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STRONG BOUNDEDNESS AND STRONG CONVERGENCE
IN SEQUENCE SPACES

MARTIN BUNTINAS AND NAZA TANOVIC-MILLER

ABSTRACT.  Strong convergence has been investigated in summability theory and
Fourier analysis. This paper extends strong convergence to a topological property of
sequence spaces E. The more general property of strong boundedness is also defined
and examined. One of the main results shows that for an FK-space E which contains all
finite sequences, strong convergenceis equivalentto the invariance property E = £vy-E
with respect to coordinatewise multiplication by sequences in the space £ vy defined in
the paper. Similarly, strong boundednessis equivalent to another invariance E = £v- E.
The results of the paper are applied to summability fields and spaces of Fourier series.

1. Introduction. This paper defines strong boundedness and strong convergence in
sequence spaces E and relates these properties to invariances of the form £ = D - E with
respect to coordinatewise multiplication by sequences in some space D. Such invariance
statements have been investigated in relation to other types of convergence such as:

- sectional boundedness AB and sectional convergence AK [7], induced by the or-
dinary convergence I of numerical series;

- Cesaro sectional boundedness o B and Cesaro sectional convergence o K [2], in-
duced by Cesaro convergence Cy;

- unrestricted sectional boundedness UAB and unrestricted sectional convergence
UAK [11], [12], and absolute boundedness |AB| and absolute convergence |AK|
[5], both induced by absolute convergence |1|;

- and other types of convergence [3], [4].

Strong boundedness [AB] and strong convergence [AK] in sequence spaces, which are
considered in this paper, are induced by strong convergence [/]. This type of convergence
is related to the other ones mentioned above by the implications

[ = [=1=C.
The induced concepts in sequence spaces satisfy
|AB| = UAB = [AB] = AB = 0B

and
|AK| = UAK = [AK] = AK = oK.
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The basic definitions are given in Section 2. The results in this paper are given for FK-
spaces and BK-spaces containing the spaces of finite sequences ¢ although generaliza-
tions to other topological spaces are possible.

Section 3 gives some basic results related to [AK] and [AB]. In Section 4, four specific
spaces £v, Lv, [cs], and [bs] are considered. Section 5 contains the main invariance
statements:

- An FK-space E has the property of strong boundedness if and only if E = £v-E.
- An FK-space E has the property of strong convergence if and only if E = £ vy - E.

The concept of strong convergence [I] was investigated both in summability theory
[8], [1], [9], [10] and Fourier analysis [13], [14], [15], [16], [17]. This generated new
classes of interesting sequence spaces and spaces of Fourier series. In the last section we
give examples and applications to convergence fields and to some important spaces of
Fourier series.

Strong convergence of orders 0 < p < oo [I], were also investigated in the above
mentioned papers. Invariance statements for these methods do not follow from our results
however since statements corresponding to Theorem 4.2 do not hold for general orders.

2. Definitions. Let w be the space of all real or complex sequences x = (x). An
FK-space is a subspace of w with a complete metrizable locally convex topology with
continuous coordinate functionals f;: x — x; for all k. An FK-space whose topology is
defined by a norm is a Banach space and is called a BK-space. Let ¢* be the sequence with
1 in the k™ coordinate and O elsewhere and let ¢ be the linear span of {e',e?,¢%,...}.
In this paper we consider only FK—and BK—spaces containing ¢ .

We write Spn = Yo pn ! and maxy: = max,ncyom . We use the notation x-y := (xyi)
for the coordinatewise product of sequences x and y and, for subsets A and B of w, we
use A-B:={x-y| x €A, y € B}.If A C wand F is an FK-space, we define
the F-dual of A as the multiplier space A = (A — F) ;== {y € w | x-y € F for
allx € A}. Let s" := 55, & = (1,1,...,1,0,...), 0" := L o0 sk d" := 55 &,
and let e := (1,1,1,...) be the sequence of all ones. The n'™ section of a sequence x is
§"x =" x = (X1,X,...,%,0,...), the n" Cesaro section is o"x := ¢" - x, and the n®
dyadic section is d"x := d" - x = Ypn x3€k.

A sequence x in w has the property AB of sectional boundedness in an FK-space E if
the sections s"x of x form a bounded subset of E and it has the property o B if the Cesaro
sections ¢"x are bounded in E.

LetH :={h€w | hy = lorh = Oforallk} and Hy := HN ¢ . The unconditional
(or unrestricted) sections of a sequence x are the sequences in the set #, - x. The absolute
set of xis H - x. Since e € H, we have x € H - x. Let E be an FK-space and let x € w.
We say that x has the property UAB of unconditional sectional boundedness in E if H -x
is a bounded subset of E, we say that x has the property |AB| of absolute boundedness if
H - x is a bounded subset of E, and x has the property [AB] of strong boundedness if x
has the property AB and { # - d@’x}*, is a bounded subset of E.

For each FK-space E, we define the space E4p consisting of all elements x of w
with the property AB in E. Similarly, for the properties 0B, UAB, |AB| and [AB], we
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obtain spaces E,p, Eyap, E| AB| and Ej4p;. These spaces are FK-spaces under appro-
priate topologies discussed in Section 3. They are not necessarily subspaces of E as
is shown by the example (co)uap = (co)ap = €°; except E|4p), which is always a
subspace of E since e € . We say that an FK-space E has the property AB, UAB,
|AB| or [AB] if E is a subset of Exp, Euag, E|ap) or Ejap), respectively. Clearly we have
E]ABl C Eyap C E[AB] C Epxp C E;p.
A sequence x in an FK-space E has the property o K of Cesaro sectional convergence
" if the sections o"x converge to x in the topology of E. If the sections s"x converge to x,
we say that x has the property AK of sectional convergence and if, in addition, x has the
property [AB], we say that x has the property [AK] of strong convergence.

The set #; is a directed set under the relation " > 4’ defined by h” > H,, for all k.
A sequence x in an FK-space E containing ¢ has the property UAK in Eif H; -x C E
and the net & - x, where h ranges over #,, converges to x under the topology of E. We
say that x has the property |AK| of absolute sectional convergence if H - x C E and the
net h - i’ - x, where h ranges over H,, converges to 4’ - x uniformly in #' € #{ under the
topology of E.

We define Exx to be the space of all elements x of E with the property AK in E. The
same can be done for the properties 0K, UAK, |AK| and [AK]. The space E,p is the
closure of ¢ in E. Since ¢ C E, we have the inclusions ¢ C Ejak) C Evak C Ejax) C
Eax C E;x C Eap C E. If E4p = E, we say that E has the property of sectional density
AD. If y € E whenever |y,| < |x| for some x € E, we say that E is solid; this is
equivalent to £ *°-invariance: E = £ - E.

We finish this section with a list of some BK-spaces and their norms. The BK-spaces
£, ¢ and ¢y are the space of all bounded, convergent and null sequences x, respectively,
under the sup norm || x||o := sup, |xx|;
bv is the BK-space of all sequences x of bounded variation under the norm

00
llellow := 32 e = e | + {1l oo

bvy = bv N ¢ under the same norm; cs is the BK-space of sequences x with convergent
series under the norm

[[x[ls := sup
n

i&';

k=1

£, for 1 < p < oo, are the BK-spaces of sequences x with absolutely p-summable series
under the norm

Il = (z a7

the mixed £7+9 spaces (1 < p < 00, 1 < g < 00) consist of all x with

| xllp.q = (Z(Hd’x“,, )
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and for g = oo,
[[xllp.oo = sup (| ]l
J

Clearly £P? = £P. Finally,
070 := {x | lim||dx], = 0}
J
Clearly (£7®)sp = £P°.

3. Basics. Let E be an FK-space whose topology is defined by a collection P of
seminorms. The spaces E4p and E,p, both induced by matrix summability methods, are
FK-spaces with topologies defined by the collections of seminorms pg(x) := sup, p(s"x)
and p,p(x) := sup, p(c"x), respectively, for p € P, [3]. The space E|,p, induced by
absolute summation, is an FK-space with the topology defined by p|g (x) = supyc s p(h-
x), p € P, [5]. In between E|4p and Exp we have the space Ej4p), induced by strong
convergence, which is also an FK-space:

THEOREM 3.1.  Let E be an FK-space containing ¢ withtopology defined by a collec-
tion of seminorms P. Then Esp) is an FK-space with topology defined by the seminorms

PaBI(X) = sup pj;(d'x) + pag(x)
J

forp € P.

PROOF. Since Eyp is an FK-space defined by the collection of seminorms psp for
p € P and since pap < P[AB], W€ have Eap = {x € Eup | p[AB](X) < ooforp € P}
The functions pap) are clearly lower semicontinuous extended seminorms on E4p. By
Garling’s Theorem [7], p. 998, E{4p) is an FK-space. ]

COROLLARY 3.2. Let E be a BK-space containing ¢ withnorm || - ||g. Then Eap) is
a BK-space with norm

(| xllia = sup ||l gy +sup || s" ]|
] n

The seminorms of the form p ;| are important because they simulate absolute conver-
gence of series. We state some lemmas.

LEMMA3.3. Let E be an FK-space containing ¢ . For each seminormponE,y € ¢,
and 0 < ay < by, k= 1,2,3,..., we have pig(a - y) Spm(b-y).

PROOF. For each sequence h € H, let xx = hyax/ by, if by # 0, and x, = 0,
otherwise. Sincey € ¢ wehaveh-a-y=x-b-y=3}_, xybryre® for some n. Rearrange
the terms such that h-a -y = Y7 | xibryi et with 1 > x> xi, > +++ > x, > 0. By
partial summation, 1 - a -y = Y0 (xi, — Xk, ) $i,y biyi et with x;,, = 0. Since each
partial sum Z}:l by,yy, €% is of the form b’ - b - y for some h' € H, we have p(h-a - y) <
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S % = X, [P b - y) < T [ — X e (B Y) = Xpig (b - y) < pgj(b - ).
Thus pig(a - y) < pig (b - y). .

Separating a bounded sequence x into real and imaginary parts and then into the pos-
itive and negative parts x = x! — x> +ix> —ix*, 0 < x < ||xljoo (i = 1,2,3,4, k =
1,2,3,...), we obtain the following from Lemma 3.3.

LEMMA 3.4. Let E be an FK-space containing ¢ . For each seminorm p on E and
x, y € ¢ we have pig)(x - y) < 4|xlloop)) ().

LEMMA 3.5. Let E be an FK-space containing ¢ . Let p be any seminorm on E and
letx € w. Then

(3.6) SUpp|| (dx) < o0
J
if and only if
1 n
3.7 SUp Py (— > kxkek) < o0.
n no=1

PROOF. By Lemma (3.3), p|E|(d’x) = Pl (22, xke") < D|E| (22’, %xke") <
2p| (2—};f Al kxkek). Conversely, suppose 2™ < n < 2™*!, Then again by Lemma 3.3,

pien (L Sy e < L5 2py (@) < 4 sup, pigy (@), .

THEOREM 3.8. Let E be an FK-space containing ¢ . The following statements are
equivalent for a sequence x € w :

[a] x has the property [AB] in E;

[b] x has the property AB and satisfies (3.6) for every continuous seminorm p on E;,

[c] x has the property AB and satisfies (3.7) for every continuous seminorm p on E;

[d] x has the property o B and satisfies (3.6) for every continuous seminorm p on E;

[e] x has the property o B and satisfies (3.7) for every continuous seminorm p on E.

PROOF. [b] is a restatement of [a], the definition of [AB]. [b] & [c] and [d] & [e]
follow from Lemma 3.5. [c]=> [e] is clear since AB = o B. [e] = [c]: Since s"x —o"x =
Lsm | (k—1)xce*, condition (3.7) implies the sequences s™x— o"x are bounded. If x also
has the property o K, then the sections s"x are bounded. ]

THEOREM 3.9. Let E be an FK-space containing ¢ . Then E has the property [AK] if
and only if it has the properties AD and [AB].

PROOF. The property [AK] means AK and [AB]. Since AK = AD, one implication
is immediate. Conversely, it is well known that an FK-space has the property AK if and
only if it has the properties AD and AB [18]. Thus AD and [AB] imply AK; hence also
[AK]. .
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THEOREM 3.10.  Suppose E is an FK-space with the property [AB]. Then Ejax) =
Eax = E;x = Eap.

PROOF. Clearly Ejax; C Eax C E;x C Ep. If E has the property [AB], then it has
the property AB. Then Egx = E4p [7]. This means that Esx is a closed subspace of E
and hence an FK-space with the properties AD and [AB]. By Theorem 3.9, E4x has the
property [AK]. ]

However, for an FK-space with the property [AB], the space E|4x may be smaller
than Ej4x). The space £v, defined in Section 4, is an example.

COROLLARY 3.11. IfE is a solid FK-space containing ¢, then

E\sx| = Eaxy = Eax = Eox = Esp.

PROOF. By Theorem 2, Corollary 2, of [5], an FK-space is solid if and only if it has
the property |AB|. This clearly implies [AB] which by Theorem (3.10) yields all but the
first equality. But by Theorem 6, Corollary 2, of [5], E( Ak| = Eap. ]

4. The spaces £ v, £v, [cs], and [bs]. The convergence field of the strong conver-
gence method [1] is [cs] = {x Ew ‘ Yo | x| = o(1) (j — 00) and Ty x; exists } and the
boundedness domain is [bs] = {x Ew ’ Yo |x] = O(1) (j — 00) and ’EZ=1 xk' =0()
(n— oo)}. The conditions Yy | x| = o(1) (j — 00) and Yy |xx] = O(1) (j — 00) can
be replaced by L % |x| = o(1) (n — c0)and 1 55, |x| = O(1) (n — 00), respec-
tively. These spaces are BK-spaces under the norm || x|| (5] = sup; Xy | x| +supj|2j;(’:1 xk|.
The space [cs], as well as more general spaces [cs],, 0 < p < oo, were defined by
Hyslop [8] and Borwein [1] and then further investigated by Kuttner and Maddox [9].
Convergence factors were investigated by Kuttner and Thorpe [10]. It is shown in [9]
that ([cs] — [cs]) = £v = {x €w ' Yymaxy [xe — o + Tl o — ajur| < oo} where
aj = aj(x) = % 35 x. The space £v is a BK-space under the norm

[[xllev = 2o maxy [xe — | + 30| — | +sup |
J J J

An alternate criterion for x € £vis

“4.1) > |x, — x,,| < oo for all lacunary sequences (k;).

J

That is, x € £v if and only if for every lacunary sequence (k;), the subsequence x,
belongs to bv. This criterion clearly shows that £v C c. Furthermore, if x € bv, then
¥ ’xkj _xkj+l| < E]{ kaj _xkj+1| + lx"’j+l _x]¢j+2| oot kajn—l — Xkjn ‘} < “'x”bv‘ Thus
we obtain the following theorem.
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THEOREM 4.2. bv C fv Cec
THEOREM 4.3.  The space £ v has the property [AB].
PROOF. Foreachhe€ H,x € fv,andm = 1,2,3,..., we have
|h-d"x|| v =" maxy | hedyxi — aj(h - d"x)|
J

+3|ajh - d™x) — aji(h - d"x)| + sup | aj(h - d"x)|
J J

= maxyn | bk — Am(h - X)| + 3| am(h - x)|
< maxon | x¢| + 4| am(h - x)| < 5] x]|oo-

That is, ||d" x|, < 5||x]|co- Since £v C £, (3.6) is satisfied. To show that £v has the
property AB, let x € £vand 2™ < n < 2™ Then ||s"x||¢y = ||s* 'x + 5"d™x||¢v <
2" alley + lIs"d™xl|ew < [[xllev + |@7xllje) < llxllev + Slixlloo since [|s*~ xley =
|
So! maxy | — o) + 77 [e(0) — a1 (O] + | @10 +supjcp [ i) < I x]] v,
and s" € H. [
Define £vg := £vN cy.

THEOREM 4 4. vawq = Lwvax = Lvap = Lvy.

PROOF. Lvsp C (£*®)ap = co. Thus Lvap C Lvy. Conversely, for x € £vy, we
have ||x — 5" 'x|ley = £2, maxy [x — (0] + |am@)| + T2, [o(x) — aj(0)] +

‘j=m
SUP;>m |aj(x)| = 0(1) (m — 00). Thus £vy C £v4p. Since £ v has the property [AB], the
other equalities follow from Theorem 3.10. ]

THEOREM 4.5.  The space [cs] has the property [AK].

PROOF. Foreach x € [cs]and y € £v, let T.(y) = x - y. Since ([cs] — [cs]) = Lv,
T, maps £ v into [cs]. By the Closed Graph Theorem, T is continuous. Since £ v has the
property [AB], T(s"y) = s"x -y, (n = 1,2,3,...)and Ty(h - &'y) = h-dx -y, (h € H,
Jj=0,1,2,...) form bounded subsets of [cs]. Since this is true forall x € [cs]andy € £v
and since [cs] = £v - [cs], the space [cs] has the property [AB]. It remains to show that
Yi=om xki =

o(1) +||x — s>~ x||bs = o(1) (m — 00). .

[cs] has the property AD. But ||x — s*"~'x||pg = sup;s,, o | x| + sup,

THEOREM 4.6. [CS][AB] = [bs].

PROOF. If x € [bs], then “h . djx“[bs] = > |xk| + “th . x||bs < 2%y ka| <
2||x[|(ps)- Also || s"x||ips) < ||x||bs- Thus [bs] C [cs]iapy- Conversely, if x € [cs]iap), then
SUPLcar ”h . djx”[bs] > Y |xk| = O(1) (j — 00). Also [CS][AB] C [cslap C csap C bs.

Thus [CS][AB] C [bs]. [ ]
THEOREM 4.7. Lv-Lv = L.

PROOF. Let x,y € {£v. By criterion (4.1) we have Ty |Xuyn, — Xnu V| <
Zk{ |x"k| |ynk'—ynk+1 |+‘y"k| ]‘x"k _‘x’lk+l|} < ”x”00 2k |'x"k —y"k+1|+“y“00 2k |x"k _xnml <
oo for every lacunary subsequence. Thus £v-£v C £v.Sincee € £v, Lv-Lv D fv-e =

Lv. =
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COROLLARY 4.8. fv-Lvy = L.
THEOREM 4.9. Lvy - Lvy = L.

PROOF. fvy - £vy C Ly is clear from above. Since £ vy has the property AK, we
have £vy = bvy - £vg ([7], Theorem 4). Since bvy C £vy, we have £vyg C Lvy-Lvy. m

Recall that £°! is the space of all sequences satisfying 3 maxy | x| < oo. Clearly
¥jmaxy |x — aj(x)| < ooand ¥ |aj(x)| < oo if and only if 3 maxy |xx| < oo. Thus
(> ={xe Zv[ ¥l ei(x)| < oo}

THEOREM 4.10.  £v4p = £

PROOF. Letx € £*'and h € H. Then ||h- x| ¢y = ¥jmaxy |hxy — ojh - x)| +
¥ laj(h-x) = ayy (h-x)| +sup; | j(h-x)| < T maxy |x|+4 T |a(x)| < 55 maxy [x].
Thusx € ¢ V|aB|- Conversely, if H -x € £v, then > laj(h -x) — ajyi(h -x)| < oo forall
h € H . Letting h alternate between 0 and 1 on dyadic blocks we get ¥; | atj(h-x)— i1 (h-
x)| = |oa(x)|+|ca(x)|+- - - or | (x)| +| ae3(x)| +- - -. Adding we obtain ¥ | aj(x)| < 00. m

5. Multiplier results.

THEOREM 5.1. Let E be an FK-space containing ¢ . The following statements are
equivalent:

[a] E has the property [AB];

[b] E={Lv-E,

[c] Euxy = €wo - E;

[d] £vo-E CE.

PROOF. [a] = [c]: Suppose E has the property [AB]. By Theorem 3.10 Ej4x; =
Esx = Esp and by Theorem 4 of [7], Eak = bvy - Eak. Since bvy C £vy, we have
Eax) C €vo-E. Lety € £vy and x € E. It is sufficient to show y - x € E4p by showing
that s2~'y - x is a Cauchy sequence in E. For n > m we have s> !y - x — s""ly . x =
S Sy et = T Yy (Yk - CVj()’))xkek + Y () Ty xe = T Y (Yk -
aj(y))xkek + (aj()’) — aj+1(y))s2j“_‘x+ ()52 " x — a1 (1)s¥" '~ x. Thus for
each continuous seminorm p on E, we have by Lemma 3.4

ps™ly x =51y x)

n—1 i
< 3 4maxy |y — ()| pjg (@)

j=m

. n—1
+supp(en){ Y |og0) = a1 0)] + || +| a1l |
J

Jj=m—1

. n—1
< 4suppg(dx) - maxy |y — (y)|
J j=m

n—1

> 1e0) = 0] +] @] +|em10)] .

j=m—1

+ sup p(s'x) {
J
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Since y € £y, this tends to 0 as m,n — o0. [c] = [d] is obvious. [d] = [b] : Since
Lv C c,everyy € Lvisof the formy = z+ w, where z € £vy and w = (limy yy)e. If
z-ECE,theny-E C Esincew-E CE.Thus £v-E C E.Sincee € {v,EC {v-E.
[b] = [a] : Suppose E = £v-E. Foreachy € {vandx € E, let T,(y) = x-y. Ty is
continuous and maps £ v into E. Following the proof of Theorem 4.5, E has the property
[AB]. n

v THEOREM 5.2. Let E be an FK-space containing ¢ . Then E has the property [AK] if
and only if E = L - E.

THEOREM 5.3. Let E be an FK-space containing ¢ . Then

Erag = (£vo — Epuk)) = (Lvg — E).

PROOF. By Theorem 5.1 [c], £vo - Ejap; = Ejaky- Thus Ejap) C (£vo — Ejaky) C
(£ vy — E). Conversely, suppose x- £ vo C E. Then T,(y) := x-yisacontinuous map from
£ vy into E. Let p be a continuous seminorm on E. Then there exists M > 0 such that for all
h € H,ph-dx) < M||h-&|¢,. As in the proof of Theorem 4.3, || h-&|| ¢, < 5] e||l00 = 5-
Thus p| g (dx) < 5M. Similarly, p(s"x) < M||s"||¢v < M(||e]lev + 5]|€]lo) = 6M. Thus
x € E[AB]' ]

6. Examples and applications in summability theory and Fourier analysis. For
standard sequence spaces E such as ¢y, £, cs, bs, bv, £?, etc., especially for those that are
solid, the spaces Ej4p; and Ejak, are easily determined. The following theorem collects
some of these statements, the proofs of which are almost immediate.

THEOREM 6.1. [a] If E is a BK-space and co C E C £, then Ejap; = £*° and
Eax) = co;

[b] bS[AB] = [bS] and CS[AK] = bs[AK] = [CS];

[C] bV[AB] =bvN/{ 1,00 and bV[A[(] = bV() Nt l,o;

[d] [513] = K[’fm =/(7 (1<p< o0);

le] £ = Lotk =27 (1 <p<oo,1<g<o0).

For an infinite matrix of real or complex numbers T = (#,), let c; denote the con-
vergence field of T, thatis, cr = {x € w : Tx € c}. We say that a matrix T is series-
sequence conservative if cr DO cs. The following result extends the equality csjax; = [cs]
to the convergence fields of all such matrices 7.

THEOREM 6.2. If a matrix T is series-sequence conservative, then (cr)jak; = [cs].

PROOF. By assumption cs C cr and hence by Theorem 6.1, [cs] = csjak; C (cr)ak)-
Conversely if x € (cr)ak), then x € (cr)ak and the sequence (d’x) is bounded in (c1)|ak|-
By Proposition 4 in [3] (c;ux = cs and by Theorem 10 in [5], (er)jap = ¢!. Hence
x € cs and (&x) is a bounded sequence in £!. Therefore x € [cs]. [
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‘We shall now apply the concepts of strong boundedness [AB] and strong convergence
[AK] to the spaces of Fourier coefficients of various classes of 27 -periodic functions. Let
I? (p > 1) be the Banach space of all real or complex valued 27 -periodic functions such

that |f|? is integrable, under the standard norm ||f]|,, = (51; If |1’)‘l’ where the interval
of integration is of the length 27. Let C be the Banach space of all continuous real or
complex valued 27 -periodic functions with the norm ||f||c = sup, |f(x)|.

For f € L' let f(k), k € Z, denote the k™ complex Fourier coefficient of f, f =
(f(k))kez and let sof and o,f, n = 0,1,..., denote respectively the n'" partial sum and
the n'™ Cesaro partial sum of the Fourier series of f. If E is a subspace of L!, let £ denote
the class of all sequences of Fourier coefficients of functions in E, i.e., E= { f :f e E} .
Although the results in the preceding sections of this paper are for spaces of one-way
sequences, they can be easily extended to the spaces E of two-way sequences. If Eis a
linear space, then E is a linear sequence space, and if E is a Banach space, then E is a
Banach space under the induced norm ||f]|; := ||f||z and conversely. Given a Banach
space E C L' we shall try to determine the corresponding subspaces of strongly bounded
and strongly convergent Fourier series, in the topology of E, by determining the spaces
E[AB] and E[Am.

Two classical spaces of functions in Fourier analysis determined by two methods of
pointwise convergence, ordinary I and absolute |I|, are the spaces of uniformly and ab-
solutely convergent Fourier series

U={f€C:sof >f Iuniformly} and A= {f€C:s,f —f |l ae}.
They are Banach spaces, under the norms

1|2 := supl|sufllc and |If]l2 := keX; F@l = 1Al

It is well known that 4 C U C C C L* properly, where L™ is the space of essentially
bounded measurable 27 -periodic functions.

The space L' is also determined by pointwise convergence types, namely by C; and
[C,]. That is, by Féjer’s Theorem, and Marcinkiewicz—Zygmund’s Theorem, we have

L'={fel':s,f >f Cirae}={f€eLl :s,f —>f [Cilae.}.
We shall also consider the space M of 2r-periodic Radon measures under the norm
11l := sup, || onf 1.

In view of the concepts of ordinary, Cesaro, strong Cesaro, absolute boundedness and
absolute convergence in sequence spaces and the above duality between the function
spaces E and the spaces of Fourier coefficients E, each of these classical function spaces
bears other descriptions. For example, by classical resuits (see [6], [19]),

— —

U= Cax, A= Clag = Caxy

P =DPagforp>1, L'=L',xkandM = L.,
Applying the concept of strong sectional boundedness and convergence, the following
theorem shows that none of these classical spaces, except E = L? and E = 4, coincides
with the space Ejp) or Ejak. The standard sequence spaces appearing in these statements
are to be interpreted as the spaces of two-way sequences.
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THEOREM 6.3. [a] If1 < p <2, then IPa5 = LP N £2 and IP a5 = L N €29,

[b] LI[AB] =MnN g2 andLl[AK] =L'N (%o

[c] Ifp > 2,then PN L9 C LP[AB] and PN £9° C Lp[A](], where 1/p+1/q =1;

[d] IfE is a Banach space and A C E C L™, then Ejap) = E,p N £ 1% and Ejag) =
EUK ne l,oo;

[C] M[AB] = Mﬂ 62’00 andM[AK] = Mﬁ 32’0.

COROLLARY 6.4. LZ[AB] = L2[A1q ={2= Lz, -Q{AB] = -ﬁ{Alﬂ =¢!' = /F[

COROLLARY 6.5. Let E be a Banach space and A C E C L*. If E has 0B, then
E[AB] = Eﬂ oo, IfE has oK, then E[AK] = Eﬁ gle

PROOF. [a]: Suppose 1 < p < 2.Iff € LP(ag), then we have f € 17 and ||d”f||ll7,| =
O(1) (n — o0) since l?’AB = I? for p > 1. Therefore the sequence (d"f) is bounded in the
topology of L? | sp. But by Theorem 11 in [5], LF |5 = 22 for 1 < p < 2. Consequently,
|d*f|l ;2 = O(1) (n — 00). Thus IP(5 C LPN £2°°. Conversely, supposef € [P £2,
Then f € IP 5. Furthermore, since L? = £2, foreach h € H and 1 < p < 2, we have

ldfhlly < d'Fhll, = ldFhlle < 14l

so that by the assumption that f € £2%, we have ||d"f|||l7,| = O(1) (n — o0). Con-
sequently, I’ N £2%° C IP(sp. The equality IP|ax; = LP N £2° follows by the same
argument, replacing AB and |AB| by AK and |AK]|, and O(1) by o(1).

[b]: The corresponding statements for L!(4p) and L' 4k follow similarly, using o B and
oK, applying Theorem 3.8 and recalling that L', = Mand L', = L'

[c]: Supposep > 2andlet1/p+1/q = 1.Iff € 1PN £9°° thenf € 1745 and moreover
lld"fll, = O(1) (n — 00). By the Hausdorff- Young Theorem there exists a constant K,
such that for each h € H and for each n,

Id"7hll < Kplld"Fhlles < Kplld'fll o

Hence ||d"f ||| ) = 0(1) (n — 00) and then f € IP\45). The corresponding inclusion
PN Crr tak] can be proved similarly.
[d]: Suppose E is a Banach space and A C E C L. If f € E‘[AB], then clearly f € Ep
and ||d"f|||é-l = 0(1) (n — o0). Hence the sequence (d"f) is bounded in E|A3|. But
by Theorem 11 in [5], a5 = Ejsx, = €' and consequently ||d"f||,1 = O(1) (n —
00). Thus f € E,5 N £'°°. Conversely if f € EcB N £, then f has oB in E and
||d"f|||E| < ||d"f|||/,3[| = ||d@"f|l¢r = O(1) (n — 00), again referring to Theorem 11 in [5].
By Theorem 3.8 it follows that f € Ejap). The second equality is proved the same way.
[e]: SinceAqﬁ - L' and L! is a closed subspace of M, we have Mg = E[AK] and
We shall now apply the concepts of strong boundedness and convergence to some
classes of functions recently introduced in Fourier analysis. They are determined by other
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types of pointwise convergence, namely the strong convergence of index p > 1, [1],, and
the absolute convergence of index p > 1, |1|,. The first extends the concept of strong
convergence [/] and the second extends the concept of absolute convergence | /|, to higher
indices p > 1. Namely, for p > 1, they can be defined as follows (see [13] through [17]):

1 n
Sp— 1t [I]pifandonlyifs,,—vtland?Zkﬂsk—sk,dp:o(l) (n — 00)
n k=0

and
s, =t |I|,ifand onlyifs, —¢ Iand > K '|sp —s1]” < o0.
%

They are related by the following implication (see [15])
1|, = [, = Iand [] forp’ > p > 1.

These notions were applied to trigonometric and Fourier series in several recent papers
[13] through [17], which led to the study of the related spaces of functions [13], [14],
[17]:

S ={felsf —=f [,ae}, S?={f€Cisif =f [, uniformly}
AP ={felsf —f |lp,ae}, A ={f€Cisif =f |I|,uniformly}.

Clearly A> = 4' = A, butS! C S! properly. We denote S! and S' by S and S, respec-
tively. For each p > 1S? C 8P C Ni<r<oo L” properly, but S ¢ L. The classes S?
and S” decrease as p increases, while the classes 4”7 are mutually incomparable and the
same is true for A?. Furthermore, A”? C S? C U and A? C $ C L” properly. For these
and other properties of these spaces see [13], [14], and [17]. By the results obtained there
they also can be described as follows. For p > 1 let

1
> k7 lal” = o1) (n— 00

2n+1 |k <n

a = {x: 3 kP ] ” < oo}
keZ

o= {x:

Then .
§=L"Ns"and§ C s' properly,

P =g = {x:n”_l > %P = o(1) (n—»oo)} forp > 1,

|k|=n
@:C‘ﬂy”forpZI,
AP =g’ and AP = CN @’ forp > 1.

They are Banach spaces under the corresponding norms:

A lls = Al + I s WFlls = Il forp > 1,
Ifllse = 1Ifllar+ Ifllpy forp > 1,
Wfllar = Ifllp and [Ifll 2 = Ifllas + [If1l)p) fOrp > 1,
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where
1l = sup (5~ AR ) an
n k|<n
s = (FOFP+ 3 ko).
k€Z k#0

Let us also define for p > 1 the sequence space

PO = {x S k|7 x]? = O(1) (n—»oo)}

2 +1 k<n

The following theorems show that the Banach spaces S” and A” can be characterized
as the spaces of integrable functions whose Fourier series are strongly [/] convergent
in the topology of S”, respectively A”, and that the spaces S” and A” are precisely the
spaces of continuous functions whose Fourier series are strongly [/] convergent in the
corresponding topology of S?, respectively 47.

THEOREM 6.6. [a] SP(ax) = & = §” and (g = 5" forp > 1;
[b] S[AK] = S = Ll N Sl andS'MB] = L1 N sl,oo;
[C] @[AK] ‘—‘gT’ = Cﬁ spandSP[AB] = C’ﬂ s”‘°°f0rp2 1.

COROLLARY 6.7. 8 = £, -S;forp >lands® = Lvy-sP forp > 1.

PROOF. We first remark that by Theorems 2 and 3 in [14] ||s"f — f]ls» = o(1) (n —
o0) for each p > 1, so that ¥ = /SI’AK foreachp > 1.
[a]: Suppose p > 1. Then = is clearly solid and by the above remark it has AD.
Thus by Corollary 3.11 SPlax) = s°. Now f € 4 if and only if ||f]|;p; < 00, so that
forp > 1 SPap = 7. Hence SP[AB] C sP®. Conversely if f € s7®, then clearly
|a*f ||| 3 < ||f |l for each n, where d"f is to be interpreted accordingly for the two-way

sequence f. Moreover clearly ||s"f||sp < |Ifllipy since p > 1. Thus 7 C SPi4p).
[b]: By the remark above we have S= SAK Moreover for each f € § we have

a7l < lafz, + 14 llm < 2l dfller = (1) (2 — 00).

Thus § = Si4k;. The corresponding statement for TS[AB] is proved similarly.

[c]: Clearly SP(ax; C € and SPiuxy C SPax C & forp > 1. Hence SPiag) C €N 7.
Conversely iff € C N 7, then f € SP and, by Theorem 2 in [13], ||s"f — f]ls» = o(1)
(n — o0),so thatf € S /f x- Moreover as in the proof of [b] and by Holder’s inequality

”dnfulsl'l — 0(2n(1—1/P))||dnf~”“ — 0(1) (n N 00).

Therefore C N s* C SPiak; for each p > 1. The corresponding proof that SPj,p =
€N 5P is similar. .

The following result for the Banach spaces A? and AP can be proved almost immedi-
ately from the discussed properties of these spaces.

https://doi.org/10.4153/CJM-1991-053-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1991-053-8

STRONG BOUNDEDNESS 973

THEOREM 6.8. Supposep > 1. Then

[a] APuuk) = APpap) = af = AP

[b] APIAK] - ﬁ\p[AB] = Cﬂ a” = ﬁ

REMARK 6.9. For p = 1, Theorem 6.8 reduces to A! (AK] = /F[AB] =
COROLLARY 6.10. AP = Lvy -X”for eachp > 1.

Our next result shows that &7 is a proper subspace of E’[AK].

THEOREM 6.11. S C Z”MK] properly for eachp > 1.

PROOF. Since S? C L7 clearly :S'\P[A,q C ﬁ[A,q. By Theorem 6.6 S| x; = SP for each
p > 1. Hence S C I”4x;. To see that this inclusion is proper we consider the following
examples of cosine series

x 1 x 1
> —cos2™x and ) —coskx.
m=1M -1k

The first series is lacunary and by Theorem 8.20 of Chapter 5 in [19] it converges a.e.
to a function f € Ni<,<col’. Moreover, clearly ||d*f||; = L = o(1) (n — 00) so that

n

f e I?MK] for each p > 1. However forp > 1 clearly / ¢ sP. Hence f ¢ S and
consequently S C L4k properly for p > 1. The second series converges a.e. to a
function g € L?. Since § € £2 we have g € LAZ[AK] - Z’[AK]. However, obviously g & §
since § & s'. Therefore § C D[AK] also properly. .

REFERENCES

1. D. Borwein, On strong and absolute summability, Proc. Glasgow Math. Assoc. 4(1960), 122-139.
2. M. Buntinas, Convergent and bounded Cesaro sections in FK-spaces, Math. Z. 121(1971), 191-200.
3. , On Toeplitz sections in sequence spaces, Math. Proc. Cambridge Philos. Soc. 78(1975),451-460.
4. Strong bility in Fréchet spaces with applicationsto Fourier series, J. Approximation Theory
67(1991), to appear.
5. M. Buntinas and N. Tanovi¢-Miller, Absolute boundedness and absolute convergence in sequences spaces,
Proc. Amer. Math. Soc. 111(1991), 967-979.
6. R. E. Edwards, Fourier Series: A Modern Introduction, vols. 1 and 2, Holt, Rinehart and Winston, 1967.
7.D.]. H. Garling, On topological sequence spaces, Proc. Cambridge Philos. Soc. 63(1967),997-1019.
8. J. M. Hyslop, Note on the strong summability of series, Proc. Glasgow Math. Assoc. 1(1951/53), 16-20.
9. B. Kuttner and I. J. Maddox, On strong convergencefactors, Quart. J. Math. Oxford (2)16(1965), 165-182.
10. B. Kuttner and B. Thorpe, Strong convergence, J. fiir die reine und angewandte Math. 311/312(1979),
42-56.
11.J.J. Sember, On unconditional section boundedness in sequence spaces, Rocky Mountain J. Math. 7(1977),
699-706.
12.J. Sember and M. Raphael, The unrestricted section properties of sequences, Can. J. Math. 31(1979),331-
336.
13. 1. Szalay and N. Tanovi¢-Miller, On Banach spaces of absolutely and strongly convergent Fourier series,
Acta Math. Hung. 55(1990), 149-160.
On Banach spaces of absolutely and strongly convergent Fourier series, 11, Acta Math. Hung., to

14.

appear.
15.N. Tanovi¢-Miller, On strong convergenceof trigonometric and Fourier series, Acta Math. Hung. 42(1983),
35-43.

https://doi.org/10.4153/CJM-1991-053-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1991-053-8

974 M. BUNTINAS AND N. TANOVIC-MILLER

16.
17.

, Strongly convergent trigonometric series as Fourier series, Acta Math. Hung. 47(1986), 127-135.

, On Banach spaces of strongly convergent trigonometric series, J. Math. Anal. and Appl. 46(1990),
110-127.

18. K. Zeller, Allgemeine Eigenschaften von Limitierungsverfahren, Math. Z. 53(1951), 463-487.

19. A. Zygmund, Trigonometric Series. Cambridge University Press, 1968.

Department of Mathematical Sciences
Loyola University of Chicago
Chicago, lllinois 60626 USA

Department of Mathematics
University of Sarajevo
71000 Sarajevo, Yugoslavia

https://doi.org/10.4153/CJM-1991-053-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1991-053-8

