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Pell Equations: Non-Principal Lagrange
Criteria and Central Norms

R. A. Mollin and A. Srinivasan

Abstract. We provide a criterion for the central norm to be any value in the simple continued fraction

expansion of
√

D for any non-square integer D > 1. We also provide a simple criterion for the

solvability of the Pell equation x2 − Dy2 = −1 in terms of congruence conditions modulo D.

1 Introduction

Suppose that x0 + y0

√
D is the smallest positive solution of x2 −Dy2

= 1, where D is

a positive non-square integer. Lagrange proved that if D = p is an odd prime, then

x0 ≡ 1 (mod p) if and only if p ≡ 7 (mod 8). In [5], the first author generalized

this to involve what is known as the central norm being equal to 2; see equation (2.4).

It is one of our principal results to generalize that result so that the central norm can

be any value. Moreover, we prove that for any non-square positive integer D ≡ 1, 2

(mod 4) there is a solution to the Pell equation x2−Dy2
= −1 if and only if x0 ≡ −1

(mod 2D); see Theorem 3.5.

2 Notation and Preliminaries

Herein, we will be concerned with the simple continued fraction expansion of
√

D,

where D is a positive integer that is not a perfect square. We denote this expansion by

α =
√

D =
〈

q0; q1, q2, . . . , qℓ−1, 2q0

〉

,

where ℓ = ℓ(
√

D) is the period length, q0 = ⌊
√

D⌋ (the floor of
√

D), and

q1, q2, . . . , qℓ−1 is a palindrome.

The k-th convergent of α for k ≥ 0 is given by,

Ak

Bk

= 〈q0; q1, q2, . . . , qk〉,

where

Ak = qkAk−1 + Ak−2, Bk = qkBk−1 + Bk−2,
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with A−2 = 0, A−1 = 1, B−2 = 1, B−1 = 0. The complete quotients are given by

(Pk +
√

D)/Qk, where P0 = 0, Q0 = 1, and for k ≥ 1,

(2.1) Pk+1 = qkQk − Pk, qk =

⌊

Pk +
√

D

Qk

⌋

, and D = P2
k+1 + QkQk+1.

We will also need the following facts (which can be found in most introductory

texts in number theory, such as [7]. Also, see [3] for a more advanced exposition).

First,

AkBk−1 − Ak−1Bk = (−1)k−1.

Also,

Ak−1 = PkBk−1 + QkBk−2, DBk−1 = PkAk−1 + QkAk−2,

and

(2.2) A2
k−1 − B2

k−1D = (−1)kQk.

In particular, for any k ∈ N

(2.3) A2
kℓ−1 − B2

kℓ−1D = (−1)kℓ.

Also, we will need the elementary facts that for any k ≥ 1,

Qℓ+k = Qk, Pℓ+k = Pk, and qℓ+k = qk.

When ℓ is even,

Pℓ/2 = Pℓ/2+1 = P(2k−1)ℓ/2+1 = P(2k−1)ℓ/2.

Also Qℓ/2 = Q(2k−1)ℓ/2, so by equation (2.1), Q(2k−1)ℓ/2 | 2P(2k−1)ℓ/2, where

(2.4) Qℓ/2 is called the central norm.

Furthermore,

Q(2k−1)ℓ/2 | 2D and q(2k−1)ℓ/2 = 2P(2k−1)ℓ/2/Q(2k−1)ℓ/2.

In the next section, we will consider what are typically called the standard Pell

equations (2.5)–(2.6). The fundamental solution of such an equation is the (unique)

least pair of positive integers (x, y) satisfying it. The following result shows how all

solutions of the Pell equations are determined from continued fractions.
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Theorem 2.1 Suppose that ℓ = ℓ(
√

D) and k is any positive integer. Then if ℓ is even,

all positive solutions of

(2.5) x2 − y2D = 1

are given by x = Akℓ−1 and y = Bkl−1, whereas there are no solutions to

(2.6) x2 − y2D = −1.

If ℓ is odd, then all positive solutions of equation (2.5) are given by x = A2kℓ−1 and

y = B2kℓ−1, whereas all positive solutions of equation (2.6) are given by x = A(2k−1)ℓ−1

and y = B(2k−1)ℓ−1.

The proof can be found in many introductory number theory texts possessing an

in-depth section on continued fractions. For instance, [7, Corollary 5.7, p. 236].

Remark 2.2 For ℓ = ℓ(
√

D) let

(2.7) x2 − Dy2
= (−1)ℓ.

Note that as a result of Theorem 2.1 the norm of the fundamental unit of Z[
√

D] is

−1 if and only if ℓ is odd. If ℓ is even, (2.7) is called the positive Pell equation, and

if ℓ is odd, it is referenced as the negative Pell equation. We denote the fundamental

solution of the positive Pell equation by (x0, y0) and maintain this notation for the

balance of the paper.

3 Criterion for Solvability of x2 − Dy2
= −1

All of the notation of the previous section is in force. Note especially Remark 2.2, the

contents of which we employ herein.

Proposition 3.1 Let D be a positive integer that is not a perfect square. Then ℓ =

ℓ(
√

D)) is even if and only if one of the following two conditions occurs:

(i) There exists a factorization D = ab with 1 < a < b such that the following

equation has an integral solution (x, y).

(3.1) ax2 − by2
= ±1.

Furthermore, in this case, each of the following holds, where (x, y) = (r, s) is the

fundamental solution of equation (3.1).

(a) Qℓ/2 = a.

(b) Aℓ/2−1 = ra and Bℓ/2−1 = s.

(c) Aℓ−1 = r2a + s2b = x0 and Bℓ−1 = 2rs = y0, since

Aℓ−1 + Bℓ−1

√
ab =

(

r
√

a + s
√

b
) 2
.

(d) r2a − s2b = (−1)ℓ/2.
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(ii) There exists a factorization D = ab with 1 ≤ a < b such that the following

equation has an integral solution (x, y) with xy odd:

(3.2) ax2 − by2
= ±2.

Moreover, in this case each of the following holds, where (x, y) = (r, s) is the fun-

damental solution of equation (3.2).

(a) Qℓ/2 = 2a.

(b) Aℓ/2−1 = ra and Bℓ/2−1 = s.

(c) 2Aℓ−1 = r2a + s2b = 2x0 and Bℓ−1 = rs = y0, since

Aℓ−1 + Bℓ−1

√
ab =

(

r
√

a + s
√

b
) 2

2
.

(d) r2a − s2b = 2(−1)ℓ/2.

Proof All of this is proved in [4].

Remark 3.2 Note that although Proposition 3.1 only deals with the case of
√

D we

have lost no generality (namely by excluding the maximal order Z[(1+
√

D)/2] when

D ≡ 1 (mod 4)), since ℓ(
√

D) ≡ ℓ((1 +
√

D)/2) (mod 2). Indeed, not only do the

period lengths of the orders Z[(1 +
√

D)/2] and Z[
√

D] have the same parity, but

also when Qℓ((1+
√

D)/2 = 2a, then Qℓ(
√

D)/2 = a. Furthermore, note that in Propo-

sition 3.1(ii) it is necessarily the case that D 6≡ 1, 2 (mod 4), while, as illustrated by

Examples 3.3 and 3.4 below, (i) allows for D ≡ 1, 2 (mod 4). To see why (ii) does

not allow for D = ab ≡ 1, 2 (mod 4), assume that (3.2) holds for such a D with

1 ≤ a < b and rs odd. If D ≡ 1 (mod 4), then a ≡ b (mod 4), so

±2 = ar2 − bs2 ≡ a(r2 − s2) ≡ 0 (mod 4),

a contradiction. If D ≡ 2 (mod 4), then one of a or b is even, so (3.2) tells us that

the other must be even since rs is odd, and this is a contradiction.

The above discussion on D ≡ 1 (mod 4) relies on the fact that when D ≡ 1

(mod 8), the fundamental unit of the order Z[(1 +
√

D)/2] is the same as the funda-

mental unit of the order Z[
√

D]. When these fundamental units differ, then neces-

sarily D ≡ 5 (mod 8), in which case the fundamental unit of Z[
√

D] is ε3
D, where εD

is the fundamental unit of Z[(1 +
√

D)/2]; see [3, Theorem 2.1.4, p. 53] for a proof

of the above facts.

An illustration of Proposition 3.1(i) when D is not square-free is given as follows,

which corrects [4, Example 4, p. 175].

Example 3.3 Let D = 2 · 72 · 13 = 1274. Then ℓ = ℓ(
√

D) = 18, and Qℓ/2 = Q9 =

26 = a with b = 49, r = 1020, and s = 743, and

ar2 − bs2
= 26 · 10202 − 49 · 7432

= (−1)ℓ/2
= −1.
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Also,

Aℓ−1 + Bℓ−1

√
D = x0 + y0

√
D = 54100801 + 1515720

√
1274

= (1020
√

26 + 743
√

49)2
=

( Aℓ/2−1

a

√
a + Bℓ/2−1

√
b
) 2

= (r
√

a + s
√

b)2.

The following example illustrates the case where D ≡ 1 (mod 8).

Example 3.4 Let D = 41 · 73 = ab = 2993 ≡ 1 (mod 8) has ℓ(
√

D) = 6,

Qℓ/2 = Q3 = 41, r = 4, s = 3, and r2a − s2b = −1. Here (x0, y0) = (1313, 24) =

(r2a + s2b, rs).

An interesting consequence of Proposition 3.1 is the following simple criterion

for the norm of the fundamental unit of a quadratic field to equal −1, namely for the

existence of a solution to the negative Pell equation to be provided in terms of the

fundamental solution (x0, y0) of the positive Pell equation.

Theorem 3.5 If D ≡ 1, 2 (mod 4) is a non-square positive integer, then there is a

solution to the negative Pell equation if and only if x0 ≡ −1 (mod 2D).

Proof If there is a solution to the negative Pell equation, say (T0,U0), then

x0 + y0

√
D = (T0 + U0

√
D)2

so x0 = T2
0 + U 2

0 D ≡ −1 + 2U 2
0 D ≡ −1 (mod 2D) given that T2

0 − DU 2
0 = −1.

Conversely, assume that x0 ≡ −1 (mod 2D). Suppose that ℓ((1+
√

D)/2) is even,

so ℓ = ℓ(
√

D) is even. Then by Proposition 3.1 and Remark 3.2, (3.1) holds. Then

x0 = r2a + s2b by (i)(c) and r2a− s2b = (−1)ℓ/2 by (i)(d). Putting these two together,

−1 ≡ x0 ≡ r2a + s2b ≡ 2s2b + (−1)ℓ/2 ≡ (−1)ℓ/2 (mod 2b).

Since b > 1, this makes ℓ/2 odd. Similarly,

−1 ≡ x0 ≡ r2a + s2b ≡ 2r2a − (−1)ℓ/2 ≡ (−1)ℓ/2+1 (mod 2a).

Since a > 1, this makes ℓ/2 even, a contradiction. Hence, ℓ is odd.

Remark 3.6 Note that Theorem 3.5 says that if D ≡ 1 (mod 4) and εD is the fun-

damental unit of Z[(1 +
√

D)/2], then N(εD) = −1 if and only if x0 ≡ −1 (mod D),

where (x0, y0) is the fundamental solution of the positive Pell equation. (Note that

by Remark 3.2, if ε4D is the fundamental unit of Z[
√

D] for D ≡ 1 (mod 4), then

N(εD) = −1 if and only if N(ε4D) = −1.)

An old and difficult problem is to decide whether or not the negative Pell equation

has a solution (see Lagarias [1]). Theorem 3.5 gives a criterion to do this; however,

it requires finding the fundamental solution (x0, y0) of the positive Pell equation,

which is another old and equally difficult problem. Lenstra [2] deals with this latter
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problem using a notion of power products. Our criterion in Theorem 3.5 links these

two problems in that if one is able to find (x0, y0), then it is easy to check whether

the negative Pell equation has a solution, namely by checking whether x0 ≡ −1

(mod D). Indeed one needs only a solution (x, y) that is an odd power of (x0, y0)

as in this case x ≡ x0 (mod D), and the criterion applies again.

Example 3.7 If D = 52 · 17 = 425, then ℓ(
√

D) = 7,

x0 + y0

√
D = (268 + 13

√
425)2

= 143649 + 6968
√

425

with x0 ≡ −1 (mod 425).

Example 3.8 Let D = 10, for which ℓ = l(
√

D) = 1, so there exists a solution to

x2 − Dy2
= −1, namely

Aℓ−1 + Bℓ−1

√
D = A0 + B0

√
10 = 3 +

√
10.

Thus, the fundamental solution of the positive Pell equation x2 − 10y2
= 1 is given

by

x0 + y0

√
D = (Aℓ−1 + Bℓ−1

√
D)2

= (3 +
√

10)2
= 19 + 6

√
10.

Thus, the criterion x0 ≡ −1 (mod 2D) given in Theorem 3.5 is illustrated here as

x0 = 19 ≡ −1 (mod 2D).

Remark 3.9 If for a given radicand D = ab ≡ 1 (mod 4), ℓ(
√

D) is even, then

the very proof of Theorem 3.5 indicates that x0 ≡ −1 (mod ab) is impossible, since

a > 1 and b > 1 are maximal in the sense that x0 is congruent to −1 modulo all

primes dividing one of them and is congruent to 1 modulo all primes dividing the

other. This rather elegant condition is a notion that is exploited in a different context

in Theorem 4.1.

4 Non-Principal Lagrange Criteria

The following generalizes earlier work; see Theorem 4.3. The notation of the previous

sections remain in force here. As well, in what follows for D = ab, let 2/α ≤ a < b,

where α = 2 if y0 is odd and α = 1 if y0 is even. Note that when D = pg , where

p > 2 is prime and g ∈ N, it is not possible that α = 1. In other words, it is not

possible for ph
= a < b = pg−h, since that would put us into part 1 of Proposition

3.1 for which x0 = r2a + s2b with p | a and p | b and since x2
0 − Dy2

0 = 1, one would

conclude that p | 1, a contradiction.

Theorem 4.1 Suppose that ∆ = 4D is a discriminant with radicand D = ab. If

ℓ = ℓ(
√

D) is even, then the following are equivalent.

(a) Qℓ/2 = αa.

(b) There exists a solution to the Diophantine equation

(4.1) ax2 − by2
= (−1)ℓ/2α,

where r
√

a + s
√

b is the fundamental one.
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(c) The following congruences hold:

(4.2) x0 ≡ (−1)ℓ/2+1 (mod 2a/α) and x0 ≡ (−1)ℓ/2 (mod 2b/α).

Proof We note that Proposition 3.1 holds throughout, since we are assuming ℓ is

even. First, assume that (a) holds. Then from (2.2) we have

A2
ℓ/2−1 − B2

ℓ/2−1D = (−1)ℓ/2Qℓ/2 = α(−1)ℓ/2a.

Therefore,

a
( Aℓ/2−1

a

) 2

− B2
ℓ/2−1b = α(−1)ℓ/2

and by Proposition 3.1, Aℓ/2−1 = ra and Bℓ/2−1 = s, namely r
√

a + s
√

b is the

fundamental solution to (4.1). Thus, (a) implies (b).

Suppose that (b) holds. Then if α = 2, by Proposition 3.1(ii)(c)–(d),

x0 =
r2a + s2b

2
=

2s2b + 2(−1)ℓ/2

2
= s2b + (−1)ℓ/2 ≡ (−1)ℓ/2 (mod b)

and

x0 =
r2a + s2b

2
=

2r2a − 2(−1)ℓ/2

2
= r2a + (−1)ℓ/2+1 ≡ (−1)ℓ/2+1 (mod a).

If α = 1, then by part 1 (c)–(d) of Proposition 3.1

x0 = r2a + s2b = 2s2b + (−1)ℓ/2 ≡ (−1)ℓ/2 (mod 2b)

and

x0 = r2a + s2b = 2r2b − (−1)ℓ/2 ≡ (−1)ℓ/2+1 (mod 2a).

We have shown that (4.2) holds, so we have shown that (b) implies (c).

Now assume that (c) holds. By hypothesis, a and b are maximal in the sense that

a is divisible by all the primes p such that x0 ≡ (−1)ℓ/2+1 (mod pt ), where pt‖a and

b is divisible by all the primes q such that x0 ≡ (−1)ℓ/2 (mod qu) where qu‖b. Thus

the value of a in Proposition 3.1 is the value of a here so Qℓ/2 = αa.

Hence, we have shown that (c) implies (a), and the logical circle is complete.

Remark 4.2 With reference to the comments preceding Theorem 4.1, it is possible

that Qℓ/2 = 2g with α = 2 which puts us into part 2 of Proposition 3.1. For instance,

if D = 296 with a = 2 and b = 148, we get that Qℓ/2 = Q3 = 4 with ar2 − bs2
=

2 · 432 − 148 · 52
= −2 = (−1)ℓ/22. Indeed, part 2 of Proposition 3.1 tells us that

when a = 2, Qℓ/2 = 4 is forced. Observe, as well, that rs being odd in part 2 of

Proposition 3.1 is a necessary hypothesis. For instance, when D = 74, ℓ = 5 but

2 · 432 − 37 · 102
= −2. This and more were considerations addressed in [4]. For

instance, therein it is proved that if D is the power of an odd prime, then ℓ(
√

D) is

odd and ℓ(
√

4D) = ℓ is even, with Qℓ/2 = 4—see [4, Corollaries 5–6, p. 189].
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Theorem 4.3 ([5, Theorem 3.1, and Remark 3.3, pp. 1042–1044]) If D > 1 is a

radicand and ℓ = ℓ(
√

D) is even, then the following are equivalent.

(a) There is a solution to the Diophantine equation x2 − Dy2
= 2(−1)ℓ/2.

(b) x0 ≡ (−1)ℓ/2 (mod D).

Proof If α = 1, take a = 2, and if α = 2, take a = 1 in Theorem 4.1.

Corollary 4.4 Theorem 4.3(a)–(b) are equivalent to Qℓ/2 = 2.

Now we illustrate the above.

Example 4.5 If D = 38 = 2 · 19 = a · b, then ℓ = 2, Q1 = 2 = a, y0 = 6, x0 = 37,

so α = 1. We have x0 ≡ 1 (mod 2a), x0 ≡ −1 (mod 2b), and 2r2 − 19s2
= −1,

where r = 3 and s = 1. This illustrates Theorem 4.3.

To see that Theorem 4.1 also applies with α = 2, let D = 7 · 17 = 119 for which

ℓ = 4, Q2 = 2 = 2a, b = D, x0 = 120 ≡ 1 ≡ (−1)ℓ/2 (mod D), s = 1, and

r = 11 = y0 with r2 − s2D = 2.

Remark 4.6 Corollary 4.4 says, in particular, that

Qℓ/2 = 2 if and only if x0 ≡ (−1)ℓ/2 (mod D).

This is a generalization of Lagrange’s criterion, which states that if D = p is an odd

prime, then

x0 ≡ 1 (mod p) if and only if p ≡ 7 (mod 8).

Note that this holds, since if p ≡ 7 (mod 8), then by (2.3) ℓ is even, and Proposition

3.1(ii) necessarily holds with a = 1. So by part (d) therein, r2 − ps2
= (−1)ℓ/22 and

since rs is odd, (−1)ℓ/22 ≡ 1 − 7 (mod 8), which forces ℓ/2 to be even. Therefore,

by Theorem 4.3, x0 ≡ 1 (mod p). Conversely, if x0 ≡ 1 (mod p), then by Theorem

4.3, ℓ/2 is even and so by part (b), p ≡ 7 (mod 8).

Theorem 4.1 is a complete generalization of the Lagrange criterion: If D = ab

with ℓ = ℓ(
√

D) even, 2/α ≤ a < b, then Qℓ/2 = αa if and only if x0 ≡ (−1)ℓ/2+1

(mod 2a/α), and x0 ≡ (−1)ℓ/2 (mod 2b/α).
Note as well that the relationship between Theorem 3.5 and Theorem 4.1 comes

into play. By Remark 3.2, Proposition 3.1(ii) does not apply to D ≡ 1, 2 (mod 4)

when ℓ is even so α = 1 in this case. Also, if D ≡ 1 (mod 4) and ℓ is even, we cannot

have Qℓ/2 = 2; see [6] for more on this matter. Thus, for D ≡ 2 (mod 4), if a = 2,

and ℓ/2 is odd, we can have Qℓ/2 = 2 if and only if x0 ≡ 1 (mod 4) and x0 ≡ −1

(mod D). Given that Theorem 3.5 says that if D ≡ 1, 2 (mod 4), then ℓ is odd if and

only if x0 ≡ −1 (mod 2D), then necessarily x0 ≡ −1 (mod 4) when ℓ is odd and

D ≡ 2 (mod 4). This is all that distinguishes the criterion for Qℓ/2 = 2 from the

criterion for ℓ to be odd in this case. For instance, let D = 38. Then ℓ = 2, Qℓ/2 = 2,

α = 1, a = 2, and x0 = 37 ≡ −1 (mod D) but x0 ≡ 1 (mod 4).

Example 4.7 Let D = 35 = 5 · 7 = ab for which we have x0 = 6, y0 = 1, α = 2,

ℓ = ℓ(
√

D) = 2, and Qℓ/2 = 10 = 2a. Here,

x0 = 6 ≡ 1 ≡ (−1)ℓ/2+1 (mod a) and x0 ≡ −1 ≡ (−1)ℓ/2 (mod b).
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Also, with r = 1 = s, ar2 − by2
= (−1)ℓ/22 = −2.

Example 4.8 Let D = 183 = 3 · 61 = ab ≡ 3 (mod 4) for which we have ℓ =

ℓ(
√

D) = 6 and Qℓ/2 = 3 = a, and b = 61. Here y0 = 36,

x0 = 487 ≡ 1 ≡ (−1)ℓ/2+1 (mod 2a), and x0 ≡ −1 ≡ (−1)ℓ/2 (mod b).

Also, with r = 9, s = 2, ar2 − by2
= (−1)ℓ/2

= −1.

The following illustrations look at the case where the central norm is not a prime

or twice a prime.

Example 4.9 Let D = 3 · 17 · 29 · 61 = 90219. then ℓ = 42 and Qℓ/2 = Q19 =

183 = 3 · 61 = a, and b = 17 · 29 = 493. Here α = 1, y0 = 44321930492797336,

x0 = 13312746823109176735 ≡ 1 ≡ (−1)ℓ/2+1 (mod 2a)

and x0 ≡ −1 ≡ (−1)ℓ/2 (mod 2b). Also, r2a − s2b = (−1)ℓ/2
= −1, with its

fundamental solution being

r
√

a + s
√

b = 190718707
√

183 + 116197124
√

493.

Example 4.10 Let D = 2340 = 9 · 260 = a · b, with Qℓ/2 = Q4 = 9 = a, α = 1,

x0 = 33281 ≡ (−1)ℓ/2+1 ≡ −1 (mod 18), x0 ≡ 1 ≡ (−1)ℓ/2 (mod 520), and

r
√

a + s
√

b = 129 + 16
√

65.
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