣Z(ε)

≥d − Z≥d
∣∣ > δ(1 + Z≥d)

) ≤ P(D /∈ (1 ± ε) ln n) + P(Z≥m+ ≤ cE[Z≥m+ ]) = O(n−β ).

We extend the notation introduced for the coupling. Let S := {i ∈ [2, n] : vi = v(ε)
i } be the set

of vertices that have the same parent in Tn and T (ε)
n . For i ∈ [n], denote the set of children of i

in Tn and T (ε)
n , respectively, by

C(i) := {j ∈ [2, n] : vj = i}, C(ε)(i) := {j ∈ [2, n] : v(ε)
j = i}.

By the coupling construction, S ∪ (C(1) � C(ε)(1)) is a partition of [2,n]; that is, whenever
the parent of a vertex i ∈ [2, n] differs in Tn and T (ε)

n we infer that Bi �= B(ε)
i and so either

i ∈ C(1) \ C(ε)(1) or i ∈ C(1)(ε) \ C(1). The consequences of this observation are two-fold: First,
for any i ∈ [2, n], a necessary condition for dTn (i) �= d

T(ε)
n

(i) is that C(i) �= C(ε)(i); second, the

function j �→ Yj that maps C(1) � C(ε)(1) to {i ∈ [2, n] : C(i) �= C(ε)(i)} is surjective. Indeed, if
i �= 1 and C(i) �= C(ε)(i) then there exists j ∈ C(1) � C(ε)(1) such that Yj = i. Together they imply
the following chain of inequalities:∣∣{i ∈ [2, n] : dTn (i) �= d

T(ε)
n

(i)
}∣∣ ≤ |{i ∈ [2, n] : C(i) �= C(ε)(i)}| ≤ |C(1) � C(1)(ε)|; (3.3)

the first inequality holds by containment of the corresponding sets, while the second one fol-
lows from the surjective function described above. On the other hand, |Z≥d − Z(ε)

≥d| equals

∣∣∣∣∣
n∑

i=1

1{dTn (i)≥d}(i) −
n∑

i=1

1{d
T(ε)

n
(i)≥d}(i)

∣∣∣∣∣ ≤
n∑

i=1

∣∣1{dTn (i)≥d}(i) − 1{d
T(ε)

n
(i)≥d}(i)

∣∣
≤ 1 + ∣∣{i ∈ {2, . . . , n} : dTn (i) �= d

T(ε)
n

(i)
}∣∣.

Therefore, ∣∣Z≥d − Z(ε)
≥d

∣∣ ≤ 1 + |C(1) � C(ε)(1)| ≤ 1 + 2 max{|C(1)|, |C(ε)(1)|}. (3.4)

We are now ready to prove (3.2). Fix, e.g., c = 1
2 and let n0 = n0(δ) be large enough

that (1 + 4 ln n)/δ < cE[Z≥m+ ]; this is possible since E[Z≥m+ ] grows polynomially in n, by
Proposition 2.1. In particular, recalling that Z≥d ≥ Z≥m+ for n ≥ n0 and any ε ∈ (0, 1), we have

{Z≥m+ ≥ cE[Z≥m+ ]} ⊂
{

Z≥d ≥ 1 + 2(1 + ε) ln n

δ

}
. (3.5)

Moreover, by the construction of T (ε)
n , |C(1)(ε)| = D(ε) ≤ (1 + ε) ln n, so that (3.4) implies{

Z≥d ≥ 1 + 2(1 + ε) ln n

δ
, D ∈ (1 ± ε) ln n

}
⊂ {∣∣Z(ε)

≥d − Z≥d
∣∣ ≤ δ(1 + Z≥d)

}
;
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note that this holds for all n ∈N. Together with (3.5), this implies (3.2) for n ≥ n0, as
desired. �
Proposition 3.2. Let ε ∈ (0, 1), 
 ∈N. For 0 ≤ d ≤ (1 + ε) ln n, there is a β = β(ε) > 0 such
that, under the coupling described above, |E[(ln Wd)
]| ≤ O((ln n)
n−β ) + 1.

Proof. We first simplify to |E[(ln Wd)
]| ≤E[|(ln Wd)
|] ≤E[| ln Wd|
]. Note that 1/n ≤
Wd ≤ n for every 0 ≤ d ≤ (1 ± ε) ln n. Indeed, it is straightforward that W0 ≡ 1 and, for
d ≥ 1, the bounds follow since any tree has at least one vertex of degree zero and so
max

{
Z≥d, Z(ε)

≥d

}
< n. Then, for any δ ∈ (0, 1),

E[| ln Wd|
1[Wd<1−δ]] ≤ (ln n)
P(Wd < 1 − δ),

E[| ln Wd|
1[Wd>1+δ]] ≤ (ln n)
P(Wd > 1 + δ).

Proposition 3.1 implies that these two terms are O((ln n)
n−β ), where the implicit constant
depends on the choice of δ. With foresight, fix δ to satisfy (δ/(1 − δ))
 + δ
 = 1. Using that
1 − (1/x) ≤ ln x ≤ x − 1 for all x ≥ 0,

E[| ln Wd|
1[Wd∈(1±δ)]] ≤E

[∣∣∣∣1 − 1

Wd

∣∣∣∣



1[Wd∈(1−δ,1)]

]
+E[|Wd − 1|
1[Wd∈[1,1+δ)]]

≤
(

δ

1 − δ

)


+ δ
 = 1,

and so the result follows. �

3.1. Proof of Theorem 1.2

Proof of Theorem 1.2. Fix k ∈N and recall that γ := 1 − ln(2). Suppose that, for any ε ∈(
0, 1

3

)
, there exist c = c(ε) > 0 and C = C(k, ε) > 0 such that

((γ − ε) ln n)k(1 + O(n−c)) − C ≤E[(ln Z≥D)k] ≤ ((γ + ε) ln n)k + C. (3.6)

It is straightforward to verify that (3.6) establishes Theorem 1.2. So, it remains to prove (3.6).
Let ε′ = ε/(2 ln(2)) and write m− = �(1 − ε′) ln n�, m+ = �(1 + ε′) ln n + 1�. We focus on

the term E[(ln Z≥D)k1{D∈(1±ε
′) ln n}], as (2.5) and 1 ≤ Z≥D ≤ n imply

0 ≤E[(ln Z≥D)k1{D/∈(1±ε
′) ln n}] ≤ (ln n)k

P(D /∈ (1 ± ε′) ln n) = (ln n)kO(n−ε
′
/12). (3.7)

Using the monotonicity of Z≥d, we have

E[(ln Z≥D)k1{D∈(1±ε
′) ln n}] ≤E[(ln Z≥m− )k1{D∈(1±ε

′) ln n}] ≤E[(ln Z≥m− )k],

which, by (2.3), yields

E[(ln Z≥D)k1{D∈(1±ε
′) ln n}] ≤ ((γ + ε) ln n)k + Ck. (3.8)

For the lower bound, recall the variable Z(ε′)
≥d defined in the previous section with d = m+.

Observe that, if D ∈ (1 ± ε′) ln n, then Z≥D ≥ 1 + Zm+ , and we thus obtain

E[(ln Z≥D)k1{D∈(1±ε
′) ln n}] ≥E[(ln(1 + Z≥m+ ))k1{D∈(1±ε

′) ln n}]

≥E
[(

ln
(
1 + Z(ε′)

≥m+
))k]

P(D ∈ (1 ± ε′) ln n). (3.9)
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The definition of Wd gives

ln
(
1 + Z(ε′)

≥m+
) = ln

((
1 + Z(ε′)

≥m+
)1 + Z≥m+

1 + Z≥m+

)
= ln(1 + Z≥m+ ) + ln Wm+ ; (3.10)

similarly, for k ≥ 2, the binomial expansion implies

(
ln

(
1 + Z(ε′)

≥m+
))k = (ln(1 + Z≥m+ ))k +

k∑

=1

(
k




)
ln(1 + Z≥m+ )k−
(ln Wm+ )
. (3.11)

We use (2.4) for a lower bound on the expectation of the main term in these last two decom-
positions. For the error terms involving Wm+ we use Proposition 3.2. If k = 1, we directly get

E
[

ln
(
1 + Z(ε′)

m+
)] =E[ ln(1 + Z≥m+ )] +E[ ln Wm+ ]

≥ (γ − ε) ln n(1 + O(n−α
′
)) + O((ln n)n−β ) − 1.

If k ≥ 2, we control each of the terms in the sum of (3.11). For 1 ≤ 
 ≤ k, the Cauchy–
Schwarz inequality gives

|E[(ln(1 + Z≥m+ ))k−
(ln Wm+ )
]| ≤E[(ln(1 + Z≥m+ ))2(k−
)]1/2
E[(ln Wm+ )2
]1/2.

The deterministic bound Z≥m+ < n implies E[(ln(1 + Z≥m− ))2(k−
)]1/2 ≤ (ln n)k−
. On the
other hand, Proposition 3.2 yields

E[(ln Wm+ )2
]1/2 ≤ (O((ln n)2
n−β ) + 1)1/2 ≤ O((ln n)
n−β ) + 1.

Thus, after taking expectations in (3.11), we get

E
[(

ln
(
1 + Z(ε′)

≥m+
))k] ≥ ((γ − ε) ln n)k(1 − o(n−c)) − C, (3.12)

where c = min{α′, β} and C = max{Ck, 2k}. Then, (3.7), (3.8), and (3.12) together with (2.5)
imply (3.6), completing the proof. �

4. Simulations

The approach of counting the number of records, although difficult in directly studying Kn,
provides us with a way to test our results via simulations in Python. We implement an algorithm
that identifies the number of (largest) vertex-degree records; in the case of ties, we keep track
of a set of uniform random variables that determines the order of deletion of vertices with the
same degree. See Appendix A.

We obtain 10 000 samples of RRTs of size 100 000 and use the data to graph Figures 1
and 2. Figure 1 shows the empirical distribution of both Kn and Z≥D. The distributions appear to
follow a power law. However, due to the nature of the variables under study, this computational
probe is far from providing a better insight. We compare the empirical distributions of Kn and
Z≥D using a Q–Q plot, shown in Figure 2. From this plot, it seems that Z≥D and Kn share
similar behavior.

To further explore the growth behavior of E[Kn] and E[Z≥D], we generate 10 000 samples
of RRTs of 50 different tree sizes, equally spaced on a logarithmic scale. Figure 3 shows the
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FIGURE 1. Empirical distributions of K100 000 and Z≥D(100 000) using a sample of size 10 000.

FIGURE 2. Q–Q plot for Z≥D(100 000) and K100 000 using a sample size of 10 000.

mean for each size, together with nγ as a comparison. A shortcoming we found was that since
ln n varies slowly, it was difficult to obtain a deeper insight into this resemblance.

Summing up, the simulations provide limited yet useful information. The Q–Q plot in
Figure 2 contributes to our understanding of the process since it may suggest that Kn and
Z≥D have the same growth order.
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FIGURE 3. Estimates for E[ZD] and E[Kn] in logarithmic scale, given a sample size of 10 000.

5. Conclusion and open problems

In this paper we introduced the notion of targeted cutting of a random recursive tree. This
procedure serves as a proxy for the resilience of a particular network to malicious attacks from
an enemy. To a certain extent, this problem has been tackled for scale-free random networks,
where the malicious strategy boils down to removing a given proportion of the smallest-labeled
vertices, regardless of the structure of the graph. The reason for this is mainly because pref-
erential attachment models have the property of persistence, which refers to the fact that
high-degree vertices are fixed early in the process. In contrast, RRTs lack persistence and the
picture for high-degree vertices in RRTs is more nuanced and far less complete.

Our results provide the first quantitative estimate for the deletion time Kn of the targeted
cutting process for random recursive trees. To do so, we shifted the focus to Z≥D, the number of
vertices with degree at least as large as the degree of the root; this random variable corresponds
to the quenched worst-case scenario for Kn.

In our main theorems, we found that ln Z≥D grows as ln n asymptotically and obtains its
limiting behavior in probability. Moreover, we obtained the growth order of the kth moment of
ln Z≥D for k ≥ 1.

Proposition 1.1, confirms the intuition that the targeted procedure requires substantially
fewer cuts than the random edge deletion procedure. This result was obtained by observing
that, once the tree has been sampled and all the degrees are known, Z≥D is an upper bound for
Kn. Unfortunately, the sensitivity that Z≥D may provide for the targeted cutting procedure is
limited since it fails to consider the structure of Tn, in particular high-degree vertices.

It remains open to understand the structure of the tree induced by, say, the first k = k(n)
vertices with highest degree. In turn, this could shed light on a theoretical analysis of vertex-
degree records. Similarly, we may study the sizes of the subtrees of maximal degree vertices,
in order to exploit the splitting property for cutting processes.
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On the other hand, analyzing Z≥D in more detail is not a straightforward task. It would be
interesting to sharpen the results on Z≥c ln n for a wider range of c ≥ 0 for RRTs and, more
generally, weighted RRTs.

Appendix A. The targeted cutting time algorithm

We use a depth-first search algorithm to simulate Kn, as this variable corresponds to the
number of (largest) records of vertex degrees in paths from the root to the leaves, which is
denoted by C below.

Given n ∈N, generate an RRT Tn where, initially, each vertex v stores its degree dTn (v)
and its parent Pv, and set Rv = degTn

(v), Lv = v. Let C be a counting variable initialized to
1 (because the root itself is a record). Using a depth-first search exploration, each vertex v
compares its degree, dTn (v), with the current record of its parent, RPv . Additionally, Lv keeps
track of the largest degree vertex encountered in its path to the root.

We encounter three cases:

1. If dTn (v) < RPv , set Rv = RPv and Lv = LPv . In the cutting process, v is removed because
one of its ancestors is deleted.

2. If dTn (v) > RPv , update C = C + 1. That is, v is removed before any of its ancestors and
so v counts as a record.

3. If dTn (v) = RPv , then let U(v) and U(LPv ) be independent Uniform(0, 1) random vari-
ables (note that U(LPv) may already have been generated). If U(v) < U(LPv), proceed as
in step 1, otherwise proceed as in step 2.

Return the variable C.
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