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Turbulent shear flows driven by a combination of a pressure gradient and buoyancy
forcing are investigated using direct numerical simulations. Specifically, we consider the
set-up of a differentially heated vertical channel subject to a Poiseuille-like horizontal
pressure gradient. We explore the response of the system to its three control parameters:
the Grashof number Gr, the Prandtl number Pr, and the Reynolds number Re of the
pressure-driven flow. From these input parameters, the relative strength of buoyancy
driving to the pressure gradient can be quantified by the Richardson number Ri = Gr/Re2.
We compare the response of the mixed vertical convection configuration to that of mixed
Rayleigh–Bénard convection, and find a nearly identical behaviour, including an increase
in wall friction at higher Gr, and a drop in the heat flux relative to natural convection
for Ri = O(1). This closely matched response is despite vastly different flow structures
in the systems. No large-scale organisation is visible in visualisations of mixed vertical
convection – an observation that is confirmed quantitatively by spectral analysis. This
analysis, combined with a statistical description of the wall heat flux, highlights how
moderate shear suppresses the growth of small-scale plumes and reduces the likelihood
of extreme events in the local wall heat flux. Vice versa, starting from a pure shear flow,
the addition of thermal driving enhances the drag due to the emission of thermal plumes.
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1. Introduction

The transport of heat by turbulent convection is integral to a wide range of natural and
engineering applications, from building ventilation to the atmospheric boundary layer and
the near-surface ocean. All of these examples can, under the right conditions, be classified
as mixed convection. Mixed convection describes the scenario where both buoyancy and
shear forces are relevant to the dynamics. This is in contrast to natural convection, where a
flow is driven solely by density differences within the fluid, and forced convection, where
buoyancy is negligible and the transport of heat is identical to that of a passive scalar.
The relative importance of buoyancy compared to the imposed shear is quantified by the
Richardson number Ri, with the extreme cases Ri = ∞ for purely thermal driving and
Ri = 0 for purely shear or pressure driving.

The foundational work on mixed convection by Obukhov (1946) was motivated by
understanding the dynamics of the surface layer of the atmosphere. Obukhov supposed
that the dynamics was determined solely by the surface friction (quantified by the friction
velocity uτ ), the surface heat flux q, and gravity g, such that dimensional analysis revealed
a single possible length scale LO = u3

τ /gαq that could describe the system. Using this
length to rescale the problem, Monin & Obukhov (1954) derived what is now known as the
Monin–Obukhov similarity theory (MOST), where ‘universal’ functions of z/LO are used
to describe the mean velocity and temperature profiles in stably or unstably stratified shear
flows. These universal functions are obtained by interpolating between the extreme cases
of natural convection and forced convection, which were updated by Kader & Yaglom
(1990) for unstable (i.e. convecting) boundary layers. A historical overview of MOST is
provided in Foken (2006), and the theory has been extremely popular in atmospheric and
oceanic applications. However, some of the assumptions underlying MOST have recently
been coming under further scrutiny, particularly the power-law dependence of the mean
profiles in the convective regime (Cheng et al. 2021).

Mixed convection has also often been studied in simple, canonical flow configurations
where the system response is dependent only on a small number of dimensionless
input parameters. A popular approach has been to introduce horizontal forcing into the
classical Rayleigh–Bénard (RB) set-up, either through a horizontal pressure gradient
(Poiseuille–Rayleigh–Bénard, P-RB) or by setting one of the boundary plates in motion
(Couette–Rayleigh–Bénard, C-RB). The linear stability of the P-RB system was studied
by Gage & Reid (1968), who found that streamwise perturbations are suppressed by the
introduction of shear, so the fastest growing mode takes the form of convective rolls in
the plane orthogonal to the mean flow. Note that the critical Rayleigh number Rac = 1708
and the fastest growing wavelength λ = 2

√
2 H do not change compared to natural RB

since the linear problem is unchanged in the orthogonal plane. Such streamwise-aligned
rolls were observed experimentally by Richter & Parsons (1975) in C-RB, although since
their set-up was motivated by mantle convection, their working fluid had a very high
Prandtl number Pr = 8600 and low Reynolds numbers. Domaradzki & Metcalfe (1988)
performed simulations of C-RB, also finding organisation into streamwise-aligned rolls
but at the largest wavelength of the domain. More recent direct numerical simulations
in larger domains by Pirozzoli et al. (2017) for P-RB and Blass et al. (2020, 2021) for
C-RB highlight how these large-scale structures contribute a large proportion of the heat
and momentum flux in mixed RB, and how their wavelength depends on the Richardson
number Ri of the system. Madhusudanan et al. (2022) recently reproduced the wide
rolls using a linear model coupled to eddy diffusivities, showing that they are generated
primarily through a classical lift-up mechanism.
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Mixed convection in vertical and horizontal channels

The response of canonical mixed convection systems can be quantified using the
friction coefficient Cf and the Nusselt number Nu, which measure the dimensionless
skin friction and heat flux. In forced convection, where buoyancy is negligible, both
Poiseuille and Couette flows exhibit an identical response in Cf when appropriately scaled
using the centreline velocity (Orlandi, Bernardini & Pirozzoli 2015). Scagliarini et al.
(2015) observed an increase in the streamwise friction coefficient in P-RB relative to pure
Poiseuille flow, for which they proposed a modified formulation of the log law for the mean
velocity in the presence of convection. An intriguing phenomenon of mixed RB is found
in the response of the heat flux, which varies non-monotonically with Reynolds number Re
for fixed Rayleigh number and Prandtl number. Nusselt number Nu first decreases relative
to the natural convection case, before increasing at high Re as the flow enters the forced
convection regime (Blass et al. 2020, 2021). This behaviour, not predicted by MOST, has
been attributed to the sweeping away of thermal plumes by the imposed horizontal flow.
The plume sweeping concept has since been applied to form phenomenological models of
the system (Scagliarini, Gylfason & Toschi 2014). Similar to the response of the friction
coefficient, an identical response is found in P-RB and C-RB when appropriately scaled,
and the decrease in Nu has recently been shown to collapse onto a single curve when
the Reynolds number of the shear flow is considered relative to the Reynolds number of
the natural convection (Yerragolam et al. 2024). Yerragolam et al. (2024) also provide a
theoretical estimate for this decrease in heat flux based on an extension of the Grossmann
& Lohse (2000, 2001) theory for RB convection to mixed RB.

The interplay of shear and convection has an important role in another canonical natural
convection problem: the differentially heated vertical channel, often simply referred to
as vertical convection (VC). In this configuration, convection drives flow parallel to the
boundary plates, generating a mean shear at the walls and in the bulk of the channel.
An analogy can be drawn between the large-scale circulation in RB and the vertical mean
flow in VC, but since the vertical buoyancy flux is not equivalent to the heat flux of interest
in VC, the Grossmann & Lohse (2000) approach of linking heat flux and kinetic energy
dissipation cannot be applied directly. Nevertheless, Ng et al. (2015) found similar scaling
relations to RB for heat flux and dissipation rates in VC when conditionally sampling
either the boundary layers or the bulk. Recent simulations at varying Prandtl number
(Howland et al. 2022) have prompted renewed efforts to understand the boundary layer
theory limiting the global response of the system (Ching 2023) and the dynamics setting
the mean profiles in the channel centre (Li et al. 2023).

Mixed convection in a vertical channel, where an additional pressure-driven forcing
is applied to the VC configuration, has been less well studied than mixed RB. The
majority of studies into these flows (e.g. Kasagi & Nishimura 1997; Wetzel & Wagner
2019; Guo & Prasser 2022) impose a mean pressure gradient in the vertical direction that
directly opposes or enhances the mean flow due to convection. Although this configuration
is relevant to some industrial applications, from a physical perspective it breaks the
symmetry of the channel, with the boundary layers at each wall subject to different shear
stresses. In this study, we instead impose a horizontal pressure gradient in the channel,
which leads to symmetric profiles of horizontal velocity and higher-order statistics while
retaining the anti-symmetric profiles of mean vertical velocity and temperature from VC.
Although we approach this configuration from a fundamental point of view, the crossflow
set-up can be relevant to industrial heat exchangers in a wide range of applications. We are
aware of only one other paper discussing such a system (El-Samni, Yoon & Chun 2005),
which highlights tilted structures at the wall and a modification of the near-wall Reynolds
stresses. However, the results of El-Samni et al. (2005) are mainly descriptive and cover a
limited parameter range.
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Figure 1. Schematics of canonical mixed convection systems. (a) Mixed RB convection with Poiseuille-type
forcing as studied by e.g. Domaradzki & Metcalfe (1988), Pirozzoli et al. (2017) and Yerragolam et al. (2024).
(b) Mixed VC with Poiseuille-type forcing, as used for the new simulations presented in this paper. Large
arrows highlight the imposed horizontal pressure gradient, and smaller arrows highlight the large-scale flows
driven by buoyancy in each configuration. The acceleration due to gravity is highlighted by a double arrow.

In the current paper, we use direct numerical simulations to explore the dynamics
of turbulent mixed convection in a vertical channel for a wide range of parameters,
focusing on the transition between natural convection and forced convection. The paper
is organised as follows. First, in § 2, we describe the problem set-up and details of the
numerical simulations, before presenting visualisations of the resulting flow in § 3. The
global response of the system is investigated in terms of the friction coefficients and the
Nusselt number, and compared with the mixed RB flow in § 4. We then turn to wall-normal
profiles in mixed VC in § 5, focusing primarily on the balances in the mean momentum
budgets. Detailed analysis of the heat transport is then performed by spectral analysis
in § 6, and through statistics of the boundary layers in § 7. Finally, our conclusions are
presented in § 8, where we discuss the implications of our results and provide an outlook
on future research in mixed convection.

2. Simulation set-up and numerical methods

We perform numerical simulations of the flow arising in a fluid confined between two
parallel no-slip vertical walls. The walls are separated by a horizontal distance H and
are held at fixed temperatures, with a temperature difference Δ between the plates. As
in the schematic in figure 1(b), we take the x-coordinate to be horizontal and parallel to
the plates, the y-coordinate to be normal to the boundaries, and z to be in the vertical
direction. We consider a fluid satisfying the Oberbeck–Boussinesq approximation, such
that changes in density are significant only in the buoyancy term, and are linear with
respect to changes in temperature. We therefore treat the velocity field u = (u, v, w) as
divergence-free (∇ · u = 0) and satisfying the Navier–Stokes momentum equation

∂tu + (u · ∇)u = −ρ−1 ∇p + ν ∇2u + gαθ ẑ + Gx̂, (2.1)

where ρ is the mean fluid density (assumed constant), p is the pressure, ν is the kinematic
viscosity, g is the acceleration due to gravity, and α is the thermal expansion coefficient.
A time-dependent, spatially uniform forcing G(t) is applied in the streamwise (x) direction
to maintain a constant mean flow 〈u〉 = U. The magnitude of this forcing is computed at
every time step to exactly cancel out any variation in the mean flow. Previous work has
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Mixed convection in vertical and horizontal channels

shown that such a forcing produces results near-identical to those of a constant pressure
gradient (Quadrio, Frohnapfel & Hasegawa 2016), but allows us to use the mean flow
strength as an input parameter. The temperature field θ satisfies the advection–diffusion
equation

∂tθ + (u · ∇)θ = κ ∇2θ, (2.2)

where κ is the thermal diffusivity. Periodic boundary conditions are applied to both u and
θ in the x and z directions. Unless otherwise stated, the aspect ratio of the domain in these
periodic directions is taken as Γ = L/H = 8, such that the length of the domain L in x
and z is equal, and eight times the plate separation distance H.

We perform direct numerical simulations of (2.1) and (2.2) using a highly parallelised
flow solver that computes spatial derivatives using second-order central finite differences
on a staggered grid configuration. The wall-normal diffusive terms are evolved in time
using a Crank–Nicolson scheme, and all other terms are treated explicitly using a
three-stage Runge–Kutta method. An adaptive time step is chosen using the constraint
of a maximum Courant number of 1. The velocity is kept divergence-free to machine
precision using a pressure correction step at each time step that is implemented with
fast Fourier transforms in the periodic directions and a tridiagonal matrix solver in the
wall-normal direction. A multiple-resolution technique is applied to evolve the velocity
and temperature fields on independent grids, with cubic Hermite interpolation used for the
buoyancy forcing and the advection of temperature. Detailed overviews of the numerical
discretisation, the domain decomposition strategy and the multiple-resolution technique
can be found in Verzicco & Orlandi (1996), van der Poel et al. (2015) and Ostilla-Monico
et al. (2015), as well as in our software documentation.

The physical input parameters of the system are the Rayleigh number, the Prandtl
number and the Reynolds number:

Ra = gα �H3

νκ
, Pr = ν

κ
, Re = UH

ν
. (2.3a–c)

When considering the strength of the flow driven by convection, it is often useful to
consider the Grashof number Gr as the relevant input parameter, and when comparing the
relative strengths of buoyancy to pressure driving, we can construct a Richardson number
as

Gr = Ra
Pr

= gα �H3

ν2 =
(

Uf H
ν

)2

, Ri = Gr

Re2 = gα �H
U2 =

(
Uf

U

)2

. (2.4a,b)

These can both be considered as input parameters. Above, we have written Uf = √
gα �H

as the free-fall velocity scale to give insight into the interpretation of these parameters.
In this study, we perform two sets of simulations to compare the relative impacts of

the various input parameters. First, we fix Gr = 106 and vary 1 ≤ Pr ≤ 10 along with
102.5 ≤ Re ≤ 104, which correspond to Richardson numbers 10−2 ≤ Ri ≤ 10. For the
second set, we fix Pr = 1 and increase Gr up to 108 while again varying Re up to 104.
A detailed overview of the parameters used for each simulation is given in table 1 of
Appendix B. Each simulation is run to a statistically steady state, in which the flow
statistics are computed and averaged for a minimum of 200 advective time units. For
high Ri ≥ 1, the relevant time unit is H/Uf , whereas for low Ri ≤ 1, the relevant time
unit is H/U. The wall-normal grid spacing is stretched following Pirozzoli & Orlandi
(2021) to ensure sufficient resolution close to the wall, such that �y+ < 0.1 at the wall
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for the base velocity grid. In the periodic directions, the uniform grid spacing satisfies
�x+ ≤ 5.4 in every simulation. At the centre of the domain, the spacing of the refined
grid satisfies �yr ≤ 1.05lB, �xr < 1.4lB, where lB is the Batchelor scale computed using
the plane-averaged turbulent kinetic energy (TKE) dissipation rate over the midplane. Full
details of the grid sizes are provided in Appendix B.

3. Flow visualisation

We begin with a qualitative comparison of the simulations through visualisations of
the temperature field and the local heat flux. Figure 2 displays the instantaneous local
wall-normal heat flux at the boundary plate y = 0 for cases with fixed Pr = 1, and ranges
106 ≤ Gr ≤ 108, 103 ≤ Re ≤ 104. The dimensionless heat flux plotted here is defined as

qθ (x, z, t) = −H
Δ

∂θ

∂y

∣∣∣∣
y=0

, (3.1)

such that its time- and plane-averaged value is equivalent to the Nusselt number, Nu = qθ .
As mentioned above, the relative strength of convection to the horizontal flow can be

characterised by the Richardson number Ri = Gr/Re2, which is constant along diagonals
in figure 2. At high Ri, as in figure 2(c), the horizontal flow has little impact on the local
distribution of the wall heat flux. The near-wall temperature structures are the same as in
the case of no crossflow, with regions of large local heat flux (dark spots) separated by
longer, streaky structures aligned in the vertical (Howland et al. 2022). As Ri decreases,
such as in figures 2(e,i) where Ri = 1, the prominence of the large heat flux regions
diminishes, and the streaks become aligned in the diagonal. This visualises the local
direction of the flow along the wall, which at Ri = 1 is due to a combination of the VC
and the horizontal pressure gradient. At lower Ri, these structures become more aligned
with the horizontal, eventually spanning the domain as in figure 2(g), which is reminiscent
of classical low-speed streaks in turbulent channel flow (Kline et al. 1967; Antonia, Abe
& Kawamura 2009). A more quantitative analysis of the change in the near-wall heat flux
distribution will be provided in § 7.

In figure 3, we present visualisations of the same simulations but now at the midplane
of the simulation domain y = H/2. As would be expected, the fields at higher Gr and Re
exhibit structures with a wider range of spatial scales. Aside from this dynamical range,
the effect of increasing Re is less noticeable at the midplane than at the wall in figure 2. At
the centre of a turbulent channel, the mean profile of horizontal velocity is relatively flat,
with zero mean shear and a local minimum in TKE. By contrast in VC, a mean shear in the
vertical velocity drives the generation of turbulence in the bulk, argued by Li et al. (2023)
to follow a mixing-layer-like behaviour. In figure 3, greater mixing at higher Gr leads
to smaller values of the temperature perturbations in the midplane, although the same
effect is not evident as Re increases. Compared to the mixed RB system, where gravity is
orthogonal to the plates and the temperature field organises into large, streamwise-aligned
coherent rolls, the fields in mixed VC appear rather featureless. A hint of such large-scale
rolls is noticeable only for the cases dominated by strong pressure driving with high Re
and low Ri (figures 3g,h), where the temperature structures appear more aligned along the
streamwise (x) axis. This contrast in the organisation of mixed convection systems will be
investigated more quantitatively in § 6 through spectral analysis, but we first turn to the
global responses of the two mixed convection systems in the next section.
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Figure 2. Vertical planes of the instantaneous local wall-normal heat flux at the boundary y = 0. All
simulations shown are with fixed Pr = 1. The Richardson number Ri = Gr/Re2 is comparable along
diagonals from the upper left to the lower right, with the largest value (Ri = 100) in the top right and the
lowest value (Ri = 0.01) in the bottom left. This figure is also available as an interactive JFM notebook:
https://www.cambridge.org/S0022112024005986/JFM-Notebooks/files/Figure-2.ipynb.

4. Global response quantities in mixed convection systems

In this section, we compare the responses of the mixed VC set-up with those of mixed
RB using the simulation data of Yerragolam et al. (2024). Those simulations cover
comparable ranges of parameters 106 ≤ Gr ≤ 108, 0.5 ≤ Pr ≤ 5 and Re ≤ 104 in a
domain of streamwise aspect ratio Γx = 8 and spanwise aspect ratio Γy = 4. The flow
solver shares an identical code base except for the multiple-resolution technique, which is
used only in the newly reported mixed VC simulations.
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Figure 3. Vertical planes of the temperature field at the channel centre y = H/2. See the caption of
figure 2 for details of the simulations presented. Here, θ0 is the arbitrary reference temperature that is
the midpoint of the two boundary values. This figure is also available as an interactive JFM notebook:
https://www.cambridge.org/S0022112024005986/JFM-Notebooks/files/Figure-3.ipynb.

4.1. Friction coefficients
A key global response parameter in shear-driven flows is the friction coefficient

Cf = 2τ

ρU2 , (4.1)

where τ is the wall shear stress and U is the velocity magnitude in the bulk. Since the
friction coefficient is determined solely by the velocity field, we expect the dependence on
the Prandtl number to be relatively weak, and consider a relationship Cf (Re). Power-law
scalings for Cf (Re) can be derived for laminar boundary layer flows, with e.g. Cf ∼ Re−1

applicable to Couette or Poiseuille flows, and Cf ∼ Re−1/2 arising from the classical
Blasius boundary layer solution (Schlichting & Gersten 2016). For a turbulent boundary
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layer in the sense of Prandtl and von Kármán, the friction coefficient satisfies the relation√
2

Cf
= 1

κu
log

(
Re

√
Cf

8

)
+ B, (4.2)

known as the Prandtl friction law after Prandtl (1932). The von Kármán constant κu
typically takes a value of approximately 0.4, and the intercept B is close to 4, but the
exact values, their universality and the way in which they are fit to data remain an active
topic of research (Monkewitz & Nagib 2023). Due to our similar set-up and numerical
methods, we take the values suggested by Pirozzoli, Bernardini & Orlandi (2014), namely
κu = 0.41 and B = 5.

Since the mixed VC flow is driven in orthogonal directions by the pressure gradient and
by buoyancy, we can construct separate friction coefficients for each component of the wall
shear stress. Understanding the response of the friction coefficients in this context relies
on choosing an appropriate Reynolds number for each component of the flow. For the
streamwise (x) direction in which the mean flow is imposed by a pressure gradient, this
Reynolds number is simply the input parameter defined in (2.3a–c).

We consider the response of the streamwise friction coefficient in figure 4, where only
the streamwise component of the shear stress τ = ρν ∂yū is applied to the definition (4.1).
The global response of mixed VC is near identical to that of mixed RB, with a transition
from a laminar power-law scaling to the Prandtl friction law of (4.2). For comparable
parameter values, the largest difference in Cf between the mixed RB and mixed VC cases
is 16 %. In the laminar scaling regime, stronger buoyancy driving (characterised by higher
Gr) leads to an increase in the streamwise skin friction for a given Re. As suggested earlier,
the dependence of Cf on Pr is very weak compared to the other control parameters. Unlike
in standard Poiseuille or Couette flow, where a subcritical transition arises due to instability
of the laminar base flow and leads to a jump in Cf , the streamwise boundary layer transition
in mixed convection systems appears smooth. We anticipate that the laminar scaling
regime remains relevant until its intersection with the friction law (4.2). The increase of Cf
with Gr in the laminar regime would therefore delay the transition to this ‘fully turbulent’
Prandtl friction law (4.2) to higher Re. At low Re, although the relationship exhibits a
laminar-like scaling, one should recall that the convection flow in the interior remains
turbulent. In figure 4(b), we focus on clarifying this low Re regime and the increase in Cf
with stronger convection. Across both mixed convection systems and for a range of Pr,
we find a collapse of the data upon rescaling by Gr1/4. The Re−1 scaling that arises from
laminar profiles in Couette/Poiseuille flow appears somewhat too steep to describe the data
accurately. Blass et al. (2020) reported a scaling Cf ∼ Re−0.90 in C-RB, but at this time
there is no theoretical basis for such a scaling. Note that one could equivalently express
the simplified Re−1 collapse as Cf ∼ Ri1/4 Re−1/2 using the definitions of (2.3a–c). In the
case of mixed convection, the buoyancy-driven flow generates non-zero Reynolds stresses
in the equation for the mean profile, which can be expected to modify the mean momentum
budget and lead to such an increase in Cf . This will be analysed in further detail for mixed
VC in § 5.

We now turn to the friction coefficient associated with the buoyancy-driven component
of the flow. For the mixed VC system, we can simply take the peak velocity Wmax of the
mean vertical velocity w̄( y) as the relevant velocity scale, and directly measure the mean
vertical shear stress at the wall, τ = ρν ∂yw̄. In the RB configuration, the convection has no
preferential direction along the walls, resulting in zero mean shear stress. However, we can
still construct a friction coefficient associated with the persistent large-scale circulation
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Figure 4. (a) Friction coefficients calculated for the streamwise component of velocity as a function of
Reynolds number. (b) Friction coefficients normalised by Gr1/4 to collapse the data at low Re. Large markers
are used for the mixed VC simulations, whereas small dots show the data from the mixed RB cases of
Yerragolam et al. (2024). Grashof numbers are highlighted by the colour of the markers, and for the mixed
VC cases, different markers signify different Pr. Black dashed lines show a scaling law of Re−1, and the black
solid line marks the Prandtl friction law of (4.2). This figure is also available as an interactive JFM notebook:
https://www.cambridge.org/S0022112024005986/JFM-Notebooks/files/Figure-4.ipynb.

by using the root mean square (r.m.s.) horizontal velocity profile uH( y) = (u2 + v2)1/2.
When a horizontal crossflow is added to the RB system, the large-scale circulation aligns
itself perpendicular to the imposed flow (Pirozzoli et al. 2017; Yerragolam et al. 2022),
so for the mixed RB cases, we construct a friction coefficient using only the spanwise
r.m.s. velocity. Defining the friction coefficient in this way will be appropriate only for
cases where the convectively driven flow is stronger than the spanwise velocity fluctuations
induced by the turbulent shear flow, i.e. for Ri ≥ O(1).

In terms of the Reynolds number, the plate separation H is no longer the appropriate
length scale for describing the boundary layer dynamics of the convectively driven flow.
As shown in the inset of figure 5(a), the mean profile w̄( y) of the vertical velocity in
(mixed) VC reaches its peak value at a certain wall-normal distance δ. From this, we can
define a boundary layer Reynolds number

Reδ = Wmaxδ

ν
(4.3)

that drives the behaviour at the wall. We construct an analogous Reynolds number for the
mixed RB system using the spanwise r.m.s. velocity profile. The friction coefficients of the
convective flow component are plotted against Reδ in figure 5. Note that Reδ is not known
a priori, but is itself a response parameter of the system that varies with Gr, Pr and Re.
Similar to the low-Re regime for the streamwise friction, we observe a power-law scaling
close to Cf ∼ Re−1

δ .
This is made clearer in figure 5(b), where we collapse the data using the friction

coefficient C0 and Reynolds number Reδ,0 obtained from the corresponding natural
convection flows, matching Ra and Pr. Deviations from the scaling relation are observed
for cases where Ri < 1/4, highlighted by translucent symbols in the figure. As mentioned
above, for the mixed RB system this is likely an artefact of using the spanwise r.m.s.
velocity to construct the friction coefficient. However, we also observe the discrepancy for
low Ri in mixed VC, suggesting that at low Richardson numbers, the turbulence generated
by the imposed horizontal flow disrupts the near-wall vertical velocity. Within the range
of parameters explored here, the pressure-driven horizontal flow does not modify the
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Figure 5. (a) Friction coefficients associated with the convectively driven flow as a function of the
boundary layer Reynolds number Reδ = Wmaxδ/ν, where Wmax and δ are computed as in the mean velocity
profile shown in the inset. (b) The same data normalised against the values from the corresponding
natural convection system. For the mixed VC cases, different symbols denote different Pr values as
outlined in the legend of figure 4. The colour of the markers represents Gr, and simulations with
Ri < 1/4 are plotted as semi-transparent. This figure is also available as an interactive JFM notebook:
https://www.cambridge.org/S0022112024005986/JFM-Notebooks/files/Figure-5.ipynb.

vertical Reδ by more than a factor 4, suggesting that even in the case of mixed convection,
the primary control parameters determining Reδ are Gr and Pr. As discussed in the
Appendix of Howland et al. (2022), a ‘fully turbulent’ transition of this boundary layer
may be possible, analogous to the so-called ‘ultimate regime’ in RB convection (Lohse &
Shishkina 2023), but only at very high Gr. A more in-depth analysis of the mean vertical
momentum budget in mixed VC will be presented in § 5.

4.2. Nusselt number
The dimensionless heat flux through the system is characterised by the Nusselt number,
defined as

Nu = Fθ

κΔ/H
, Fθ = −κ

∂θ̄

∂y
+ v′θ ′. (4.4a,b)

Here, Fθ is the horizontal heat flux through the system (normalised by the specific heat
ρcp), and the overbar denotes averaging in time and in directions parallel to the plates.
Integration of the mean temperature equation (3.1) shows that Fθ is constant across the
domain in a statistically steady state.

In figure 6(a), we plot the Nusselt number compensated by Pr1/2. This prefactor seems
appropriate for the Pr dependence of passive scalar transport in turbulent boundary layers
when Pr � O(1) (Kays et al. 2005), although at higher Pr, one expects a transition towards
a Pr1/3 dependence (Kader & Yaglom 1972; Alcántara-Ávila & Hoyas 2021). The data of
both systems converge towards the expression

Nu ≈ Cf (Re)
4

Re Pr1/2, (4.5)

where Cf (Re) follows the Prandtl law of (4.2). This expression draws a parallel between
the transport of heat and momentum at the wall, known as the Reynolds analogy, and
describes the heat transport in ‘forced convection’ when buoyancy no longer affects the
flow. From these data, we anticipate that the forced convection expression (4.5) applies
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Figure 6. Nusselt numbers plotted as functions of Reynolds number. (a) The Nusselt number is normalised
by Pr1/2 to focus on the response in the shear-dominated regime at high Re. The black dashed line
marks the Reynolds analogy Nu ≈ 1

4 Cf Re Pr1/2, where Cf satisfies the Prandtl friction law (4.2). (b)
The data are normalised by the values associated with natural convection. Here, the black dashed
line marks the recently proposed scaling relation Nu/Nu0 ∼ (

√
1 + (Re/Re0)2)−1/5 from Yerragolam

et al. (2024). This figure is also available as an interactive JFM notebook: https://www.cambridge.org/
S0022112024005986/JFM-Notebooks/files/Figure-6.ipynb.

for Reynolds numbers greater than that where the friction coefficient begins to follow the
turbulent friction law shown in figure 4. At low Re (or more precisely high Ri), the Nusselt
number responses of the two systems (VC and RB) do not match as precisely as the friction
coefficients. Indeed, in the absence of an external flow, VC and RB do not exhibit the same
Nu(Ra, Pr) response due to the lack of coupling between the kinetic energy budget and the
heat flux in VC (Ng et al. 2015).

However, we observe a more universal behaviour when the Nusselt numbers in the
mixed convection systems are normalised by the values for the equivalent natural
convection systems Nu0(Gr, Pr, Re) = Nu(Gr, Pr)|Re=0. In figure 6(b), the normalised
Nusselt numbers are plotted as a function of the input Reynolds number normalised by
the Reynolds number of the natural convection case Re0 = W0H/ν. For the mixed VC
cases, we define W0(Gr, Pr, Re) = Wmax(Gr, Pr)|Re=0 as the peak velocity of the natural
VC flow, as highlighted in the inset of figure 5(a). For mixed RB, we follow Yerragolam
et al. (2024) in using the volume-averaged r.m.s. velocity for W0, and note that the results
are insensitive to this choice of velocity scale in describing the ‘wind’ of the large-scale
circulation. For Re/Re0 = O(1), all the data from both configurations collapse onto a
single curve, showing a drop in the heat flux of up to 25 %. Given this collapse, the Re0
of the natural convection appears to be a critical Re above which the Nusselt number is
significantly affected by the horizontal crossflow. Yerragolam et al. (2024) provide an
estimate for the drop in Nu, derived from the kinetic energy balance in mixed RB, but this
balance cannot be related to the horizontal heat flux that is relevant for mixed VC.

In summary, in this section we have demonstrated the universality in the global response
parameters of mixed RB and mixed VC, namely in the friction coefficient Cf and the
Nusselt number, and the limitations of this universality. In the following sections, we will
compare more local quantities, starting with the wall-normal profiles.

5. Wall-normal profiles in mixed VC

We now turn to the first- and second-order statistics, averaged parallel to the plates, to
further investigate the dynamics behind the observed global responses. For clarity, we
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Figure 7. Mean profiles of the streamwise velocity ū( y). (a,b) Data from simulations at a fixed Gr = 106,
varying Re and Pr. The Re variation is denoted by the line colour, and the Pr variation is denoted by the
line style. (c,d) Present data from simulations at a fixed Re = 103, varying Gr and Pr. (a,c) The profiles are
normalised by the imposed bulk velocity 〈u〉 = U and the plate separation H. (b,d) The profiles are presented
in viscous wall units, where ū+ = ū/uτ and y+ = yuτ /ν. Dashed black lines represent the linear relation
u+ = y+ and the logarithmic region u+ = κ−1

u log y+ + B, where the von Kármán constant κu = 0.41 and
B = 5 are taken from Pirozzoli et al. (2014). This figure is also available as an interactive JFM notebook:
https://www.cambridge.org/S0022112024005986/JFM-Notebooks/files/Figure-7.ipynb.

focus solely on the new simulations of mixed VC, and study the variation across the
three-parameter space of Gr, Pr and Re.

We begin with the response of the mean streamwise velocity ū( y) in figure 7. For a fixed
Gr = 106, as in figures 7(a,b), the effect of increasing Re can be seen most clearly when the
mean velocity profiles are scaled by viscous wall units in figure 7(b). As Re increases, the
velocity profile tends towards the classical log-law profile, with the case Re = 104 closely
matching the profile of turbulent Poiseuille flow, as in e.g. Lee & Moser (2015). The effect
of stronger thermal convection on the mean profile is also similar to that observed in other
mixed convection systems in the literature (Scagliarini et al. 2015; Blass et al. 2020). In
figure 7(c), where Re = 103 is fixed and Gr varies between 106 and 108, higher Gr leads
to a flatter mean profile in the bulk of the channel. This is illustrated further in wall units
in figure 7(d), where a significant drop in ū+ is observed for y+ = O(10). Plus symbols
denote scaling in viscous wall units, with velocity uτ = √

τu/ρ and length ν/uτ . Such a
drop is consistent with the previous findings of Scagliarini et al. (2015) for mixed RB, who
proposed a modified log law based on mixing length arguments coupled to the temperature
field.

Further insight for the streamwise velocity can be gained from the appropriate
component of the Reynolds stress. Considering a statistically steady state, we average the
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Figure 8. Wall-normal profiles of the streamwise Reynolds stress component uv( y) scaled by the streamwise
friction velocity uv+ = uv/u2

τ . As in figure 7, (a,b) are at fixed Gr = 106 and (c,d) are at fixed Re = 103.
Colours and line styles are as detailed in the caption of figure 7. (a,c) Profiles relative to the plate separation H;
(b,d) profiles in viscous wall units scaled by Ri1/4. The inset of (d) presents the data of (b,d) with a logarithmic
scale on both axes to highlight the near-wall collapse of the data. This figure is also available as an interactive
JFM notebook: https://www.cambridge.org/S0022112024005986/JFM-Notebooks/files/Figure-8.ipynb.

streamwise component of the momentum equation (2.1) to obtain

∂yuv = ν ∂yyū + Ḡ, (5.1)

where an overbar denotes an average in the periodic (x, z) directions and in time. Note
that wall-normal advective fluxes in incompressible channel flows are purely turbulent,
i.e. uv ≡ u′v′ since v̄ ≡ 0. From volume averaging, we can also relate the mean pressure
gradient forcing to the mean wall shear stress through Ḡ = 2τu/ρH. The first integral of
(5.1) can therefore be written as

∂y+ ū+ − uv+ = 1 − 2y
H

. (5.2)

From (5.1) and (5.2), the close coupling of the mean streamwise velocity and the Reynolds
stress uv is evident. We therefore present the profiles of uv( y) in figure 8. As expected, the
Reynolds stress dominates the viscous contribution to (5.2) away from the walls, leading
to a balance of −uv+ ≈ 1 − 2y/H as shown in figures 8(a,c). Relative to H, the boundary
layer in which the viscous term is relevant becomes thinner as both Re and Gr increase.
The near-wall behaviour of uv exhibits a remarkable collapse when scaled by Ri1/4 as in
figures 8(b,d), except for the highest Re case with Ri = 0.01.
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The additional factor Ri1/4 suggests that the appropriate near-wall length scale for the
Reynolds stress is modified from the standard viscous wall unit as

Ri1/4y+ = y
l
, l = ν√

Uf

U
τu

ρ

. (5.3a,b)

The additional prefactor Uf /U in front of the shear stress suggests that the vertical,
convectively driven component of shear cannot be neglected when considering the
streamwise Reynolds stress. An improved collapse to that seen in figures 8(c,d) can
be found by computing a viscous length scale using the total shear stress at the wall,
τ = √

τ 2
u + τ 2

w. As shown explicitly in Appendix A, with this scaling, the Reynolds stress
for the highest Re case also matches the other curves. The presence of the convectively
driven flow increases the near-wall Reynolds stress, which in turn leads to the flattened
mean velocity profiles observed in figure 7(d). This result explains qualitatively the origin
of the change in Cf with Gr seen in figure 4, where enhanced buoyancy driving led to a
larger skin friction. The increase in near-wall Reynolds stress that arises due to convection
thins the boundary layer of the mean horizontal velocity, which in turn produces a larger
mean gradient at the wall and a larger friction coefficient Cf .

The effect of convection on the shear is by no means a one-way interaction. This
is evident from the modification of the mean vertical velocity profile by the imposed
horizontal flow. In figures 9(a,b), vertical velocity profiles are shown for fixed Gr = 106

and varying Re, with the reference natural convection case (Re = 0) highlighted in blue
for comparison. Compared to the natural VC case, the introduction of horizontal driving
at moderate Re leads to an increase in the peak vertical velocity, and hence an increase
in the mean shear both in the bulk and at the walls. At the highest Re = 104 (the darkest
red line in figure 9), a subsequent decrease is observed in the peak vertical velocity, as
well as a nonlinear profile in the bulk. None of the cases studied here exhibits a log layer
in the vertical velocity, with the largest w̄+ being approximately 6.5 for the most strongly
convective case, Gr = 108. For fixed Ri = 1 (shown in figures 9c,d), all cases show a
similar increase in the peak velocity, and the mean gradient in the bulk appears largely
independent of Gr and Pr. The distance of the velocity peak from the wall (compared to
the channel width H) decreases for larger Gr, but the value of the peak velocity in free-fall
units does not depend strongly on Gr. This similarity at constant Ri is suggestive that
the vertical velocity modification is determined primarily by the relative strength of the
horizontal flow to convection.

To further investigate the behaviour of the vertical velocity profiles, we now turn to
the mean vertical momentum budget. Unlike the streamwise velocity in (5.1)–(5.2), the
vertical velocity is not only tied to the Reynolds stress profile. Rather, the mean vertical
momentum equation reads

∂yvw = ν ∂yyw̄ + gαθ̄. (5.4)

Close to the wall, we expect the Reynolds stress to be negligible and a balance to arise
between buoyancy and viscosity. Due to the symmetry of the boundary conditions, all
three terms must be zero at the channel centre. In the bulk of the flow, the mean velocity is
approximately linear, so we expect a balance between buoyancy and Reynolds stress. These
features are present in each of the simulations highlighted in figure 10. As Re increases,
the key modification to the budget arises in the Reynolds stress term −∂yvw. In natural
VC, there is a minuscule positive peak in the Reynolds stress term close to the wall, but
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Figure 9. Mean profiles of the vertical velocity w̄( y). As in figure 7, (a,b) are at fixed Gr = 106, but here
(c,d) are at fixed Ri = 1. (a,c) Profiles are normalised by the free-fall velocity Uf = √

gα �H and the plate
separation H. (b,d) Profiles are presented in viscous wall units, where w̄+ = w̄/wτ and y+ = ywτ /ν. Reference
data for natural VC (with Gr = 106, Re = 0) are shown in blue. This figure is also available as an interactive
JFM notebook: https://www.cambridge.org/S0022112024005986/JFM-Notebooks/files/Figure-9.ipynb.

its amplitude is so small that it is indistinguishable in figures 10(a, f ). This peak grows
with Re, becoming visible at Re = 103.5 in figures 10(d,i), coinciding with a flattened
profile of the viscous term (shown in green). By Re = 104, at which the Reynolds stresses
are significantly energised by the horizontal forcing, the nonlinear term peak exceeds the
contribution from the buoyancy term. This leads to a significant drop in the viscous term
at y ≈ 10−2H, which determines the modified mean velocity observed in figures 9(a,b).

Changes in the mean temperature profile θ̄ in figure 10 are more subtle, with the most
obvious feature being a slight drop in figure 10(e), coinciding with the Reynolds stress
peak. A clearer picture of the mean temperature response can be found in figure 11,
where profiles are plotted both on linear axes and in wall units. Since the dimensionless
wall temperature gradient is equivalent to the Nusselt number, which is most strongly
dependent on Ra, we compare the temperature profiles in figures 11(a,b) at varying Re
and Pr but fixed Ra = 107. As shown in these plots, the temperature gradient in the bulk
increases with Re, and any possible log-law profile does not collapse to a universal slope or
coefficient. For fixed Ri = 1, however, shown in figures 11(c,d), the bulk gradient appears
independent of Gr, suggesting that Ri and Pr are the key control parameters determining
the flow properties away from the walls.

The mean profiles presented here do not further clarify the origin of the non-monotonic
behaviour of Nu with Re seen in figure 6. When normalised by the wall heat flux,
the mean temperature profiles in figure 11(b) show a monotonic increasing trend with
Re away from the wall. The non-monotonic behaviour observed in the vertical velocity
profiles of figures 9(a,b) suggests an intrinsic connection between the vertical flow and the
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Figure 10. Profiles of the mean vertical momentum budget terms for Pr = 1 and (a–e) Gr = 106 or
( f –j) Gr = 107. Reynolds numbers vary from (a, f ) Re = 0 to (e, j) Re = 104. Colours denote the budget term
being plotted as detailed in the legend, and each budget term is plotted normalised against the buoyancy scale
gαΔ. Within each column, semi-transparent lines are added to show the profiles for the Reynolds numbers
highlighted by the other rows as comparison. The wall-normal coordinate y is plotted on a logarithmic axis
to highlight the variation in the near-wall region. This figure is also available as an interactive JFM notebook:
https://www.cambridge.org/S0022112024005986/JFM-Notebooks/files/Figure-10.ipynb.
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Figure 11. Mean temperature profiles for (a,b) fixed Ra = 107 and (c,d) fixed Ri = 1. As in figures 7–9,
colours denote changes in Re and Gr, whereas line styles show changes in Pr. (a,c) Temperature is normalised
by the difference across the plates Δ. (b,d) Temperature is shown in terms of wall units θ+ = (θw − θ)Uτ /Fθ ,
where θw is the temperature at the wall y = 0. The Uτ value used here and in y+ = yUτ /ν is calculated using
both components of the wall shear stress, as defined in (A1). This figure is also available as an interactive JFM
notebook: https://www.cambridge.org/S0022112024005986/JFM-Notebooks/files/Figure-11.ipynb.

wall-normal heat transport, although the very subtle changes in the vertical momentum
budget remain difficult to interpret in the context of the non-monotonic Nusselt number
variation. The later sections on spectral analysis and statistics of the boundary layer aim to
shed more light on this global heat transport.

To conclude our analysis of the mean profiles, we compare the new simulations of mixed
VC to the universal functions of the MOST (Monin & Obukhov 1954; Foken 2006). As
outlined in the Introduction, the theory considers a region of the flow where viscosity and
molecular diffusion are negligible, and the appropriate length scale is the Obukhov length

LO = u3
τ

gαFθ

. (5.5)

On dimensional grounds, universal functions that depend only on y/LO for the first-
and second-order statistics can then be constructed for the temperature and velocity
fields. One key assumption used to derive the universal functions for velocity is that the
turbulent momentum flux ρ uv is constant over the region of interest. However, as shown
in figure 8, this is not true in a turbulent channel flow driven by a pressure gradient,
where the Reynolds stress follows a linear relation in the bulk. We can therefore expect
the universal functions of Monin & Obukhov (1954) to hold for only a small range of y in
our simulations.

Considering these caveats, we present a collection of mean profiles from the mixed VC
simulations as a function of y/LO in figure 12. Following Pirozzoli et al. (2017), who
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Figure 12. Comparison of the mixed VC simulation results with the ‘universal functions’ of the MOST for
first- and second-order statistics. Profiles are shown as semi-transparent unless the advective wall-normal
fluxes of heat vθ and momentum vu are within 80 % of their maximum value. Consistent with the
Monin–Obukhov formulation, all quantities here are normalised by the horizontal component of the friction
velocity uτ and the wall-normal heat flux Fθ . This figure is also available as an interactive JFM notebook:
https://www.cambridge.org/S0022112024005986/JFM-Notebooks/files/Figure-12.ipynb.

present a similar figure (their figure 16) for mixed RB convection, we emphasise only
the region of the domain where the turbulent fluxes of heat and momentum are greater
than 80 % of their maximum value, with the rest of the profiles made semi-transparent.
We compare our results with the updated scaling theories of Kader & Yaglom (1990),
and for the mean temperature and velocity profiles, the commonly used Businger–Dyer
relations outlined in Foken (2006). For the highlighted region where the fluxes are close
to their peak, the majority of the results collapse onto a single function of y/LO close
to these profiles. In figure 12(a), there are two notable discrepancies from the theoretical
estimates for the mean temperature profile. First, the values at transitional y/LO ≈ 10−1

are approximately a factor 2 larger than the suggested profiles. Second, the effective
power-law scaling observed for strong buoyancy driving y ≥ LO appears steeper than the
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−1/3 proposed by Kader & Yaglom (1990) (dashed black lines), and closer to the −1/2
scaling associated with the asymptotic limit of the Businger–Dyer relation (solid blue
line). A discrepancy in the two theoretical predictions for the mean velocity profile at
y  LO, highlighted in figure 12(b), cannot be resolved from the results presented here,
although we note that the data here agree well with the mixed RB data of Pirozzoli
et al. (2017). The variation in Pr across the simulations collapses for most quantities
in figure 12, except for the r.m.s. temperature shown in figure 12(e). The origin of this
discrepancy with Pr is currently unclear, but understanding how the Pr dependence may
affect the Monin–Obukhov profiles is important in the context of their applications outside
the atmosphere, for example in the surface layer of the upper ocean (Zheng, Harcourt &
D’Asaro 2021).

6. Spectral analysis

We now investigate the scale dependence of the thermal structures and heat flux in mixed
convection through analysis of the power spectra. To ensure that we capture the full range
of dynamical scales, we perform further simulations in extended aspect ratio domains, with
Lx = Lz = 24H. The details of these simulations are outlined in table 2 of Appendix B.

In unsheared RB convection, Krug, Lohse & Stevens (2020) show that large-scale
patterns, also known as superstructures, can be identified from a low-wavenumber peak
in the power spectrum of the temperature field and in the co-spectrum of the wall-normal
heat flux. This peak denotes the scale of the large-scale circulation or ‘wind’ of convection
that is key to theories describing RB convection. Since there is no preferential horizontal
flow direction in RB convection, one-dimensional spectra can be analysed, but in mixed
VC, the two directions parallel to the plates must be considered separately.

We therefore compute time-averaged spectra using two-dimensional Fourier transforms
in the periodic directions. For visualisation purposes, we present separate one-dimensional
spectra for the streamwise (x) and spanwise (z) wavenumbers, which are computed by
integrating over the other wavenumber. Precisely, the two- and one-dimensional co-spectra
of any two variables f and g are defined as

Φfg(kx, y, kz) = Re[ f̂ ∗ĝ], Φfg(kx, y) =
∫

Re[ f̂ ∗ĝ] dkz, (6.1a,b)

where f̂ denotes the two-dimensional Fourier transform of f in x and z, and Re denotes
the real part. The Fourier transforms are normalised such that integrating the spectrum
over wavenumber space recovers the corresponding volume-averaged quantity 〈 fg〉 =∫∫

Φfg dkx dkz.
The power spectrum of temperature Φθθ is presented in figure 13 for the four extended

simulations. In figure 13(a), for the standard RB configuration, we see behaviour similar
to that in Krug et al. (2020), with a distinct, sharp low-wavenumber peak at kH ≈ 1,
and a more broad peak at smaller scales. As mentioned above, the lack of a preferential
direction means that the two directional spectra are virtually identical. When shear is added
to the RB system in figure 13(b), the horizontal isotropy in the system is destroyed. As
expected from previous work on mixed RB (Pirozzoli et al. 2017; Blass et al. 2020, 2021;
Yerragolam et al. 2022), coherent rolls aligned with the streamwise axis dominate the
signal. Note the difference in y axis between figures 13(a) and13(b). In the streamwise
spectrum Φθθ (kz, y), a sharp peak at kH ≈ 2 is visible at all wall-normal locations, but is
particularly prominent in the near-wall region (light green) where there is a maximum in
θ2( y). The corresponding wavelength of these structures is λ = 2πH/kz ≈ 3H, which is
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Figure 13. One-dimensional power spectra Φθθ (k, y) of temperature for the extended domain simulations
described in table 2. Solid lines denote spectra as functions of k = kx, and dashed lines are functions of
k = kz. The colour of each line is determined by its wall normal location y, with the specific locations
highlighted on the colour bar. Each spectrum is multiplied by the wavenumber k such that area under
each curve is representative of the relative contribution in wavenumber space. (a,c) Simulations of natural
convection (Re = 0). (b,d) Simulations of mixed convection at Ri = 1. (a,b) The RB cases with gravity
in the wall-normal (y) direction. (c,d) The VC cases with gravity parallel to the wall in z. Note that
P-VC here denotes the Poiseuille-VC configuration to compare with P-RB. All simulations have fixed
Gr = 107, Pr = 1. This figure is also available as an interactive JFM notebook: https://www.cambridge.org/
S0022112024005986/JFM-Notebooks/files/Figure-13.ipynb.

consistent with that observed previously in the mixed convection literature at Ri = 1 (e.g.
Pirozzoli et al. 2017). The alignment of the flow structures in the streamwise direction leads
to a broad contribution to the streamwise spectrum at low kx. This behaviour is purely a
result of the regular alignment, and is not related to any domain size effects.

In figures 13(c,d), we present the same analysis but for natural and mixed vertical
convection. The contrast to the RB cases is immediately apparent, with no sharp peaks
at any wavenumber or wall-normal position. This confirms the earlier visual observation
of figure 3, where the instantaneous snapshots showed no clear coherent length scale.
In natural VC, shown in figure 13(c), the two one-dimensional spectra do not overlap
exactly as in the RB case due to the buoyancy-driven mean flow in the vertical. The kx
spectrum shows a small peak at kH ≈ 3 that is absent from the kz spectrum and becomes
more prominent towards the channel centre. Comparing figures 13(c) and 13(d), we see
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Figure 14. One-dimensional co-spectra Φvθ (k, y) of the wall-normal heat flux for the extended domain
simulations described in table 2. See the caption of figure 13 for more details on the meanings of line styles
and colours. The spectra are normalised by

√
Ra Pr such that integration over k recovers the dimensionless

advective heat flux Nu − 1 = 〈vθ〉/(κΔ/H). As in figure 13, the configurations presented are (a) RB,
(b) mixed RB, (c) VC, (d) mixed VC. This figure is also available as an interactive JFM notebook:
https://www.cambridge.org/S0022112024005986/JFM-Notebooks/files/Figure-14.ipynb.

that this peak is suppressed by the addition of external shear. Furthermore, all of the
broad mid-range peaks in the spectra exhibit a decrease in amplitude and a shift to higher
wavenumbers.

The heat flux co-spectra Φvθ , shown in figure 14, exhibit similar features to the power
spectra. In figures 14(a,b), a sharp low-wavenumber peak is once again visible for RB
and mixed RB systems, and for the heat flux, this peak increases towards the channel
centre. A broad high-wavenumber peak is also observed in the spectrum close to the
wall. This peak flattens and shifts to lower wavenumbers (i.e. larger scales) as distance
from the wall increases, which can be interpreted as the emergence and coalescence of
small-scale plume structures. A similar behaviour can be found in the VC configurations
of figures 14(c,d), with the broad peak in both the kx and kz spectra shifting to lower
wavenumbers for larger y. However, in the kx spectrum for natural VC (where x is
perpendicular to gravity), this peak also increases in amplitude towards the channel
centre, highlighting that the majority of the wall-normal heat transport at the channel
centre occurs due to structures of size λ ≈ H. Comparing this to the mixed VC case in
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Figure 15. Probability density functions (p.d.f.s) of the dimensionless local heat flux qθ as defined in (3.1)
for (a,c) Gr = 106 and (b,d) Gr = 107. Line colours highlight variation in the Reynolds number, as shown by
the colour bar, with the blue dashed line plotting the data for natural convection with Re = 0. Plots (a,b)
are presented with linear y axes, and (c,d) present the same data on logarithmic y axes to highlight the
exponential tails. This figure is also available as an interactive JFM notebook: https://www.cambridge.org/
S0022112024005986/JFM-Notebooks/files/Figure-15.ipynb.

figure 14(d), the mid-scale peak appears significantly suppressed when the external shear
is imposed, suggesting that the coalescence of plumes in the bulk is disrupted by the
shear. This is consistent with the interpretation of Domaradzki & Metcalfe (1988) and
Scagliarini et al. (2014), who argued that the drop in heat flux in mixed RB can be related
phenomenologically to disruption of the organisation of small-scale convective plumes.

7. Heat flux statistics in the boundary layer

Whereas the previous section focused on the advective heat flux in the bulk and its
modification due to shear, we now turn to the conductive heat flux that dominates the
transport in the boundary layer. Specifically, we investigate the statistical distribution of the
local conductive heat flux at the boundary plates. As defined earlier, in (3.1), we consider
the local dimensionless heat flux qθ whose time and plane average is equivalent to the
Nusselt number. The pointwise data of qθ (x, z, t), also shown in figure 2, are collected over
time and space to construct histograms that are normalised to produce probability density
functions (p.d.f.s) in figure 15. The data shown here are only for Pr = 1 and Gr = 106, 107

since these cases cover the widest range of Richardson numbers, highlighting the transition
from natural convection to forced convection.

In figures 15(a,b), where the data are presented on linear axes, we find the same effect
of increasing shear at both Grashof numbers. As Re increases from zero (shown by
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progressively darker lines, with Re = 0 marked in blue for comparison), the peak of the
p.d.f. increases in amplitude. In statistical terms, this means that the most common values
of local heat flux become more common as shear is increased, up to Re ≈ 103.5. Due
to the skewed nature of the distributions, these increasingly common values of heat flux
are below the mean, and although the peak shifts slightly to the right as Re increases,
these parameters are associated with the drop in heat flux observed in figure 6. This
corresponds to the visualisation of figure 2, where the streaks of low heat flux span a larger
proportion of the boundary at Ri = 1 (figures 2e,i) than at high Ri (figures 2b,c). Once Re
is sufficiently high, which in these cases is for Re > 103.5, the whole distribution shifts
more significantly to higher qθ as the transport becomes dominated by the pressure-driven
shear flow.

At moderate Re, another key modification is to the tails of the distribution. These are
visualised most clearly in figures 15(c,d), where the heat flux distributions are plotted
on a logarithmic axis. In this representation, it is clear that the right tails of large heat
flux decay exponentially for Gr = 107, and close to exponentially for Gr = 106. At both
Grashof numbers, the tails are reduced as Re increases relative to the natural convection
case, showing that the probability of extreme local heat flux values is reduced due to the
introduction of a mean horizontal flow. Again, this is consistent with what was observed
in the visualisation of figure 2, where dark patches associated with large local heat flux
became less prevalent as Re increases. In natural VC, Pallares et al. (2010) used conditional
sampling to show that these patches are most often associated with instantaneous flow
reversals at the walls, which are likely a result of impacting plumes originating from the
opposing wall.

8. Conclusion and outlook

In this paper, we have investigated mixed convection in a differentially heated vertical
channel subject to a horizontal pressure gradient, referred to as mixed vertical convection
(VC), through direct numerical simulations. By simulating the system across the parameter
ranges 106 ≤ Gr ≤ 108, 1 ≤ Pr ≤ 10 and 102.5 ≤ Re ≤ 104, we have explored the
transition from natural convection to forced convection, characterised by the Richardson
number 10−2 ≤ Ri ≤ 102. Across this parameter range, the response of the streamwise
skin friction is identical to the response seen in mixed Rayleigh–Bénard (RB) convection,
with a power-law Re dependence for Cf giving way to the Prandtl friction law (4.2) at
sufficiently high Re. The presence of convection acts to increase the skin friction for a
given Re, due to the thermal plumes emitted from the plates, with a collapse observed for
all the data in the power-law regime Cf ∼ Gr1/4Re−γ for both configurations across the
entire range of Pr. For mixed VC, the streamwise momentum budgets show an enhanced
impact of Reynolds stresses close to the wall at higher Ri, which modify the shape of
the mean velocity profile. The Reynolds stresses in the boundary layer are driven by the
combined shear stress of the horizontal pressure-driven flow and the VC flow.

Friction coefficients could also be obtained for the flow component associated with
buoyancy driving. For cases with significant buoyancy effects at Ri > 1/4, a reasonable
collapse was found for the laminar-like scaling Cf ∼ Re−1

δ where Reδ is the boundary
layer Reynolds number of the convection flow. The introduction of the horizontal pressure
gradient leads to significant modification of the mean vertical velocity, with Reδ increasing
up to three times its value for natural convection, and a corresponding increase in the mean
shear in the channel bulk for moderate Re. For Ri = O(1), the response of the Nusselt
number Nu to the introduction of shear in mixed VC is also identical to that in mixed
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RB. Before the flow undergoes a transition to a forced convection regime at high Re, the
response can be expressed as Nu/Nu0 = f (Re/Re0), where Nu0 and Re0 are the Nusselt
number and Reynolds number associated with natural convection. The data of both mixed
convection systems collapse onto this single curve, which describes the drop in Nu as Re
increases.

The near identical quantitative response of mixed RB and mixed VC is observed despite
striking qualitative differences between the two configurations in terms of large-scale
flow organisation. Whereas mixed RB features large convective rolls oriented along the
streamwise axis, no such structures form in mixed VC except at low Ri when the dynamics
are dominated solely by the pressure gradient forcing. The absence of a low-wavenumber
peak in the heat flux co-spectrum for mixed VC confirms that the advective heat flux across
the domain is transported by eddies or plumes with a wide range of scales rather than by
large coherent rolls. Comparing the spectra from natural VC with mixed VC reveals that
the organisation of plume structures with a horizontal scale λ ≈ H is suppressed by the
horizontal mean flow. This is reflected also in the distribution of local heat flux at the
boundaries, which shows that instantaneous events of extreme heat flux become less likely
as Re increases. As the boundaries become dominated by streaky structures, the formation
of localised plume structures is disrupted, consistent with the earlier interpretations of
reduced heat flux in mixed RB (Domaradzki & Metcalfe 1988; Scagliarini et al. 2014).

The striking agreement between the two channel configurations compared here,
regardless of the gravity direction, opens up the question of how universal such a response
in skin friction and heat flux is for other mixed convection systems. The independence
to the gravity direction suggests that our results may be applicable more generally to
inclined layer convection, as studied by Daniels & Bodenschatz (2002) at low Gr, subject
to a horizontal pressure gradient at comparable Gr and Re. However, it is less clear how
directly applicable the findings here are to a wall plume subject to a crossflow. Such a
scenario is relevant to environmental applications such as at a melting ice face subject
to ambient ocean currents (Jackson et al. 2020). Whereas both boundaries impact the
transport in mixed RB and mixed VC, a wall plume constantly entrains fluid from the
ambient at its outer edge. Recent work has provided an innovative way to simulate wall
plumes at high Gr, through studying temporally growing boundary layers (Ke et al. 2023;
Wells 2023), and it would be fruitful to understand how the growth of these boundary
layers is affected by the presence of a turbulent crossflow. For ice–ocean interactions, the
picture is further complicated through multicomponent transport (Howland, Verzicco &
Lohse 2023) and the development of rough boundaries that are closely coupled to the flow
structures (Couston et al. 2021; Ravichandran, Toppaladoddi & Wettlaufer 2022).

From a more theoretical standpoint, our current work has also emphasised how certain
flow properties are noticeably modified under the transition from natural VC to forced
convection. These include the sign of the near-wall Reynolds stress in figure 10 and the
distribution of the local wall heat flux in figure 15. In both RB and VC, predictions have
been made for a transition to the ‘ultimate’ regime at sufficiently high buoyancy driving,
where the boundary layers behave as turbulent boundary layers (Lohse & Shishkina
2023), although this regime has thus far been inaccessible to three-dimensional numerical
simulation. Analysis of the aforementioned statistical quantities in natural convection at
high Gr may help in identifying key markers of such a transition in natural convection
systems.

Supplementary material. Computational Notebook files are available as supplementary material
at https://doi.org/10.1017/jfm.2024.598 and online at https://www.cambridge.org/S0022112024005986/JFM-
Notebooks.
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Appendix A. Alternative near-wall scaling for the streamwise Reynolds stress

As shown in figures 8(b,d), the near-wall profile of the streamwise Reynolds stress
uv+( y+) requires an additional prefactor Ri1/4 to collapse the majority of the cases studied
here. In § 5, we attribute this to the multiple components of shear at the wall that produce
the Reynolds stress, which cannot be captured by the streamwise component uτ alone. This
is confirmed in figure 16, where we re-plot uv+ against a wall-normal coordinate scaled
with the total shear stress at the wall. Specifically, we scale with the viscous wall unit
ν/Uτ , where the total friction velocity Uτ satisfies

Uτ =
√

|τ |
ρ

=
(√

τ 2
u + τ 2

w

ρ

)1/2

= (u4
τ + w4

τ )
1/4. (A1)

Compared to the results of figure 8, the previously outlying case Re = 104 (plotted as a
dark purple line) now also shows a reasonable collapse with the rest of the data in the
near-wall region of figure 16. This result highlights the intricate nature of turbulence in
mixed VC, with different friction velocities needed to scale the two axes of figure 16 to
describe the Reynolds stress. Although the near-wall length scale is determined by the
total shear stress in (A1), the Reynolds stress must still satisfy the global balance (5.2),
where uτ is the relevant velocity scale.

Appendix B. Simulation parameters

Table 1 details the physical and numerical input parameters used for the mixed VC
simulations. Even at Pr = 1, we use a more refined grid for the temperature field since
sharper gradients can emerge than in the velocity field due to the lack of a pressure gradient
term in (2.2) when compared with (2.1).

In § 6, an additional set of simulations is discussed in which the periodic extent of the
domain is tripled to an aspect ratio Γ = 24. In that section, we compare RB configurations
with gravity aligned normal to the boundary plates (in the negative y direction) to VC
configurations where gravity is aligned parallel to the plates (in the negative z direction).
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Figure 16. Wall-normal profiles of the streamwise Reynolds stress uv normalised by the streamwise friction
velocity uτ as shown previously in figure 8. Here, the wall-normal coordinate y is scaled by the viscous
wall unit ν/Uτ computed from the total wall shear stress |τ |. Data (a) at fixed Gr = 106, with (b) at
fixed Re = 103, and the same colours and line styles as in figure 8, are used to denote variation in Gr,
Re and Pr. As in figure 8, the inset presents both sets of data with a logarithmic scale on both axes. This
figure is also available as an interactive JFM notebook: https://www.cambridge.org/S0022112024005986/
JFM-Notebooks/files/Figure-16.ipynb.

Table 2 details the input parameters used for these additional simulations. Recall that a
prefix ‘P-’ in the name of a simulation denotes the presence of a Poiseuille-like pressure
gradient forcing.

Appendix C. Kinetic energy budgets

For completeness, we finally provide an overview of the volume-averaged kinetic energy
budgets for the pressure-driven mixed convection in a vertical channel. All of the data
presented here, along with additional second-order statistics, may be found in the online
JFM notebook.

Taking y as the wall-normal coordinate, we can decompose the velocity field into a mean
and a perturbation, where the mean is averaged in x, z and t (under the assumption of a
statistically steady state):

u = ū( y) + u′(x, y, z, t), ū = (ū( y), 0, w̄( y)), u′ = (u′, v′, w′). (C1a–c)

The (volume-averaged) kinetic energy can thus be decomposed into mean and turbulent
components

K ≡ 1
2 〈|u|2〉 = 1

2 (〈ū2 + w̄2〉 + 〈|u′|2〉), K̄ ≡ 1
2 〈ū2 + w̄2〉, K′ ≡ 1

2 〈|u′|2〉. (C2a–c)

From the momentum equation, we can then derive the budget equation for the total kinetic
energy K:

Uu2
τ

H/2︸︷︷︸
I

+ gα〈wθ〉︸ ︷︷ ︸
q

= ν

〈
∂ui

∂xj

∂ui

∂xj

〉
︸ ︷︷ ︸

ε

. (C3)

Here, the energy input from the pressure gradient (I) and the buoyancy flux (q) are
balanced by viscous dissipation (ε).

Figure 17 presents how the relative importance of the two energy production terms
changes as Re is increased. An excellent collapse is observed when the ratio I/q is
plotted in terms of Re/Re0, where Re0 = W0H/ν is defined (as earlier) using the peak
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Gr Pr Re Nx = Nz Ny Nr
x Nr

y Cu
f Reδ Cw

f Nu

106 1 3.16 × 102 512 192 1024 384 7.84 × 10−2 36.8 1.66 × 10−1 6.37
106 1 5.62 × 102 512 192 1024 384 4.46 × 10−2 48.8 1.30 × 10−1 5.98
106 1 1.00 × 103 512 192 1024 384 2.59 × 10−2 61.1 1.00 × 10−1 5.57
106 1 1.78 × 103 512 192 1024 384 1.57 × 10−2 81.6 7.62 × 10−2 5.33
106 1 3.16 × 103 768 192 1536 384 1.06 × 10−2 85.2 6.89 × 10−2 5.85
106 1 1.00 × 104 1024 192 2048 384 6.96 × 10−3 43.2 1.91 × 10−1 12.01
106 4 3.16 × 102 512 192 1024 384 7.27 × 10−2 29.9 2.17 × 10−1 9.39
106 4 5.62 × 102 512 192 1024 384 4.02 × 10−2 41.3 1.60 × 10−1 8.69
106 4 1.00 × 103 512 192 1024 384 2.30 × 10−2 59.6 1.11 × 10−1 8.15
106 4 1.78 × 103 512 192 1024 384 1.42 × 10−2 74.6 8.74 × 10−2 8.39
106 4 3.16 × 103 768 192 1536 384 1.01 × 10−2 61.3 1.03 × 10−1 10.46
106 10 3.16 × 102 512 192 1536 576 6.68 × 10−2 28.7 2.43 × 10−1 11.48
106 10 5.62 × 102 512 192 1536 576 3.64 × 10−2 39.7 1.75 × 10−1 10.73
106 10 1.00 × 103 512 192 1536 576 2.10 × 10−2 58.2 1.22 × 10−1 10.38
106 10 1.78 × 103 512 192 1536 576 1.33 × 10−2 69.3 9.83 × 10−2 11.16
106 10 3.16 × 103 768 192 2304 576 9.85 × 10−3 45.3 1.53 × 10−1 15.04
107 1 3.16 × 102 512 192 1024 384 1.44 × 10−1 90.3 8.68 × 10−2 13.74
107 1 1.00 × 103 512 192 1024 384 4.63 × 10−2 99.8 7.46 × 10−2 13.14
107 1 1.78 × 103 512 192 1024 384 2.72 × 10−2 118.9 6.46 × 10−2 12.47
107 1 3.16 × 103 768 192 1536 384 1.63 × 10−2 136.7 5.31 × 10−2 11.85
107 1 5.62 × 103 768 192 1536 384 1.04 × 10−2 157.9 4.49 × 10−2 12.06
107 1 1.00 × 104 1024 256 2048 512 7.52 × 10−3 160.6 4.53 × 10−2 14.39
108 1 1.00 × 103 1536 384 2304 512 8.71 × 10−2 198.0 4.71 × 10−2 28.14
108 1 3.16 × 103 1536 384 2304 512 2.90 × 10−2 226.7 4.17 × 10−2 27.05
108 1 1.00 × 104 1536 384 2304 512 1.07 × 10−2 266.6 3.21 × 10−2 25.82
106 1 0.00 512 192 1024 384 — 31.7 1.89 × 10−1 6.62
106 4 0.00 512 192 1024 384 — 23.7 2.67 × 10−1 10.09
106 10 0.00 512 192 1536 576 — 20.2 3.42 × 10−1 12.76
107 1 0.00 512 192 1024 384 — 90.9 8.59 × 10−2 13.76
108 1 0.00 1536 384 2304 576 — 181.3 4.97 × 10−2 28.24

Table 1. Physical control parameters: Grashof number Gr, Prandtl number Pr, Reynolds number Re.
Numerical grid parameters: number of grid points in the periodic (x, z) directions Nx = Nz and wall-normal
direction Ny for the base grid and for the refined grid (Nr

x = Nr
z and Nr

y). Global response parameters:
streamwise friction coefficient Cu

f , vertical boundary layer Reynolds number Reδ , vertical friction coefficient
Cw

f , Nusselt number Nu.

Name Gr Pr Re Nx = Nz Ny Nr
x Nr

y Cu
f Reδ Cw

f Nu

RB 107 1 0.00 2304 192 4608 384 — 45.0 1.65 × 10−1 15.79
VC 107 1 0.00 2304 192 4608 384 — 89.9 8.74 × 10−2 13.80
P-RB 107 1 3.16 × 103 2304 192 4608 384 1.47 × 10−2 70.7 9.91 × 10−2 12.01
P-VC 107 1 3.16 × 103 2304 192 4608 384 1.62 × 10−2 134.1 5.45 × 10−2 11.86

Table 2. Physical control parameters, numerical grid parameters and global response parameters for the
extended domain simulations with Γ = 24 discussed in § 6. The statistics for these simulations were collected
over only 100 advective time units due to the increased computational cost of the larger domains and the spectra
calculations.
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Figure 17. Components of the total kinetic energy budget in mixed VC. (a) Ratio of the energy input from
the pressure gradient I to the energy input from the buoyancy q as a function of Re/Re0. (b) Proportion
of the total energy input produced by the pressure gradient. The dashed black line is an empirical fit to
the data described by I/q = 0.1(Re/Re0)

2. Colours and symbols denote variation in Gr and Pr following
the figures of § 4. This figure is also available as an interactive JFM notebook: https://www.cambridge.org/
S0022112024005986/JFM-Notebooks/files/Figure-17.ipynb.

vertical velocity W0 of the natural VC flow at matching Gr and Pr. An empirical estimate
of I/q ≈ 0.1(Re/Re0)

2 appears to describe the transition from buoyancy-dominant to
pressure-dominant regimes, although there is currently no theoretical justification for this
relationship. Although I can be related straightforwardly to the friction coefficient as
I = Cf U3/H, there is no closed estimate for the vertical buoyancy flux q, even in natural
VC.

In a similar manner as for the total kinetic energy, we can also derive a budget equation
for the mean kinetic energy K̄ as

Uu2
τ

H/2︸︷︷︸
I

+ gα〈w̄θ̄〉︸ ︷︷ ︸
q̄

=
〈
−v′u′ · ∂ū

∂y

〉
︸ ︷︷ ︸

P

+ ν

〈∣∣∣∣∂ū
∂y

∣∣∣∣2
〉

︸ ︷︷ ︸
ε̄

, (C4)

where the shear production P converts mean kinetic energy to TKE. Note that the
two (horizontal and vertical) components of the mean kinetic energy can be completely
decoupled, such that we can derive separate budgets for those quantities:

Uu2
τ

H/2︸︷︷︸
I

=
〈
−v′u′ ∂ ū

∂y

〉
︸ ︷︷ ︸

Pu

+ ν

〈∣∣∣∣∂ ū
∂y

∣∣∣∣2
〉

︸ ︷︷ ︸
ε̄u

, gα〈w̄θ̄〉︸ ︷︷ ︸
q̄

=
〈
−v′w′ ∂w̄

∂y

〉
︸ ︷︷ ︸

Pw

+ ν

〈∣∣∣∣∂w̄
∂y

∣∣∣∣2
〉

︸ ︷︷ ︸
ε̄w

. (C5a,b)

The relative energy transfer in each of these budgets is shown in figure 18. For the
horizontal component of mean kinetic energy presented in figures 18(a,b), we find that
the proportion of energy transferred to TKE, Pu/I, is approximately constant at low
Re for a given Gr, but increases at higher Re, with the trend suggesting independence
of Gr at sufficiently high Re. This is reminiscent of the behaviour of Cf in figure 4,
perhaps unsurprisingly since Cf = I/(U3/H). Such a trend is not evident in the vertical
component of the mean kinetic energy shown in figures 18(c,d). The vertical shear
production Pw exhibits non-monotonic dependence on Re, and a reasonable collapse with
Ri for the Pr = 1 data, but significant dependence on Pr otherwise. Larger Pr and lower
Gr lead to a larger proportion of the energy supplied by the mean buoyancy flux q̄ being
directly dissipated by viscosity (through ε̄w).
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Figure 18. Budget contributions for the (a,b) horizontal and (c,d) vertical components of the mean kinetic
energy. The horizontal component of shear production Pu is normalised by (a) the bulk velocity scaling
U3/H, and (b) the total energy injection due to the pressure gradient I. The vertical component of shear
production Pw is normalised by (c) the free-fall velocity scaling U3

f /H, and (d) the buoyancy flux of the
mean profiles q̄. This figure is also available as an interactive JFM notebook: https://www.cambridge.org/
S0022112024005986/JFM-Notebooks/files/Figure-18.ipynb.
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Figure 19. Budget contributions for the TKE. (a) TKE dissipation rate ε′ normalised by U3/H as a
function of Re/Re0. (b) Proportion of TKE produced by shear, decomposed into horizontal (dashed) and
vertical (dotted) components. Symbols for the decomposed terms are made smaller than those for the total
shear production. This figure is also available as an interactive JFM notebook: https://www.cambridge.org/
S0022112024005986/JFM-Notebooks/files/Figure-19.ipynb.

Taking the difference of the total and mean kinetic energy budgets constructs the TKE
budget for our system, which reads

−v′u′ ∂ū
∂y︸ ︷︷ ︸

P

+ gα〈w′θ ′〉︸ ︷︷ ︸
q′

= ν

〈
∂u′

i
∂xj

∂u′
i

∂xj

〉
︸ ︷︷ ︸

ε′

. (C6)

Figure 19(a) shows that the TKE dissipation rate ε′ data collapse as a function of Re/Re0

when normalised by U3/H. For Re ≤ Re0, a Re−3 scaling implies that ε′ is independent
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of U, whereas at higher Re/Re0, the slope flattens out, potentially consistent with a finite
value of dissipation as Re → ∞. The remainder of the energy budget terms, shown in
figure 19(b), also show a good collapse with Re/Re0, highlighting the crossover from the
natural convection limit where the vertical component of shear production Pw and the
turbulent buoyancy flux q′ balance the dissipation to the turbulent shear flow limit where
the TKE production is dominated by the horizontal shear production Pu. The collapse
of the data in the transitional values of Re/Re0 is somewhat surprising given that in the
natural convection limit, the ratios of the budget terms varies significantly with Gr and Pr
(Howland et al. 2022).
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