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The discrete Orlicz chord Minkowski
problem
Suwei Li and Hailin Jin

Abstract. In this paper, we consider the discrete Orlicz chord Minkowski problem and solve the
existence of this problem, which is the nontrivial extension of the discrete Lp chord Minkowski
problem for 0 < p < 1.

1 Introduction

Minkowski problem is one of the cornerstones of the Brunn-Minkowski theory. In the
1890s, Minkowski proposed the Minkowski problem and solved the discrete case. The
Minkowski problem was completely solved by Alexsandrov and Fenchel and Jessen.

The Lp Minkowski problem is a part of Lp Brunn-Minkowski theory. Lutwak [19]
proposed the Lp Minkowski problem and solved the even Lp Minkowski problem for
p > 1, but p ≠ n. After that, the Lp Minkowski problem and related researches can be
found in [1, 2, 3, 4, 5, 9, 15, 16, 17].

The Orlicz Brunn-Minkowski theory originated from the work of Lutwak, Yang,
and Zhang in 2010 [21]. The development of the Orlicz Brunn-Minkowski theory
can be found in [6, 11, 23]. Harbel, Lutwak, Yang, and Zhang [11] first proposed the
Orlicz Minkowski problem, which is the extension of the Lp Minkowski problem,
and solved the even Orlicz Minkowski problem under some suitable conditions on φ.
The existence of the Orlicz Minkowski problem without assuming that μ is the even
measure was solved by Huang and He [14], but needing more conditions on φ, the Lp
Minkowski problem for p > 1 is a special case of this result. For 0 < p < 1, Wu, Xi, and
Leng [22] solved the existence of the discrete Orlicz Minkowski problem. The Orlicz
Minkowski problem and related researches can be found in [7, 8, 25, 26].

Recently, a new family of geometric measures was introduced by Lutwak, Xi, Yang,
and Zhang [20] through the study of a variational formula with respect to integral
geometric invariants of convex bodies called chord integrals. Minkowski problems
associated with chord measures were posed in [20].

Let Kn be the collection of convex bodies (compact convex sets with nonempty
interior) in R

n . For K ∈Kn , the chord integral Iq(K) of K is defined as follows:

Iq(K) = ∫
Ln

∣K ∩ �∣q d�, q ≥ 0,
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2 S. Li and H. Jin

where ∣K ∩ �∣ denotes the length of the chord K ∩ �, and the integration is with respect
to the Haar measure on the Grassmannian Ln of lines in R

n .
Chord integrals contain volume V(K) and surface area S(K) as two important

special cases:

I1(K) = V(K), I0(K) = ωn−1

nωn
S(K), In+1(K) = n + 1

ωn
V(K)2 ,

where ωn is the volume enclosed by the unit sphere Sn−1.
The differential of Iq(K) defines a finite Borel measure Fq(K , ⋅) on S

n−1. Precisely,
for convex bodies K and L in R

n , Lutwak, Xi, Yang, and Zhang [20] obtained that

d
dt
∣

t=0+
Iq(K + tL) = ∫

Sn−1

hL(v)dFq(K , v), q ≥ 0,(1.1)

where Fq(K , ⋅ ) is called the qth chord measure of K, and hL is the support function of
L. The cases of q = 0, 1 of this formula are classical, which are the variational formulas
of surface area and volume,

F0(K , ⋅ ) = (n − 1)ωn−1

nωn
Sn−2(K , ⋅), F1(K , ⋅ ) = Sn−1(K , ⋅ ).

Here, Sn−2(K , ⋅ ) and Sn−1(K , ⋅ ) are the (n − 2)th order and (n − 1)th order area
measure of K, respectively.

Based on the definition of chord measure, the corresponding chord Minkowski
problem was proposed. The solution to the chord Minkowski problem as q > 0 was
given in [20].

The Lp version of the chord measure was also introduced in [20]; it can be extended
from the Lp surface area measure. Correspondingly, the Lp chord Minkowski problem
was considered. Xi, Yang, Zhang, and Zhao [24] solved the Lp chord Minkowski prob-
lem when p > 1, q > 1 and the symmetric case of 0 < p < 1 via the variational method.
Guo, Xi, and Zhao [10] solved the Lp chord Minkowski problem for 0 ≤ p < 1 without
symmetry assumptions. Li [18] treated the discrete Lp chord Minkowski problem in
the condition of p < 0 and q > 0, as for general Borel measure. Li also gave a proof
but need −n < p < 0 and 1 < q < n + 1. Hu, Huang, and Lu [12] used flow methods
to get regularity of the chord log-Minkowski problem of p = 0. On the side, Hu,
Huang, Lu, and Wang [13] also found the smooth origin-symmetric solution for the Lp
chord Minkowski problem in the case of {p > 0, q > 3} ∪ {−n < p < 0, 3 < q < n + 1}
by using the same flow as in [12].

The more generalized Orlicz chord Minkowski problem was stated in [27] by the
following form:

The Orlicz chord Minkowski problem: Suppose φ ∶ (0,∞) �→ (0,∞) is a continuous
function. If μ is a finite Borel measure on S

n−1 which is not concentrated on a great
subsphere of Sn−1, what are the necessary and sufficient conditions on μ such that there
is a convex body K ∈Kn

o and a positive constant c such that

dμ = cφ (hK)dFq (K , ⋅ )?
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The discrete Orlicz chord Minkowski problem 3

Due to the lack of homogeneity, the solution to the Orlicz chord Minkowski problem
exists as a constant.

In this paper, we consider the existence of the discrete Orlicz chord Minkowski
problem, which is an extension of the discrete Lp chord Minkowski problem for 0 <
p < 1 [10]. Our main results can be formulated as follows:

Theorem 1.1 Let q > 0. μ = ∑N
i=1 α i δv i for some α i > 0, and unit vectors v1 , . . . , vN ∈

S
n−1 are not contained in any closed hemisphere, where δv i is Kronecker delta.

Let P (v1 , . . . , vN) = {P (z) ∶ z ∈ RN such that P (z) ∈Kn}. Suppose φ ∶ (0,∞) →
(0,∞) is differentiable and strictly increasing, and φ(s) tends to 0 as s → 0+

such that ϕ(t) = ∫
t

0
1

φ(s)ds exists for every positive t. Then, there exists a polytope
P ∈ P(v1 , . . . , vN) containing the origin in its interior and c > 0 such that

cφ(hP)dFq(P, ⋅) = dμ.

When φ (t) = t1−p for 0 < p < 1, Theorem 1.1 is reduced to Theorem 4.6 of [10].
When q = 1, Theorem 1.1 is reduced to Theorem 1.2 of [22].

The paper is organized as follows: In Section 2, we present some notations and basic
facts we shall use throughout. The proof of Theorem 1.1 is presented in Section 3.

2 preliminaries

In this section, we present some notations we shall use throughout.

2.1 Basics of convex bodies

Let Rn be n-dimensional Euclidean space. The standard inner product of the vectors
x, y ∈ Rn is denoted by x ⋅ y. We write Sn−1 = {x ∈ Rn ∶ x ⋅ x = 1} for the boundary of
the Euclidean unit ball B in R

n .
A convex body is a compact convex subset of Rn with a nonempty interior. The set

of convex bodies inR
n is denoted byKn , and the set of convex bodies inR

n containing
the origin in their interiors is denoted by Kn

o .
A compact convex set K ⊂ R

n is uniquely determined by its support function hK ∶
R

n → R, where

hK (x) = max{x ⋅ y ∶ y ∈ K} , x ∈ Rn .

It is trivial that for the support function of the dilate cK = {cx ∶ x ∈ K}of a compact
convex set K, we have

hcK = chK , c > 0.

Note that support functions are positively homogeneous of degree 1 and subadditive. It
follows immediately from the definition of support functions that for compact convex
K, L ⊂ R

n ,

K ⊆ L ⇐⇒ hK ≤ hL .
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4 S. Li and H. Jin

Let K ∈Kn and x ∈ Rn . The radial function of K with respect to x, denoted by
ρK ,x(u) ∶ Sn−1 → R, can be written as

ρK ,x(u) = max{t ∶ tu + x ∈ K} .

It is simple to see that when x ∈ intK, we have that ρK ,x is a positive continuous
function on S

n−1. For simplicity, we write ρK = ρK ,o .
The Hausdorff distance dH(K , L) of K , L ∈Kn is defined by

dH(K , L) ∶= max
u∈Sn−1

∣hK(u) − hL(u)∣ .

The set Kn will be viewed as equipped with the Hausdorff metric. If there exists
a sequence K i of convex bodies in Kn and a convex body K ∈Kn , we say that
limi→∞ K i = K provided

∥hK i − hK∥∞ → 0.

Suppose Ω is a compact subset of Sn−1 that is not concentrated in any closed
hemisphere. The set of continuous functions on Ω will be denoted by C(Ω). For
h ∈ C+ (Ω), the Wulff-shape [h] is a compact convex set defined by

[h] = {x ∈ Rn ∶ x ⋅ v ≤ h (v) ,∀v ∈ Ω} .

It is simple to see that

h[h] (v) ≤ h (v) .(2.1)

We shall frequently use the fact that if h i ∈ C(Ω) convergence to h ∈ C(Ω)
uniformly, then the [h i] → [h] in Hausdorff metric.

A useful fact is that, when [h] ∈Kn , the support of Sn−1 ([h] , ⋅ )must be contained
in Ω. In particular, let v1 , . . . vN (N ≥ n + 1) be unit vectors that are not contained in
any closed hemisphere, and let Ω = {v1 , . . . , vN}. For z = (z1 , . . . , zN) ∈ RN , we write

[z] = P (z) =
N
⋂
i=1
{x ∈ Rn ∶ x ⋅ v i ≤ z i} .

Define P (v1 , . . . , vN) by

P (v1 , . . . , vN) = {P (z) ∶ z ∈ RN such that P (z) ∈Kn} .

2.2 Chord integral and chord measure

Let K ∈Kn . For z ∈ intK and q ∈ R, the qth dual quermassintegral Ṽq(K , z) of K with
respect to z is

Ṽq(K , z) = 1
n ∫
Sn−1

ρq
K ,z(u)du,

where ρK ,z(u) = max{λ > 0 ∶ z + λu ∈ K} is the radial function of K with respect to z.
When z is the origin, it reduces to the radial function ρK(u). When z ∈ ∂K, Ṽq(K , z)
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is defined in the way that the integral is only over those u ∈ Sn−1 such that ρK ,z(u) > 0.
In other words,

Ṽq(K , z) = 1
n ∫

ρK ,z(u)>0

ρq
K ,z(u)du, whenever z ∈ ∂K .

The integrals of dual quermassintegrals with respect to z ∈ K naturally give rise
to translation invariant quantities. These are known as chord integrals in integral
geometry. For K ∈Kn , the chord integral Iq(K) of K is defined as follows:

Iq(K) = ∫
Ln

∣K ∩ �∣q d�, q ≥ 0,

where ∣K ∩ �∣ denotes the length of the chord K ∩ �, and the integration is with respect
to the Haar measure on the Grassmannian Ln of lines in R

n .
For q > 0, the chord integral can be written as the integral of dual quermassinte-

grals in z ∈ K:

Iq(K) = q
ωn

∫
K

Ṽq−1(K , z)dz.

In analysis, chord integral can be recognized as the Riesz potential: for each q > 1, we
have

Iq(K) = q(q − 1)
nωn

∫
K

∫
K

1
∣x − z∣n−q+1 dxdz.(2.2)

An elementary property of the functional Iq is its homogeneity. If K ∈Kn and
q ≥ 0, then

Iq (tK) = tn+q−1Iq (K)

for t > 0. By compactness of K, it is simple to see that the chord integral Iq (K) is finite
whenever q > 0.

Let K ∈Kn and q > 0. the chord measure Fq(K , ⋅ ) is a finite Borel measure on S
n−1

given by

Fq(K , η) = 2q
ωn

∫
ν−1

K (η)

Ṽq−1(K , z)dHn−1(z), for each Borel set η ⊂ S
n−1 ,

where νK ∶ ∂K → S
n−1 is the Gauss map that takes boundary points of K to their

corresponding outer unit normals. Note that by convexity of K, its Gauss map νK is
almost everywhere defined on ∂K with respect to the (n − 1)-dimensional Hausdorff
measure.

The significance of the chord measure Fq(K , ⋅ ) is that it comes from differentiating,
in a certain sense, the chord integral Iq ; see [20]. It is simple to see that the chord
measure Fq(K , ⋅ ) is absolutely continuous with respect to the surface area measure
Sn−1 (K , ⋅ ). In particular, for each P ∈ P (v1 , . . . , vN), we have that the chord measure
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6 S. Li and H. Jin

Fq (P, ⋅ ) is supported entirely on {v1 , . . . , vN}. It was shown in Theorem 4.3 of [20]
that

Iq(K) = 1
n + q − 1 ∫

Sn−1

hK (v)dFq (K , v) .

The following lemma shows the variational formula of the chord integral.

Lemma 2.1 [20] Let q > 0 and Ω be a compact subset of Sn−1 that is not concentrated
on any closed hemisphere. Suppose that g ∶ Ω → R is continuous and ht ∶ Ω → (0,∞)
is a family of continuous functions given as follows:

ht = h0 + tg + o(t, ⋅ ),

for each t ∈ (−δ, δ) for δ > 0. Here, o(t, ⋅ ) ∈ C(Ω) and o(t, ⋅ )/t tends to 0 uniformly
on Ω as t → 0. Let Kt be the Wulff-shape generated by ht and K be the Wulff-shape
generated by h0. Then,

d
dt
∣

t=0
Iq(Kt) = ∫

Ω

g(v)dFq(K , v).

Taking Ω to be a finite set {v1 , . . . vN}, where the v i ∈ Sn−1 are not contained
entirely in any closed hemisphere, we immediately obtain the following corollary for
the discrete case.

Corollary 2.2 [10] Let q > 0, z = (z1 , . . . , zN) ∈ RN
+ , β = (β1 , . . . , βN) ∈ RN , and

v1 , . . . , vN be N unit vectors that are not contained in any closed hemisphere. For
sufficiently small ∣t∣, consider z (t) = z + tβ > 0 and

Pt = [z (t)] =
N
⋂
i=1
{x ∈ Rn ∶ x ⋅ v i ≤ z i (t) = z i + tβ i} .

Then, for q > 0, we have

d
dt
∣

t=0
Iq (Pt) =

N
∑
i=1

β i Fq (P0 , v i) .(2.3)

Chord measures inherit their translation invariance and homogeneity from chord
integrals. The following lemma shows that the chord measure Fq (K , ⋅ ) is weakly
continuous on Kn with respect to Hausdorff metric.

Lemma 2.3 [24] Let q > 0 and K i ∈Kn . If K i → K ∈Kn , then the chord measure
Fq (K i , ⋅ ) converges to Fq (K , ⋅ ) weakly.

3 The discrete Orlicz chord Minkowski problem

Let μ be a finite discrete Borel measure on S
n−1 that is not concentrated in any closed

hemisphere; that is,
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The discrete Orlicz chord Minkowski problem 7

μ =
N
∑
i=1

α i δv i ,(3.1)

for some α i > 0 and unit vectors v1 , . . . , vN ∈ Sn−1 not contained in any closed hemi-
sphere, where δv i is Kronecker delta.

Suppose φ ∶ (0,∞) → (0,∞) is differentiable and strictly increasing, and φ(s)
tends to 0 as s → 0+ such that ϕ(t) = ∫

t
0

1
φ(s)ds exists for every positive t. For any

z = (z1 , . . . , zN) ∈ RN such that [z] has nonempty interior, we define

Φϕ ,μ(z, ξ) =
N
∑
j=1

ϕ(z j − ξ ⋅ v j) ⋅ α j

for each ξ ∈ [z]. When there is no confusion about what the underlying measure μ is,
we shall write Φϕ = Φϕ ,μ .

In this section, we consider the following extremal problem:
sup
ξ∈[z]

Φϕ ,μ(z, ξ).

We will show that the functional Φϕ ,μ(z, ⋅) is strictly concave in ξ ∈ int[z] and that
there exists a unique ξϕ(z) ∈ int[z] such that

sup
ξ∈[z]

Φϕ ,μ(z, ξ) = Φϕ ,μ(z, ξϕ(z)).

Lemma 3.1 [22] If α1 , . . . , αN ∈ RN
+ , the unit vectors v1 , . . . , vN(N ≥ n + 1) are not

contained in any closed hemisphere, and ϕ is strictly concave on [0,∞). Suppose
z = (z1 , . . . , zN) ∈ RN such that [z] has nonempty interior. Then, Φϕ ,μ(z, ⋅) is strictly
concave in ξ ∈ [z].

Then, we give the following lemma to show the existence and uniqueness of ξϕ(z).

Lemma 3.2 [22] Suppose α1 , . . . , αN ∈ RN
+ , and the unit vectors v1 , . . . , vN(N ≥ n + 1)

are not contained in any closed hemisphere. If φ ∶ (0,∞) → (0,∞) is differentiable and
strictly increasing, and φ(s) tends to 0 as s → 0+ such that ϕ(t) = ∫

t
0

1
φ(s)ds exists for

every positive t and is unbounded as t →∞. Suppose z = (z1 , . . . , zN) ∈ RN such that
[z] has nonempty interior. Then, there exists a unique ξϕ(z) ∈ int[z] such that

sup
ξ∈[z]

Φϕ ,μ(z, ξ) = Φϕ ,μ(z, ξϕ(z)).

The following lemma shows the continuity of ξϕ(z) and Φϕ(z, ξϕ(z)).

Lemma 3.3 [22] Suppose α1 , . . . , αN ∈ RN
+ , and the unit vectors v1 , . . . , vN(N ≥ n + 1)

are not contained in any closed hemisphere. If φ ∶ (0,∞) → (0,∞) is differentiable
and strictly increasing, and φ(s) tends to 0 as s → 0+ such that ϕ(t) = ∫

t
0

1
φ(s)ds

exists for every positive t and is unbounded as t →∞. Let z l ∈ RN be such that
liml→∞ z l = z ∈ RN . If [z] has nonempty interior, then

lim
l→∞

ξϕ(z l) = ξϕ(z)
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and

lim
l→∞

Φϕ(z l , ξϕ(z l)) = Φϕ(z, ξϕ(z)).

The next lemma shows that ξϕ(z) is a differentiable function with respect to vector
addition in z.

Lemma 3.4 Let z = (z1 , . . . , zN) ∈ RN
+ , and μ be as given in (3.1). For each β ∈ RN ,

consider

z(t) = z + tβ

for sufficiently small ∣t∣ so that z(t) ∈ RN
+ . Denote ξϕ(t) = ξϕ(z(t)). If ξϕ(0) = o, then

ξ
′

ϕ(0) exists. Moreover,

o =
N
∑
j=1

1
φ(z j)

α jv j .(3.2)

Proof Since ξϕ(t) ∈ int[z(t)] and maximizes

sup
ξ∈[z(t)]

Φϕ(z(t), ξ),

taking the derivative in ξ shows

o =
N
∑
j=1

1
φ(z j(t) − ξϕ(t) ⋅ v j)

α jv j .(3.3)

In particular, at t = 0, we have

o =
N
∑
j=1

1
φ(z j)

α jv j ,

which establishes (3.2). Set

Fϕ(t, ξ) =
N
∑
j=1

1
φ(z j(t) − ξ ⋅ v j)

α jv j .

Then, (3.3) simply says

Fϕ(t, ξϕ(t)) = o.

By a direct computation, the Jocabian with respect to ξ of Fϕ at t = 0 and ξ = 0 is

∂Fϕ

∂ξ
∣
(0,0)

=
N
∑
j=1

φ
′(z j)

φ2(z j)
α jv j ⊗ v j .

Since v1 , . . . , vN span R
n , we conclude that the Jocabian ∂Fϕ

∂ξ is positive-definite at
t = 0 and ξ = 0. By the implicit function theorem, we conclude that ξ

′

ϕ(0) exists. ∎
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For each q > 0, we consider the optimization problem:

inf {Φϕ(z, ξϕ(z)) ∶ z ∈ RN , Iq([z]) = ∣μ∣} .(3.4)

Lemma 3.5 Let q > 0. If there exists z ∈ RN
+ with ξϕ(z) = o and Iq([z]) = ∣μ∣

satisfying

Φϕ(z, o) = inf {Φϕ(z, ξϕ(z)) ∶ z ∈ RN , Iq([z]) = ∣μ∣} ,

then there exists a polytope P ∈ P(v1 , . . . , vN) containing the origin in its interior such
that

cφ(hP)dFq(P, ⋅) = dμ,

where P = [z].
Moreover, for each i = 1, . . . , N , we have

h[z](v i) = z i .(3.5)

Proof Let β ∈ RN be arbitrary and set z(t) = z + tβ. For sufficiently small ∣t∣,
we have z(t) ∈ RN

+ . Set

λ(t) = Iq([z(t)])−
1

n+q−1 .

Note that λ(0) = 1.
By homogeneity of Iq , it is apparent that Iq([λ(t)z(t)]) = 1. By (2.3), we have

λ
′

(0) = − 1
n + q − 1

N
∑
i=1

β i Fq([z], v i).(3.6)

Let ξϕ(t) = ξϕ(λ(t)z(t)) = λ(t)ξϕ(z(t)) and

Ψϕ(t) = Φϕ(λ(t)z(t), ξϕ(z(t)).

By Lemma 3.4, ξϕ is differentiable at t = 0. Moreover, (3.2) holds.
Since z is a minimizer, the fact that 0 = Ψ

′

ϕ(0) shows

0 = λ
′

(0)
N
∑
j=1

1
φ(z j)

z jα j +
N
∑
i=1

1
φ(z i)

β i α i − ξ
′

ϕ(0)
N
∑
j=1

1
φ(z j)

v jα j .

By (3.2) and (3.6), we have

0 = − 1
n + q − 1

N
∑
i=1

β i Fq([z], v i)
N
∑
j=1

1
φ(z j)

z jα j +
N
∑
i=1

1
φ(z i)

β i α i .
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Since β is arbitrary, we conclude that

1
n + q − 1

⎛
⎝

N
∑
j=1

1
φ(z j)

z jα j
⎞
⎠

Fq([z], v i) =
1

φ(z i)
α i ;

that is

cφ(z i)Fq([z], v i) = α i ,

where

c = 1
n + q − 1

N
∑
j=1

1
φ(z j)

z jα j

is a constant that only depends on z j . Let P = [z]. Then, the existence of P is proven.
We now show (3.5). Assume that it fails for some i0. Let z̃ ∈ RN

+ be such that z̃ =
h[z](v i). By h[ f ] ≤ f , we have z̃ i0 < z i0 and z̃ i ≤ z i for i ≠ i0. Note that [z] = [z̃], and
consequently, Iq([z̃]) = ∣μ∣. By definition of Φϕ and ξϕ , we have

Φϕ(z̃, ξϕ(z̃)) < Φϕ(z, ξϕ(z̃)) ≤ Φϕ(z, ξϕ(z)) = Φϕ(z, o).

This is a contradiction to z being a minimizer. ∎

Theorem 3.6 Let q > 0, and μ be as given in (3.1). Suppose φ ∶ (0,∞) → (0,∞) is
differentiable and strictly increasing, and φ(s) tends to 0 as s → 0+ such that ϕ(t) =
∫

t
0

1
φ(s)ds exists for every positive t. Then, there exists a polytope P ∈ P(v1 , . . . , vN)

containing the origin in its interior such that

cφ(hP)dFq(P, ⋅) = dμ.

Proof We consider the minimization problem (3.4). Let z l ∈ RN be a minimizing
sequence; that is, Iq([z l ]) = ∣μ∣ and

lim
l→∞

Φϕ(z l , ξϕ(z l)) = inf {Φϕ(z, ξϕ(z)) ∶ z ∈ RN , Iq([z]) = ∣μ∣} .

Note that by translation invariance of Iq and the simple fact that

Φϕ(z, ξ) = Φϕ(z′ , o),

where z′j = z j − ξ ⋅ v j , we can assume without loss of generality that ξϕ(z l) = o.
Moreover, by the definition of Φϕ , it must be the case that

z l
j = h[z l ](v j)

by Lemma 3.5. The fact that o = ξϕ(z l) ∈ int[z l ] now implies that z l
j > 0.

Set ζ(r) = (r, . . . , r) ∈ RN . Then, by the homogeneity of Iq , we may find r0 > 0
such that

Iq([ζ(r0)]) = ∣μ∣ .
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Therefore,

lim
l→∞

Φϕ(z l , o) ≤Φϕ(ζ(r0), ξϕ(ζ(r0)))

=
N
∑
j=1

ϕ(r0 − ξϕ(ζ(r0)) ⋅ v j)α j

≤
N
∑
j=1

ϕ(2r0)α j < ∞,(3.7)

where by Lemma 3.2, we used the fact that ξϕ(ζ(r0)) ∈ int[ζ(r0)].
However, if we set L l = max j z l

j , then

Φϕ(z l , o) =
N
∑
j=1

ϕ(z l
j)α j ≥ ϕ(L l)min

j
α j .(3.8)

By (3.7) and (3.8), z l is uniformly bounded. Therefore, we may assume that z l → z0

for some z0 ∈ RN . By continuity of Iq , we have Iq([z0]) = ∣μ∣ , which implies that [z0]
contains a nonempty interior. Lemma 3.3 now implies that

ξϕ(z0) = lim
l→∞

ξϕ(z l) = o.

This and the fact that ξϕ(z0) ∈ int[z0] imply that z0 ∈ RN
+ . Moreover, by the definition

of Φϕ , we have

Φϕ(z0 , o) = lim
l→∞

Φϕ(z l , o) = inf {Φϕ(z, ξϕ(z)) ∶ z ∈ RN , Iq([z]) = ∣μ∣} .

Lemma 3.5 now implies the existence of P. ∎
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