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Abstract

The isolated or combined effects of betaine and arginine supplementation of reduced protein diets (RPD) on fat content, fatty acid
composition and mRNA levels of genes controlling lipid metabolism in pig m. longissimus lumborum and subcutaneous adipose tissue (SAT)
were assessed. The experiment was performed on forty intact male pigs (Duroc X Large White X Landrace cross-breed) with initial and final
live weights of 60 and 93 kg, respectively. Pigs were randomly assigned to one of the following five diets (n 8): 16-0% of crude protein
(controD), 13-0% of crude protein (RPD), RPD supplemented with 0-33 % of betaine, RPD supplemented with 1-5% of arginine and RPD
supplemented with 0-33 % of betaine and 1-5% of arginine. Data confirmed that RPD increase intramuscular fat (IMF) content and total fat
content in SAT. The increased total fat content in SAT was accompanied by higher GLUT type 4, lipoprotein lipase and stearoyl-CoA
desaturase mRNA expression levels. In addition, the supplementation of RPD with betaine and/or arginine did not affect either IMF or total fat
in SAT. However, dietary betaine supplementation slightly affected fatty acid composition in both muscle and SAT. This effect was associated
with an increase of carnitine O-acetyltransferase mRNA levels in SAT but not in muscle, which suggests that betaine might be involved in the
differential regulation of some key genes of lipid metabolism in pig muscle and SAT. Although the arginine-supplemented diet decreased the
mRNA expression level of PPARG in muscle and SAT, it did not influence fat content or fatty acid composition in any of these pig tissues.
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Pork is the most consumed meat in European Union countries,
with 22 358 000 tonnes of pig carcass produced in 2014, Owing
to the genetic selection towards reduced subcutaneous fat, the
amount of intramuscular fat (IMF) in commercial cross-bred pigs
has also been decreased®. It was proposed that acceptable pork
eating quality requires a minimum IMF of 2.5 %, However,
according to Daszkiewicz et al Y about 84 % of the carcass from
commercial pigs have a IMF content below the level required for
acceptable eating quality. In addition, fatty acid composition
plays an important role in the eating quality and nutritional value
of meat. Thus, one of the main goals of the meat industry is to

improve fat partitioning — namely, the production of pork with
higher amounts of IMF and a balanced fatty acid composition —
without an increase in subcutaneous fat.

In pigs, fat partitioning can be improved by using different
feeding strategies. These strategies are mainly based on the
manipulation of dietary amino acid supplementation and reduc-
tion of the dietary protein content (reduced protein diets
(RPD)®®. Betaine, or trimethylglycine, is a metabolic product
present in plant and animal tissues. Its acts as an organic osmo-
protectant or as a methyl donor, which may partially reduce the

requirements for other methyl donors during lipid metabolism™.

Abbreviations: ACACA, acetyl-CoA carboxylase a; cDNA, complementary DNA; CPT-1B, carnitine palmitoyltransferase 1B; CRAT, carnitine O-acetyltransferase;
FABPA4, fatty acid binding protein 4, adipocyte; FADS1, fatty acid desaturase 1; FADS2, fatty acid desaturase 2; FAME, fatty acid methyl esters; FASN, fatty acid
synthase; GLUT4, solute carrier family 2, facilitated GLUT member 4; IMF, intramuscular fat; LPL, lipoprotein lipase; MLXIPL, MLX interacting protein-like;
RPA, reduced protein diet with arginine; RPB, reduced protein diet with betaine; RPBA, reduction protein diet with betaine and arginine; RPD, reduced protein

diets; RPLPO, ribosomal protein large PO; SAT, subcutaneous adipose tissue; SCD, stearoyl-CoA desaturase.
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In fact, dietary betaine supplementation may decrease the
requirements for other methyl donors such as methionine and
® It has been demonstrated that dietary betaine
supplementation in pigs may repress overall fat deposition®. As
reported by Huang et al.*'”, the addition of betaine to the diet
of growing—finishing pigs results in decreased carcass fat
deposition by increasing the rate of lipolysis and/or decreasing
the rate of lipogenesis. Moreover, arginine is a semi-essential
amino acid that, in addition to playing multiple physiological
functions in animals, enhances lipolysis through the expression
of key genes responsible for the activation of fatty acid oxidation
in a tissue-specific manner**'?. Previous studies have suggested
that dietary arginine supplementation to growing—finishing pigs
increased the IMF content, and thus improved fat partition-
ing*'®. However, we have recently showed that dietary
arginine supplementation, either alone or in combination with
RPD, does not increase IMF content or change the fatty acid
composition in pigs"'*. In addition to the use of dietary amino
acid supplementation, the use of RPD for increasing IMF content
in pigs with less effect on subcutaneous fat deposition has also
been reported®'®. Although the mechanisms of the tissue-
specific effects of RPD are not clear™, one possibility might be a
dietary-stimulated increase in stearoyl-CoA desaturase (SCD)
activity in pig muscle but not in subcutaneous adipose tissue
(SAT)(S). Moreover, recent results from our research group(ls‘)
showed the existence of breed-specific effects of fat deposition
promoted by RPD in pigs, with increased IMF content in lean pig
genotypes but not in fat ones.

The main site for de novo fatty acid biosynthesis and lipo-
genesis in pig is the white adipose tissue'®. In contrast, muscle
is one of the tissues playing the main role in the metabolism of
glucose and degradation of lipids(m. The mechanisms that
regulate adipogenesis and lipogenesis are controlled by a range
of key transcription factors including sterol regulatory element
binding protein 1 (SREBP1), CCAAT/enhancer binding protein
a (CEBPA) and PPARG"®. In addition, MLX interacting protein-
like (MLXIPL) is a critical glucose-responsive transcription factor
that regulates lipogenic and glycolytic genes, highly controlled
by the insulin-regulated solute carrier family 2, facilitated GLUT
member 4 (GLUT4) in adipose tissue™?. Furthermore, the
MLXIPL also regulates various enzymes involved in glycolysis
and lipogenesis, such as acetyl-CoA carboxylase (ACACA) and
fatty acid synthase (FASN)?”. ACACA®Y and FASN®® are the
lipogenic enzymes controlling the rates of SFA biosynthesis,
and SCD catalyses the rate-limiting step of MUFA biosynthesis.
Fatty acid desaturase 1 (FADSI) and desaturase 2 (FADS2)
genes encode for A5 and AG desaturases, respectively, which
are membrane-bound enzymes that catalyse the synthesis of
PUFA®. Moreover, carnitine palmitoyltransferase 1B (CPT-1B)
and carnitine O-acetyltransferase (CRAT) are the rate-limiting
enzymes of lipid catabolism and are responsible for the trans-
port of fatty acid esters from the cytosol to the mitochondria for
p-oxidation™®. PPARA is involved in fatty acid oxidation by up-
regulating the expressions of acyl-CoA oxidase and carnitine
palmitoyltransferase enzymes®®. Lipoprotein lipase (LPL) is the
rate-limiting enzyme in the conversion of chylomicrons and
VLDL into chylomicron remnants and LDL in tissues. Therefore,
LPL controls TAG partitioning between adipose tissue and

choline

muscle, thereby increasing fattening or providing energy in the
form of fatty acids for muscle growth®. Finally, fatty acid
binding protein 4 (FABP4) is responsible for fatty acid transport
in the adipocytes(%). It remains unclear whether and how these
processes contribute to the mechanisms controlling dietary
regulation of fat partitioning in pigs.

We have recently shown that adipogenesis and lipogenesis
are regulated differently in the muscle and SAT of commercial
cross-bred pigs'®. In addition, it was suggested that increased
IMF promoted by RPD is due to lysine restriction, and it is
mediated by the up-regulation of both the adipogenic
transcription factor PPARG and the lipogenic enzyme SCD.
Moreover, the supplementation of RPD with leucine seems to
be interesting to increase MUFA content in pork™®. Thus, in
order to assess the influence of new feeding strategies, we
tested the following hypotheses: (1) RPD supplemented with
betaine, arginine or both improve fat partitioning and fatty acid
composition in commercial cross-bred pigs; and (2) the tissue-
specific effect of betaine and/or arginine supplementation of
RPD is mediated via the expressions of key genes controlling
lipid metabolism. The general aim of this study was, therefore,
to assess whether the increased IMF content induced by RPD in
the growing-finishing phase of commercial cross-bred pigs
could be modulated by dietary supplementation of betaine and
arginine, or both (to assess additive/interactive effects), without
major undesirable increases in SAT.

Methods
Animals and diets

The trial was conducted at the facilities of Unidade de Investi-
gacio em Produgio Animal (Instituto Nacional de Investiga¢iao
Agraria e Veterindria (UEISPA-INIAV)), and all the experimental
procedures involving animals were reviewed by the Ethics
Commission of the Centro de Investigacio Interdisciplinar em
Sanidade Animal/Faculdade de Medicina Veterindria and
approved by the Animal Care Committee of the National
Veterinary Authority (Direc¢io-Geral de Alimentacio e
Veterindria), following the appropriated European Union
guidelines (2010/63/EU Directive). All the staff members
involved in animal trials had licence for conducting experiments
on live animals from the Portuguese Veterinary Services.

In all, forty commercial cross-bred (50 % Duroc, 25% Large
White and 25 % Landrace) entire male pigs with an initial body
weight of 59:9 (sp 1-65)kg were used. Animals were fed a
standard commercial concentrate diet from weaning until the
beginning of the experiment. The forty animals were randomly
allocated to ten pens and the five dietary treatments were
randomly allocated to each animal, according to an incomplete
balanced block design. The five diets were isoenergetically
formulated (13-3 MJ metabolisable energy/kg) and differed in
crude protein, betaine and arginine contents as follows: 16-0%
of crude protein (normal protein diet, control); 13-0 % of crude
protein (reduced protein diet, RP); 13-0 % of crude protein with
0-33% betaine supplementation (reduced protein diet with
betaine, RPB), 13:0% of crude protein with 1-5% arginine
supplementation (reduced protein diet with arginine, RPA) and
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13-0% of crude protein with 0-33 % betaine and 1-5% arginine
supplementation (reduction protein diet with betaine and
arginine, RPBA). The amino acids were obtained from Fh
Diedrichs & Ludwig Post. The ingredients, chemical composi-
tion and fatty acid profile of the experimental diets are shown in
Table 1. During the experiment, the animals were fed indivi-
dually twice a day and had access to water ad libitum. Feed
offered and refusals were recorded daily in order to calculate
feed intake. Pigs were weighed weekly, just before feeding,
throughout the experiment.

Slaughter and sampling

Feed was removed 17-19 h before the animals were slaughtered.
Pigs were slaughtered at an average live body weight of 92-7
(sp 2-54) kg, with no significant differences (P> 0-05) between
animal groups, at the UEISPA Experimental Abattoir. Immedi-
ately after electrical stunning and exsanguination, samples of
m. longissimus lumborum and SAT were collected from the right
side of the carcass at the first lumbar vertebra level for gene
expression analysis. The samples were rinsed with sterile RNAse-
free cold saline solution, cut into small pieces (approximately
0-3-cm thick), stabilised in RNA Later solution (Qiagen) and
stored at —80°C until analysed. For analysis of IMF and fatty acid
composition, m. longissimus lumborum and SAT samples were
collected after slaughter from the right carcass side between the
third and fifth lumbar vertebrae. Muscle samples were collected
and trimmed of visible connective and adipose tissues before being
blended in a food processor. The samples of muscle and SAT were
vacuum packed and stored at —20°C until analysed. Backfat
thickness was measured in left carcass side, at the P, (last rib
position) location, using a Vernier calliper (Bochem Lab Supply).

Feed analysis

Feed samples, collected five times during the trial (the first
collection was in the beginning of the trial, followed by regular
collections with a 3-week interval until the slaughter) were
analysed for DM by drying a sample at 100°C to a constant
weight. N content was determined by the Kjeldahl method®”,
and crude protein was calculated as 6:25xN. Crude fibre was
determined by the procedure described by the Association of
Official Analytical Chemists (AOAC)®”. The samples were
extracted with petroleum diethyl ether, using an automatic
Soxhlet extractor (Gerhardt Analytical Systems), and crude fat
was determined. Analysis of ash and starch contents was carried
out according to the procedures described by the AOAC*?” and
Clegg™®, respectively. Gross energy in
determined by adiabatic bomb calorimetry (Parr 1261; Parr
Instrument Company). Fatty acid methyl esters (FAME) of the
feed samples were analysed by one-step extraction and trans-
esterification, using heptadecanoic acid (17:0) as the internal
standard®”. Total amino acids were extracted from feed
according to the method described by the AOAC®®. The extract
was analysed by HPLC (Agilent 1100; Agilent Technologies) to
quantify total amino acids in the feed, following the procedure
described by Henderson et al. %",

the feed was

Intramuscular fat and fatty acid composition

The m. longissimus lumborum and SAT samples were lyophi-
lised (—60°C and 2-0 hPa) to constant weight using a lyophilisator
(Edwards High Vacuum International), maintained dry at —20°C

Table 1. Ingredients and chemical, amino acid and fatty acid composi-
tions of the experimental diets

Control RP RPB RPA RPBA

Ingredients (%)

Maize 550 550 550 550 550
Soyabean meal 190 107 114 390 4.05
Barley 100 159 160 255 249
Wheat 692 100 100 100 10-0
Sunflower meal 527 479 365 - -
Soyabean oil 095 094 094 1.01 1.16
Calcium carbonate 089 089 0489 090 090
Bicalcium phosphate 049 058 058 070 070
Salt 040 040 035 039 041
Vitamin—trace mineral premix 040 040 040 040 040
Mould inhibitor mixture 010 010 010 010 0-10
Fermentation products 010 010 010 010 0-10
Phytase mixture 010 010 010 0-10 O0-10
Acid mixture 005 005 005 0.05 0-05
Antioxidant mixture 0-01 001 001 001 0.01
Sodium bicarbonate - - 0-08 002 -
L-Lys 025 007 006 027 027
L-Thr 0-04 - - 005 0:05
pL-Met 0-02 - - - -
L-Trp - - - 001 0-01
Betaine HCI - - 033 - 0-33
L-Arg - - - 1.50 1.50
Chemical composition (% diet)
DM 885 885 886 888 887
Crude protein 16-1 131 13.0 128 130
Starch 45.0 493 484 476 499
Crude fat 317 335 335 385 397
Crude fibre 420 393 412 260 277
Ash 421 385 364 360 364
Ca 077 061 070 073 067
P 042 040 041 041 039
ME (MJ ME/kg) 133 136 133 132 132
Amino acid composition (% diet)
Ala 039 036 035 028 028
Arg 053 039 044 1.05 115
Asp 068 043 052 035 034
Glu 117 089 1.01 081 079
Gly 032 037 027 020 020
His 023 015 021 016 017
lle 026 017 024 017 017
Leu 064 056 056 045 045
Lys 051 035 035 030 0-33
Met 004 001 002 003 0-02
Phe 033 023 028 021 021
Pro 065 061 059 055 053
Ser 036 032 028 021 021
Thr 022 014 017 015 0-15
Tyr 024 015 019 015 0-14
Val 026 018 025 020 0-21
Fatty acid composition (% total fatty
acids)
16:0 204 161 155 142 141
18:0 452 327 322 277 279
18:1¢c9 324 285 279 262 261
18:1c11 121 1.03 099 091 092
18:2n-6 394 483 494 527 527

18:3n-3 204 275 288 324 327

Control, normal protein diet; RP, reduced protein diet; RPB, reduced protein diet with
betaine addition; RPA, reduced protein diet with arginine addition; RPBA, reduced
protein diet with betaine and arginine addition; ME, metabolisable energy.
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and analysed within 2 weeks. The total fat content of the muscle
samples (IMF) and SAT was determined using fresh samples by
hydrolysis with 4 M-HCI, followed by Soxhlet extraction for 6h
with petroleum diethyl ether'®”. For fatty acid analysis of
m. longissimus lumborum and SAT samples, FAME were
extracted from the lyophilised samples (approximately 250 and
50mg, respectively), according to the method described by
Folch et al®?, using dichloromethane-methanol (2:1, v/v)
instead of chloroform-methanol (2:1, v/v), as described by
Carlson®®. All the extraction solvents contained 0-01 % butylated
hydroxytoluene as an antioxidant. Fatty acids were converted to
methyl esters by a combined transesterification procedure with
NaOH in anhydrous methanol (0-5 ), followed by HCl-methanol
(1:1, v/v), at 50°C for 30 and 10 min, respectively, as described by
Raes et al®?

Quantification of FAME in muscle and SAT was performed
using a GC HP7890A (Hewlett-Packard), equipped with a flame
ionisation detector and a Supelcowax™ 10 capillary column
(30mx0-20mm i.d., 0-20-um film thickness; Supelco). The
column temperature of 150°C was held for 11min, then
increased to 210°C at a rate of 3°C/min and maintained
for 30 min. He was used as the carrier gas at a flow rate of
1-3 ml/min, the split ratio was 1:20 and 1ul of the sample was
injected. The injector and detector temperatures were 250 and
280°C, respectively. The quantification of total FAME was
carried out using nonadecanoic acid (19:0) as the internal
standard. Results for each fatty acid were expressed as a per-
centage of the sum of detected fatty acids (% total fatty acids).

RNA isolation and complementary DNA synthesis

Total RNA from m. longissimus lumborum and SAT samples
was isolated using QIAzol® Lysis Reagent (Qiagen) and purified
with RNeasy® Lipid Mini Kit (Qiagen). All the procedures were
performed in accordance with the manufacturer’s protocols,
and all RNA were subjected to an on-column DNAse I (Qiagen)
treatment to remove any contamination with genomic DNA.
RNA concentration was determined by analysis of absorbance
at 260nm using a NanoDrop ND-2000c spectrophotometer
(Nanodrop; Thermo Fisher Scientific). The A260/280 ratios
were between 1-9 and 2-1, and RNA integrity was evaluated by
electrophoresis using 1-5% agarose gel and ethidium bromide
staining (1-25 ng/ul; Sigma-Aldrich); 750 ng of total RNA was
reversed-transcribed using the High-Capacity ¢cDNA Reverse
Transcription Kit (Applied Biosystems), based on the use of
both oligodT and random hexamers as primers, following the
manufacturer’s protocol as was previously described by
Madeira et al ', Control reactions were carried out in the
absence of RT in order to check for DNA contamination.
Complementary DNA (cDNA) quality was tested by end-point
PCR, amplifying all the housekeeping and target genes used in
this study. The obtained cDNA was divided into aliquots and
stored at —20°C until further analysis.

Real-time quantitative PCR

Genes used in the present study were selected based on
their role in the transcriptional control of adipogenesis

regulation/differentiation (MLXIPL, PPARG, SREBP1, CEBPA),
regulation of lipogenesis (ACACA, FASN, FADS1, FADS2, SCD),
glucose uptake (GLUT4), fatty acid uptake (LPL) and lipid
oxidation (CRAT, CPT-1B, PPARA) (Table 2). Gene-specific
intron-spanning primers were designed with the aid of Primer3
(http://frodo/wi.mit.edu/primer3/) and Primer EXpress® 2.0
software (Applied Biosystems), based on Sus scrofa sequences
(www.ncbi.nlm.nih.gov), to generate amplicons ranging in size
from 71 to 145bp. Sequences of primers, GenBank accession
numbers, amplicon length and span exons for PCR products are
provided in Table 2. Primers were synthesised commercially by
NZYTech. Sequence homology searches against the database of
GenBank showed that these primers were specific to the
sequence to which they were designed. In order to test the
primers and verify the amplified products, a conventional PCR
was carried out for all the genes investigated in this study before
performing the real-time quantitative PCR experiments. In brief,
genes were amplified by conventional qualitative PCR (using
1pl of ¢cDNA) with the same primers that were designed for
real-time PCR. PCR products were extracted from gels using
QIAquick® Gel Extraction Kits (Qiagen). The fragments were
then cloned into the pGEM®-Teasy cloning vector (Promega),
transformed into pMOS Blue Escherichia coli and selected on
Luria-Bertani (LB) agar plates containing ampicillin (50 pg/mbD.
Plasmids containing inserts of the right size were sequenced by
Stab Vida, and homology searches were performed using Blast
(www.ncbi.nlm.nih.gov/blast) to confirm the identity of the
amplified fragments. The PCR efficiency was calculated for each
amplicon, in triplicate, using StepOnePlus™ PCR System
software (Applied Biosystems), by amplifying 5-fold serial
dilutions of pooled ¢cDNA. All primer sets exhibited an effi-
ciency ranging between 90 and 110%, and the correlation
coefficients were higher than 0-99.

The gene expression profiles of the five candidate references
(glyceraldehyde-3-phosphate ~ dehydrogenase,  60S
ribosomal protein L27 (RPL27), ornithine decarboxylase anti-
zyme 1, ribosomal protein large PO (RPLPO) and 40S ribosomal
protein S29 (RPS29)) were analysed in twenty-four randomly
selected different samples (four pigs from each group). The
geNorm algorithm® and NormFinder algorithm(%) were used
to evaluate their stability in all the samples. RPLPO and RPS29
were identified as the most stable pair of endogenous control
genes for normalisation of results in the m. longissimus
lumborum, whereas RPLPO and RPL27 genes were identified as
the most stable pair for SAT. Quantitative real-time PCR
reactions were carried out using MicroAmp® Optical 96-well
plates (Applied Biosystems) in a StepOnePlus™ thermocycler
(Applied Biosystems) in standard cycling conditions. Measure-
ments of each sample for each gene were conducted in dupli-
cate; 12:5ul of PCR reaction mixtures contained 6-25pul of
2 x Power SYBR® Green PCR Master Mix (Applied Biosystems),
160 nu of gene-specific forward and reverse primers and 1-5 pul
of diluted ¢cDNA as a template. Controls included no template
¢DNA to monitor contamination and primer dimer formation
and a minus RT sample to check for genomic DNA con-
tamination. A melting curve analysis was performed after the
final cycle to ensure specificity of primer and absence of primer
dimer formation. The relative amount of each target gene was

genes
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Table 2. Characterisation of the selected genes used in the real-time quantitative PCR assay

Reverse primer Product size (bp) Spanned coding exons

GenBank accession number Forward primer

Full gene name

Gene symbols

46-47

acgatgtaagcgccgaactt 120

ggccatcaaggacttcaacc

XM_003127015

NM_001114269

Acetyl-coenzyme A carboxylase a

ACACA
CEBPA

71
133
138
103

112

ggccagcacacacacattaga  cccccaaagaagagaaccaag

cagatggagcggatgttcaa
ggcccaccgagcectacac

NM_001007191.1

CCAAT/enhancer binding protein a (C/EBP)
CPT-1B carnitine palmitoyltransferase 1B

Carnitine acetyltransferase

8-9

gagccctegtagagecacac
atggcgatggegtaggag
ctitccatcecacttctgcac

NM_001113047

CPT-1B
CRAT

12-13

NM_001002817

gggccaggaatttgatgaag
acaccttcgtgctggectac
ccactgttggggctgaagg

NM_001099930

Fatty acid binding protein 4, adipocyte

Fatty acid synthase

FABP4
FASN
FADS1

40-41

atgtcggtgaactgctgcac

NM_001113041.1

108
122

gatgtgcatggggatgtggt

NM_001171750.1

Fatty acid desaturase 1

gccttacaaccaccageatga  aggccaagtccacccagtc

gctgectectacgagatgct

NM_001128433

Fatty acid desaturase 2
SLC2A4 solute carrier family 2, member 4

Lipoprotein lipase

FADS2

145

110

tggccagctggttgagtgt

NM_214286

GLUT4
LPL

ccaaggctgtatcccaggag
gggggctcagagaagtttga
ggggtggttggtctgcaag
gecacctctttgetetgete

atctgcgggatacaccaage

XM_003481002

7-8

126

tgacatgatccagcctgacc
tttccctetttgtggcetget

NM_001044526

MLX interacting protein-like

MLXIPL
PPARA

128

NM_214379

PPAR «a

124

gagggcgatctigacaggaa
agccgagaagctggtgatgt

gtgctggeggaggtetatgt

NM_213781

PPAR y

Stearoyl-CoA desaturase (A-9-desaturase)

PPARG
SCD

Betaine, arginine and protein effects in pig

140 5-6

gaagaaaggtggcgacgaac

NM_214157

11-12

96

aggaagaagcgggtcagaaag

Sterol regulatory element binding protein factor 1

SREBP1
Housekeeping genes

95
120
102

ggctcccactttgtctccag

tccaggctitaggcatcacc
ggtcagggttctegetettg

NM_001001633

NM_001098598

Ribosomal phosphoprotein large, PO subunit

Ribosomal protein S29
Ribosomal protein L27

RPLPO
RSP29
RPL27

cactggcggcacatattgag
aacttgaccttggectetcga

NM_001097479.1

gtactccgtggatatceccttyg

941

calculated using the geometric mean of RPLPO/RPS29 and
RPLPO/RPL27 as a normaliser for muscle and SAT, respectively.
The relative gene expression levels were calculated using the
Livak method®”, corrected for variation in amplification
efficiency, as described by Fleige et al.®®

Statistical analysis

All the data were checked for normal distribution (Shapiro-Wilk
test) and variance homogeneity (y* test). As variance hetero-
geneity was detected for most fatty acids and genes, these data
were analysed using Proc MIXED of SAS software package®”
(version 9.2; SAS Institute). The model included the effect of
dietary protein reduction (PR), betaine and Arg. The contrast
among diet types was performed as follows: PR = control v. (RP,
RPB, RPA, RPBA)/4; Bet=RP v. RPB; Arg=RP v. RPA; Bet+
Arg=RP v». RPBA; BetXArg=RPBA v. (RPB+RPA)/2). The
contrast BetX Arg enables to assess additive or interactive
effects between dietary betaine and arginine supplementation
of RP. Pearson’s correlation matrices were computed using the
PROC CORR of SAS.

Results

This study presents and discusses the results of a trial in com-
mercial pigs aiming to investigate the dietary modulation of fat
content and fatty acid composition in the m. longissimus
lumborum and SAT. Furthermore, the possible molecular
mechanisms underlying fat deposition in muscle and SAT were
elucidated through the assessment of mRNA expression levels
of genes encoding key lipogenic transcription factors and
enzymes. This animal trial also generated results on pigs’ per-
formance, carcass traits and sensory quality of meat that are
presented elsewhere™®. In brief, the results confirmed that
dietary PR enhances pork eating quality but negatively affects
pigs’ growth performance. Moreover, it was suggested that
betaine and/or arginine supplementation of RPD does not
further increase IMF content but improves some pork sensory
traits, including overall acceptability.

Intramuscular fat and fatty acid composition of muscle

The results of IMF content, fatty acid composition and partial
sums of fatty acids in the m. longissimus lumborum of cross-
bred pigs are presented in Table 3. The IMF content was
increased by 25 % for reduced protein diets (RP, RPA, RPB and
RPBA groups; P=0-041) relative to the normal protein diet
(control group). However, IMF content was not affected by the
supplementation of reduced protein diet (RP) by betaine (RPB;
P=0-730), arginine (RPA; P=0-344) or both (RPBA; P=0-610).

The predominant fatty acids in IMF were 18: 1¢is-9 (33-35%
of total FAME), 16:0 (22-23%), 18:0 (12-14%) and 18:2n-6
(11-12%) for all the experimental groups. The term ‘others’ in
Table 3 refers to unidentified minor fatty acids and to the 16:0,
18:0 and 18:1 plasmalogen-derived dimethyl acetals. Dietary
PR (RP, RPA, RPB and RPBA) resulted only in a decrease of the
percentage of 16:1cis-7 (P<0-001), when compared with
the control diet, out of the twenty-four fatty acids identified in
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the muscle. Pigs fed the RPB had lower proportions of 16 : 1¢is-9
(P=0-003) and 18:1cis-11 (P=0-005) than those fed the
reduced protein diet (RP). Arginine supplementation of the
reduced protein diet (RPA) had no effect on fatty acid profile
relative to the reduced protein diet.

Concerning the partial sums of fatty acids (Table 3), only
betaine supplementation of the reduced protein diet decreased
the percentage of MUFA (P=0-048), when compared with the
reduced protein diet without amino acid supplementation (RP).
Finally, PUFA:SFA and 7-6:n-3 ratios, which are commonly
used indices to assess the nutritional value of fatty acids, were
not affected by any of the experimental treatments.

Fatty acid content and composition of subcutaneous
adipose tissue

The results of backfat thickness at the P, site, total fat and fatty
acid composition for SAT are presented in Table 4. Dietary
betaine, arginine and betaine plus arginine supplementation did
not affect backfat thickness at the P, site or total fat content.
However, a 7% increase in total fat content was observed for
pigs fed the reduced protein diets (P=0-046) when compared
with those fed the control diet.

The major fatty acids in SAT were 18: 1¢is-9 (34-35 % of total
FAME), 16:0 (23-24 %), 18:0 (16-18 %) and 18: 212-6 (14—16 %)
across experimental groups. A reduction in the level of dietary
protein (RP) resulted in a decrease of the percentages of
16:1cis-7 (P=0-001) and 18:1cis-11 (P=0-035) when com-
pared with the control diet. Betaine supplementation of the
reduced protein diet decreased the percentages of 16:1c¢is-9
(P=0-020) and 18:1cis-11 (P=0-013). Neither arginine nor the
combination of betaine and arginine affected the fatty acid
profile in SAT.

The partial sums of fatty acids (Table 4) were not affected by
any experimental treatment. However, PUFA:SFA ratio was
decreased under the reduced protein diet (P=0-043) when
compared with the control diet. In contrast, pigs fed the
reduced protein diet supplemented with betaine had a higher
n-6:n-3 ratio (P=0-048) when compared with those fed the
reduced protein diet.

Gene expression levels in muscle and subcutaneous
adipose tissue

Expression analysis of genes controlling lipid metabolism was
carried out in order to elucidate whether the tissue-specific effects
of dietary protein level, betaine and arginine are associated with
differential modulation of gene expression. Fig. 1 and 2 show the
expression levels of fourteen key genes associated with lipid
metabolism in the m. longissimus lumborum and SAT of pigs,
respectively.

In the m. longissimus lumborum, the relative expression
levels of two out of the fourteen genes analysed were affected
by, at least, one dietary treatment. The expression level of the
PPARA gene was lower (P=0-027) in pigs fed the reduced
protein diet (RP) when compared with that fed the normal
protein diet (control diet). In addition, both arginine (P=0-022)

and betaine plus arginine (P=0-025) supplementation of the
reduced protein diet decreased the mRNA level of the
PPARG gene.

In SAT, the mRNA levels of six out of the fourteen genes
analysed were affected by one dietary treatment. The expres-
sion levels of GLUT4 (P=0-026), LPL (P=0-015) and SCD
(P=0-023) genes were up-regulated in pigs fed the reduced
protein diet when compared with those fed the control diet.
Dietary betaine supplementation of the reduced protein diet
decreased the CRAT mRNA level (P=0-004), whereas dietary
arginine supplementation decreased the PPARG expression
level (P=0-045). Finally, dietary betaine plus arginine supple-
mentation increased the FADS2 expression level (P=0-028)
when compared with the diets with either betaine or arginine
supplementation.

Correlation between fatty acid composition and gene
expression levels

The correlation coefficients () between fatty acid composition
and gene expression levels for the m. longissimus lumborum
and for SAT are shown in Table 5. In the m. longissimus
lumborum, 16: 1¢is-9 was positively and moderately correlated
(0-7>r>0-3) with FABP4 (P<0-01), SCD (P<0-01), LPL
(P<0-05) and PPARG (P<0-05) and was negatively correlated
with PPARA (P<0-05). Furthermore, 18:1cis-9 was positively
and moderately correlated with FABP4 (P<0-01), PPARG
(P<0-01), SCD (P<0-01) and CPI-1B (P<0-05) and was
negatively correlated with FADS1 (P<0-05). A moderate and
positive correlation was found between 18: 1¢is-11 and FABP4
and SCD expression levels (P<0-05). The fatty acid 18:2n-6
was negatively and moderately correlated with CP7-1B
(P<0-05), PPARG (P<0-05) and SCD (P<0-05) and was
positively correlated with FADS7 (P<0-05). MUFA were posi-
tively and moderately correlated with FABP4 (P<0-01), PPARG
(P<0-01), SCD (P<0-01) and CPI-1B (P<0-05) and were
negatively correlated with FADS1 (P<0-05). PUFA were
negatively and moderately correlated with PPARG (P<0-01)
and SCD (P<0-01) and were positively associated with FADS?
(P<0-05).

In SAT, 16: 0 and 18: 0 fatty acid percentages were positively
and moderately correlated with ACACA (P<0-05), FADS2
(P<0-05) and GLUT4 (P < 0-05) expression levels. Furthermore,
16:0 was positively correlated with LPL (P<0-01), MLXIPL
(P<0:01), FASN (P<0-05) and PPARG (P<0-05). Similar to
16:0, SFA was positively correlated with FADS2 (P<0-001),
ACACA (P<0-01), GLUT4 (P<0-01), FASN (P<0-05), LPL
(P<0-05) and MLXIPL (P<0-05). MUFA and 18:1cis-9 were
negatively and moderately correlated with FADS2 (P<0-001),
and MUFA were also negatively correlated with FADS1
(P<0-:05), GLUT4 (P<0-05) and LPL (P<0-05). A moderate
negative correlation was found between 18: 1¢is-11 content and
FADS2 (P<0-05) and GLUT4 (P<0-05) expression levels.
A positive correlation was established between 18:1cis-11
content and CRAT (P<0-05). PUFA and 18:2n-6 percentages
were negatively correlated with ACACA (P<0-05) and FASN
(P <0:05) expression levels.
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Fig. 1. Effect of dietary protein reduction, betaine and arginine on gene expression in the m. longissimus lumborum of pigs: (a) acetyl-CoA carboxylase; (b) carnitine
O-acetyltransferase; (c) carnitine palmitoyltransferase 1; (d) fatty acid binding protein 4; (e) fatty acid desaturase 1; (f) fatty acid desaturase 2; (g) fatty acid synthase;
(h) GLUT type 4; (i) lipoprotein lipase; (j) MLX interacting protein-like; (k) PPARA (protein reduction, P=0-027 (control diet (control) v. reduced protein diet (RP),
reduced protein diet with betaine addition (RPB), reduced protein diet with arginine addition (RPA), reduced protein diet with betaine and arginine addition (RPBA));
() PPARG (arginine, P=0-022 (RP v. RPA)); betaine + arginine, P=0-025 (RP v. RPBA)); (m) stearoyl-CoA desaturase, (n) sterol regulatory element binding protein 1.

Values are means, with their standard errors represented by vertical bars.

Discussion

In the present study, a 19% reduction of dietary protein (16 v.
13% of crude protein) during the growing—finishing phase of
commercial cross-bred pigs resulted in an increased IMF of 25 %.
These results agree with previous studies, which showed that a
range of dietary protein concentrations (e.g. 21 ». 18% ", 17 .
15%“Y and 16 v. 13 %(14)) increases IMF content in commercial
cross-bred pigs. It was previously suggested that an increase in
IMF is likely due to a dietary lysine restriction, and it might be
mediated by up-regulation of the lipogenic enzyme scD™?,
which is responsible for the regulation of MUFA biosynthesis.
However, the present study did not confirm the up-regulation of
SCD mRNA expression by RPD in pig muscle, although a sig-
nificant correlation between SCD expression level and MUFA
proportion was observed. This is likely explained by the different

pig genotypes and dietary lysine restriction percentages used in
the different experiments. In fact, in the study by Madeira
et al™, the cross-bred pig used was 25% Duroc x 25 % Pietrain
X 25% Large White X 25% Landrace, whereas in this study the
cross-bred pig used was 50 % Duroc X 25% Large White X 25 %
Landrace. In addition, although the protein level was the same in
both studies (16 v. 13%), lysine level was lower in the present
study (0-8 v. 0-5%; 0-5 . 0-3). In line with this, we have pre-
viously shown that the relationship between SCD protein
expression and IMF content is breed specific*®. Finally, the
mRNA expression level of PPARA, a key transcription factor
involved in the promotion of fatty acid oxidation®”, decreased
with dietary PR, which has not yet been previously described.
Our hypothesis was that tissue-specific responses of IMF
content, fatty acid composition and backfat thickness promoted
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Fig. 2. Effect of dietary protein reduction, betaine and arginine on gene expression in the subcutaneous adipose tissue of pigs: (a) acetyl-CoA carboxylase;
(b) CCAAT/enhancer binding protein a; (c) carnitine O-acetyltransferase (betaine, P=0-004 (reduced protein diet (RPD) v. reduced protein diet with betaine addition
(RPB)); (d) fatty acid binding protein 4, (e) fatty acid desaturase 1, (f) fatty acid desaturase 2 (betaine x arginine, P=0-028 (reduced protein diet with betaine and
arginine addition (RPBA) v. RPB and reduced protein diet with arginine addition (RPA)) (g) fatty acid synthase, (h) GLUT type 4 (protein reduction, P=0-026 (control
diet (control) v. reduced protein diet (RP), RPB, RPA, RPBA)), (i) lipoprotein lipase (protein reduction, P=0-015 (control v. RP, RPB, RPA, RPBA)), (j) interacting
protein-like, (k) PPARA, () PPARG (arginine, P=0-045 (RP v. RPA)), (m) stearoyl-CoA desaturase) (protein reduction, P=0-023 (control v. RP, RPB, RPA, RPBA)),
(n) sterol regulatory element binding protein 1, (o) LPL muscle/subcutaneous adipose tissue. Values are means, with their standard errors represented by vertical bars.

by RPD in cross-bred pigs could be improved by the dietary
supplementation of betaine and/or arginine. It was also our goal
to elucidate the molecular mechanisms controlling lipid meta-
bolism by these dietary supplementations in muscle and SAT.
This hypothesis was based on some studies indicating that dietary
betaine supplementation can increase IMF content 4 decrease
carcass fat deposition and increase carcass leanness in pig(45’46).
In addition, the increase in IMF content by dietary arginine sup-
plementation has also been previously reported 47,

The results of the present study regarding the effect of RPD
supplemented by betaine are in agreement with the data of
Rojas-Cano et al“® who suggested that 0-5% dietary betaine
supplementation of a normal protein diet does not increase IMF
content in Iberian pigs from 20 to 50kg of live body weight. In
contrast, Feng™ and Ma et al“®” reported that betaine

supplementation of pig diets with 0-10-0-18% increases IMF
content in the m. longissimus. Martins et al.*?
0-1 % betaine supplementation in Alentejano pigs increases total
intramuscular lipids. The explanation for this discrepancy might
be the use of distinct pig genotype, age and degree of maturity, as
well as different dietary protein/lysine levels (normal protein diet
v. RPD) in the different studies. Our recent study™ showed that
the increase in IMF content under RPD can be observed in
genetically lean pigs such as cross-bred pigs with Pietrain, Large
White and Landrace genetics but not in fatty breeds such as
Alentejano breed.

Betaine is involved in lipid metabolism through its role in both
regulation of phosphatidylcholine synthesis and fatty acid oxi-
dation as a methyl donor during carnitine synthesis®®. Dietary
carnitine supplementation has been shown to decrease carcass fat

also found that

ssaud Aisianun abplquied Aq auluo paysliand 8125005 LS LL2000S/2101°0L/B10"10p//:sdny


https://doi.org/10.1017/S0007114515005218

https://doi.org/10.1017/S0007114515005218 Published online by Cambridge University Press

"L00°0>d wux F00>d 4x ‘GO0>d «
‘0 ugjoad Bulpulq Jeoueyua/1YYID ‘Y4930 ‘1 uieloid Buipuiq Juswsale Aloreinbal |01als ‘LJgTHS ‘eseinjesap yod-|Aoleals ‘oS ‘ayil-uteiold Bunoessiul XN “TdIX TN osed)| uisloidodl ‘147 ¥ @dA 101D
‘L1N7D ‘oseyiuhs pioe Ale} ‘NS4 ‘g aseinjesap ploe Ale} ‘ZsayH (L aseinjesap ploe Ale} ‘L Sav4 ‘v uisiold Buipuiq pioe Ane} ‘pdgy4 ‘oselsjsuellAiooe-0 auuled yHo ‘gl asessjsueAoywied sumuied ‘gL-1 40 ‘9selAxogied yod-|A1eoe ‘Yovoy

10— 20 00— ¥L0— ¥00 920 $00— 000— OLO— 1dg34S
»x59°0 82:0— 80-0 S0 820— €10 1454 14%Y 00— 0LO aos
€10 SL10—  S00 0e-0— 810 S00 700 9€0- €00 810 V€0 OHYdd
610 €50 £GE0 #0-0— 80— 910 00— 810- ¥10— 810 60:0— SO0 vHVdd
«€0 910 220 80-0 910~ 00—  .S€0 Sk0— L00— .£€0— 810 610 «l¥0 IdIXIN
x50 620 x990 620 000— €L10— .880— .8€0 €L0— €10— 60— 20 2000 «E¥0 Id7
»x€90 =970 x«05°0 XG0 «x890 =L¥0 920~ «CE0— b0 920~ £€0— /20— .6£0 7H0—  .£€0 vLNTO
»¥9°0 €0 «c€0 820 €10 90 =670  «LE0— 600— 9¢0 90— O0LO— 600— 020 L0 «SP0 NSV
L10 «6€0 670 «€€0 980 8G90 120 100 800~ 90— €90 800~ «B8E0~ 890~ V0 220— .9¢0 csav4
020 200 220 910 L1-0 «6€0 (44 L0 120 800 «LE0— 020 800 clo— 860~ 610 800— 00 Lsav4
80-0— S0 00— 20 820 £0-0 00— 920 120 Sk0— 00— L10- S0 $0-0— 9+0- yL0—  ¥L0 €10—  0L0 IGELZ]
810 00— 200~ 900 €20 ¥1-0 020 ¥1-0 020 020 00-0 00-0 le0 9k0— 100 .¥E0 €10 S20— «€€0 700 1vHO
00-0 620 220 =70 600 200 €20 20-0— S0-0 610 500 00— €00 00— 010 00— Gh0-— 800—  £00 0= 200 Ydg30
€00 820 L0 20 w70 5920 w880 aib50 xa€G0 k090 120 9.0  «a8S0 €0 920— «S¥0  .£€0— 20— 220~ €0 900— .8€0 vOovov
anssi asodipe
snoaueNOgNsg
SL-0— 80-0 AR 9k0— 900- L0 120 0L0— 200 1dg34S
20— .GE0— wS¥0 00— L980— 42€0 «E¥°0 60— «EVO 910 aos
»4xC9°0 600 80— «ehO 600 80— LIO 0 200— .£€0 920 HHYdd
500 S00—  wbP0 90-0— 100 L0 €0-0— G20- 200 €20 «2€0- 00— VHYdd
0L0— 120 1€0 €0:0— 200 00— Y10 00— 20— 800— /IO 00— 600 IdIXIN
$0-0 800~  .2€0 S20 00— 820- 620 600 820— LIO 820 00— «920 0€:0 d7
220~ G20 120 600— 200 820 €00~ 000— 900 €00— £00- 200 SHO0 /10— 900— vLNTO
800 — 0€-0 €0 L0 x€90 «xC80 L0 S20— 120 200 S20— L0 920 00— G20 020 NSY4
120 220 02:0— S0 ¥2:0 620 800 £GE0 cLo L0 00— 10 600— 00— 000 2k0—  600-— csav4
x990 L0 145¢ 200 S00 900 €00 €00~ S00  «¥E0 «8€°0— 900— .¥€0 6L0— 60— 00— LHO— €LO— Lsav+4
100 G20 xS5O0 €L0—  wEVO0 S20 S10= xxbl0 020 80— €0~ WbPO 600— 00— .¥€0 =70 20— w90 ¥1-0 rdgv4
920— €0~ Wb O0-— [450] L0 S20 $0-0— ¥20 000 00— (44 610~ (4] 000 6L0— 00— erA] 800 L0—  £00- 1vHO
xS0 100 12:0— 100 €00 020 200 €10 120 Le0 00:0—  .G€0 00—  «£0 0000 «€€0— GLO «6€0 600 G00— 800-— gl —1do
€0-0 00— €S0 $0-0 020 080 220 S0-0 ~EV0 S00—  wib0 980 80-0— 020- 220 00-0 020— 810 120 00— €20 €0 vovov
wnioquin|

snwssibuoy “w

YOVOV vdd30/41:1d0  LvHO vdgv4  L1SAv4 csav4 NS4 vLNTO adT IdIXTN  vHYdd  OHYdd aos ldg34s  vdnd V4NN v4s ou LL-s1o 6-519 0:8l 6-S10 0:91
c:8l L8t L8t L9l

sbid jo anssp asodipe
SNOBUBINOQNS PUE Wnioquin| snwissibuol “w ayy ul (o8] YNYW dAle|al) s|aaa| uolssaidxa auab pue spioe Aje} Jo swins [enJed ‘(spioe Aje} |10} 9,) uoiisodwod pioe Aje} Buowe Sjusidle09d Uole|d1100 suosiead °G ajqeL

uonlaNN jJo [eudnof ysniig Mz


https://doi.org/10.1017/S0007114515005218

o

British Journal of Nutrition

948 M. S. Madeira et al.

content in pigs®". Betaine has been reported to increase carnitine
content in pig liver and muscles™?, which indicates an effect of
betaine on the reduction of carcass pig fat content in pigs. Huang
et al®® reported that supplementation of pig diet with betaine
leads to a decrease in the activity of CPT1 — an enzyme that plays
a key role in the regulation of lipid metabolism. The present study
did not find any significant effect of dietary betaine supple-
mentation on CPT-1B gene expression. This fact can be explained
by the use of distinct pig genotypes (Duroc X (Seghers X Seghers)
cross-breed v. Duroc X Large White X Landrace cross-breed in the
study by Huang et al.°” and the present study, respectively). In
addition, the concentrations of dietary betaine and protein levels
used in this study (RPD with 13-0% of protein and 0-33% of
betaine) were different from that used by Huang et al % (normal
protein diet with 14-9% of protein and 0-12% of betaine).

The effect of supplementing RPD with 1-5% of arginine
described in this study is in agreement with a report by Go
et al.®®, who found that 0-82% dietary arginine supplementa-
tion does not increase IMF content in pigs. In contrast, the
studies by Tan et al.*® and Ma et al.“"” reported an increase in
IMF content in dietary trials that used 1% dietary arginine
supplementation, which is a value lower than that used in our
study. The discrepancy between our findings and the report by
Ma et al““” might be explained by the use of pigs with a
different genetic background (Du X (ChangXx Da)) and distinct
slaughter weights (93 ». 110kg“”, approximately). In addition,
it is important to note that the feeding strategies reported in this
study were based on RPD supplemented by betaine and/or
arginine, whereas the studies mentioned above used betaine
and arginine supplementation of diets with the recommended
protein levels for those pig genetic lines. Taken together, the
present study did not find any additional effect of dietary
betaine and/or arginine supplementation to the increased IMF
promoted by RPD in this lean commercial pig cross-breed.

The feeding strategies used in this study had a slight effect on
the fatty acid compositions in muscle and SAT. The animals fed
the diet supplemented with betaine had a lower percentage of
beneficial MUFA in muscle, which was mainly due to a decrease
in 16: 1¢is-9 and 18:1¢is-11 proportions. Although SCD mRNA
expression level was not affected in muscle by dietary betaine
supplementation, a positive correlation was found between
SCD mRNA and 16:1c¢is-9, 18:1cis-9, 18:1cis-11 and MUFA
proportions. The increased 7n-6:n-3 PUFA ratio in SAT of
betaine-supplemented pigs indicates the lower nutritional value
of the fat from these animals. Our results are in agreement with
those of Martins et al.**, who observed a slight effect of dietary
betaine on fatty acid composition in the m. longissimus
lumborum of Alentejano pig. In contrast to betaine, our study
did not find any effect of dietary arginine supplementation on
fatty acid composition in muscle. However, dietary supple-
mentation with both arginine and betaine resulted in a decrease
of PPARG mRNA level.

In the present study, the RPD increased the total fat content in
SAT but did not affect backfat thickness. The increased fat
content in SAT was accompanied by increased GLUT4, LPL and
SCD mRNA levels. In addition, strong significant correlations
among GLUT4, LPL and SCD mRNA levels were observed. This

is consistent with our previous study*, in which the increased

total fat content in SAT was associated with the ZPL and SCD
mRNA levels promoted by the RPD.

Betaine supplementation of RPD did not affect total fat
content in SAT or backfat thickness, but decreased 16: 1cis-9
and 18:1cis-11 proportions. In addition, a down-regulation of
CRAT mRNA expression under the betaine-supplemented diet
was obtained. CRAT is a rate-limiting enzyme of lipid catabolism
responsible for the transport of fatty acids from the cytosol to
the mitochondria for f-oxidation™®.

The present study established that dietary arginine
supplementation did not affect total fat content or fatty acid
composition in SAT or backfat thickness at the P, site. However,
arginine induced the down-regulation of PPARG transcription
factor in muscle and SAT. It is well known that the transcription
factor PPARG is involved in fat deposition through the
expression regulation of some lipogenic enzymes®?.

In the present study, SAT had, in general, higher mRNA
expression levels of genes controlling lipid metabolism when
compared with the muscle. In addition, the number of corre-
lations between major fatty acids and expression levels of key
lipogenic enzymes and transcription factors was also higher in
SAT than in muscle. This is likely explained by the fact that SAT
is the main site for de novo fatty acid biosynthesis and
lipogenesis, whereas muscles play a major role in the meta-
bolism of glucose and degradation of lipids(m. Therefore, SAT
is more sensitive than IMF to changes in feeding strategies,
mainly in those that affect lipid metabolism.

Conclusions

The present study confirms that RPD with restricted lysine levels
increase IMF content and total fat content of SAT in pigs, but do
not change backfat thickness at the P, site. The increased total
fat content in SAT seems to be mediated by the up-regulation of
GLUT4, LPL and SCD mRNA levels. These data indicate that the
supplementation of RPD with betaine and/or arginine does not
affect IMF content, total fat content in SAT or backfat thickness
at the P, site. However, dietary betaine supplementation slightly
affects fatty acid composition in both muscle and SAT.
Betaine-supplemented diet decreased the expression of CRAT
in SAT but not in muscle. Therefore, betaine might be involved
in the differential regulation of some key genes of lipid
metabolism in pig muscle and SAT. In spite of the lack of effect
of arginine supplementation on fat content and fatty acid
composition in muscle and SAT, the arginine-supplemented
diet decreased the expression of PPARG transcription factor in
both tissues.

Taken together, our data indicate that, under our experi-
mental conditions, dietary betaine and/or arginine supple-
mentation of RPD does not seem to be useful to further increase
IMF content or to improve the nutritional value of meat fatty
acid composition in pigs. The results of this research reinforce
current evidence that adipogenesis and lipogenesis are differ-
ently regulated in pig muscle and SAT. These data contribute to
understand the mechanisms of dietary regulation of fat parti-
tioning in pigs, and therefore could help improve pig feeding
strategies to address industry needs and consumer demands.
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