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Abstract In this paper, we investigate the existence of global weak solutions to an integrable two-
component Camassa–Holm shallow-water system, provided the initial data u0(x) and ρ0(x) have end
states u± and ρ±, respectively. By perturbing the Cauchy problem of the system around rarefaction
waves of the well-known Burgers equation, we obtain a global weak solution for the system under the
assumptions u− � u+ and ρ− � ρ+.
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1. Introduction

In this paper, we consider the integrable two-component Camassa–Holm shallow-water
system

ut − utxx + 3uux = 2uxuxx + uuxxx − σρρx, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(1.1)

where σ = ±1. System (1.1) was initially introduced in [43] as a tri-Hamiltonian system
and was recently derived in the context of shallow-water theory [12,35,37]. The variable
u(x, t) describes the horizontal velocity of the fluid, and the variable ρ(x, t) denotes
the horizontal deviation of the surface from equilibrium, all measured in dimensionless
units [12]. It is an integrable system, and the inverse scattering has been developed
in the recent paper [31]. Its geometric properties are studied in [24]. The case σ = 1
corresponds to the situation in which the acceleration due to gravity acts downwards [12].
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System (1.1) with σ = −1 is identified with the first negative flow of the Ablowitz–Kaup–
Newell–Segur hierarchy and has peakon and multi-kink solutions [5,26]. System (1.1) also
has other physical backgrounds. It describes the closure of the kinetic moments of the
single-particle probability distribution for geodesic motion on the symplectomorphisms in
Vlasov plasma models [32] and is also summoned in a type of matching procedure called
metamorphosis in the large-deformation diffeomorphic approach to image matching [33].
The mathematical properties of (1.1) have been studied in many works: see [4,5,12,25,
30,35,44,46].

For ρ ≡ 0, (1.1) becomes the Camassa–Holm equation, modelling the unidirectional
propagation of shallow-water waves over a flat bottom. Here u(t, x) stands for the fluid
velocity at time t in the spatial x-direction [3, 15, 21, 34, 36, 38]. The Camassa–Holm
equation is also a model for the propagation of axially symmetric waves in hyperelastic
rods [17,18]. It has a bi-Hamiltonian structure [6,27] and is completely integrable [3].
Also, there is a geometric interpretation of (1.1) in terms of geodesic flow on the diffeo-
morphism group of the circle [14,39]. Recently, it was claimed in [40] that the equation
might be relevant to the modelling of tsunami; see also the discussion in [13].

The Cauchy problem and initial-boundary-value problem for the Camassa–Holm equa-
tion have been studied extensively [9, 10, 19, 22, 23, 41, 45, 49]. It has been shown
that this equation is locally well-posed [9, 10, 19, 41, 45] for initial data u0 ∈ Hs(R),
s > 3

2 . More interestingly, it has global strong solutions [7,9,10] and finite-time blow-
up solutions [7–11, 19, 41, 45]. On the other hand, it has global weak solutions in
H1(R) [1,2,16,48].

For ρ �≡ 0, the Cauchy problems of (1.1) with σ = −1 and with σ = 1 have been
discussed in [25] and [12], respectively. A new global existence result and several new
blow-up results of strong solutions to (1.1) with σ = 1 were obtained in [28]. The obtained
results in [28] were sharp and improved considerably on the recent results in [12]. The
existence of global weak solutions to (1.1) with σ = 1 was proved recently in [29].

In this paper, we further study the existence of global weak solutions to (1.1) with
σ = 1, provided that the initial data u0(x) and ρ0(x) have end states u± and ρ±,
respectively. By perturbing the Cauchy problem around rarefaction waves of the well-
known Burgers equation and obtaining some a priori estimates of approximate solutions,
we prove the existence of global weak solutions to (1.1) with σ = 1 under the assumptions
u− � u+ and ρ− � ρ+, respectively. The recent result in [29] is the special case of our
result with u− = u+ = 0 and ρ− = ρ+ = 1.

The paper has the following structure. In § 2, we present some lemmas to the perturbed
Cauchy problem of (1.1) with σ = 1 around rarefaction waves. In § 3, we present an
existence result of global weak solutions to (1.1) with σ = 1.

2. Preliminaries

In this section, we present the local well-posedness for the perturbed Cauchy problem
of (1.1) with σ = 1 in H2(R)×H1(R), the precise blow-up scenarios and global existence
results for strong solutions to the perturbing system, and several useful lemmas, which
will be used in the following.
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For given w− and w+, we consider

wt + wwx = 0, t > 0, x ∈ R,

w(0, x) = w0(x) = 1
2 (w+ + w−) + w̃ tanh(x), x ∈ R,

}
(2.1)

where w̃ = 1
2 (w+ − w−).

Lemma 2.1 (see [50]). Assume that w̃ = 1
2 (w+ − w−) � 0. Equation (2.1) has a

unique global smooth solution w(t, x) satisfying the following.

(i) w− � w(t, x) � w+, 0 � wx(t, x) � w̃ for x ∈ R, t > 0.

(ii) For any k ∈ N
+, 1 � k � 4, and p, 1 � p � ∞, there exists a positive constant Ck,p

such that
‖∂k

xw(t, ·)‖Lp � Ck,pw̃ ∀t � 0.

Note that if p(x) := 1
2e−|x|, x ∈ R, then (1 − ∂2

x)−1f = p ∗ f for all f ∈ Lp(R).
System (1.1) with σ = 1 takes the form of a quasi-linear evolution equation of hyperbolic
type:

ut + uux = −∂xp ∗ (u2 + 1
2u2

x + 1
2ρ2), t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x) = ρ0(x), x ∈ R.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.2)

In this paper, we suppose that limx→±∞ u(x) = u±, limx→±∞ ρ(x) = ρ± and that φ,
ϕ are the solutions of (2.1) with initial data φ0(x) = 1

2 (u+ + u−) + 1
2 (u+ − u−) tanh(x)

and ϕ0(x) = 1
2 (ρ+ + ρ−) + 1

2 (ρ+ − ρ−) tanh(x), respectively.
Letting v = u − φ and γ = ρ − ϕ, (2.2) takes the form

vt + vvx = −∂xp ∗ ((v + φ)2 + 1
2 (vx + φx)2 + 1

2 (γ + ϕ)2) − (φv)x,

t > 0, x ∈ R,

γt + (v + φ)γx = −(vx + φx)γ − ((v + φ)ϕ)x + ϕϕx, t > 0, x ∈ R,

v(0, x) = u0(x) − φ0(x), x ∈ R,

γ(0, x) = ρ0(x) − ϕ0(x), x ∈ R.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.3)

We can obtain the following two lemmas using arguments similar to those in [25].

Lemma 2.2. If u+ � u−, u0 − φ0 ∈ H2(R) and ρ+ � ρ−, ρ0 − ϕ0 ∈ H1(R), then
there exist a maximal T = T (‖u0 −φ0‖H2(R) +‖ρ0 −ϕ0‖H1(R)) > 0 and a unique solution
z =

(
v
γ

)
to (2.3) with the initial data

z0 =

(
v0

γ0

)
=

(
u0 − φ0

ρ0 − ϕ0

)

such that
z ∈ C([0, T ); H2(R) × H1(R)) ∩ C1([0, T ); H1(R) × L2(R)).

Moreover, the mapping z0 → z(·, z0) : H2(R) × H1(R) → C([0, T ); H2(R) × H1(R)) ∩
C1([0, T ); H1(R) × L2(R)) is continuous.
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Lemma 2.3. Let u+ � u−, ρ+ � ρ− and

z0 =

(
v0

γ0

)
=

(
u0 − φ0

ρ0 − ϕ0

)
∈ H2(R) × H1(R)

and let T be the maximal existence time of the solution z =
(

v
γ

)
to (2.3) with the initial

data z0. Then, the corresponding solution z blows up in finite time if and only if

lim sup
t→T

‖vx(t, ·)‖L∞(R) = +∞.

Remark 2.4. Let u+ � u−, ρ+ � ρ− and

z0 =

(
v0

γ0

)
=

(
u0 − φ0

ρ0 − ϕ0

)
∈ H2(R) × H1(R)

and let T be the maximal existence time of the solution z =
(

v
γ

)
to (2.3) with the initial

data z0. Define u = v + φ and ρ = γ + ϕ. Since φt + φφx = 0 and ϕt + ϕϕx = 0, we have
that y =

(
u
ρ

)
is the strong solution of (2.2).

Consider the initial-value problem

qt = v(t, q) + φ(t, q), t ∈ [0, T ),

q(0, x) = x, x ∈ R,

}
(2.4)

where v denotes the first component of the solution z to (2.3). Applying classical results
in the theory of ordinary differential equations, one can obtain the following result on q,
which is crucial in studying global existence.

Lemma 2.5 (see [12,25]). Let v, φ ∈ C([0, T )×R). Then, (2.4) has a unique solution
q ∈ C1([0, T ) × R; R). Moreover, the map q(t, ·) is an increasing diffeomorphism of R,
with

qx(t, x) = exp
( ∫ t

0
(vx + φx)(s, q(s, x)) ds

)
> 0 ∀(t, x) ∈ [0, T ) × R.

Lemma 2.6. Let u+ � u−, ρ+ � ρ− and

z0 =

(
v0

γ0

)
=

(
u0 − φ0

ρ0 − ϕ0

)
∈ H2(R) × H1(R)

and let T be the maximal existence time of the solution z =
(

v
γ

)
to (2.3) with the initial

data z0. Then, we have that

(γ + ϕ)(t, q(t, x))qx(t, x) = γ0(x) + ϕ0(x) ∀(t, x) ∈ [0, T ) × R; (2.5)

that is,
ρ(t, q(t, x))qx(t, x) = ρ0(x) ∀(t, x) ∈ [0, T ) × R,

where ρ = γ + ϕ.
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Proof. Let u = v + φ. By Remark 2.4, (u, ρ) satisfies (2.2). Differentiating (2.5) with
respect to t, in view of (2.4) and (2.2), we obtain that

d
dt

(ρ(t, q(t, x))qx(t, x))

= (ρt(t, q(t, x)) + ρx(t, q(t, x))qt(t, x))qx(t, x) + ρ(t, q(t, x))qxt(t, x)

= (ρt(t, q(t, x)) + ρx(t, q(t, x))u(t, q) + ρ(t, q)ux(t, q))qx(t, x)

= 0.

This completes the proof of the lemma. �

By Lemma 2.6 and Lemma 2.1, for any t ∈ (0, T ), we have that

‖γ(t, ·)‖L∞(R) � exp
( ∫ t

0
‖ux(s, ·)‖L∞(R) ds

)
‖ρ0‖L∞(R) + |ρ−| + |ρ+|. (2.6)

Lemma 2.7. Let u+ � u−, ρ+ � ρ− and

z0 =

(
v0

γ0

)
=

(
u0 − φ0

ρ0 − ϕ0

)
∈ H2(R) × H1(R)

and let T be the maximal existence time of the solution z =
(

v
γ

)
to (2.3) with the initial

data z0. Then, there exists C1 depending only on u± and ρ± such that

E(t) =
∫

R

(v2 + v2
x + γ2) dx � eC1t(1 + ‖z0‖2

H1(R)×L2(R)) − 1 ∀t ∈ [0, T ).

Moreover, we have that

‖v(t, ·)‖2
L∞(R) � 1

2eC1t(1 + ‖v0‖2
H1(R) + ‖γ0‖2

L2(R)) ∀t ∈ [0, T )

and

‖u(t, ·)‖2
L∞(R) � eC1t(1 + ‖v0‖2

H1(R) + ‖γ0‖2
L2(R)) + ((u−)2 + (u+)2) ∀t ∈ [0, T ),

where u = v + φ.

Proof. Differentiating the first equation in (2.3) with respect to x and using the
identity ∂2

xp ∗ f = p ∗ f − f , we have that

vtx + (v + φ)(v + φ)xx + 1
2 (vx + φx)2 − φ2

x − φφxx

= (v + φ)2 + 1
2 (γ + ϕ)2 − p ∗ ((v + φ)2 + 1

2 (vx + φx)2 + 1
2 (γ + ϕ)2). (2.7)

https://doi.org/10.1017/S0013091513000394 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000394


760 C. Guan and Z. Yin

We write that f = (v+φ)2+ 1
2 (vx+φx)2+ 1

2 (γ+ϕ)2. Using (2.3) and (2.7), and integrating
by parts, we get that

d
dt

(1 + E(t))

= 2
∫

R

(vvt + vxvxt + γγt) dx

= 2
∫

R

[−v((v + φ)vx + ∂xp ∗ f + φxv)

+ vx(−(v + φ)(v + φ)xx − 1
2 (vx + φx)2 + φ2

x + φφxx + (v + φ)2)

+ 1
2 (γ + ϕ)2 − p ∗ ((v + φ)2 + 1

2 (vx + φx)2 + 1
2 (γ + ϕ)2)

+ γ(−((v + φ)γ)x − ((v + φ)ϕ)x + ϕϕx)] dx

= 2
∫

R

(− 3
2φxv2 − 1

2φxv2
x − vvxφxx − φφxv + 1

2φ2
xvx + γvxϕ + 1

2ϕ2vx

− 1
2φxγ2 + (v + φ)ϕγx + γϕϕx) dx

� 2
∫

R

(−vvxφxx − φφxv + 1
2φ2

xvx + γvxϕ − ϕϕxv + vϕγx

− φxϕγ − φϕxγ + γϕϕx) dx

� 4(‖φ‖W 2,∞(R) + ‖ϕ‖L∞(R))
(

E(t) +
∫

R

(φ2
x + ϕ2

x) dx

)
� C1(u±, ρ±)(1 + E(t)),

where we applied Lemma 2.1 and Hölder’s inequality. By means of Gronwall’s inequality
and the above inequality, we have that

E(t) � eC1t(1 + ‖v0‖2
H1(R) + ‖γ‖2

L2(R)) − 1.

Using this inequality and Sobolev’s imbedding theorem, we obtain that

‖v(t, ·)‖2
L∞(R) � 1

2‖v|2H1(R) � 1
2 (‖v‖2

H1(R) + ‖γ‖2
L2(R))

� 1
2eC1t(1 + ‖v0‖2

H1(R) + ‖γ0‖2
L2(R)) ∀t ∈ [0, T ).

Applying Lemma 2.1 and the relation u = v + φ, for any t ∈ [0, T ), we obtain that

‖u(t, ·)‖2
L∞(R) � eC1t(1 + ‖v0‖2

H1(R) + ‖γ0‖2
L2(R)) + ((u−)2 + (u+)2).

This completes the proof of the lemma. �

Lemma 2.8. Let u+ � u−, ρ+ � ρ− and

z0 =

(
v0

γ0

)
=

(
u0 − φ0

ρ0 − ϕ0

)
∈ H2(R) × H1(R)
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and let T be the maximal existence time of the solution

z =

(
v

γ

)
=

(
u − φ

ρ − ϕ

)

to (2.3) with the initial data z0. If there exists α such that ρ0(x) � α > 0 for all x ∈ R,
then there exists C depending only on u± and ρ± such that, for any t ∈ [0, T ), we have
that

‖ux(t, ·)‖L∞(R) � 1
α

(‖γ0‖2
L∞(R) + ‖v0,x‖2

L∞(R) + C)

× exp(4(eCt(1 + ‖v0‖2
H1(R) + ‖γ0‖2

L2(R)) + C)t)

and

‖vx(t, ·)‖L∞(R) � 1
α

(‖γ0‖2
L∞(R) + ‖v0,x‖2

L∞(R) + C)

× exp(4(eCt(1 + ‖v0‖2
H1(R) + ‖γ0‖2

L2(R)) + C + 1)t) + u+ − u−.

Proof. By Lemma 2.5, we know that q(t, ·) is an increasing diffeomorphism of R, with

qx(t, x) = exp
( ∫ t

0
ux(s, q(s, x)) ds

)
> 0 ∀(t, x) ∈ [0, T ) × R.

Then, we have that

‖ux(t, q(t, ·))‖L∞(R) = ‖ux(t, ·)‖L∞(R) ∀t ∈ [0, T ). (2.8)

Set M(t, x) = ux(t, q(t, x)) and N(t, x) = ρ(t, q(t, x)). By Remark 2.4 and (2.4), we have
that

∂M

∂t
= (utx + uuxx)(t, q(t, x)),

∂N

∂t
= −NM (2.9)

and

Mt = − 1
2M2 + u2 + 1

2N2 − p ∗ (u2 + 1
2u2

x + 1
2ρ2)(t, q). (2.10)

In view of Lemma 2.7, we obtain that

0 � p ∗ (u2 + 1
2u2

x + 1
2ρ2)

� 2p ∗ (v2 + v2
x + γ2) + 2p ∗ (φ2 + φ2

x + ϕ2)

� 2‖p‖L∞(R)‖v2 + v2
x + γ2‖L1(R) + 2‖p‖L1(R)‖φ2 + φ2

x + ϕ2‖L∞(R)

� eC1t(1 + ‖z0‖2
H1(R)×L2(R)) + 2(|u−| + |u+| + |ρ−| + |ρ+|).

If we write that f(t, x) = u2(t, q) − p ∗ (u2 + 1
2u2

x + 1
2ρ2)(t, q), then

|f(t, x)| � 2eC1t(1 + ‖v0‖2
H1(R) + ‖γ0‖2

L2) + C2 ∀(t, x) ∈ [0, T ) × R (2.11)
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and

Mt = − 1
2M2 + 1

2N2 + f(t, x), (t, x) ∈ [0, T ) × R, (2.12)

where C2 = 2(|u−| + |u+| + |ρ−| + |ρ+|) + (u−)2 + (u+)2. By Lemmas 2.5 and 2.6, we
know that N(t, x) has the same sign, with N(0, x) = ρ0(x) for every x ∈ R. Thus,

N(t, x)N(0, x) > 0 ∀x ∈ R.

Next, we consider the Lyapunov function

w(t, x) = N(0, x)N(t, x) +
N(0, x)
N(t, x)

[1 + M2(t, x)], (t, x) ∈ [0, T ) × R, (2.13)

first introduced in [12]. By Sobolev’s imbedding theorem, we have that

0 < w(0, x) = N2(0, x) + 1 + M2(0, x)

� 2γ2
0(x) + 2ϕ2 + 1 + 2v2

0,x(x) + 2φ2
x

� 2‖γ0‖2
L∞(R) + 2‖v0,x‖2

L∞(R) + C3, (2.14)

where C3 depends only on u± and ρ±. Differentiating (2.13) with respect to t and
using (2.9)–(2.12), we obtain that

∂w

∂t
(t, x) = 2

N(0, x)
N(t, x)

M(t, x)(f(t, x) + 1
2 )

� 4(eC1t(1 + ‖v0‖2
H1(R) + ‖γ0‖2

L2(R)) + C2 + 1)
N(0, x)
N(t, x)

(1 + M2)

� 4(eC1t(1 + ‖v0‖2
H1(R) + ‖γ0‖2

L2(R)) + C2 + 1)w(t, x).

By Gronwall’s inequality, the above inequality and (2.14), we have that

w(t, x) � w(0, x) exp(4(eC1t(1 + ‖v0‖2
H1(R) + ‖γ0‖2

L2) + C2 + 1)t)

� (2‖γ0‖2
L∞(R) + 2‖v0,x‖2

L∞(R) + C3)

× exp(4(eC1t(1 + ‖v0‖2
H1(R) + ‖γ0‖2

L2(R)) + C2 + 1)t) (2.15)

for all (t, x) ∈ [0, T ) × R. On the other hand,

w(t, x) � 2
√

N2(0, x)(1 + M2) � 2α|M(t, x)| ∀(t, x) ∈ [0, T ) × R.

Thus,

|M(t, x)| � 1
2α

w(t, x)

� 1
2α

(2‖γ0‖2
L∞(R) + 2‖v0,x‖2

L∞(R) + C3)

× exp(4(eC1t(1 + ‖v0‖2
H1(R) + ‖γ0‖2

L2(R)) + C2 + 1)t)

https://doi.org/10.1017/S0013091513000394 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000394


Solutions to a Camassa–Holm shallow-water system 763

for all (t, x) ∈ [0, T ) × R. Then, by (2.15) and the above inequality, we have that

‖ux(t, ·)‖L∞(R) = ‖ux(t, q(t, ·))‖L∞(R)

� 1
2α

(2‖γ0‖2
L∞(R) + 2‖v0,x‖2

L∞(R) + C3)

× exp(4(eC1t(1 + ‖v0‖2
H1(R) + ‖γ0‖2

L2(R)) + C2 + 1)t).

Noting that v = u − φ, in view of Lemma 2.1, we have that

‖vx(t, ·)‖L∞(R) � 1
2α

(2‖γ0‖2
L∞(R) + 2‖v0,x‖2

L∞(R) + C3)

× exp(4(eC1t(1 + ‖v0‖2
H1(R) + ‖γ0‖2

L2(R)) + C2 + 1)t) + u+ − u−.

Take C = max{C1, C2, C3}. This completes the proof of the lemma. �

From Lemmas 2.3 and 2.8, we have the following result.

Lemma 2.9. Let u+ � u−, ρ+ � ρ− and

z0 =

(
v0

γ0

)
=

(
u0 − φ0

ρ0 − ϕ0

)
∈ H2(R) × H1(R)

and let T be the maximal existence time of the solution

z =

(
v

γ

)
=

(
u − φ

ρ − ϕ

)

to (2.3), with the initial data z0. If there exists α such that ρ0(x) � α > 0 for all x ∈ R,
then the corresponding strong solution z =

(
v
γ

)
to (2.3) exists globally in time.

Remark 2.10. If there exists α < 0 such that ρ0(x) � α for any x ∈ R, then the
conclusion of Lemma 2.9 also holds true.

Finally, we give a useful lemma, which will be used in § 3.

Lemma 2.11 (see [47]). Assume that X, B, Y are Banach spaces and that X ⊂
B ⊂ Y with compact imbedding X ↪→ B. If F is bounded in L∞(0, T ; X) and ∂F/∂t is
bounded in Lr(0, T ; Y ), where r > 1, then F is relatively compact in C(0, T ; B).

3. The existence of global weak solutions

In this section, we first establish the global existence of approximate strong solutions
to the perturbed system. By acquiring the precompactness of approximate solutions, we
then prove the existence of the global weak solutions to the perturbed system. Finally,
using Lemma 2.1, we obtain the existence of the global weak solutions to (1.1) with
σ = 1.

Before giving the precise statements of the main result, we first introduce the definition
of a weak solution to the Cauchy problem (1.1) with σ = 1.
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Definition 3.1. If y =
(
u
ρ

)
satisfies (2.2), u(t, ·) → u0 and ρ(t, ·) → ρ0 as t → 0+ in

the sense of distributions, then y is called a weak solution to (1.1) with σ = 1.

The main result of this paper can be stated as follows.

Theorem 3.2. Let u+ � u−, ρ+ � ρ− � α > 0 and

z0 =

(
v0

γ0

)
=

(
u0 − φ0

ρ0 − ϕ0

)
∈ (H1(R) ∩ W 1,∞(R)) × (L2(R) ∩ L∞(R)).

If there exists 0 < β � α such that γ0(x) � β − α for almost everywhere (a.e.) x ∈ R,
then (1.1) with σ = 1 has a weak solution. Moreover,

u ∈ L∞
loc(R+; W 1,∞(R)) and ρ ∈ L∞

loc(R+; L∞(R)).

Proof. The proof of the theorem is divided into three steps.

Step 1 (the global existence of approximate solutions). Let

z0 =

(
v0

γ0

)
∈ (H1(R) ∩ W 1,∞(R)) × (L2(R) ∩ L∞(R))

and assume that there exist α � β > 0 such that ρ+ � ρ− � α and γ0(x) � β − α for
a.e. x ∈ R.

Define

zn
0 :=

(
χn ∗ v0

χn ∗ γ0

)
=

(
vn
0

γn
0

)
∈ H2(R) × H1(R) for n � 1,

where {χn}n�1 are the mollifiers

χn(x) :=
( ∫

R

χ(ξ) dξ

)−1

nχ(nx), x ∈ R, n � 1,

where χ ∈ C∞
c (R) is defined by

χ(x) =

{
e1/(x2−1), |x| < 1,

0, |x| � 1.

In view of χn(x) � 0 for all x ∈ R and ‖χn‖L1(R) = 1, we get that

ρn
0 (x) = χn ∗ γ0(x) + ϕ0(x) � β − α + α = β > 0 ∀x ∈ R.

Obviously, we have that

zn
0 → z0 in H1(R) × L2(R) as n → ∞ (3.1)

and

‖zn
0 ‖H1(R)×L2(R) � ‖z0‖H1(R)×L2(R). (3.2)

By Lemma 2.9, we obtain that the corresponding solution zn = (vn, γn) ∈ C(R+; H2(R)×
H1(R)) to (2.3), with initial data zn

0 , exists globally in time.
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Remark 3.3. By Lemma 2.7 and (3.2), we have that

‖vn(t, ·)‖2
H1(R) + ‖γn(t, ·)‖2

L2(R) � eC1t(1 + ‖zn
0 ‖2

H1(R)×L2(R))

� eC1t(1 + ‖z0‖2
H1(R)×L2(R)) ∀t ∈ R+ (3.3)

and

‖vn(t, ·)‖2
L∞(R) � 1

2eC1t(1 + ‖v0‖2
H1(R) + ‖γ0‖2

L2(R)) ∀t ∈ R+. (3.4)

Step 2 (the precompactness of approximate solutions). We define Pn(t, x) =:
p ∗ ((vn + φ)2 + 1

2 (vn
x + φx)2 + 1

2 (γn + ϕ)2)(t, x) = p ∗ ((un)2 + 1
2 (un

x)2 + 1
2 (ρn)2)(t, x) and

let T be any fixed time in the following text.

Lemma 3.4. There exist a pair of subsequences {znk , Pnk} ⊂ {zn, Pn} and a pair of
functions

z ∈ L∞((0, T ); (W 1,∞(R) ∩ H1(R)) × (L2(R) ∩ L∞(R))), P̄ ∈ L∞((0, T ); W 1,∞(R))

such that

znk ⇀ z weakly in H1((0, T ) × R) × L2((0, T ) × R) as nk → ∞, (3.5)

vnk → v uniformly on each compact subset of R+ × R as nk → ∞ (3.6)

and

Pnk → P̄ uniformly on each compact subset of R+ × R as nk → ∞. (3.7)

Proof. By Lemma 2.7, we can easily obtain that {zn(t, x)} is uniformly bounded in
L∞((0, T ); H1(R) × L2(R)).

We claim that the sequence {vn} is uniformly bounded in H1((0, T ) × R) for fixed
T > 0. Indeed, vn

t ∈ L2((0, T ) × R), in view of (3.3), (3.4), and we have that

‖vnvn
x‖L2((0,T )×R) � ‖vn‖L∞((0,T )×R)‖vn

x‖L2((0,T )×R) � eC1t(1 + ‖z0‖2
H1(R)×L2(R))

and

‖∂xp ∗ ((un)2 + 1
2 (un

x)2 + 1
2 (ρn)2)‖2

L2((0,T )×R)

� ‖px‖2
L2(R)

∫ T

0
‖(2(vn)2 + (vn

x )2 + (γn)2)(t, ·)‖2
L1(R) dt

+ ‖p‖2
L1(R)

∫ T

0
(4‖φφx(t, ·)‖2

L2(R) + 2‖ϕϕx(t, ·)‖2
L2(R)) dt

+ ‖px‖2
L2(R)

∫ T

0
‖φ2

x(t, ·)‖2
L1(R) dt

� C(T, ‖z0‖H1(R)×L2(R), u±, ρ±),

where we used Lemma 2.1 and ‖px‖2
L2(R) � 1, ‖px‖2

L1(R) � 1 and ‖p‖2
L1(R) = 1. By

Lemmas 2.1 and 2.7, we have that

‖(φv)x‖L2((0,T )×R) � ‖vxφ‖L2((0,T )×R) + ‖vφx‖L2((0,T )×R)

� C(T, ‖z0‖H1(R)×L2(R), u±).
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Then, by the first equation of (2.2), we obtain that {vn
t } is uniformly bounded in

L2((0, T ) × R).
From Lemma 2.7, we can easily get that {γn} is uniformly bounded in L2((0, T ) × R).

Therefore, there exist z =
(

v
γ

)
∈ L∞((0, T ); H1(R)×L2(R)) and a subsequence {znk(t, x)}

such that

znk ⇀ z weakly in H1((0, T ) × R) × L2((0, T ) × R) as nk → ∞.

By Lemma 2.11, there exist v ∈ C((0, T ); L∞
loc(R)) and a subsequence {vnk(t, x)} such

that {vnk(t, x)} is compact in C((0, T ); L∞
loc(R)), that is, {vnk(t, x)} converges to v(t, x)

uniformly on each compact subset of R+ × R as k → ∞. Moreover, v(t, x) ∈ C((0, T ) ×
R) ∩ L∞((0, T ); H1(R)).

From Lemmas 2.1, 2.7 and 2.8 and (2.6), in view of v0 ∈ W 1,∞(R) and γ0 ∈ L∞(R),
we have that there exists an increasing function M(T ) > 0 such that, for any (t, x) ∈
(0, T ) × R,

|un(t, x)|, |un
x(t, x)|, |ρn(t, x)|, |vn(t, x)|, |vn

x (t, x)|, |γn(t, x)| � M(T ). (3.8)

Then, we get that z ∈ L∞((0, T ); W 1,∞(R) × L∞(R)).
Next, we turn to the compactness of {Pn}. For fixed t ∈ (0, T ), in view of the fact

that ‖p‖L2(R) � ‖p‖L1(R) = 1 and (3.8), we have that

‖Pn(t, ·)‖L∞(R) � ‖p ∗ ((un)2 + 1
2 (un

x)2 + 1
2 (ρn)2)‖L∞(R)

� ‖p‖L1(R)‖((un)2 + 1
2 (un

x)2 + 1
2 (ρn)2)(t, ·)‖L∞(R)

� 3[M(T )]2. (3.9)

In a similar way, in view of the fact that ‖∂xp‖L2(R) � ‖∂xp‖L1(R) = 1 and (3.8), we get
that

‖∂xPn(t, ·)‖L∞(R) � 3[M(T )]2. (3.10)

Therefore, {Pn} is uniformly bounded in L∞((0, T ); W 1,∞(R)).
Moreover, by Remark 2.4, we obtain that

un
tx + unun

xx + 1
2 (un

x)2 = (un)2 + 1
2 (ρn)2 − Pn

and

ρn
t + (unρn)x = 0.

Therefore, we have that

∂Pn

∂t
= p ∗ (2unun

t + un
xun

tx + ρnρn
t )

= p ∗ (2un(−unun
x − ∂xPn) + ρn(−un

xρn − unρn
x))

+ p ∗ (un
x(−unun

xx − 1
2 (un

x)2 + (un)2 + 1
2 (ρn)2 − Pn))

= I1 + I2 + I3. (3.11)
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Next, we estimate I1, I2 and I3. I1 can be written as

I1 = p ∗ (2un(−unun
x − ∂xPn) + ρn(−un

xρn − unρn
x))

= p ∗ (2un(−unun
x − ∂xPn) − un

x(ρn)2) − p ∗ (ρnunρn
x)

= p ∗ (2un(−unun
x − ∂xPn) − un

x(ρn)2) + 1
4

∫
R

(e−|x−y|un)y(ρn)2 dy

= p ∗ (2un(−unun
x − ∂xPn) − 1

2un
x(ρn)2) + 1

4

∫
R

e−|x−y|un sgn(x − y)(ρn)2 dy.

Using (3.8)–(3.10) and Hölder’s inequality, we get that

‖I1‖L∞((0,T )×R) � ‖p‖L1(R)‖2un(−unun
x − ∂xPn) − 1

2un
x(ρn)2‖L∞(R)

+ ‖un(ρn)2‖L∞(0,T )×R‖p‖L1(R)

� 10[M(T )]3,

where we used that ‖p‖L2(R) � ‖p‖L1(R) = 1. Since −unun
xun

xx − 1
2 (un

x)3 = − 1
2 (un(un

x)2)x,
it follows that

I2 = p ∗ (un
x(−unun

xx − 1
2 (un

x)2 + (un)2 + 1
2 (ρn)2 − Pn))

= p ∗ (un
x((un)2 + 1

2 (ρn)2 − Pn)) − 1
2p ∗ (un(un

x)2)x

= p ∗ (un
x((un)2 + 1

2 (ρn)2 − Pn)) − 1
2∂xp ∗ (un(un

x)2).

Using (3.8)–(3.10) and Hölder’s inequality, we obtain that

‖I2‖L∞((0,T )×R) � ‖p‖L1(R)‖(un
x((un)2 + 1

2 (ρn)2 − Pn))(t, ·)‖L∞(R)

+ 1
2‖un(un

x)2‖L∞(0,T )×R‖∂xp‖L1(R)

� 5(M(T ))3,

where we used that ‖∂xp‖L1(R) = ‖p‖L1(R) = 1.
By (3.11) and the above estimates, we deduce that {∂Pn/∂t} is uniformly bounded in

L2((0, T ); L∞(R)). Thus, again by Lemma 2.11, there exist P̄ ∈ C((0, T ); L∞(R)) and
a subsequence {Pnk(t, x)} such that {Pnk(t, x)} is weakly compact in C((0, T ); L∞(R))
and {Pnk(t, x)} converges to P̄ (t, x) uniformly on each compact subset of R+ × R as
k → ∞. Moreover, P̄ (t, x) ∈ L∞((0, T ); W 1,∞(R)). This completes the proof of the
lemma. �

Step 3 (the existence of global weak solutions). By Lemma 3.4, we have that,
for any T > 0,

vnkγnk ⇀ vγ weakly in L2((0, T ) × R) (3.12)

and

vnkvnk
x ⇀ vvx weakly in L2((0, T ) × R). (3.13)
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Remark 3.5. By the above argument, we see that, for any fixed T > 0, there exists
a pair of subsequences {(vnk

x )2} ⊂ {(vn
x )2} and {(γnk)2} ⊂ {(γn)2} converging weakly in

Lr((0, T ) × R) for all 1 < r < ∞, i.e. there exists a pair of functions v̄2
x ∈ Lr((0, T ) × R)

and γ̄2 ∈ Lr((0, T ) × R) such that

(vnk
x )2 ⇀ v̄2

x and (γnk)2 ⇀ γ̄2 weakly in Lr((0, T ) × R).

Moreover, we have that

vnk
x ⇀ vx weakly in Lp((0, T ) × R) and vnk

x ⇀ vx weakly∗ in L∞(R+; L2(R)),

γnk ⇀ γ weakly in Lp((0, T ) × R) and γnk ⇀ γ weakly∗ in L∞(R+; L2(R)),

where p � 2. Furthermore, we have

v2
x(t, x) � v̄2

x(t, x) and γ2(t, x) � γ̄2(t, x) a.e. on (R+ × R). (3.14)

Lemma 3.6. In the sense of distributions on R+ × R,

∂v2
x

∂t
+

∂

∂x
((v + φ)v2

x) = (v̄2
x + γ̄2)vx − v3

x − φxv2
x

+ 2((v + φ)2 − P̄ + 1
2φ2

x + ϕγ + 1
2ϕ2 − φxxv)vx, (3.15)

∂γ2

∂t
+

∂

∂x
((v + φ)γ2) = −(vx + φx)γ2 − 2(((v + φ)ϕ)x)γ + 2ϕϕxγ, (3.16)

∂v̄2
x

∂t
+

∂

∂x
((v + φ)v̄2

x) = −φxv̄2
x + γ2vx + φ2

xvx

+ 2(v + φ)2vx + 2ϕγvx + ϕ2vx − 2P̄ vx − 2φxxvvx (3.17)

and
∂

∂t
γ̄2 +

∂

∂x
((v + φ)γ̄2) = −vxγ2 − φxγ̄2 − 2ϕvxγ − 2φxϕγ − 2(v + φ)ϕxγ + 2ϕϕxγ

(3.18)

hold.

Proof. Note that znk is the solution of (2.3). Differentiating the first equation in (2.3)
with respect to x and using the relation ∂2

xp ∗ f = p ∗ f − f , we have that

vnk
tx +((vnk +φ)vnk

x )x = 1
2 (vnk

x )2+ 1
2φ2

x +(vnk +φ)2+ 1
2 (γnk +ϕ)2−φxxvnk −Pnk . (3.19)

By the second equation of (2.3), we get that

γnk
t + ((vnk + φ)γnk)x + ((vnk + φ)ϕ)x = ϕϕx. (3.20)

By (3.5)–(3.7), (3.12), (3.13) and Remark 3.5, we infer from (3.19), (3.20) that

∂vx

∂t
+

∂

∂x
((v + φ)vx) = 1

2 v̄2
x + 1

2 γ̄2 + (v + φ)2 − P̄ + 1
2φ2

x + ϕγ + 1
2ϕ2 − φxxv (3.21)
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and
∂γ

∂t
+

∂

∂x
((v + φ)γ) + ((v + φ)ϕ)x = ϕϕx (3.22)

in the sense of distributions on R+×R. Define vn,x(t, x) := (vx(t, ·)∗χn)(x) and γn(t, x) :=
(γ(t, ·) ∗ χn)(x). According to [20, Lemma II.1], we may deduce from (3.21), (3.22) that
vn,x and γn solve

∂vn,x

∂t
+ (v + φ)

∂vn,x

∂x
= (−v2

x − φxvx + 1
2 (v̄2

x + γ̄2)) ∗ χn

+ ((v + φ)2 − P̄ + 1
2φ2

x + ϕγ + 1
2ϕ2 − φxxv) ∗ χn + τn

(3.23)

and
∂γn

∂t
+ (v + φ)

∂γn

∂x
+ (vxγ) ∗ χn + (((v + φ)ϕ)x − ϕϕx) ∗ χn = σn, (3.24)

where the errors τn and σn tend to zero in L1
loc(R+ × R). Multiplying (3.23) and (3.24)

by 2vn,x and 2γn, respectively, we get that

∂v2
n,x

∂t
+

∂

∂x
((v + φ)v2

n,x)

= ((v̄2
x + γ̄2 − 2v2

x − 2φxvx) ∗ χn)vn,x + (vx + φx)v2
n,x

+ 2(((v + φ)2 − P̄ + 1
2φ2

x + ϕγ + 1
2ϕ2 − φxxv) ∗ χn + τn)vn,x (3.25)

and

∂γ2
n

∂t
+

∂

∂x
((v + φ)γ2

n)

= −2((vxγ + φxγ + ((v + φ)ϕ)x − ϕϕx) ∗ χn)γn + (vx + φx)γ2
n + 2σnγn.

(3.26)

Using (3.8), we can send n → ∞ in (3.25) and (3.26) to obtain (3.15) and (3.16).
On the other hand, multiplying (3.19) and (3.20) by 2vnk

x and 2γnk , respectively, we
get that

∂

∂t
(vnk

x )2 +
∂

∂x
((vnk + φ)(vnk

x )2)

= (vnk
x + φx)(vnk

x )2 − (vnk
x )2vnk

x

+ (−2vnk
x φx + φ2

x + 2(vnk + φ)2 + (γnk)2 + 2γnkϕ + ϕ2 − 2Pnk − 2φxxvnk)vnk
x

and
∂

∂t
(γnk)2 +

∂

∂x
((vnk + φ)(γnk)2) = −(vnk

x + φx)(γnk)2 − 2((vnk + φ)ϕ)xγnk + 2ϕϕxγnk .

Once more using Remark 3.5 and (3.12), (3.13), we can send k → ∞ in the above two
equalities to obtain (3.17) and (3.18). �
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Lemma 3.7.

lim
t→0+

∫
R

v2
x(t, x) dx = lim

t→0+

∫
R

v̄2
x(t, x) dx =

∫
R

v2
0,x(x) dx (3.27)

and

lim
t→0+

∫
R

γ2(t, x) dx = lim
t→0+

∫
R

γ̄2(t, x) dx =
∫

R

γ2
0(x) dx (3.28)

hold.

Proof. By Lemmas 3.4 and 2.8, for any T > 0, we have that vn ∈ L∞((0, T ); H1(R)),
{vn

t } is uniformly bounded in L∞((0, T ); L2(R)) and vn ∈ C([0, T ];H1(R)). Then, in
view of [42, Appendix C] and the proof of Lemma 3.4, we have that {vn} contains a
subsequence denoted, again, by {vnk} that converges to v weakly in H1(R) uniformly in
t. This implies that v is weakly continuous from (0, T ) into H1(R), i.e.

v ∈ Cw([0, T ];H1(R)). (3.29)

Similarly, since γn ∈ L∞((0, T ); L2(R)) and, for all t ∈ (0, T ),

‖γn
t (t, ·)‖H−1(R) = sup

‖f‖H1(R)

∫
R

(−((vn + φ)γn)x − ((vn + φ)ϕ)x + ϕϕx)f dx

= sup
‖f‖H1(R)

∫
R

((vn + φ)γnfx + vfxϕ − φxϕf − φϕxf + ϕϕxf) dx

� ‖vn + φ‖L∞(R)‖γn‖L2(R) + ‖ϕ‖L∞(R)‖v‖L2(R) + ‖ϕ‖L∞(R)‖φx‖L2(R)

+ ‖φ‖L∞(R)‖ϕx‖L2(R) + ‖ϕ‖L∞(R)‖ϕx‖L2(R)

� C(T, ‖z0‖H1(R)×L2(R), u±, ρ±),

where we applied Lemmas 2.1 and 2.8, it follows that {γn
t } is uniformly bounded in

L∞((0, T ); H−1(R)). Then, again by [42, Appendix C], we have that {γn} contains a
subsequence denoted, once more, by {γnk} that converges to γ weakly in L2(R) uniformly
in t. This implies that γ is weakly continuous from (0, T ) into L2(R), i.e.

γ ∈ Cw([0, T ];L2(R)). (3.30)

Then, by (3.29) and (3.30), we get that

γ(t, ·) ⇀ γ0 and vx(t, ·) ⇀ v0,x weakly in L2(R) as t → 0+.

Thus, we have that

lim inf
t→0+

∫
R

γ2(t, x) dx �
∫

R

γ2
0(x) dx

and

lim inf
t→0+

∫
R

v2
x(t, x) dx �

∫
R

v2
0,x(x) dx.
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Therefore, we deduce that

lim inf
t→0+

∫
R

(v2
x(t, x)x + γ2(t, x)) dx � lim inf

t→0+

∫
R

v2
x(t, x) dx + lim inf

t→0+

∫
R

γ2(t, x) dx

�
∫

R

(v2
0,x(x) + γ2

0(x)) dx. (3.31)

Moreover, from Lemma 2.8 we have that∫
R

(v2(t, x) + v̄2
x(t, x) + γ̄2(t, x)) dx

� lim inf
nk→∞

∫
R

((vnk)2(t, x) + (vnk
x )2(t, x) + (γnk)2(t, x)) dx

= eC1t

(
1 + lim inf

nk→∞

∫
R

((vnk
0 )2(x) + (vnk

0,x)2(x) + (γnk
0 )2(x)) dx

)
− 1

= eC1t + eC1t

∫
R

(v2
0(x) + v2

0,x(x) + γ2
0(x)) dx − 1.

Thus, we have that

lim sup
t→0

∫
R

(v2(t, x) + v̄2
x(t, x) + γ̄2(t, x)) dx �

∫
R

(v2
0(x) + v2

0,x(x) + γ2
0(x)) dx.

Using the continuity of v and that

lim
t→0+

∫
R

v2(t, x) dx =
∫

R

v2
0(x) dx,

we obtain that

lim sup
t→0+

∫
R

(v̄2
x(t, x) + γ̄2(t, x)) dx �

∫
R

(v2
0,x(x) + γ2

0(x)) dx. (3.32)

In view of (3.14), (3.31) and (3.32), we get (3.27) and (3.28). �

Lemma 3.8.
v̄2

x(t, x) = v2
x(t, x) and γ̄2(t, x) = γ2(t, x) (3.33)

hold a.e. on R+ × R.

Proof. Subtracting (3.15) from (3.17), we have that

∂

∂t
(v̄2

x − v2
x) +

∂

∂x
((v + φ)[v̄2

x − v2
x])

= (γ2vx − γ̄2vx) − φx(v̄2
x − v2

x) + 2ϕ(vxγ − vxγ) − (v̄2
x − v2

x)vx

� (γ2vx − γ̄2vx) + 2ϕ(vxγ − vxγ) − (v̄2
x − v2

x)vx, (3.34)
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where we used (3.14) and φx � 0, as guaranteed by Lemma 2.1. Subtracting (3.16)
from (3.18), we get that

∂

∂t
(γ̄2 − γ2) +

∂

∂x
((v + φ)[γ̄2 − γ2]) = −(vxγ2 − vxγ2) − φx(γ̄2 − γ2) − 2ϕ(vxγ − vxγ)

� −(vxγ2 − vxγ2) − 2ϕ(vxγ − vxγ), (3.35)

where, again, we applied (3.14) and φx � 0.
Adding (3.34) and (3.35), and integrating over (ε, t) × R, we obtain that

∫
R

(v̄2
x − v2

x + γ̄2 − γ2)(t, x) dx −
∫

R

(v̄2
x − v2

x + γ̄2 − γ2)(ε, x) dx

�
∫ t

ε

∫
R

|vx|(v̄2
x − v2

x + γ̄2 − γ2)(s, x) dxds.

Letting ε → 0 and using Lemma 3.8 and (3.8), this yields that

∫
R

(v̄2
x − v2

x + γ̄2 − γ2)(t, x) dx � M(T )
∫ t

0

∫
R

(v̄2
x − v2

x + γ̄2 − γ2)(s, x) dxds.

Using Gronwall’s inequality and Lemma 3.8, we conclude that∫
R

(v̄2
x − v2

x + γ̄2 − γ2)(t, x) dx � 0.

By (3.14), we obtain that

0 �
∫

R

(v̄2
x − v2

x + γ̄2 − γ2)(t, x) dx � 0, (3.36)

that is, ∫
R

(v̄2
x − v2

x)(t, x) dx =
∫

R

(γ̄2 − γ2)(t, x) dx = 0.

This implies that (3.33) holds. �

From (3.3)–(3.5), (3.11), (3.12) and (3.33), we infer that z satisfies (2.3) in D′((0, T )×
R) and z ∈ Cw([0, T ];H1(R) × L2(R)) for any T > 0.

Let u = v + φ and let ρ = γ + ϕ. Since φt + φφx = 0 and ϕt + ϕϕx = 0, we
deduce that (u, ρ) satisfies (2.2) in D′((0, T )×R). Moreover, u ∈ L∞

loc(R+; W 1,∞(R)) and
ρ ∈ L∞

loc(R+; L∞(R)).
This completes the proof of Theorem 3.2. �
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