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Blind disturbance separation and identification
in a transitional boundary layer using minimal
sensing
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A novel approach is presented for identifying disturbance sources in wall-bounded shear
flows. The underlying approach models the flow state, as measured by sensors embedded
in the flow, as a mixture of disturbance sources. The degenerate unmixing estimation
technique is adopted as a blind source separation technique to recover the separate sources
and their unknown mixing process. The efficiency of this approach stems from its ability
to isolate any, a priori unknown, number of sources, using two sensors only. Furthermore,
by adding a single additional sensor, the method is expanded to also determine the
propagation velocity vector of each of the isolated sources, based on sensor readings from
three sensors appropriately located in the flow field. Theoretical guidelines for locating the
sensors are provided. The power of the method is demonstrated via computer simulations
and wind-tunnel experiments. The numerical study considers disturbances comprising
discrete Tollmien–Schlichting waves and wave packets. Linear stability theory is used
to model source mixtures acquired by sensors placed in a Blasius boundary layer. The
experimental study investigates the flow over a flat plate, with hot wires as sensors,
and a loudspeaker and plasma actuators as source generators. Based on numerical and
experimental demonstrations, it is believed that the new approach should prove useful in
various applications, including active control of boundary layer transition from laminar to
turbulent flow.
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1. Introduction

In flow control applications, model-based and rigorous design of controllers, using both
experimental and simulation data, yields important insights into physical fluid systems for
effective transition control. However, a major difficulty is to design feedback controllers
for high-dimensional systems, such as those obtained by experiments or high-fidelity
simulations, because of the prohibitive time and resource requirements. A more effective
alternative is to rely on physical insights (Sturzebecher & Nitsche 2003; Opfer et al. 2004;
Li & Gaster 2006; Greenblatt et al. 2008; Amitay, Tuna & Dell’Orso 2016; Vadarevu
et al. 2019) to obtain approximations and simplifications for the governing equations, or to
approximate the high-dimensional system using reduced-order models (Taylor & Glauser
2004; Rowley 2005; Schmid 2010; Brunton, Rowley & Williams 2013; Semeraro et al.
2013; Nicolò et al. 2015; Sipp & Schmid 2016; Taira et al. 2017) that retain those aspects
of the flow that are relevant from a control perspective (Kim & Bewley 2007).

Following the new identification and isolation paradigm recently introduced by the
authors (Gluzman, Oshman & Cohen 2020), in this paper we employ an alternative
modelling approach that focuses on the physical disturbances that affect the flow field,
such as those generated by sound or vorticity in the free stream, or by acoustic, mechanical
or electrical actuators. These disturbances can modify the state of the field, i.e. its velocity,
temperature or pressure, at a certain combination of position and time. The information
we base on consists of flow field measurements that are acquired by sensors embedded in
the field. We regard these measurements as consisting of mixtures of disturbance sources,
where a disturbance source is defined as the signal recorded by the sensor due to the sole
action of a particular physical disturbance. Each physical disturbance has its own uniquely
generated time signature at a given sensor location. When several sources coexist, the
resulting signal, measured by the sensor, is due to the combined effect of all the individual
sources and their mutual interactions. Because the actual source-mixing process is usually
unknown, it is a challenging task to discern the individual sources from the recorded
signal. Source separation, as proposed in this work, is a process aiming at uniquely
identifying the disturbance sources and the way they interact. Based on this process, one
may relate the individual sources with distinct physical disturbance generators, and, thus,
gain useful information about the disturbed flow field. In turn, this information can prove
vital in, for example, the design of closed-loop strategies for the control of transitional
boundary layers. Moreover, this new approach may provide new insights and perspectives
on the way we study transitional flows.

Based on the information acquired by a limited number of sensors, we present a
source separation method that can isolate and identify the sources mixed in each sensor
measurement. The goal is to provide certain spatial and temporal behaviour characteristics
of each source at the location of the sensors. These include the source time signature,
propagation velocity and direction in the flow. We focus on disturbances in a boundary
layer in which two types of disturbances are linearly superimposed: the first type is
Tollmien–Schlichting (TS) waves and the second type is wave packets (WPs). The WP is in
fact a superposition of many (theoretically infinite) TS waves. Introducing a disturbance to
a boundary layer can cause the flow to transition from laminar to turbulent, through certain
scenarios, depending on the disturbance characteristics (Schmid & Henningson 2001). In a
quiet environment, the early stages of the transition process are governed by linear stability
theory (LST), which assumes a linear superposition of the disturbance mixture. In these
cases, LST can predict the downstream evolution of the combined disturbances.

Our novel approach of identifying the sources from measured mixtures in shear flow
is based on adapting a blind source separation (BSS) technique. Known to be very
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Disturbance identification

useful in image processing (Vigario & Oja 2008; Silva et al. 2020), mechanical systems
(Antoni 2005; Serviere & Fabry 2005; Zhang et al. 2017) and acoustical applications
(Sawada, Araki & Makino 2010; Yoshioka et al. 2010; Nogueira & Petraglia 2015),
BSS methods were originally developed for solving the problem of separating linear
convolutive mixtures in acoustic applications, known as the cocktail party problem. In
that problem, the goal is to identify the sources of speech pressure waves generated
by simultaneously active and independent speakers in the same room (Cherry 1953;
Haykin & Chen 2005). Similar applications can be found in brain imaging data for
recovering the original components of brain activity from recorded mixed data, acquired
by an electroencephalogram. Source separation has also been applied to astronomical
data or satellite images, finding hidden factors in financial data and reducing noise
in natural images. For more applications, see Haykin & Chen (2005) and Pedersen
et al. (2007) and references therein. Recent developments in BSS methods are based on
sparsity-inducing techniques, such as the sparse component extraction algorithm that was
proposed by Gao et al. (2018) for diagnostic imaging systems, and unsupervised data
decomposition techniques, such as the non-negative matrix factorization methodology
(Ozerov & Fevotte 2010), and their extensions to three-dimensional non-negative tensor
factorization (Cichocki, Zdunek & Amari 2007). A broad survey of models and efficient
algorithms of non-negative matrix factorization and non-negative tensor factorization for
BSS is provided in Cichocki et al. (2009).

In a recent study by the authors (Gluzman et al. 2020), the celebrated independent
component analysis (ICA) (Hyvärinen & Oja 2000) technique was used as a BSS method
for the detection and isolation of TS waves in subcritical transitional shear flows based
on high-order statistics of the measured signals. The application of the method to
measured mixtures from numerical and experimental data has been studied, demonstrating
the viability of the method. The efficacy of the method depends on compliance with
physics-based sensor placement design rules that resolve the inherent incompatibility
between the ICA instantaneous (delay-less) mixture model and the physical mixing process
in the considered shear flows. These rules require prior, physics-based, information on the
number of sources and the wavelengths of the TS disturbances present in the flow. In
turn, this information dictates the required number of sensors, and their relative placement
with respect to each other. It is the goal of the present paper to relax the aforementioned
structural requirements of the ICA-based method (Hyvärinen & Oja 2000), thereby
extending and fully exploiting the scope of BSS methods to discover and learn about the
mixing process of the flow only from available sensor measurements, not requiring any
prior information on the sources.

The contributions of this paper are twofold. The first is a method for separating
individual disturbance sources that are present in source mixtures measured in a shear
boundary layer, using the degenerate unmixing estimation technique (DUET), introduced
in Yilmaz & Rickard (2004) and Rickard (2007). Unlike ICA-based BSS techniques, which
rely on non-Gaussianity criteria to separate sources, DUET relies on the assumption that
the signals are sparse in the time–frequency domain, and was shown to sustain robust
performance in noisy environments (Kim et al. 2006; Zhen et al. 2017). Characterized
by its ability to handle degenerate mixtures, that is, mixtures characterized by fewer
sensors than sources, the DUET BSS method is used in this paper to isolate any number
of sources using two sensors only, which renders it very efficient relative to other BSS
techniques. Exploiting the DUET-based BSS method, the second contribution is a method
for determining the propagation velocity vector of each of the identified sources, from
measurements acquired by as few as three sensors appropriately placed in the flow field.
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These two contributions are demonstrated both numerically and experimentally. The
numerical study employs LST to model the measured source mixtures acquired by sensors
placed in a Blasius boundary layer (BBL). The disturbances that are modelled to be active
in the boundary layer are three-dimensional TS waves and WPs, which may propagate
downstream in parallel or at a certain angle to the free-stream direction. Carried out in a
wind tunnel, the experimental study considers the flow over a flat plate, with hot wires as
sensors and a loudspeaker and plasma actuators as source generators.

The remainder of this paper is organized as follows. In § 2 we present the DUET-based
BSS method for separating the disturbance sources present in source mixtures acquired by
sensors placed in the flow field. Using this DUET-based method, we show in § 3 how to
estimate the propagation velocity of disturbances via three sensors appropriately placed
in the flow field. Sections 4 and 5 provide numerical and experimental proofs of concept,
respectively, for the new methods. Finally, conclusions are drawn in § 6.

2. Blind source separation via DUET

For completeness, we review in this section the main assumptions and procedures for
implementing DUET. For more details, the reader is referred to Yilmaz & Rickard (2004)
and Rickard (2007).

2.1. Overview of DUET
For blindly separating an arbitrary number of sources with only two provided source
mixtures, DUET relies on the following assumptions:

(i) Anechoic mixing model. Originally developed for signal processing in acoustical
applications, DUET assumes an anechoic mixing model. Accordingly, the signals of
Ns mixed sources that are measured by two sensors can be described as

x1(t) =
Ns∑

j=1

sj(t), (2.1a)

x2(t) =
Ns∑

j=1

ajsj(t − δj), (2.1b)

where x1(t) and x2(t) are the measurements of sensor 1 and sensor 2, respectively.
Here, δj is the time it takes source sj to travel from the location of sensor 1 to the
location of sensor 2 and aj is the relative attenuation (amplitude growth or decay) of
source sj as measured in sensor 2 relative to how it is measured in sensor 1.

(ii) Windowed-disjoint orthogonality (WDO) of sources. A basic assumption is that
the signals are sufficiently sparse so that, at most, one source is dominant at each
time–frequency point. In other words, DUET assumes that the sources are disjoint
in the time–frequency domain. Mathematically stated, DUET assumes WDO of
sources, where the following definition is used: two sources sj(t) and sk(t) are
windowed-disjoint orthogonal if

ŝj(τ, ω)ŝk(τ, ω) = 0, ∀τ, ω and ∀j /= k. (2.2)
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In (2.2), ŝj(τ, ω) is the short-time Fourier transform, or windowed transform, of sj(t),
defined as

ŝj(τ, ω) = FW [sj](τ, ω) � 1
2π

∫ ∞

−∞
W(t − τ)sj(t) e−iωt dt, (2.3)

where W(t − τ) is the Hann window function centred at τ , ω = 2πf where f is the
frequency (having the units of τ−1) and i = √−1.

(iii) Local stationarity. The DUET algorithm assumes that, for a given sensor spatial
separation (see next assumption), source propagation speed and selected time
window, the sources comprising the measured mixtures are locally stationary, i.e.
they satisfy

FW [sj(t − δj)](τ, ω) = e−iωδjFW [sj(t)](τ, ω), ∀δj such that |δj| < Δ, (2.4)

where Δ is the maximum possible time difference in the mixing model. The time
difference Δ can be obtained by dividing the distance between the sensors by the
slowest source propagation speed.

(iv) Sensor spatial separation. DUET estimates the delay δj from the e−iωδj term (this
is shown next). There are infinitely many possible estimates of δj based on that
term, all satisfying δj = δ + 2πk for k ∈ Z (this integer ambiguity is also called
the wrap-around problem). To circumvent this problem without having to solve for
the unknown integer delays, it is assumed that the distance between sensors, �r, is
sufficiently small, so as to guarantee a unique solution. We thus require

|ωδj| < π, ∀ω and ∀j, (2.5)

which leads to the following condition on the distance between sensors:

�r <
πU
ωm

, (2.6)

where ωm is the maximum frequency present in the mixture and U is the speed
of the slowest disturbance source in the mixture. This constraint can be removed
using various DUET extensions, as proposed by Rickard (2007) and Wang, Yılmaz
& Zhou (2013).

(v) Signal signature diversity. If two sources have identical spatial signatures, that is,
identical relative attenuations and relative delays (mixing parameters), then they
can be combined into one source without changing the model, rendering them
inseparable by DUET. We thus assume that

(aj /= ak) or (δj /= δk), ∀j /= k. (2.7)

Assumptions (i)–(iii) yield[
x̂1(τ, ω)

x̂2(τ, ω)

]
=

[
1

aj e−iωδj

]
ŝj(τ, ω), ∀(τ, ω). (2.8)

The WDO assumption means that only a single source sj can be active at a certain
point (τ, ω) in the time–frequency domain. In the interest of practicality, we relax this
assumption and require, alternatively, that if several sources are active at the same
time–frequency point, then one of them is dominant, in the sense that it can be regarded as
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the single active source at that time–frequency point. Dividing x̂2 by x̂1 in (2.8), we thus
obtain

x̂2(τ, ω)

x̂1(τ, ω)
≈ aj e−iωδj, ∀(τ, ω) ∈ Ωj, (2.9)

where Ωj is defined as the set of time–frequency pairs (τ, ω) for which the sources are
sufficiently sparse so that, at most, one of them is dominant at each time–frequency
combination, i.e.

Ωj � {(τ, ω) | |ŝj(τ, ω)| � |ŝk(τ, ω)| ∀k /= j}. (2.10)

The important result of (2.9) is that the ratio of the short-time Fourier transformed
signals, x̂2(τ, ω)/x̂1(τ, ω), does not depend on the signals themselves, but on their mixing
parameters aj and δj only. In DUET, the sources sj are identified via estimation of aj

and δj. This is done by local estimation of the mixing parameters, ã and δ̃, for each
time–frequency pair (τ, ω) and a combination of the set of local mixing-parameter
estimates into Ns pairings corresponding to the true mixing-parameter pairings. From
(2.9), for each time–frequency point (τ, ω), we obtain local estimates of the relative delay,
δ̃(τ, ω), and the relative attenuation, ã(τ, ω), as

δ̃(τ, ω) ≈ − 1
ω

arg
(

x̂2(τ, ω)

x̂1(τ, ω)

)
, (2.11)

ã(τ, ω) ≈
∣∣∣∣ x̂2(τ, ω)

x̂1(τ, ω)

∣∣∣∣ . (2.12)

For convenience, the relative attenuation ã is replaced by the symmetric relative
attenuation α̃:

α̃ � ã − 1
ã
. (2.13)

According to (2.13), α̃ changes sign when sensors are swapped. Under assumptions (iv)
and (v), the local symmetric relative attenuation and delay estimates, α̃(τ, ω) and δ̃(τ, ω),
respectively, should be related to the actual αj(τ, ω) and δj(τ, ω) of each source sj. In other
words, the union of the (α̃(τ, ω), δ̃(τ, ω)) pairs, taken over all (τ, ω) combinations, is the
set of Ns (αj, δj) pairs:

{(αj, δj) | j = 1, . . . , Ns} =
⋃
(τ,ω)

{α̃(τ, ω), δ̃(τ, ω)}. (2.14)

For source separation, binary masks are generated by

Mj(τ, ω) =
{

1 (ã(τ, ω), δ̃(τ, ω)) = (aj, δj),

0 otherwise.
(2.15)

Finally, the separation of sources is obtained by multiplying each mask with one of the
mixtures.

2.2. Implementation of DUET
The implementation of DUET is based on transforming (2.14) and (2.15) to operational
relations. In Yilmaz & Rickard (2004), it was found that in the approximate WDO case,
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the instantaneous DUET estimates ã(τ, ω), δ̃(τ, ω) (equations (2.11) and (2.13)) are not
identically related to the actual mixing parameters (αj, δj) of the original Ns sources, but
they cluster around them. Therefore, the realization of (2.14) is obtained by construction
of a two-dimensional weighted histogram for determining these clusters. The histogram
domain, I(α, δ), is defined over ã(τ, ω), δ̃(τ, ω) as follows:

I(α, δ) � {(τ, ω) | |α̃(τ, ω) − α| < Δα, |δ̃(τ, ω) − δ| < Δδ}, (2.16)

where Δα and Δδ are smoothing resolution widths. Using the ã(τ, ω), δ̃(τ, ω) pairs to
indicate the indices of the histogram and using |x̂1(τ, ω)x̂2(τ, ω)|pωq for the weight, a
two-dimensional weighted histogram is constructed:

H(α, δ) �
∫∫

(τ,ω)∈I(α,δ)

|x̂1(τ, ω)x̂2(τ, ω)|pωq dτ dω. (2.17)

Here, p and q are variables of a weighted average, which, by default, are set to p = 1,
q = 0 (Yilmaz & Rickard 2004). If assumptions (i)–(v) hold, (2.17) takes the form

H(α, δ) =
⎧⎨
⎩

∫∫
(τ,ω)∈I(α,δ)

|ŝj(τ, ω)|2pωq dτ dω |αj − α| < Δα, |δj − δ| < Δδ,

0 otherwise.
(2.18)

The weighted histogram separates and clusters the parameter estimates of each source.
The number of peaks reveals the number of sources, and the peak locations reveal the
associated source’s anechoic mixing parameters, which are denoted by (α̃j, δ̃j). Then, the
relative estimated attenuation ãj is retrieved from the estimated symmetric attenuation α̃j
by

ãj =
α̃j +

√
α̃2

j + 4

2
. (2.19)

Next, Ns estimated pairs (α̃j, δ̃j) should be related back to each time–frequency point (τ, ω)

which is closest to the local parameter estimates (α̃(τ, ω), δ̃(τ, ω)). Following Yilmaz &
Rickard (2004), a maximum-likelihood association rule (estimator) for the jth source is
obtained as

J(τ, ω) � arg min
j

|ãj e−iδ̃jωx̂1(τ, ω) − x̂2(τ, ω)|2
1 + ã2

j
. (2.20)

These obtained estimators are used to obtain Ns binary masks, as follows:

M̃j(τ, ω) =
{

1 J(τ, ω) = j,
0 otherwise,

(2.21)

and the maximum-likelihood source estimates are obtained, as proposed in Yilmaz &
Rickard (2004), based on maximum-likelihood estimates of (α̃j, δ̃j), as

ŝj(τ, ω) = M̃j(τ, ω)
x̂1(τ, ω) + ãj eiδ̃jωx̂2(τ, ω)

1 + ã2
j

. (2.22)

In summary, implementing DUET consists of the following main steps (we assume that
two mixtures are acquired):
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(i) Construct time–frequency representations of both mixtures: x̂1(τ, ω), x̂2(τ, ω).
(ii) Extract local mixing-parameter estimates: ã(τ, ω), δ̃(τ, ω).

(iii) Out of the set of local mixing-parameter estimates, form Ns parameter
pairings, optimally corresponding to the true mixing-parameter pairings:
(ã1, δ̃1), . . . , (ãNs, δ̃Ns).

(iv) For each determined mixing-parameter pair, generate a binary mask corresponding
to the time–frequency points that yield that particular mixing-parameter pair:
M1(τ, ω), . . . , MNs(τ, ω).

(v) Isolate (demix) the sources by applying each mask to both mixtures. This yields:
ŝ1(τ, ω), . . . , ŝNs(τ, ω).

(vi) Finally, transform each demixed time–frequency representation to the time domain,
yielding the isolated sources s1(t), . . . , sNs(t).

In the following we extend the DUET-based method to also determine the propagation
velocity vector of each of the identified sources.

3. Estimation of disturbance propagation velocity via DUET

The method proposed herein for determining the source propagation velocity (direction
and speed) is based on sampling the flow in several different locations and then using
the DUET method on these samples. Regarding a particular sensor, each source is
characterized by two parameters: (1) the direction from which the source is arriving and
(2) its distance relative to the sensor. Let δikj denote the relative delay of arrival of a
specific source sj, between two sensors, xi and xk. We define δikj to be positive if the source
first arrives at sensor xi and then at xk, and negative vice versa. Thus, the sign of δijk (by
itself) provides a partial indication of the source direction. The observation underlying the
method presented in this section is that the DUET algorithm can provide an estimate of
δikj. This estimate can, in turn, be used to estimate the propagation direction of the source.

Assuming three sensors, the geometrical model of the source propagation direction
determination problem is schematically depicted in figure 1. In addition to the assumptions
used to blindly separate the sources using DUET, we add the following three
assumptions:

(i) Each source is assumed to possess a uniform planar wave front, i.e. the source wave
front’s curvature is neglected.

(ii) The dispersive nature of a WP source is neglected, so that its group velocity is taken
to represent the velocity of the source.

(iii) The sensors are assumed to be omni-directional, i.e. capable of measuring sources
arriving from any direction.

These assumptions generally hold for disturbances in transitional flows. In particular,
the first assumption is valid if the source is formed sufficiently far away from the sensors,
which means that, compared with the distances between the sensors, the distance between
the point of creation of the source and the sensors is large. The second assumption is valid
for WP sources if the sensors are placed close to each other (which can be regarded as a
design constraint). Being somewhat more restrictive, the third assumption does not strictly
hold for a single hot-wire sensor, measuring the fluid velocity component perpendicular
to the hot wire. Nevertheless, as is demonstrated in what follows, even flow components
arriving at oblique angles to the wire can still be captured, albeit at an attenuated level.
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êx

êz

Sensor 3

Sensor 2

Sensor 1

r2

r1

r3

u

θ

Figure 1. Measurement geometry of a source with velocity u. Three sensors are used.

3.1. Method derivation
Our approach for source propagation direction determination derives from that of Oshman
& Markley (1999), where a global positioning system (GPS) antenna array is used for
spacecraft attitude estimation, based on measuring the phase difference between GPS
signals acquired by the antenna array.

Consider a source s that propagates in the x–z plane with velocity

u = uû, (3.1)

where the source speed is u = |u| and û is a unit directional vector. Our goal is to
determine this velocity (both direction and magnitude) for each source from source
mixtures measured by N sensors.

We position N sensors in the flow located at rxi , i = 1, . . . , N, in the x–z plane (N = 3 in
figure 1). Analogously to the GPS antenna array of Oshman & Markley (1999), we denote
sensor 1 as the master sensor and, accordingly, sensors 2, . . . , N as the slave sensors. This
sensor array configuration defines N − 1 baseline vectors, rxi − rx1 , i = 2, . . . , N. As in
GPS attitude determination problems, here, too, a minimum of two baselines are required,
corresponding to a minimal configuration of three sensors.

The source s that travels from the master sensor (sensor 1) to slave sensor i, i =
2, . . . , N, covers the distance

(rxi − rx1)
Tû = δiu, i = 2, . . . , N, N ≥ 3, (3.2)

where we have used a shorthand notation for the delay δi, and δi > 0 (δi < 0 with the same
magnitude if the source travels in the opposite direction). We now use the normalized
baseline vectors to define the rows of the matrix W ∈ R

N−1,2:

W �

⎡
⎢⎢⎢⎢⎣

δ−1
2 (rx2 − rx1)

T

δ−1
3 (rx3 − rx1)

T

...

δ−1
N (rxN − rx1)

T

⎤
⎥⎥⎥⎥⎦ . (3.3)

Then, (3.2) can be rewritten as
u−1W û = 1, (3.4)
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where all entries of the vector 1 ∈ R
N−1 are ones. Equation (3.4) is a system of N − 1

linear equations for the speed u and the independent entry of the direction vector û.
For N = 3, this system has a unique solution if the columns of W are independent,
which corresponds to a three-sensor configuration having two non-collinear baselines.
For N > 3, the system becomes overdetermined, calling for a least squares solution, a
minimum-norm version of which is provided by the Moore–Penrose pseudoinverse of W ,
which can be robustly computed using the singular value decomposition.

3.2. Sensor configuration design
Relative to some given disturbance direction, the configuration of the N sensors determines
the numerical properties of the linear system (3.4), which, in turn, determine the quality of
the solution for the disturbance propagation velocity. We use the condition number of the
coefficient matrix, denoted as κ(W ), which is the ratio between the largest and smallest
singular values of W , as a measure of the quality of the solution. A small condition number,
i.e. a condition number close to one, means that the system is well-conditioned, and a
high-quality solution may be expected. On the other hand, a large condition number is
associated with an ill-conditioned system, leading to a solution of poor quality, due to
system sensitivity to small input errors.

Evaluating the condition number as a function of the sensor configuration and
disturbance direction can naturally assist in the following two sensor design tasks:

(i) Given a certain sensor configuration, κ(W ) can be used to find the unobservable
directions; that is, the disturbance directions that cannot be identified using the given
configuration.

(ii) Given the disturbance direction, κ(W ) can be used to design the best sensor
configuration for the task of disturbance velocity estimation.

In what follows, we demonstrate the above two tasks via illustrative examples.

3.2.1. Unobservable directions for a given sensor configuration
In this subsection, we demonstrate how the κ(W ) measure may assist in finding
the unobservable directions associated with a given three-sensor configuration. The
disturbance speed is set to be |u| = 1 m s−1 and the velocity direction, represented by
the angle θ with respect to êx as displayed in figure 1, is varied between 0◦ and 360◦ at
4001 points uniformly spread in this range.

In the top three panels of figure 2, we illustrate three different three-sensor
configurations, all consisting of a master sensor 1 (marked by the symbol ×) and two
slave sensors 2 and 3 (marked as small circle and square, respectively). The two baselines
are illustrated by arrows, pointing from the master sensor to the slave sensors. The bottom
three panels of figure 2 present the value of the κ(W ) measure on polar coordinates as a
function of θ , the disturbance arrival direction. The radial distance from the origin stands
for the value of κ(W ), and the two circles in each of these plots correspond to the values of
κ(W ) = 2.5 (inner dotted circle) and κ(W ) = 5 (outer circle). Disturbance arrival angles
corresponding to κ(W ) ≥ 50 are marked in these plots by red arcs on the outer circle. The
ill-conditioning threshold value of 50 is arbitrarily chosen; clearly, disturbance sources
arriving from directions corresponding to angles within the red arcs may not be determined
correctly. As may be expected, figure 2(c) reveals that when the two baselines are collinear,
the entire polar domain is unobservable.
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Figure 2. Unobservable directions for (a–c) three sensor configurations. Top panels: sensor configurations.
Master sensor marked by ×, slave sensors marked by circle and square symbols, baselines denoted by arrows.
Bottom panels: polar plots of κ(W ) versus disturbance arrival direction. Angles associated with κ(W ) ≥ 50
are shown via red arcs on the outer circles (that correspond to κ(W ) = 5).

3.2.2. Best sensor configuration for a given disturbance direction
We next demonstrate how the κ(W ) measure is used to design the optimal sensor
configuration for a given disturbance direction. The disturbance speed is set to |uj|
= 1 m s−1 and the disturbance arrival angle varies between (a) θ = −90◦, (b) θ = −60◦,
(c) θ = −20◦ and (d) θ = 0◦. Two sensors are fixed, whereas the location of the third
sensor varies within the range x, z ∈ [−50, 50] mm, with 1 mm step in each direction.
Figure 3 displays the value of κ(W ) for all possible locations of the third sensor in the x–z
plane. Regions of the x–z plane associated with high values of κ(W ) should be avoided.
In figure 3(d), the first slave sensor is located such that its baseline is perpendicular to
the disturbance velocity vector, which results in δ12 = 0. Therefore, κ(W ) → ∞ for any
location of the second slave sensor, rendering the determination of the velocity vector
in this configuration impossible. In general, figure 3(d) demonstrates that the problem
becomes unobservable if the sensors are configured such that either (1) at least one
baseline is perpendicular to the disturbance velocity vector or (2) the baselines are
collinear.

4. Numerical study

To study the performance of the DUET method and demonstrate computationally our
method of estimating disturbance propagation velocity, we utilize LST to model the
evolution of source mixtures in a BBL. We further use LST predictions as guidelines
for designing the experimental set-up and determining the operational conditions of the
experiments.
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Figure 3. The κ(W ) measure as a function of the location of the third sensor, when the first two sensors
(marked by the × and circle symbols) are fixed, for four different disturbance arrival angles: (a) θ = −90◦,
(b) θ = −60◦, (c) θ = −20◦ and (d) θ = 0◦. The disturbance velocity vector is represented by the green arrow
and the baseline vector between the first two sensors is denoted by the blue arrow.

4.1. Generating disturbance source model via LST
We consider incompressible wall-bounded parallel shear flow with streamwise direction
(x), wall-normal direction (y) and spanwise direction (z). We decompose the total velocity
field into a base flow of the form U = [U( y) 0 0]T and perturbed (u(1), p(1)) states about
the base flow. All quantities are non-dimensionalized by the free-stream velocity, U∞, and
the boundary layer displacement thickness, δd, at a given streamwise position. This renders
the Reynolds number Re = U∞δd/ν as the governing parameter, where ν is the kinematic
viscosity of the flow. The linearized Navier–Stokes equations are obtained by subtracting
the equations for the base state from those corresponding to the total state, and dropping
the nonlinear terms.

We analyse the stability of the mean flow with respect to wavelike velocity and pressure
perturbations, also known as normal modes, for which

q(1) = q̂(y) ei(αx+βz−ωt), (4.1)

where q(1) = [u(1) v(1) w(1) p(1)]T, and q̂( y) = [û( y) v̂( y) ŵ( y) p̂( y)]T is the
corresponding complex eigenvector. We consider the spatial case in which α is a complex
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U∞

δd

y

x

z

Figure 4. Flow over a flat plate.

eigenvalue; αr � Re(α) and β are the disturbance streamwise and spanwise wavenumbers,
respectively; αim � Im(α) is the disturbance streamwise decay/growth rate for positive
and negative values, respectively; and ω is the dimensionless disturbance frequency.
Substituting (4.1) into the linearized Navier–Stokes equations (which is equivalent to
taking the Fourier transform) results in the following dispersion relation:

D(α, β, ω) = 0. (4.2)

This constitutes an eigenvalue problem for the complex eigenvalue α and its corresponding
eigenfunction q̂, for the given spanwise wavenumber β, the real frequency ω, the Reynolds
number Re and the base flow velocity profile U( y).

Following the primitive variable formulation in Schmid & Henningson (2001, p. 290),
the dispersion relation (4.2) for the spatial case translates to the following system of
equations:

⎡
⎢⎢⎢⎢⎢⎣

0 −D −iβ 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
C T iUβ 0 −D/Re −iβ/Re
0 −ReC 0 ReD ReU 0
0 0 −ReC iβRe 0 ReU

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

û
v̂

ŵ
p̂
v̂x
ŵx

⎤
⎥⎥⎥⎥⎥⎦ = iα

⎡
⎢⎢⎢⎢⎢⎣

û
v̂

ŵ
p̂
v̂x
ŵx

⎤
⎥⎥⎥⎥⎥⎦ , (4.3)

with homogeneous boundary conditions. For example, in BBL, û = v̂ = ŵ = v̂x = ŵx
= 0 at y = 0 and y → ∞ (see figure 4). Here C and T denote the linear operators
C � iω + (D2 − β2)/Re and T � UD − Uy. Both subscript (·)y and operator D denote
the first derivative with respect to y, whereas (·)x denotes the first derivative with respect
to x.

Thus, we have a boundary value problem for the above system, which we solve
numerically with the aid of Matlab, utilizing spectral methods (Trefethen 2000) with 150
grid points. The results of the numerical dispersion relation solution are validated against
reported results in the literature for the BBL (Jordinson 1970; Schmid & Henningson
2001; Boiko et al. 2011). We search for the most unstable TS wave, where its eigenmode is
obtained from (4.3), and its amplitude profile is represented by the corresponding |q̂( y)|.

In addition to TS waves we also consider WP sources. A single WP disturbance may be
generated by a short pulse actuation of the boundary layer at a specific location. The short
pulse generates a localized disturbance that may be regarded as a linear superposition
of many TS waves associated with a wide range of frequencies that may grow or decay
downstream in the boundary layer. We focus on the long-time instability characteristics
of the WP, far away from the pulse actuation location, after the WP transient behaviour

927 A4-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

73
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.733


I. Gluzman, J. Cohen and Y. Oshman

has decayed. Each of the WP modes travels with its own phase velocity, given by

cr = [cx cz]T = k
ω

|k|2 , (4.4)

but all modes share the same group velocity:

cg = ∇kω. (4.5)

In (4.5), ∇k = [∂/∂α ∂/∂β]T and k is a real wavenumber vector, defined as

k � [Re{α} β]T, (4.6)

i.e. cx = Re{α}ω/|k|2 and cz = βω/|k|2.
Following the theoretical model proposed in Gaster (1975), the model for a single

three-dimensional WP source in non-parallel shear flow is given by

uWP(x, y0, z, t)

= A( y0) Re

⎧⎨
⎩x−1/4

ωN∑
ωn=ω0

βM∑
βk=β0

exp i
[∫ x

x0

α(ζ, βk, ωn) dζ + βk(z − z0) − ωnt
]⎫⎬
⎭ ,

(4.7)

where uWP(x, y0, z, t) is the streamwise velocity of the WP at a given wall-normal height
y0, (x0, z0) is the location where the WP source is generated and (x, z) is the location
where the WP source is measured. In our case of flow over a flat plate, the origin of the x
axis is at the plate’s leading edge. The term x−1/4 has been included to compensate for the
slight divergence of the mean flow (a model that accounts for downstream eigenfunction
variation is provided in Cohen (1994)). Under the parallel flow assumption, we obtain

uWP(x, y0, z, t) = A( y0) Re

⎧⎨
⎩

ωN∑
ωn=ω0

βM∑
βk=β0

exp{i[αx0,ωn,βk(x − x0) + βk(z − z0) − ωnt]}
⎫⎬
⎭ .

(4.8)

Here, the eigenvalue αx0 associated with ωn, βk is kept constant along the streamwise
direction. The model presented in (4.8) is a simplified version of the theoretical model
proposed in Gaster (1975) and Cohen (1994). Its simplicity notwithstanding, this model
provides estimates of the development of a WP disturbance over the relatively short
distances between the sensors that are adequate for testing the performance of our
DUET-based method prior to proceeding to experimental studies.

4.2. Using LST to model sensor measurement
We implement the LST model under the parallel flow assumption for generating simulated
mixtures of Ns disturbance sources that are measured by Nx sensors. The disturbances
considered comprise TS wave sources and WP sources. In the case of a single TS wave
disturbance measured at a specific wall-normal height y0, (4.1) can be written as

q(x, y0, z, t) = |q̂( y0)| e−αimx cos(−ωt + φt(x, y0, z)). (4.9)

In (4.9) the phase shift in time, φt, at y0 is determined by the spatial parameters of the
disturbance

φt(x, y0, z) � αrx + βz + φ(q̂( y0)) + φt0, (4.10)

where φt0 is the initial phase and (x, z) are the current location coordinates.
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A source is defined as the signal that would have been measured by a sensor if all
other sources were nil (that is, when no other mechanically generated signal is sensed).
Each source is generated by a particular physical disturbance generator, which
characterizes its signature in the sensor recordings. The source sj is defined by its
frequency ωj and the initial phase φt0j

it had at its introduction location rsj = [lx lz]sj

on the x–z plane. Let rxi = [lx lz]T
xi

be the location of sensor i on the x–z plane, where xi
stands for the signal measured by that sensor.

Using (4.9) and (4.10), we represent the measurement of source sj by sensor i as

sij = |q̂j([ly]xi)| e−αimj ([lx]xi−[lx]sj ) cos(−ωjt + φtij), (4.11)

where φtij , the phase of source sj as measured by sensor i, is given by

φtij = αrj([lx]xi − [lx]sj) + βj([lz]xi − [lz]sj) + φj([ly]xi) + φt0j . (4.12)

In (4.12), [lx]xi − [lx]sj and [lz]xi − [lz]sj are the downstream and spanwise distances,
respectively, that the disturbance sj travels from its generation point to sensor i. The
variation in the phase of source sj at the recording location of sensor i is due to the
spatial wavenumbers αrj , βj, and the eigenvector phase φj( y) of the source sj at the vertical
location [ly]xi of sensor i.

Similarly, for a WP source generated at rsj and measured by sensor i, we have

sij = Re

⎧⎨
⎩

ωN∑
ωn=ω0

βM∑
βk=β0

exp{i[αxsj ,ωn,βk([lx]xi − [lx]sj) + βk([lz]xi − [lz]sj) − ωnt]}
⎫⎬
⎭ .

(4.13)

Finally, the source mixture measured by sensor i in the presence of Ns sources is

xi =
Ns∑

j=1

sij, i = 1, 2, . . . Nx. (4.14)

Equation (4.14) provides a general model for a system consisting of Nx sensors measuring
Ns TS and WP disturbance sources, represented by (4.11) and (4.13), respectively.

4.3. Numerical settings and procedure
The dispersion relation is solved for α and q for the given frequency ω, spanwise
wavenumber β, Reynolds number Re and base flow velocity profile U( y) of BBL under the
quasi-parallel flow assumption. We consider air flow at room temperature with kinematic
viscosity ν = 0.15 × 10−4 m2 s−1, and the free-stream velocity is set to U∞ = 5 m s−1.
The disturbance sources are introduced at various downstream locations (rsj) with various
frequencies. Each given pair of frequency and downstream injection location of each
source is associated with the corresponding non-dimensional frequency ω and the local
Reynolds number, which is based on the local displacement thickness, i.e. Re(x) =
U∞δd(x)/ν (for BBL the displacement thickness is given by δd(x) = 1.7208

√
νx/U∞).

These are used to solve the dispersion relation for the spatial case. The sensors are set
to measure the streamwise component of the flow, u. The obtained eigenvalues α and
eigenfunctions û are used as inputs to the truth model, which consists of simulated source
mixtures, measured by the sensors in the LST model. The simulations are performed
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in dimensional form, where the dimensionless parameters ω and α of each source are
dimensionalized using the local displacement thickness at the injection location of the
source and U∞. For simplicity and clarity of exposition, the non-parallel effect is neglected
in our truth model, where it is assumed that the source eigenvalues and eigenfunctions
remain unchanged during their downstream propagation towards the sensors. In reality,
the non-parallel effect may significantly modify the amplitudes and phases of the sources
at the location of the sensor, if the sources travel a long distance (many wavelengths) from
their respective injection locations to the sensor. Nevertheless, the downstream distance
between two neighbouring sensors, a key variable in the DUET method, is extremely
small, compared with the disturbance wavelength. Therefore, the non-parallel effect is
deemed negligible in our study, which is aimed at demonstrating the viability of the DUET
method.

4.4. The DUET settings
The signals are acquired at a 1 kHz sample rate. In order to apply DUET to the
two measured mixtures, we set the initial values of the DUET parameters for flow
measurements according to those recommended for speech mixtures by Rickard (2007).

(i) Window size. The window size of the short Fourier transform is set to 256 ms.
The window size is important for good DUET performance and description of the
frequencies in the flow. Increasing the window size will result in good frequency
localization in the time–frequency domain, but the time localization will deteriorate.
Too narrow a window size will result in a poor frequency resolution, but will
increase the time resolution. In Rickard (2007), it was found that speech is most
window-disjoint orthogonal when a window of 1024 samples is used, corresponding
to a length of 64 ms. In our study of shear flows, we found that good window
sizes appropriate for time scales in our measurements are of 128–512 ms in length,
corresponding to 128–512 samples at 1 kHz sample rate. This range results in a
trade-off between frequency and time resolution (128 samples in favour of time
resolution and 512 samples in favour of frequency resolution).

(ii) Histogram domain. The histogram domain I(α, δ) is divided into 105 bins by
150 bins. The smoothing resolutions (Δα and Δδ) are set such that the weighted
clusters of peaks that emerge on the histogram domain, centred on the actual
mixing parameter pairs, are smoothed with a 3-by-3 neighbouring-bins window. This
facilitates determination of localized histogram peaks.

(iii) Histogram weights. Motivated by the maximum-likelihood symmetric attenuation
estimator in Yilmaz & Rickard (2004), we set p = 1 and q = 0. Good DUET
performance is also obtained by setting p = 2 and q = 0, to reduce delay estimator
bias (Yilmaz & Rickard 2004).

Next, two numerical examples are presented to study DUET performance when using
various sensor configurations in various source mixing scenarios. The first example, which
addresses five two-dimensional sources with two sensors placed at different heights,
tests DUET as a source separation method. The second example, which addresses
three three-dimensional sources with different propagation directions, sampled by a
configuration of three sensors sharing the same height, tests the method’s performance
on each separated source.

927 A4-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

73
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.733


Disturbance identification

500

0.02

0.04

0.06

0.08

0.10

0.12

0.4 0.4
0.4

0.025

0.025

0.025

0.3
0.3

0.3

0.2 0.2

0.1 0

0

0

0

0

0.1 0.1

0
.0

2
5

0.14

0.16

1000 1500

α2 (500,0.12)

α5 (750,0.07)

α3 (1400,0.04)

Re
2000 2500 3000

ω

Figure 5. Truth-model sources. WP sources s1 (magenta dashed line) and s4 (cyan dashed line) at specific Re;
TS source eigenvalues, denoted by asterisk symbols: αs2 = 0.3014 + 0.0006i (red), αs3 = 0.1347 + 0.0009i
(green) and αs5 = 0.2010 + 0.0002i (blue) at specific (Re, ω). Sources plotted over contours of constant
streamwise wavenumber αr (dotted black contours), growth rate αim (solid black contours). The neutral curve
is denoted by the bold black contour.

4.5. Example 1: disturbance mixture separation
This example serves to test and demonstrate the capabilities of DUET as a source
identification and separation method in boundary layer measurement applications. To this
end, our truth model comprises a five-source mixture, introduced upstream of the sensors.
In particular, s1 and s4 are two-dimensional WPs introduced at downstream locations
x = 0.36 m and x = 1.0 m (recall that the origin, x = 0, is located at the plate’s leading
edge). These locations correspond to Reynolds numbers Re1 = 600 and Re4 = 1000,
respectively. The sources s2, s3 and s5 are two-dimensional TS waves, introduced at
downstream locations x = 0.25 m, x = 2 m and x = 0.57 m, corresponding to Re2 = 500,
Re3 = 1400 and Re5 = 750, respectively. The TS source dimensionless frequencies are
ω2 = 0.12, ω3 = 0.04 and ω5 = 0.07, corresponding to 63.7, 7.6 and 24.8 Hz, respectively.
The stability properties of the sources are illustrated in figure 5.

The sensors are located at [lx]x1 = 2.29 m and [lx]x2 = [lx]x1 + 0.005 m. The
downstream separation of 0.005 m between the sensors is chosen to satisfy the fourth
underlying assumption of the DUET method. Accordingly, figure 5 shows that the slowest
TS disturbances propagate at a velocity of approximately (cr)max ≈ 0.3U∞, and the
maximal frequency in the simulated mixture (see figure 7), associated with TS source
s2, is fm = f2 = 63 Hz. Using (2.6) yields |[lx]x1 − [lx]x2 | < πcr/ωm = 0.3U∞/2fm ≈
0.0118 m, rendering an upper bound on the limiting distance between the sensors. We
place each sensor at a different height above the plate: sensor 1 at 2 mm and sensor 2 at
1.4 mm. The simulated TS eigenfunction profiles (amplitude and phase of the streamwise
disturbance velocity) are shown in figure 6, where the sensor positions are indicated by
the horizontal lines (near the inner maximum of the streamwise component of the TS
disturbance profiles).

Figures 7(a) and 7(d) display the outputs of two sensors that are used to measure
the streamwise velocity component over a 2 s time interval. The corresponding Fourier
transforms are shown in figures 7(b) and 7(e), and the spectrograms of the mixtures are
shown in figures 7(c) and 7( f ), respectively. Examination of figures 7(b) and 7(e) reveals
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Figure 6. Streamwise component (u) of the three TS sources: s2 (red), s3 (green) and s5 (blue).
(a) Eigenfunction amplitude (normalized by its maximum) and (b) eigenfunction phase. Black lines: height
of sensor 1 (solid) and sensor 2 (dashed). The sensor heights are related to the correct positions at the
eigenfunction profiles of the sources by rescaling the y axis with the average δd of all injection locations of
the TS sources.
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Figure 7. True (LST-computed) mixtures as measured by two sensors: (a) x1 and (d) x2. Corresponding Fourier
transforms: (b) Ex1 and (e) Ex2 . Absolute values of windowed Fourier transforms (spectrograms), for which a
window of 256 samples is used: (c) 20 log(|x̂1| + 10−6) dB and ( f ) 20 log(|x̂2| + 10−6) dB.

that each measured mixture contains the frequencies of the introduced sources. Each
TS source has a unique single frequency, whereas the WP typical spectrum looks like
a bell-shaped signature centred about a dominant frequency of around 50 Hz for s1 and
24 Hz for s4. Figures 7(c) and 7( f ) demonstrate that the second DUET assumption (WDO)
is not fully satisfied. Specifically, the WP source s1 and the TS source s2 co-dominate the
flow for a certain time–frequency range. Similarly, but to a lesser degree, the WP source
s4 and the TS source s5 coexist for a certain time–frequency range.

Figure 8 shows that the DUET-based method successfully identifies the correct number
of sources. The isometric view of the histogram, presented in figure 8(b), shows five

927 A4-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

73
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.733


Disturbance identification

–10 –5 0 5 10
–1.5

–1.0

–0.5

0

0.5

1.0

1.5

δ∗ (ms)

δ∗ (ms)

α

α
0

0

0

0.5

1.0

H
/H

m
ax

10

–10

1

–1

(a) (b)

Figure 8. A DUET two-dimensional cross power weighted ( p = 1, q = 0) histogram of symmetric
attenuation α = (a − 1/a) and delay estimate pairs from two mixtures of five sources. (a) Contour plot (black)
of the two-dimensional histogram with corresponding true (LST-computed) mixing parameter pairs for each
TS source: s2 (red), s3 (green) and s5 (blue). (b) Isometric view.

peaks associated with five true sources. Three peaks are related to the three TS sources
and the other two peaks are associated with the WP sources. Figure 8(a) displays the
mixing-parameter pairs of the true (LST-computed) TS sources, together with the peak
contours. Clearly, three of the histogram peaks coincide with the mixing parameters of the
true TS sources, s2, s3 and s5. The other two peaks are associated with the WP sources,
s1 and s4. In this example, histogram peaks are clustered around similar values of δ. The
height difference between sensors has a strong effect on the α parameter. Thus, placing
the sensors at different heights increases the scatter along the α axis, which facilitates
distinguishing between the histogram peaks.

Obtained from the histogram peak locations, the identified mixing parameters are used
to demix the sources. Figure 9 shows five estimated sources, denoted by yj, j = 1, 2, 3, 4, 5,
as identified by the DUET method. Figures 9(a) and 9( j) depict the time signatures of
the estimates of sources s1 and s4, clearly featuring typical WP structures. Nonetheless,
figure 9(l) shows that the estimate of WP source s4 contains a weak spurious signal at
50 Hz. This frequency is also shared by TS source s5. Figure 9(m–o) shows that the
spectrum of the estimate of TS source s5 is not contaminated by the estimates of other
sources. However, it is attenuated in the region where WP source s4 is active. Figure 9(g–i)
indicates that the estimate of TS source s3 contains very weak signatures (50 dB) of s4,
which do not affect its time signature. In this example we verified that multiple WP and TS
disturbance sources in shear flows (sufficiently) satisfy the WDO condition, thus allowing
accurate mixing parameter estimation with only two sensors, which yields high-fidelity
signal recovery using DUET.

4.6. Example 2: disturbance velocity estimation
This example is used to demonstrate how our DUET-based method can be used to estimate
the propagation velocity of disturbances in the flow using only three sensors, appropriately
placed in the flow field. As in the previous example, LST is used for generating a truth
model comprising a mixture of three sources: two three-dimensional TS (oblique) waves
and one two-dimensional WP source. The three disturbance sources are introduced at
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Figure 9. The DUET estimates of sources: (a) y1, (d) y2, (g) y3, ( j) y4 and (m) y5. Corresponding Fourier
transforms: (b) Ey1 , (e) Ey2 , (h) Ey3 , (k) Ey4 and (n) Ey5 . Corresponding spectrograms (dB): (c) |ŷ1|, ( f ) |ŷ2|,
(i) |ŷ3|, (l) |ŷ4| and (o) |ŷ5|.

Source Source type Injection location, Reynolds number,
and parameters downstream corresponding

from leading edge (m) to injection location

s1 Two-dimensional WP (β = 0) 0.15 385
s2 Three-dimensional TS wave, 0.365 600

ω2 = 0.12, β2 = 0.15
s3 Three-dimensional TS wave, 0.5 700

ω3 = 0.06, β3 = −0.15

Table 1. Disturbance sources.

different locations upstream of the sensors, as detailed in table 1, which also lists the
source parameters.

The frequencies of the TS sources s2 and s3 are 53.1 and 22.7 Hz, respectively.
Their corresponding eigenvalues are obtained by solving the dispersion relation for
the spatial case, which results in α2 = 0.2987 + 0.0003i and α3 = 0.1613 + 0.0039i.
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Figure 10. Plot of arg max |uWP(t, Lx)| for each sensor on the t–x domain, where x is the distance from the
leading edge and t0 is the pulse start time. The slope of the fitted linear function represents the envelope
velocity of the WP source.

The propagation angle of a TS source is given by

θ = arctan
(

β

Re{α}
)

, (4.15)

which yields 26.7◦ for s2 and −42.9◦ for s3. The angle of the two-dimensional WP (β = 0)
source s1 is 0◦. The propagation velocities of the TS sources correspond to their phase
velocities as given by (4.4) from which we obtain that the TS waves travel at speeds c2 =
1.7950 m s−1 and c3 = 1.3618 m s−1 along their respective wave vector directions. In the
case of the WP source, each of its many modes propagates with its own phase velocity,
which differs from those of the other modes, but all travel as a group of waves at a group
velocity cg, also known as the WP envelope velocity. This velocity can be obtained by
monitoring the leading edge and the trailing edge of the WP envelope in the t–x domain
(Gaster 1975). For Re = 851 it is shown in Gaster & Grant (1975) that the leading edge of
a three-dimensional WP propagates at 0.44 of the free-stream value, whereas the trailing
edge seems to exhibit some local transient behaviour near the source before settling down
to a path with a slope of 0.36U∞. In particular, figure 10 shows the velocity of the WP in
our simulation. In this figure we denote the time when the maximum value of the envelope
(maximum of |uWP(t, x)|) occurs at each downstream location of the sensors. The slope of
the linear function fitting the three points on the t–x plane represents the speed of the WP
travelling in the streamwise direction, which, in our simulation, is 2.1901 m s−1.

The sensors are located at rx1 = [796, 0] mm, rx2 = [[lx]x1 + 6, 5] mm and rx3 =
[[lx]x1 + 9, 5] mm. They are placed at the same height above the plate, near the outer
maximum of the streamwise component of the TS disturbance profiles.

The eigenfunction profiles (amplitude and phase of the streamwise disturbance
velocities) of the two TS waves are shown in figure 11, where the sensors’ height above the
plate is indicated by the horizontal line. As demonstrated in figure 11(b), each TS source
has a vertical phase profile, with two distinct regions (near and away from the surface)
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Figure 11. Streamwise component (u) of TS sources: s2 (red) and s3 (magenta). (a) Eigenfunction amplitude
(normalized by its maximum) and (b) eigenfunction phase. The sensors’ vertical position is denoted by the
horizontal black dashed line.

separated by a jump with a value of π. This jump occurs approximately between the inner
and outer maximum of the eigenfunction amplitude profile (figure 11a).

The phase profile of each source can result in false velocity angle estimation, because
the phase change between the sensors is attributed to the source’s horizontal propagation
behaviour in our modelling framework. To overcome this problem, the sensors should be
placed either (1) at the same height, outside or inside the boundary layer, e.g. near the
inner maximum of the disturbance streamwise velocity profile (for non-parallel flow this
height should be updated along the constant streamline), or (2) in the outer part of the
boundary layer (if known a priori), possibly at different heights, where the phase profile
is constant.

Using DUET for disturbance velocity estimation, which is the focus of the present
example, is a two-stage procedure, with the first stage consisting of disturbance separation
and identification. Since the theory underlying this stage has been thoroughly exemplified
via the previous example, we defer the details concerning this stage to Appendix A. Thus,
in the following, we only address the results of the second stage of the velocity estimation
procedure, relying on the results of the first stage as they are described in Appendix A.

In figure 12 we overlay the histogram obtained using sensors 1 and 3 (blue contours) over
the histogram obtained using sensors 1 and 2 (black contours). As can be clearly observed,
the blue contours are shifted to the right relative to the black ones, that is, |δj12| < |δj13|,
which agrees with the position of sensor 3 being downstream of sensor 2.

Next, we use the source delays, estimated from both histograms, to evaluate the
corresponding velocity vector magnitude and direction by applying the method described
in § 3. The resulting estimates are compared with the true values graphically in figure 13
and numerically in table 2.

As can be observed, the estimated magnitudes and direction angles of the two TS
sources are in excellent agreement with the true values, obtained via LST simulation,
whereas the estimates corresponding to the WP source exhibit moderate errors. These
estimation errors can be attributed, in part, to our choice to compare the estimates to the
WP group velocity, because of its dispersive nature. Another factor that can contribute to
the estimation errors is the smoothing resolution of the DUET histogram (Δα and Δδ),
used in (2.17) to determine the mixing parameters. We tune this resolution so as to bear a
negligible impact on the estimates of the magnitude and direction of the velocity vector.
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Figure 12. Top view of DUET two-dimensional cross power weighted (p = 1, q = 0) histograms of symmetric
attenuation (α = a − 1/a) and delay estimate pairs. The histogram computed using sensors 1 and 3 (blue
contours) is overlaid on the histogram computed using sensors 1 and 2 (black contours). The corresponding
true (LST-computed) values of the mixing-parameter pairs of TS sources s2 (red) and s3 (magenta) are denoted
by circles for sensors 1 and 2, and by squares for sensors 1 and 3. (For an isometric view and additional view
angles, see figure 27 in Appendix A.).
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Figure 13. (a) The DUET-estimated versus (b) true (LST-simulated) source velocities (speeds in m s−1 and
direction angles in degrees): s1, blue; s2, red; s3, magenta. The regions of κ(W ) > 50 are denoted by red dots.

Source s1 s2 s3

Speed (m s−1), direction (deg) u1 θ1 u2 θ2 u3 θ3

True 2.2 0 1.8 26.7 1.4 −42.9
Estimate 2.0 −1.2 1.8 26.7 1.4 −42.9

Table 2. Estimated versus true disturbance velocities.

5. Experimental study

We tested the method’s performance using experimental data involving disturbance source
mixtures in a boundary layer over a flat plate. The experiments were performed using a
closed-loop wind tunnel at the Wind Tunnel Complex of Technion’s aerospace engineering
department. The tunnel has a concentration ratio of 5.76:1 and a test section cross-sectional
area of 0.5 m by 0.5 m, and a length of 1.37 m. The plate dimensions are 0.45 m in width
and 1.4 m in length. The trailing edge flap is 15 % of the total length of the plate. The
free-stream velocity U∞ is set in the range 4–5 m s−1, the flow over the plate is laminar
and the free-stream turbulence intensity level does not exceed 0.15 %. A single dielectric
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Figure 14. Flow over a flat plate with two disturbance generators: s1 (loudspeaker source) and s2 (plasma
actuator source); and two hot-wire sensors: x1 and x2. Experimental set-up sketch.

barrier discharge (SDBD) plasma actuator (Moreau 2007; Corke, Post & Orlov 2009) and a
loudspeaker are used for the generation of artificial disturbances. The streamwise velocity
measurements above the plate are obtained with the aid of two hot-wire anemometers,
which we set to acquire data over a 6 s time interval at a 5 kHz sampling rate. The measured
signal is first preprocessed before applying the DUET method, to remove possible
contamination from the mixtures resulting from free-stream turbulence, background noise
and slow base flow variations. More details of the experimental set-up and the signal
processing procedures are provided in Appendices B and C, respectively.

In what follows we present the results of two experiments. In the first we employ DUET
to separate two disturbance sources using two sensors at different heights. The second
experiment demonstrates how our DUET-based method, presented in § 2, can be used to
estimate the velocities (magnitudes and directions) of mixed disturbance sources using a
configuration of three sensors located at the same height.

5.1. Experiment 1: blind disturbance separation with two sensors
The set-up of the first experiment is shown in figure 14. An SDBD plasma actuator and
a loudspeaker are used to generate two sources introduced upstream of the two hot-wire
sensors, creating, in each sensor, a mixture comprising a TS wave and a WP. Specifically,
placed outside the test section of the wind tunnel, the loudspeaker generates s1, a single
60 Hz frequency disturbance (TS wave). Mounted on the plate 0.3 m downstream of the
leading edge, the SDBD plasma actuator is used to generate s2, a two-dimensional WP,
being actuated via a 50 ms pulse signal. The free-stream velocity is set to 4.1 m s−1. The
sensors are positioned at 0.775 and 0.78 m downstream from the leading edge, with a
40 mm spanwise separation between them. Sensors 1 and 2 are placed at heights that
correspond to 0.19U∞ and 0.23U∞, respectively (for sensor 2, this value is obtained at
y = 0.77 mm).
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Figure 15. Mixtures as measured by two sensors: (a) x1 and (d) x2. Corresponding Fourier transforms: (b)
Ex1 and (e) Ex2 . Corresponding spectrograms (dB), for which a window of 512 ms is used: (c) |x̂1| and ( f ) |x̂2|.

Figures 15(a) and 15(d) display the streamwise velocity components, measured by
two hot-wire sensors, after these signals are conditioned as described in Appendix C.
The corresponding Fourier transforms are shown in figures 15(b) and 15(e), and
the spectrograms of the mixtures are shown in figures 15(c) and 15( f ), respectively.
Figures 15(b) and 15(e) demonstrate that the dominant frequencies are, indeed, strongly
related to the introduced sources. The bell-shaped signature of the WP has a dominant
frequency of about 30 Hz, whereas the second source, generated by the loudspeaker,
appears as a single-amplitude peak at 60 Hz. In addition, using a logarithmic scale
in figures 15(c) and 15( f ) reveals the weak presence of frequencies associated with
experimental artifacts and the presence of noise in both mixtures. These were not removed
by the signal preprocessing, because of their frequency-domain overlap with the sources
comprising the mixture.

Figure 16 shows that the DUET-based method successfully identifies the correct number
of introduced sources. The isometric view of the histogram, presented in figure 16(b),
shows two peaks associated with two true TS and WP sources. Figure 16(a) displays the
peak contours located around a mixing-parameter pair (α, δ)1 = (1.3, −3 ms), whereas
the WP peak contours are located at (α, δ)2 = (−0.8, 3.5 ms). The estimated delay
parameter of the WP source, along with the known sensor downstream position, enable
finding the WP envelope velocity: cg ≈ (lx1 − lx2)/δ2 = 5/3.5 = 1.43 m s−1, which is
0.36U, where U is the free-stream velocity. This result is in agreement with the analysis
presented in (Gaster & Grant 1975), according to which the leading edge of the WP
envelope in a BBL propagates at a velocity of 0.44U∞, whereas the trailing edge of the
envelope propagates at 0.36U∞.

Obtained from the histogram peak locations, the identified mixing parameters are used
to demix the sources. Figure 17 shows the two estimated sources as identified by the
DUET method. Figures 17(a) and 17(d) clearly feature typical TS and WP time signatures,
respectively. The noise, which is evident in the spectrograms of the measured mixtures
in figure 15, is also evident in the spectrograms of the identified sources in figure 17.
Nevertheless, the unique signature of each source is almost uncontaminated by that of
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Figure 16. A DUET two-dimensional cross power weighted ( p = 1, q = 0) histogram of symmetric
attenuation α = (a − 1/a) and delay estimate pairs from two mixtures of two sources. (a) Contour plot of
the two-dimensional histogram. (b) Isometric view.
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Figure 17. The DUET estimates of sources: (a) y1 and (d) y2. Corresponding Fourier transforms: (b) Ey1 and
(e) Ey2 . Corresponding spectrograms (dB): (c) |ŷ1| and ( f ) |ŷ2|.

the other source, indicating that the DUET method is robust with respect to low noise
contamination levels that are hard to avoid in experiments.

This experimental example demonstrates that the DUET method performs well as a
source identification and separation method, when applied to disturbances acting in a
transitional boundary layer. We have obtained similar results in other experiments, under
different mixing scenarios.

5.2. Experiment 2: disturbance velocity estimation
This experiment tests the performance of our DUET-based disturbance propagation
velocity estimator. The experimental set-up is almost identical to the one described in
§ 5.1, except that, instead of using a loudspeaker, an additional plasma actuator is used
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Figure 18. Experimental set-up of flow over a flat plate equipped with two active plasma actuators. (a) Photo
of experimental set-up and (b) schematic diagram of experimental set-up. The region of the hot-wire sensors
position is denoted by the magenta square.

to generate the second source, as depicted in figure 18. The two SDBD plasma actuators
are mounted such that one is placed spanwise parallel to the leading edge and located at
x = 300 mm downstream from the plate’s leading edge, whereas the other is inclined at
15◦ to the leading edge, and its centre (z = 0 mm) is located at x = 500 mm. The inclined
actuator can generate oblique TS wave or WP disturbances.

The two SDBD actuators are used to introduce two disturbances into the boundary layer.
The plasma actuator parallel to the leading edge is used to generate s1, a two-dimensional
WP source, travelling downstream at θ = 0◦ (so that β0 = 0, by (4.15)). The inclined
plasma actuator is used to generate s2, an oblique WP source, travelling downstream at
θ ≈ −15◦. Both actuators are driven by a single, 10 ms pulse, such that the actuator parallel
to the leading edge is delayed by 10 ms with respect to the other, to render both sources
distinguishable in the time–frequency domain. To ensure linear interactions, both actuators
are driven by the smallest voltage that still generates uniform discharge along the actuator
span.

The free-stream velocity U∞ is set to 5 m s−1. All sensors are placed at 0.5 mm height
above the plate’s surface, rendering a measured mean streamwise velocity of 0.27U∞
at that height. Three sensor configurations, shown in figure 19 and termed ‘asymmetric’,
‘singular’ and ‘symmetric’, are tested (see Appendix B.4 for the technique used to realize a
three-sensor configuration using only two hot wires). In each configuration the sensors are
located at the central region of the plate, and the fixed sensor (sensor 1) is placed at rx1 =
[643, 25] mm. The small variations in sensor pair locations between the configurations,
as shown in figure 19, translate to different source arrival times at the sensors.

Typical mixtures, measured by sensors 1 and 3 in the asymmetric configuration, are
shown in figure 20. The presence of both WP sources is evident in both measured mixtures.
The corresponding DUET-estimated sources are shown in figure 21, which demonstrates
effective source separation. Similar results, not shown here for conciseness, were obtained
for the singular and symmetric sensor configurations.

For each of the three sensor configurations, we overlay, in figure 22, the histogram
obtained by using sensors 1 and 3 (blue contours) on the histogram obtained by using
sensors 1 and 2 (black contours). As can be clearly observed, the black contours are shifted
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Figure 19. Top (x–z plane) view of three studied sensor configurations relative to rx1 = [643, 25] mm (at the
origin). The sensors are denoted by symbols: ×, sensor 1 (master); circle, sensor 2 (slave); square, sensor
3 (slave). Baselines are denoted by arrows. (a) Asymmetric configuration, (b) singular configuration and
(c) symmetric configuration.
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Figure 20. Mixtures as measured by two sensors for the asymmetric configuration: (a) x1 and (d) x3.
Corresponding Fourier transforms: (b) Ex1 and (e) Ex3 . Corresponding spectrograms (dB), for which a window
of 128 ms is used: (c) |x̂1| and ( f ) |x̂3|.

to the right relative to the blue ones, that is, |δj13| < |δj12|, which agrees with the position
of sensor 2 being downstream of sensor 3 in all three configurations.

Next, we use the source delays, estimated from both histograms, to evaluate the
corresponding velocity vector magnitude and direction by applying the method of § 3.
These estimates are shown graphically in figure 23 and summarized numerically in table 3,
for each of the tested sensor configurations.
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Figure 21. The DUET estimates of sources using sensors 1 and 3 in asymmetric configuration: (a) y1 and
(d) y2. Corresponding Fourier transforms: (b) Ey1 and (e) Ey2 . Corresponding spectrograms (dB): (c) |ŷ1| and
( f ) |ŷ2|.
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Figure 22. Top view of DUET two-dimensional cross power weighted (p = 1, q = 0) histograms for the
studied three-sensor configurations. The histogram computed using sensors 1 and 3 (blue contours) is overlaid
on the histogram computed using sensors 1 and 2 (black contours). (a) Asymmetric configuration, (b) singular
configuration and (c) symmetric configuration.

90
120

150

180

210

240
270

300

330

0

30

60
5

2.5

90
120

150

180

210

240
270

300

330

0

30

60
5

2.5

90
120

150

180

210

240
270

300

330

0

30

60
5

2.5

(a) (b) (c)

Figure 23. Estimated velocities of sources s1 (blue) and s2 (red) using the three studied sensor configurations.
(a) Asymmetric configuration, (b) singular configuration and (c) symmetric configuration. The regions of
κ(W ) > 50 are denoted by red dots.
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Source Speed (m s−1) Configuration
Direction (deg) Asymmetric Singular Symmetric

s1 u1 1.72 1.75 1.75
θ1 3.20 3.52 3.13

s2 u2 1.36 1.82 2.26
θ2 −12.80 −12.70 −14.20

Table 3. Estimated source velocities.
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Figure 24. Time histories of streamwise disturbance velocity at two downstream stations. (a) Colourbar for
(b,c). Time history of streamwise disturbance velocity at (b) y = 0.9 mm, x = 600 mm and (c) y = 0.9 mm,
x = 650 mm. (d) Pulsation sequence of actuator parallel to leading edge (blue) and inclined actuator (red).
Free-stream velocity is U = 5 m s−1. In (b,c) the estimated values of WP envelope inclination angles are
denoted by the red (s2) and blue (s1) lines.

The results show that the streamwise-travelling two-dimensional WP disturbance is
estimated quite consistently by all three sensor configurations. The oblique WP estimates,
on the other hand, exhibit a substantially larger variation. Nevertheless, the estimated WP
envelope velocities of both sources are between 0.3U∞ and 0.45U∞, which are close to
the values of our numerical example (see § 4.6).

The discrepancy of about 3◦ between the estimated θ1 and the 0◦ angle of the parallel
actuator (that created it) can be attributed to several factors: (1) an imperfect alignment
of the sensor on the x–z plane (the positioning accuracy was 1 mm), (2) random artifacts,
caused by the fact that two repeated experiments had to be done to obtain the required three
sensor measurements with only two sensors, (3) DUET histogram resolution (although this
resolution was tuned to bear a negligible impact on the estimates of the velocity vector),
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Figure 25. (a) Time history of disturbance streamwise velocity on the t–y domain and (b) mean flow profile

without actuation, both obtained at x = 600 mm and z = 0 mm, for U∞ = 5 m s−1.

(4) the disturbance can, potentially, not precisely adhere to the inclination angle of its
generating actuator when propagating downstream and (5) slight variations in the phase
profiles may exist, in particular for the s1 WP. In what follows, we examine the latter two
factors in further detail.

To investigate how the generated disturbance changes its inclination angle as it
propagates downstream from its generating actuator, we track the temporal evolution of a
localized disturbance within the boundary layer over a flat plate. Figure 24 shows the time
history of the streamwise velocity of the disturbances as they pass through two points,
located at 600 and 650 mm from the leading edge, both at a height of y = 0.9 mm above
the plate. Consisting of 103 points, the velocity record is digitized at 1 kHz, such that
the total measuring time is 1 s for each (x, y, z) location. The measurement sequence is
synchronized by a pulse from the computer that triggers the disturbance generator. The
inclined actuator, which generates s2, and the parallel actuator, which generates s1, are
triggered 0.2 and 0.5 s after the beginning of the recording, respectively. At each measuring
point, an ensemble average of six realizations of the disturbance passage is computed
(this number of realizations was found to be sufficient to adequately represent the flow
structure).

In figure 24 the WP propagation angle at both measuring points is evident within the
central region, where the boundary layer maintains its laminarity and is not affected by
the spanwise edges of the plate. Assuming that the propagation angles remain fixed from
disturbance generation until the mixtures reach the sensors, we use the estimated angles
from table 3 to plot the estimated wavefront inclination angle in the t–z domain over the
measured time history of the flow. As figure 24 clearly shows, the inclined WP source, s2,
is estimated very well, and better than the WP source s1. This is most likely due to the
phase changes of s1 at the sampled locations.

To determine if there are slight variations in the disturbance phase profiles, we plot
in figure 25(a) the same time histories used to obtain figure 24(c), on the t–y domain,
at x = 600 mm and z = 0 mm. The free-stream velocity is U = 5 m s−1. The signals are
normalized by their maximal values to make them more pronounced. In figure 25(b) we
show the mean profile of the flow without actuation at the same location, in order to
reference the sensor heights to the canonical boundary layer at that location. Some slight
non-coherence in the shape of source s1 is evident below the height of 1 mm (which
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is below 0.35U∞), indicating disturbance phase variations at that region. Thus, placing
sensors at that height reduces our method’s precision in estimating the velocity vector of
source s1.

6. Concluding remarks

This paper presents a novel approach for the isolation and identification of disturbances
in a boundary layer. Enabling this approach, the model adopted in this work regards
the flow state as an unknown mixture of disturbance sources. The primary goal of the
study is to identify the flow physics, or, in terms of our model, the mixing process,
based on information acquired using a limited number of sensors embedded in the
flow.

Because the number of disturbances and their mixing parameters in the boundary layer
are a priori unknown, we use DUET as a BSS mechanism to reconstruct the separate
sources and their mixing process. Only two sensors, as a minimum, are required for
this source separation and identification, and this number is independent of the number
of disturbances active in the flow. Adding an additional sensor, and complying with
some physics-based design rules, we also present a method, motivated by techniques for
GPS-based spacecraft attitude determination, to determine the propagation velocity vector
(magnitude and direction) of each of the sources, based on readings of only three sensors
appropriately positioned in the flow field.

We demonstrate our methods both numerically and experimentally. The numerical study
employs LST to model the source mixtures acquired by sensors placed in a BBL. We
consider three-dimensional TS waves and WPs, which may propagate downstream along
with the free-stream direction or at a certain angle with respect to it. Carried out in a wind
tunnel, the experimental study considers flow over a flat plate, with hot wires as sensors
and a loudspeaker and plasma actuators as source generators.

Both numerical and experimental studies demonstrate the robustness of the
DUET-based method with respect to the validity of its underlying assumptions. This is
especially true in the experimental domain, where these assumptions are more challenging
to satisfy, because of sensor positioning and alignment errors, random artifacts and
measurement noises. In particular, we demonstrate how DUET can separate sources
that coexist over some time–frequency interval, i.e. when the set-up does not fully
comply with the source sparsity (WDO) assumption, which is one of DUET’s underlying
assumptions.

Our novel identification and isolation scheme may be used to provide new insights and
perspectives on how transitional flows can be studied. The information gained concerning
sources and their mixing parameters may provide essential insights into the physical
fluid system, and information on aspects of the flow that can be relevant from control
perspectives.
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Figure 26. Time signatures as measured by the three sensors: (a) x1, (d) x2 and (g) x3. Respective Fourier
transforms: (b) Ex1 , (e) Ex2 and (h) Ex3 . Respective spectrograms (dB): (c) |x̂1|, ( f ) |x̂2| and (i) |x̂3|.
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Appendix A. Disturbance separation with two sensors (example 2 in § 4.6)

In this appendix we provide details pertaining to the application of DUET for source
separation in example 2 of § 4.6. Figures 26(a), 26(d) and 26(g) display the time behaviour
of the mixtures over the time interval [0.2, 0.6] s. The corresponding Fourier transforms
are shown in figures 26(b), 26(e) and 26(h), from which it can be seen that each
mixture contains the frequencies of all introduced sources. Each TS source has a unique
single frequency, whereas the WP spectrum exhibits a typical bell-shaped signature
with a maximum at about 90 Hz. The respective spectrograms of the mixtures in the
time–frequency domain are shown in figures 26(c), 26( f ) and 26(i).

Figure 27 shows the histogram computed using the measurements of sensors 1 and 2.
The isometric view of the histogram in figure 27(b) reveals three peaks associated with the
three original sources: two TS sources and one WP source. In figure 27(a) we superimpose
the mixing-parameter pairs of the TS sources, as computed by LST, over the histogram
peak contours. Clearly, the histogram peaks coincide with the mixing parameters of the
three LST-computed sources.

The identified mixing parameters, obtained from the histogram peak locations, are used
to demix the sources. Figure 28 shows the three DUET-estimated sources. The quality
of the separation is manifested by the fact that the signature of each estimated source is
uncontaminated by the other two sources.
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Figure 28. The DUET estimates of sources using sensors 1 and 2: (a) y1, (d) y2 and (g) y3. Corresponding
Fourier transforms: (b) Ey1 , (e) Ey2 and (h) Ey3 . Corresponding spectrograms (dB): (c) |ŷ1|, ( f ) |ŷ2| and (i) |ŷ3|
dB.

Appendix B. Experimental set-up and data processing details

In this appendix we briefly describe the components of the experimental set-up.

B.1. Wind tunnel
The experiments are performed in a closed-loop wind tunnel with a contraction ratio of
5.76:1, a test cross-sectional area of 0.5 m by 0.5 m and a length of 1.37 m. The sidewalls
of the test section are made of 10 mm thick transparent Perspex, with an adjustable angle
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to control the pressure gradient inside the test section. The air temperature is 20 ± 2 ◦C.
The air flow is driven by a vane-axial fan powered by a 15 kW motor, which is capable
of generating a free-stream velocity up to 50 m s−1 inside the test section. The tunnel
is designed to have low turbulence levels (0.15 % at velocities up to 10 m s−1 for a
filtered range of 0.1–500 Hz). These low turbulence levels are achieved by placing corner
vanes at each corner of the tunnel, and by positioning a settling chamber upstream of
the converging nozzle that contains a honeycomb with a cell diameter of 5 mm, and four
screens downstream of it.

B.2. Flat plate
The boundary layer is formed along a flat plate made of three, combined, 4 mm thick glass
sheets that satisfy a waviness criterion for plate surfaces used for stability experiments:
ε/λTS < 10−3, where ε is the height above the plate and λTS is the TS wavelength (Saric
2008). The leading edge has an asymmetric shape and is designed to minimize the adverse
pressure gradient according to Fransson (2004). The trailing edge is equipped with a flap
having an adjustable angle, that enables control of the stagnation line at the leading edge,
thereby preventing boundary layer separation there. The plate dimensions are 0.45 m in
width and 1.4 m in length. The trailing edge flap is 15 % of the total length of the plate. A
filling material (plasticine) is inserted between the various parts (the leading edge, plate
and trailing edge flap) and covered by a single layer of Kapton tape in order to avoid
junction discontinuities. The plate is mounted on a supporting frame, specially designed
to minimize the test section area blockage. The front tip of the plate’s leading edge is
placed at the beginning of the test section, and the plate’s top surface is positioned at
mid-height of the test section.

B.3. Disturbance generators
SDBD plasma actuators and a loudspeaker are utilized for generation of controlled
disturbances. The actuation signals for both are generated with the aid of LabVIEW
software. Plasma actuators have been studied and used in a wide range of flow applications.
Detailed reviews of plasma actuator physics, experiments and applications are given in
Moreau (2007), Corke et al. (2009) and Kriegseis, Simon & Grundmann (2016).

We use copper tape (66 μm thick and 10 mm wide) as the electrodes of the actuator,
a glass sheet (4 mm thick) as the dielectric insulation between the electrodes and Kapton
tape for encapsulation of the grounded electrode. The actuation signal is generated by
a GBS MiniPuls 2.1 kit that consists of two boards: (1) a full-bridge converter and
(2) a transformer cascade (RM14). The assembly can generate high AC voltages with
frequencies in the range 5–20 kHz, and amplitudes up to 10 kV (7 kVRMS). The system
internal control allows adjusting the signal’s burst frequency in the range 0–400 Hz, and
has a duty cycle in the range 0 %–100 %.

A single DIBEISI difuzor loudspeaker, having a diameter of 200 mm, is used as an
additional disturbance generator. The loudspeaker is placed outside the test section and
away from the measuring system to prevent mechanical vibrations. The actuation input
signal to the loudspeaker is a superposition of sine waves with maximum amplitudes of
3 V, amplified by a −10 dB gain via a MAX 860 power-amplifier capable of 300 W output.
The generated acoustic waves create pressure disturbances that interact with the boundary
layer.
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B.4. Sensors and data acquisition system
The velocity of the free stream entering the test section is measured by a Pitot tube
connected to an MKS BARATRON model 398HD pressure transducer, mounted on top
of the mid-spanwise part of the test section inlet plane. The streamwise velocity (above
the plate) is measured with the aid of two hot wires (DANTEC, type 55P11) connected
to a hot-wire anemometry system of A. A. Lab Systems. The straight, 5 μm in diameter,
tungsten hot-wire probes are kept at an overheat ratio of 1.6, corresponding to a maximal
frequency response of 30 kHz. During calibration, each hot wire is placed adjacent to
the Pitot tube. The calibration includes seven velocities in the range 0–10 m s−1 at a
temperature of 20 ◦C. The hot-wire anemometer and BARATRON pressure transducer
data acquisition are controlled using a regular PC and LabVIEW software.

During the measurement of the disturbance mixtures in the boundary layer, one hot wire
is kept stationary, while the other is mounted on a three-axis traversing mechanism, with a
resolution of 5 μm in the wall-normal vertical direction and 1 mm in both the streamwise
and spanwise directions. The positioning of the probe within the boundary layer at a given
downstream station is controlled by the computer that drives the stepping motors through
LabVIEW software.

Our method requires the use of (at least) three sensors for reconstructing the velocity
vectors of the sources. However, in our experiments, laboratory set-up limitations dictated
the use of only a pair of hot wires. To circumvent this limitation, we used the following
approach. One hot-wire sensor, designated as ‘master sensor 1’, was kept stationary
throughout the entire experiment. The experiment was performed two times, where, in
the first run, the traversed hot wire was used as ‘slave sensor 2’, in one location, and, in the
second run, as ‘slave sensor 3’, in another location. This approach relies on the facts that
(1) DUET can be used with only two sensors and (2) the initial phase of the sources in the
mixture is irrelevant to our method. We assume that the mixing parameters (particularly
the delay of arrival) of each source are the same between the repeated experiments. It
should be noted, however, that this assumption can never be ideally realized in practice, so
that the use of repeated experiments necessarily adversely affects the method’s accuracy.

Appendix C. Signal preprocessing before applying DUET

Prior to applying our DUET-based method to the acquired signals, they are preprocessed
according to the following consecutive steps.

(i) Prior to recording the signals, hardware low-pass filtering is applied, so that the
filtered signals have a cutoff frequency of 1 kHz. This is done to eliminate the effects
of electromagnetic interference, which is generated by the SDBD plasma actuator.
The selected cutoff frequency does not detrimentally affect the measurements
because the relevant boundary layer frequencies in this study are below 200 Hz.

(ii) Next, the signals are detrended to remove slow variations of the base flow with
typical frequencies well below those of the introduced sources. Detrending is
performed by subtracting from the signal a smoothed version of it, generated by
applying a moving average operator to the measured signal. The smoothing window
length of the moving average operator is set to smooth out short-term fluctuations of
source mixtures and highlight the longer-term trends of the base flow. Detrending is
done to ensure that the DUET-based method does not identify these slow variations
as additional sources existing in the flow.
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(iii) The detrended signals are then low-pass-filtered to remove artifacts and noise below
1 kHz that result from electrical devices, such as the traverse stepper motor noise and
sensor noise, as well as from random flow events or truncation errors of the recorded
signals. This procedure is done by applying to the recorded signal a moving average
operator with a window length designed to ensure that the signal acquisition sample
rate is as short as possible but sufficiently long to remove these artifacts.

(iv) Finally, we make sure that the detrended signals are centred by subtracting their
computed means from them. This ensures the removal of the base flow profile effect
on symmetric attenuation, which is based on the ratio between the absolute values
of the sensor measurements. Therefore, by centring each measured signal, we ensure
that the estimated symmetric attenuation would be within the predetermined limits
of the DUET histogram, for appropriate source separation.
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