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This paper investigates the amplification and propagation of swirl fluctuations in turbulent
swirling flows using resolvent analysis. Swirl fluctuations have been repeatedly observed
in acoustically excited swirl flows and play a significant role in triggering thermoacoustic
instabilities in swirl-stabilized flames. While recent research on simplified rotating laminar
base flows suggests that the linear inertial-wave mechanism is a key driver of swirl
fluctuations, it remains unclear whether this applies to the fully turbulent regime and
whether a linear method is sufficient for modelling. To address this issue, a turbulent
swirling pipe flow is considered using large-eddy simulations and phase-locked particle
image velocimetry, which are combined with mean-field resolvent analysis. A sound
agreement between the empirical and physics-based modes is found in terms of shape
and propagation velocity. The latter is particularly important for thermoacoustic time-lag
models. The comparison with a generic rotating pipe flow shows that the observed
swirl fluctuations are indeed driven by a linear inertial wave mechanism. The resolvent
framework is, then, exploited to further investigate the coupling and amplification
mechanisms in detail. It is discovered that the combined effects of inertia and strong shear
lead to very high amplification rates of the swirl fluctuations, explaining the high potential
of these structures to trigger combustion instabilities. The study further demonstrates the
capability of the resolvent to reveal the driving mechanisms of flow response structures
in highly complex turbulent flows, and it opens the path for efficient physics-based
optimization to prevent combustion instabilities.
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1. Introduction

Turbulent swirling flows are ubiquitous in both natural and technical flows. Their dynamics
are governed by a variety of flow instabilities and modes (Gallaire & Chomaz 2003).
Among other mechanisms, Coriolis-driven inertial waves, also known as Kelvin waves,
contribute significantly to the complex turbulent dynamics of swirling flows. These
rotational modes occur in geophysics, for example in the Earth’s atmosphere in the form
of Rossby waves and geostrophic winds as well as in the Earth’s oceans and lakes in the
form of geostrophic currents (Greenspan 1968). They are further hypothesized to occur
in the liquid outer core of the Earth (Aldridge & Lumb 1987) and in tidal interactions
of planets and stars (Ivanov & Papaloizou 2010). Inertial waves are also important in
the context of vortex breakdown. The critical state theory says that the breakdown takes
place if a supercritical-to-subcritical bifurcation occurs (Benjamin 1962). In the subcritical
state, standing vorticity waves are supported that ultimately leads to vortex breakdown.
These vorticity waves can be identified as inertial waves (Wang & Rusak 1996; Renac,
Sipp & Jacquin 2007). In gas turbines, inertial waves couple with velocity perturbations
between stator–rotor stages of compressors or turbines, which play a significant role
for noise generation and aeroelastic instabilities (Kerrebrock 1977; Golubev & Atassi
1998; Tam & Auriault 1998). Inertial waves are also suspected to trigger thermoacoustic
instabilities in swirl-stabilized combustion systems. These instabilities are caused by a
feedback between acoustic oscillations and heat release fluctuations. One mechanism that
closes this feedback loop is related to azimuthal velocity or ‘swirl’ fluctuations originating
at the swirler vanes of the mixing tube (Palies et al. 2011c). The cause and, particularly,
the propagation mechanism of the swirl fluctuations downstream of the swirler are still an
ongoing focus of research and will be the subject of this work.

In swirl-stabilized combustors, swirl fluctuations are generated via an
acoustic-convective mode conversion process (Palies et al. 2011a). When a planar acoustic
wave hits the swirl generator, the incoming pressure and velocity fluctuations interact with
the trailing edge of the swirler vanes, leading to an oscillation of the Kutta condition that
results in swirl fluctuations. This notion applies to both axial and radial swirl generators
(Palies et al. 2011b). The generated swirl fluctuations propagate through the mixing tube
before reaching the flame in the combustion chamber, ultimately leading to heat release
fluctuations (Komarek & Polifke 2010). The propagation velocity of the swirl fluctuations
between the swirler and the flame is a very important quantity as it determines the time lag
of the flame response and largely determines the stability of the entire combustion system
(Juniper & Sujith 2018).

Simple models for swirl fluctuations assume their phase and group velocity to be
equal to the bulk velocity. However, it has been observed that the actual group velocity
can deviate by approximately 50 % from the bulk velocity (Komarek & Polifke 2010;
Albayrak, Juniper & Polifke 2019). More complex models based on linearized Euler or
Navier–Stokes equations incorporate hydrodynamic waves such as inertial waves. These
models have been demonstrated to be much more accurate with regard to propagation
prediction (Albayrak, Bezgin & Polifke 2018; Albayrak et al. 2019). The reason for the
higher accuracy is that velocity fluctuations cannot be treated as passive scalars and the
dispersive nature of the inertial wave is crucial to be accounted for. However, these linear
models are based on simple flow fields under laminar conditions. Whether the inertial
waves are still relevant and whether they are the governing mechanism for the swirl
fluctuations under fully turbulent conditions remains unclear.

In the present study, swirl fluctuations are regarded as coherent fluctuations arising
from coherent flow structures (Gallaire & Chomaz 2003). In general, coherent structures

1000 A91-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

67
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.679


Linear amplification of swirl fluctuations

are ‘organized’, quasi-deterministic motions in turbulent flows with very characteristic
temporal scale and spatial shape (Hussain 1983). Under certain conditions, the fluctuations
of these coherent structures can be described with the linearized Navier–Stokes equations,
where the linearization is performed around the time-averaged (mean) flow field. The
conditions are met if the energy gain of the coherent structure is primarily governed by
the production through an energy exchange between the mean and the coherent field,
while the energy loss to higher harmonics due to nonlinearities is small (Barkley 2006;
Turton, Tuckerman & Barkley 2015; Symon, Illingworth & Marusic 2021). Linearized
mean field analysis is based on the conceptual separation of the turbulent flow field into
large-scale coherent fluctuations and small-scale incoherent, stochastic fluctuations viewed
as background turbulence. This notion was first proposed in the seminal work of Reynolds
& Hussain (1972), finding its formalization in the triple decomposition. Based on this
concept, the linearized Navier–Stokes equations have been used in a multitude of different
turbulent flow configurations. Numerous variants derived from this linear framework have
been established such as resolvent analysis (RA), which will be used in this paper to model
the swirl fluctuations.

In RA, the linearized Navier–Stokes equations are viewed as an input–output system, in
which the resolvent operator acts as a transfer function that relates an arbitrary forcing of a
linear, time-invariant system to its flow response in the frequency domain. A singular value
decomposition of the resolvent operator under a given norm provides the optimal forcing
and response modes (Farrell & Ioannou 2001; Sipp & Marquet 2013). These response
modes are supposed to represent self-sustaining, i.e. marginally or neutrally stable,
coherent structures (when forced) in an otherwise globally stable flow (when not forced),
which are either sustained through an intrinsic forcing due to the nonlinear turbulent
term (McKeon & Sharma 2010), or sustained through an external forcing (Jovanović
& Bamieh 2005). By that, coherent structures that are driven by resonant mechanisms,
i.e. isolated eigenmodes, as well as pseudoresonant mechanisms, i.e. a superposition of
a larger number of highly non-orthogonal eigenmodes, are found (Symon et al. 2018).
RA is distinguished between a local and global approach. The local RA is subject to the
parallel flow assumption. Therefore, coherent structures are assumed to be periodic and the
amplitude of the structures is assumed to stay constant in the main flow direction. Among
others, the local RA was successfully used to identify coherent structures in turbulent
channel flows (McKeon & Sharma 2010; Morra et al. 2019; Symon et al. 2021) and in
the boundary layer of turbulent airfoil flows (Abreu et al. 2021). In the global RA, no
parallel flow assumption is made, making it possible to identify convective instabilities and
coherent structures that grow and decay in space. This was demonstrated to work well, for
example, for a backward-facing step (Beneddine et al. 2016), in turbulent jets (Schmidt
et al. 2018), turbulent jet flames (Casel et al. 2022), turbulent swirling flows (Kaiser,
Lesshafft & Oberleithner 2019) and turbulent airfoil flows (Symon, Sipp & McKeon 2019).

Apart from the modelling capabilities of RA, a major benefit of the linear framework
unfolds when the complementary optimal forcing modes are considered. These can be
exploited for a detailed analysis of the physical mechanisms driving the coherent structures
(Pickering et al. 2020), and for identifying regions of high receptivity and sensitivity
(Brandt et al. 2011; Sipp & Marquet 2013; Qadri & Schmid 2017).

Since the RA of turbulent flows is based on the nonlinearly modified mean flow,
the mean–coherent and mean–incoherent interactions are implicitly accounted for. The
coherent–incoherent interactions, however, are a priori not known. They are either
assumed to be completely absorbed in the nonlinear forcing term, not requiring any closure
of the equations, or taken (partially) into account with a turbulence model, which is usually
based on a Boussinesq-like eddy viscosity. Several works have discussed the integration
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of such turbulence models and their importance for the validity of the linearized
Navier–Stokes equations (Reau & Tumin 2002; Rukes, Paschereit & Oberleithner 2016;
Morra et al. 2019; Pickering et al. 2021; Kuhn et al. 2022; Symon et al. 2023; Fan et al.
2024).

In the present work, the role of inertial waves in driving swirl fluctuations is investigated
at fully turbulent conditions. For this, we consider a turbulent swirling pipe flow
generated by a radial swirler as part of a swirl combustor. We conduct RA to model
the spatio-temporal structure and propagation velocity of the swirl fluctuations. As such,
the optimal frequency response of the swirling pipe flow in the mixing tube can be
characterized and directly compared with an experimentally measured response of the
system to acoustic forcing. In addition, we examine the physical mechanisms behind
swirl fluctuations using RA. We compare the results with those from a simplified
configuration to differentiate between inertial waves and shear-driven amplification
mechanisms. Combining the linearized methods and the experimental data, the open
questions pertaining to the validity of such a linear framework in turbulent conditions as
well as the relevance and potential control opportunities of swirl fluctuations in turbulent
swirling flows are discussed.

2. Set-up

In this section, a brief overview of the geometrical, numerical and experimental set-up
is given. Numerical large-eddy simulation (LES) was used to generate a spatially
well-resolved time-averaged mean velocity field that is required as an input for the linear
model, which would not be fully accessible in an experimental rig otherwise. In the
experimental set-up, the flow was acoustically excited and the time-averaged as well as
fluctuating velocity field of the flow response was measured with time-resolved particle
image velocimetry (PIV). The experimental measurements are used for validation of the
time-averaged velocity fields of the LES and for validation of the linearly modelled flow
response.

2.1. Geometrical set-up
The considered set-up is a modified generic swirl combustor consisting of a plenum,
swirler and mixing tube. A cutaway view of the LES set-up is shown in figure 1(a) and a
streamwise cut is shown in figure 1(b). The set-up consists of the straight end-section of
the upstream plenum, the radial swirl generator and the mixing tube. The swirl generator
was equipped with one central air inlet (indicated by the vertical dashed line) that creates
a non-swirling axial jet. The swirler comprises eight radial-tangential air inlets (indicated
by the horizontal dashed lines), which introduce the swirling flow with a geometric swirl
number (Leuckel 1967) of Sg = 0.7. The mixing tube has a diameter of D = 34 mm and,
with the extended exhaust tube, a length of L = 7.5D. The upstream plenum has a diameter
and axial length of 4.4D. The simulations and experiments were performed at isothermal
(T = 293 K) and ambient pressure (p = 101 325 Pa) operating conditions. The mass flow
rate was ṁ = 104 kg h−1, corresponding to a bulk flow velocity of U ≈ 26 m s−1. The
Reynolds number of the swirling pipe flow in the mixing tube with respect to its diameter
and bulk velocity was Re = UD/ν ≈ 58 000, with ν being the kinematic viscosity.

2.2. Large-eddy simulation
The LES was conducted with the compressible AVBP code from CERFACS and IFPEN.
The domain was discretized with approximately 31 million triangular cells. Time stepping
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Upstream plenum

Mixing tube

Swirler

Upstream plenum
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Mixing tube

4.4D

4.4D
7.5D

Tangential air inlet

Central air inlet

D = 34 mm

(b)

(a)

Figure 1. Large-eddy simulation set-up of the swirling pipe flow as (a) cutaway view and (b) streamwise cut
with the origin of coordinates at the upstream end of the mixing tube (x = 0) and at the mixing tube centreline
(y = 0). The inlet and outlet of the simulation domain are at the leftmost and rightmost boundary, respectively.

was performed using a two-step Taylor–Galerkin scheme (Colin & Rudgyard 2000), which
is third-order accurate in space and time. Subgrid turbulence was accounted for by using
the σ -model (Nicoud et al. 2011). At the inlet, a constant velocity profile with a mass
flow rate of ṁ = 104 kg h−1 was set; at the outlet, a constant pressure of 101 325 Pa.
Characteristic boundary conditions were applied at the inlet and outlet of the domain
(Poinsot & Lele 1992). The relaxation coefficient at the inlet was chosen as 104 to ensure a
close adherence to the prescribed mass flow value. According to Selle, Nicoud & Poinsot
(2004), this results in a reflection cutoff frequency for acoustic waves of approximately
800 Hz. The relaxation coefficient at the outlet was set to 103, resulting in an acoustically
transmissive boundary condition with a cutoff frequency of approximately 80 Hz. All
walls were assumed to be no-slip and adiabatic. The Courant–Friedrichs–Lewy number
was set to 0.75. The simulation was performed for a total time of 0.03 s, which corresponds
to approximately four mixing tube flow-through times. The axisymmetric mean flow field
was obtained by averaging along the temporal and the azimuthal direction. Only marginal
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changes of the numerical solution were found when repeating the simulation with an
increased mesh resolution of 101 million cells. The associated mean field changes had
negligible effects on the optimal response and forcing modes of the RA.

2.3. Experimental measurements
For validation of the LES mean flow and the linear model, two experimental datasets are
used. The primarily considered dataset of Bluemner, Paschereit & Oberleithner (2019) has
the exact same operating conditions and set-up as the LES, but with an added trombone
section upstream of the plenum. The LES provides the time- and phase-averaged velocity
fields of the axial and radial components in a streamwise section. Four loudspeakers
located upstream of the plenum were used for acoustically exciting the flow at various
frequencies and at a target amplitude of 10 % of the bulk velocity. This target amplitude
ensures a sufficiently large but still linear flow response, which was cross-checked with
prior microphone measurements. Two-dimensional (2-D), two-component, time-resolved
PIV was performed for measuring the velocity fields. For this, the mixing tube was made
of borosilicate glass for optical access and the light sheet was aligned with the mixing
tube’s centreline. The effective measurement region reached from x/D ≈ 1.35 to x/D ≈ 4.
The sampling frequency was 2027 Hz with a measurement time of approximately 1 s.
A second dataset of Müller et al. (2022) is considered to obtain the time- and
phase-averaged velocity fields of the azimuthal component in cross-wise sections, which
were not recorded in the first dataset introduced above. The second dataset has a very
similar set-up but with a shorter mixing tube length of 4.4D and a combustion chamber
attached downstream. In the second experiment, the operating conditions were at a slightly
lower mass flow rate with a bulk velocity of U ≈ 21 m s−1, corresponding to a Reynolds
number of Re ≈ 47 000. For further details of both experimental set-ups, the reader is
referred to the respective studies.

2.4. Time-averaged flow field and validation of the LES
The time-averaged flow field is briefly characterized and the accuracy of the LES is
evaluated with regard to the experimentally measured data. For the remainder of this
paper, the velocity vector u = (u, v, w)T is defined by the components of axial, radial
and azimuthal velocity, respectively. However, strictly speaking, we will show transverse
instead of radial and out-of-plane instead of azimuthal velocities for the sake of visuals.

Figure 2 shows the contours of time-averaged velocity for all three components in the
mixing tube of the LES, downstream of the central nozzle and the tangential swirler inlet
(indicated by the dashed line between the black dots). At the central nozzle, a strong
jet is evident for the axial component, introducing strong shear and velocity gradients.
This jet joins with the tangentially and radially introduced flow from the swirler, as
visible for the radial component. For the azimuthal component, a prominent region of
very high swirl can be observed. Figure 3 compares the mean axial and azimuthal velocity
profiles between LES and the two experiments for five different axial positions. The overall
agreement is good. However, the LES overestimates the diffusive behaviour of the flow, as
indicated by the increasingly homogeneous velocity profiles in the downstream direction.
The azimuthal component reveals a region of nearly solid-body rotation for |y/D| < 0.3,
which is almost fully developed at x/D = 2.2.

The discrepancies between LES and experiment may be attributed to a mismatch of
the pressure drop across the swirler. This pressure drop is critical since a false prediction
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Figure 2. Contours of the time-averaged LES flow field of the swirling pipe flow inside the mixing tube for
(a) axial velocity, (b) radial velocity and (c) azimuthal velocity.

can lead to an incorrect mass flow split between the central and tangential air inlet that
disagrees with the experiment. Even slight errors in this mass flow split can have a large
impact on the LES flow field inside the mixing tube. As mentioned in § 2.2, another LES
for more than triple the mesh resolution was performed, but only marginal changes for the
mean fields and negligible impact on the RA results were found. Due to these diminishing
returns, we did not see any substantial benefit in further pursuing an exhaustive LES study.

3. Data analysis

The data obtained from the experiment and simulation are primarily analysed pertaining
to the coherent structures that are associated with the swirl fluctuations. In particular, the
experimental PIV data require a systematic post-processing to be accessible for inspection
and physical interpretation.

The conceptual basis of the entire physics-based analysis is the triple decomposition.
The flow field q(x, t) = [u, p]T, consisting of the velocity field u = (u, v, w)T and the
pressure field p, is decomposed according to (Reynolds & Hussain 1972)

q = q + q̃ + q′′, (3.1)

where q is the time-averaged, q̃ is the coherent-periodic fluctuation and q′′ is the remaining
incoherent-stochastic fluctuation part. The time-averaged velocity field has already been
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Figure 3. Profiles of the time-averaged LES flow field of the swirling pipe flow for (a) axial velocity and
(b) azimuthal velocity compared against two experimental datasets (Bluemner et al. 2019; Müller et al. 2022)
and plug flow with solid-body rotation. Grey shaded area indicates region of approximate solid-body rotation
in the swirling pipe flow and coincides with the radial domain size of the plug flow with solid-body rotation.

discussed in § 2.4. The coherent part is going to be the main focus of interest in the
following. The stochastic part will be relevant for the linear modelling in § 4.

3.1. Phase average
To extract the coherent fluctuation part, a phase-averaging procedure is conducted. The
phase average of the velocity field 〈u(x, t)〉 is defined by

〈u(x, t)〉 = lim
N→∞

1
N

N∑
n=1

u(x, t + nτ), (3.2)

where τ is the characteristic period of the oscillation with the angular frequency
ω = 2π/τ , in which the frequency is related to the instantaneous phase angle ϕ of the
oscillation with ϕ ∝ ωt. In practice, the phase-averaging in (3.2) cannot be computed
continuously in t. Instead, the time signal is partitioned into segments, in which each
segment corresponds to a phase angle bin. The loudspeaker input signal is used for
a reference phase angle and a complete period of oscillation is divided into Nϕ = 16
phase bins. The PIV snapshots are sorted to each of these phase bins ϕj and averaged
subsequently, yielding a phase-averaged field 〈u〉j for each given phase angle bin. The
coherent fluctuation is retrieved by

ũj = 〈u〉j − u. (3.3)
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Finally, the coherent fluctuation is transformed into frequency space with

û = 1
Nϕ

Nϕ∑
j=1

ũj e−iϕj . (3.4)

This is done to filter out any higher harmonics and to obtain a defined spatial phase angle
ϕx = atan2(Im(û), Re(û)) required for computing the phase velocity in § 3.3.

3.2. Separation of acoustic and hydrodynamic response
The acoustic forcing of the loudspeakers in the upstream part of the test rig triggers a
general flow response that can be decomposed into an acoustic wave that travels at the
speed of sound and a hydrodynamic wave that travels at typical convective time scales.
For examination of the swirl fluctuations that travel at the order of the convective flow, we
are only interested in the hydrodynamic part and we disregard the acoustic part. It has to
be noted that an acoustic wave can be physically converted into a hydrodynamic wave as
briefly described in § 1 with regard to the swirler, and that the distinction between acoustic
and hydrodynamic response is a local property and therefore a function of space.

Due to the very low Mach number of Ma < 0.1 in the swirling pipe flow, the phase
velocity of the hydrodynamic modes cph,h is expected to be much lower than the phase
velocity of the acoustics cph,a, i.e. cph,h � cph,a. In turn, the axial wavenumber of the
hydrodynamics kx,h is much greater than the axial wavenumber of the acoustics kx,a, i.e.
kx,h 	 kx,a. This can be exploited when doing a spatial Fourier decomposition. Taking into
account that the axial length of the swirling pipe flow’s region of interest is significantly
lower than the acoustic wavelengths, we can assume that the acoustics are largely contained
in the wavenumber bin of kx = 0. This particular wavenumber is, thus, filtered in the
spectral domain. Additionally, all negative wavenumbers kx < 0 are filtered as well to
discard all upstream travelling waves. The remaining spectral coefficients are inverse
Fourier transformed to obtain the purely hydrodynamic part of the downstream travelling
coherent fluctuations.

3.3. Phase and group velocity
For fully characterizing the spatio-temporal structure of the coherent fluctuations
associated with the swirl fluctuations, their propagation and dispersion needs to be
examined. This is done by computing the phase and group velocity, reading

cph = ω

kx
(3.5)

and

cg = ∂ω

∂kx
, (3.6)

where we only consider the axial velocity component. For a given angular frequency
ω = 2πf , the angular axial wavenumber kx is in general a function of space, meaning
that both phase and group velocity are local quantities. For simplicity, we will focus on the
phase and group velocity on the centreline that is spatially averaged between x/D = 1.3
and 2.2. The axial wavenumber is computed with kx = ∂ϕx(x, y = 0)/∂x, where ϕx is the
axial phase angle of the axial component of the complex mode û, and the (·) operator
denotes the spatial average. To compute the group velocity, a power law is fitted to the axial
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wavenumber distribution and used to analytically calculate the group velocity according
to (3.6).

4. Linear modelling

The basis for modelling the coherent fluctuations are the linearized Navier–Stokes
equations in cylindrical coordinates, which can be derived as follows. The incompressible
Navier–Stokes equations are

∂u
∂t

+ (u · ∇)u + 1
ρ

∇p − ∇ · (ν∇u) = 0, (4.1a)

∇ · u = 0, (4.1b)

where ν is the kinematic molecular viscosity and ρ is the density. Inserting the triple
decomposition, (3.1), in (4.1), applying the phase average and subtracting the time average
leads to the Navier–Stokes equations of the coherent fluctuation (Reynolds & Hussain
1972):

∂ũ
∂t

+ (u · ∇)̃u + (̃u · ∇)u + 1
ρ

∇p̃ − ∇ · (ν∇ũ) = −∇ · u′′u′′̃ − ∇ · (̃u ũ − ũ ũ) + g,

(4.2a)

∇ · ũ = 0, (4.2b)

where u′′u′′̃ is the coherent component of the Reynolds stress tensor, which, according
to (3.3), is defined as u′′u′′̃ = 〈u′′u′′〉 − u′′u′′. Additionally, (̃u ũ − ũ ũ) is the nonlinear
term due to the interaction of the coherent structure with itself and its higher harmonics,
and g is an additionally introduced external forcing term. The term u′′u′′̃ on the
right-hand side of (4.2a) is a new unknown term, which is related to the classical
turbulence closure problem encountered in Reynolds-averaged Navier–Stokes equations.
In contrast to linearized analyses under laminar conditions, this term is exclusive to the
turbulent form of the linearized Navier–Stokes equations. Its treatment is described further
below.

4.1. Resolvent analysis
The linear model is based on a global RA, which is essentially an optimal response
analysis of the forced linearized Navier–Stokes equations, accomplished by a singular
value decomposition of the resolvent operator (Farrell & Ioannou 2001). The global RA
allows us to examine the spatial evolution of an optimal perturbation in the frequency
domain.

The starting point for deriving the global RA equations is the Navier–Stokes equations
of the coherent fluctuation, (4.2). Assuming the azimuthal direction to be homogeneous
and the mean flow to be axisymmetric, we substitute a normal mode ansatz into (4.2) with
harmonic fluctuations in θ and t,

q̃(x, r, θ, t) = q̂(x, r) ei(mθ−ωt) + c.c., (4.3)

in which q̂ is the complex amplitude function that describes the spatial mode shape, c.c.
is the complex conjugate, m ∈ Z is the azimuthal wavenumber and ω ∈ R is the angular
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frequency. The nonlinear terms and the external forcing are not set to zero, and both terms
are lumped into a general forcing term

f = −∇ · (̃u ũ − ũ ũ) + g. (4.4)

The general forcing term can then be interpreted as being intrinsic due to turbulence
(McKeon & Sharma 2010), being external due to an external excitation (Jovanović &
Bamieh 2005), or both. The resulting Navier–Stokes equations in the spectral domain then
read

−iωBq̂ + L(m, u)q̂ = [−(u′′ · ∇)u′′
∧

+ f̂ , 0]T, (4.5)

where B is a restriction operator and L is the 2-D linearized Navier–Stokes operator. Both
expressions are given in Appendix B.

The unknown term of the coherent Reynolds stress tensor on the right-hand side
of (4.5) is separated ad hoc into a purely dissipative, energy-draining and a residual
energy-donating part (Kuhn et al. 2022). The latter is absorbed in the remaining forcing
term and the former, dissipative part is modelled by a Boussinesq-like eddy viscosity
approach (Reau & Tumin 2002) in the form of

− u′′u′′̃ = 2νtS̃ + 2̃νtS − 2
3 k̃I, (4.6)

where S = 1/2(∇ + ∇T)u and S̃ = 1/2(∇ + ∇T)̃u are the mean and coherent strain rate
tensor, respectively, νt and ν̃t are the mean and coherent eddy viscosity, respectively, k̃ is
the coherent kinetic energy and I is the identity tensor. We assume a frozen eddy viscosity
(̃νt = 0) and neglect fluctuations of the turbulent kinetic energy (̃k = 0), and extract the
mean eddy viscosity from the mean Reynolds stresses (Tammisola & Juniper 2016) via a
least-squares fit (Ivanova, Noll & Aigner 2013):

νt = 〈−u′′u′′ + 2/3k′′I, S〉F

2〈S, S〉F
, (4.7)

where 〈·, ·〉F is the Frobenius inner product, u′′u′′ is the Reynolds stress tensor and k′′ is the
turbulent kinetic energy, both of the incoherent, stochastic part. To include the turbulence
model, the molecular viscosity ν is then substituted by an effective viscosity νeff = ν + νt
within the linearized Navier–Stokes operator L of (4.5). Figure 4 shows the eddy viscosity
obtained from the LES and normalized with the molecular viscosity. Subsequently, (4.5)
are discretized and recast as an input–output problem (Sipp & Marquet 2013),

û = R f̂ , (4.8)

where R = PT(−iωB − L)−1P is a linear operator acting as a transfer function in the
spectral domain that relates the input forcing f̂ to the output response û. The transfer
function R is called the resolvent operator. Here, PT is a restriction operator and P is a
prolongation operator that are required to exclude the continuity equation and the pressure
term from the forcing. The restriction operator can, furthermore, be used to restrict the
forcing to a subset of the spatial domain. The full expressions of these operators are given
in Appendix B.

One way to put (4.8) into effect is to conduct an input–output analysis. As such, the
forcing f̂ needs to be known explicitly. In the present case, there are two approaches
for specifying the forcing structure. The ‘upstream approach’ would specify the acoustic
forcing upstream of the swirler that requires to include the complete swirler geometry.
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Figure 4. Eddy viscosity normalized with kinematic molecular viscosity.

This would be formally simple, but numerically expensive since the full compressible
three-dimensional linearized equations would need to be considered. The ‘downstream
approach’ would specify the resulting forcing downstream of the swirler, in which
the forcing is assumed to be the result of an acoustic-convective mode conversion
process caused by the interaction of the acoustic wave with the swirler. This would be
numerically much more viable, although formally difficult due to uncertainties related
to the assumptions of how the mode conversion process takes place (e.g. the proposed
actuator disk model as in Palies et al. 2011a).

An alternative way to put (4.8) into effect is to conduct an RA, in which the resolvent
operator R itself is directly analysed. In the RA, (4.8) is treated as an optimization
problem, searching for the largest possible, marginally (or neutrally) stable flow response
to any forcing (in an energy norm sense) of an otherwise globally stable eigenvalue
spectrum (Symon et al. 2018). We will still presume any forcing to be hydrodynamic in
the sense that the acoustic excitation has generated significant hydrodynamic fluctuations
through an acoustic-convective mode conversion process inside the swirler as suggested
in Palies et al. (2011a). However, the exact forcing structure does not need to be known in
contrast to the input–output analysis. The parameter to maximize is the gain function σ 2

defined as

σ 2 = 〈û, û〉
〈 f̂ , f̂ 〉 , (4.9)

which can be rearranged to yield a singular value decomposition of the resolvent operator
(Farrell & Ioannou 2001; Sipp & Marquet 2013). Here, 〈·, ·〉 is the norm-inducing L2

inner product in complex vector space defined as 〈a, b〉 = ∫
V a∗ · b dV , (·)∗ denoting

complex conjugation. The right singular vectors form an orthonormal basis of optimal
forcing modes Φ̂ j. The left singular vectors are the orthonormal optimal response modes
Ψ̂ j that satisfy û = ∑

j Ψ̂ jσj〈Φ̂ j, f̂ 〉. The inner product 〈Φ̂ j, f̂ 〉 is the projection of the
actual forcing f̂ onto the optimal forcing modes Φ̂ j. We consider two different types of
forcings, namely volume forcing and boundary forcing. The volume forcing allows the
forcing to act on the entire domain. The boundary forcing allows the forcing only to act
at certain boundaries of the domain. In the present case, we will consider the boundary
forcing to act at the tangential air inlet only (see figure 1b). The squared singular values
quantify the optimal gain function, σ 2

j . They are ranked with respect to their magnitude.
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The gain magnitude is a measure for the importance of the related optimal forcing and
response modes. As a result, if the leading optimal gain, σ 2

1 , is of significantly higher
magnitude than all remaining gains and if the forcing f̂ does not show any preference in
projection towards the suboptimal forcing modes Φ̂ j>1, the resolvent is low-rank, and the
leading mode governs most of the response dynamics and all remaining suboptimal modes
can be neglected (Beneddine et al. 2016). The spatial shape of the Fourier mode û is then
well approximated by

û ≈ Ψ̂ 1σ1〈Φ̂1, f̂ 〉. (4.10)

4.1.1. Numerical implementation
To solve the singular value problem, the resolvent operator defined in (4.8) must be formed
by integrating the linearized equations in the computational domain. This is done by
the in-house linearized flow solver FELiCS (Kaiser et al. 2023a), which uses the finite
element package FEniCS (Alnaes et al. 2015). Second-order continuous Galerkin elements
are applied for both velocity and pressure. The singular value problem is solved using
ARPACK (Lehoucq, Sorensen & Yang 1998). The RA domain comprises the mixing tube
downstream of the swirl generator with the outlet at x/D = 4. The mean field is assumed
to be axisymmetric such that the computations can be performed on a 2-D domain. Section
7.1 will briefly discuss why this assumption is justified. Homogeneous Dirichlet conditions
for the velocity and homogeneous Neumann conditions for the pressure are imposed at all
walls and, in the case of volume forcing, at the inlet. For boundary forcing, homogeneous
Neumann conditions are set for both velocity and pressure at the inlet. At the outlet,
stress-free conditions are used. On the axis, compatibility conditions are required for the
limit r → 0 (Khorrami, Malik & Ash 1989), in which homogeneous Dirichlet conditions
are set for the radial and azimuthal velocity, and homogeneous Neumann conditions are
set for the axial velocity and pressure. At the walls, homogeneous Dirichlet conditions are
set for the velocity vector and homogeneous Neumann conditions for the pressure. As we
are interested in the response to planar acoustic forcing, only axisymmetric modes with
m = 0 are considered. A mesh convergence study showed that the domain is sufficiently
discretized with approximately 20 000 elements.

5. Inertial waves in a plug flow with solid-body rotation

In this section, we introduce ‘canonical’ inertial waves under the simplified conditions of
a plug flow with solid-body rotation through the lens of a global RA. The simplified case
is selected to demonstrate the basic properties of inertial waves in an isolated fashion, in
the absence of any other dominant modal or non-modal mechanism, posing the simplest
configuration that supports inertial waves. Furthermore, the capability of RA to model
inertial waves is demonstrated.

The considered set-up is sketched in figure 5, consisting of a circular pipe. To ensure
similarity of the base flows between the plug flow with solid-body rotation and the swirling
pipe flow, we introduce a new set of non-dimensional parameters referenced with respect
to x/D = 2.2 in the swirling pipe flow where the solid-body rotation is virtually fully
developed: the effective Reynolds number Reδ,eff = Uδ/(ν + νt) ≈ 500 and the simplified
swirl number S = Ωδ/U ≈ 2.5. The characteristic length scale δ = 0.6D is the radial
width of the approximate region of solid-body rotation, νt = 100ν is the area-weighted
average eddy viscosity and Ω = 3200 s−1 is the angular frequency of the solid-body
rotation around the centreline. All of these parameters are adopted in the rotating plug
flow case with the plug flow velocity set to the swirling pipe flow’s bulk velocity u = U,
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Figure 5. Set-up of the plug flow with solid-body rotation.
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Figure 6. Resolvent gain distribution for the global RA in the plug flow with solid-body rotation.

the azimuthal velocity set to w = Ωr, the pipe diameter set to δ and the walls set as slip
walls. A large axial domain length of L/δ ≈ 42 is considered and the same boundary
conditions for inlet, outlet and axis as described in § 4.1.1 are used.

5.1. Global resolvent analysis and phenomenological interpretation of inertial waves
Figure 6 displays the resolvent gain distribution as a function of non-dimensional
frequency f ∗ = f δ/U. Shown are the two leading modes that correspond to two different
branches we will designate as S1 and F1.

Figure 7 shows the spatial shape of the optimal response mode for the two leading
optimal response modes at the non-dimensional frequency f ∗ = 0.16 at an arbitrary phase
angle. The figure illustrates the existence of two modes that are distinguished from each
other by their large difference in wavelength. The short wavelength mode we will designate
as a slow-travelling wave belonging to the ‘S branch’, whereas the long wavelength mode
we will designate as a fast-travelling wave belonging to the ‘F branch’. Furthermore,
a number is designated to every mode on each branch separately with respect to the
resolvent gain rank in ascending order, i.e. S1 for the leading mode on the S branch
and F1 for the leading mode on the F branch. For both S1 and F1 modes, the vectors
indicate the axial and radial fluctuations. Since the modes are axisymmetric distributions
with m = 0, the vectors indicate the presence of vortex rings whose axes of rotation are
the azimuthal coordinate curves (i.e. curves with x = const., r = const.) that alternate in
the clockwise and counter-clockwise directions. The contours of azimuthal fluctuation ŵ
reveal an additional rotational motion that is superposed to these vortex rings whose axis of
rotation is the axial centreline (i.e. r = 0). Thus, the vortex rings are additionally spinning
around the centreline, alternating in the clockwise and counter-clockwise directions.
This spinning is induced by the Coriolis force because of the radial displacement of the
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ŵ/|ŵ|max
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Figure 7. Optimal response modes in the plug flow with solid-body rotation at f ∗ = 0.16 for the
(a) slow-travelling inertial wave S1 and (b) fast-travelling inertial wave F1, with vector arrows indicating axial
and radial fluctuations and contours indicating the respective velocity fluctuations.

fluid. Due to spatial quadrature of the imaginary counterpart (not shown in figure 7), the
vortices are, furthermore, convected downstream.

At low frequencies, the slow-travelling wave S1 has a higher gain than the fast-travelling
wave F1 (see figure 6). With increasing frequency, the gain of S1 decreases sharply and
falls below the gain of F1, which remains almost constant. However, it should be noted that
the gain curves depend on the domain length considered. This makes it difficult to draw
conclusions about which mode actually dominates the dynamics. This is attributed to the
arbitrary domain truncation in the axial direction, although the parallel flow is supposed
to be infinite in the x-direction. The shorter the domain, the lower the gain of F1 becomes
compared with S1 due to the larger wavelengths of F1 being increasingly more constricted.
This applies especially to F1 structures at low frequencies. In other words, when the flow
is homogeneous in the x-direction and the domain is arbitrarily truncated in this direction,
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Figure 8. Optimal response modes in the plug flow with solid-body rotation at f ∗ = 0.16 identified as inertial
waves of the (a) slow-travelling branch S1 and (b) fast-travelling branch F1.

this leads to ambiguous results concerning which mode dominates. Notwithstanding, this
does not diminish the capability of the global RA to model the leading inertial wave.
Moreover, the domain truncation will be less of a problem for the swirling pipe flow case,
where the flow is highly non-parallel and physically meaningful boundary conditions exist.

Figure 8 displays the magnitude of the S1 and F1 response modes for the axial,
radial and azimuthal velocity components. Comparing the mode shapes of the slow- and
fast-travelling modes, it can be observed that the mode shapes are very similar. For S1 (and
thus, F1), the axial component peaks on the centreline and exhibits additional subpeaks
at the walls. The radial and azimuthal components peak in between the centreline and the
walls. The axial fluctuations have the highest amplitudes, followed by the azimuthal and
radial fluctuations. The displayed mode shapes are very characteristic for axisymmetric
inertial waves (Albayrak et al. 2019).

The propagation behaviour of the two leading optimal response modes S1 and F1 is
presented in figures 9(a) and 9(b). The distribution of each mode’s non-dimensional phase
velocity c∗

ph = cph/U = 2πf ∗/k∗
x in figure 9(a) demonstrates the existence of slow- and

fast-travelling modes for the entire frequency range. The figure further shows that the
S1 and F1 are modes with a phase velocity lower and higher than the bulk velocity,
respectively. For both branches, the phase velocity is almost constant for the entire
frequency range and very weakly converging towards c∗

ph → 1 with increasing frequency.
Since all modes are only weakly dispersive, the group velocity in figure 9(b) has very
comparable trends as the phase velocity.

All of these observed features such as two-branch structure, dispersion relation and
spatial mode shape clearly indicate that the rotating plug flow supports inertial waves
(Gallaire & Chomaz 2003; Albayrak et al. 2019). The RA models these inertial waves
as forced convective modes. The conclusion that we have only inertial wave modes in
this type of flow can be further corroborated when conducting a linear stability analysis.
It provides an alternative view on how to model and interpret these coherent structures.
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Figure 9. Propagation of leading optimal response modes in the plug flow with solid-body rotation on the
centreline (y/D = 0) characterized by (a) phase velocity over frequency and (b) group velocity over frequency.

We decide here against a detailed global stability analysis since the spectrum is globally
stable and the convective amplifier behaviour is better captured by a local spatial stability
analysis. The results of this stability analysis are discussed in Appendix A. It reveals that
the inertial waves of S1 and F1 can also be viewed as convectively stable eigenmodes that
belong to a larger family of inertial waves on the S and F branch. In the local stability
framework, the S1 and F1 are the modes with the smallest spatial decay rate and thus can
be expected to be the most dominant response when forced. The results of the stability
analysis also agree very well with the observations in Albayrak et al. (2019), further
demonstrating that inertial waves are the only modes present in this type of flow.

6. Swirl fluctuations and inertial waves in the swirling pipe flow of a mixing tube

In this section, a global RA is applied to the swirling pipe flow with the aim to identify
the coherent structures behind the swirl fluctuations and the contribution of inertial
waves in the mixing tube set-up. The results are validated with experimentally measured
phase-averaged velocity fields. A special focus is put on the correct prediction of the
propagation speeds.

6.1. Global resolvent analysis and comparison with experimental measurements
In the following, the results from the global RA in the swirling pipe flow are presented
and compared with the phase-averaged fields from the experiment and the global RA of
the rotating plug flow case. Figure 10 shows, from top to bottom, the modelled coherent
fluctuations of the flow response at f ∗ = 0.16 based on the leading optimal response mode
from the global RA for (a) the plug flow with solid-body rotation (S1) and (b) the swirling
pipe flow, and (c) the measured flow response for the acoustically excited flow in the
experiment. On the left, the coherent axial velocity fluctuation for a fixed phase angle is
shown. On the right, the magnitude of the coherent azimuthal fluctuation is shown for the
three measured cross-sections.

The leading mode of the RA for the swirling pipe flow case (figure 10b) originates at
the swirler and shows a five-peak structure from wall to wall for the axial component and
a four-peak structure from wall to wall in the azimuthal component. The axial response
mode predicted from the RA agrees very well with the experimental measurement
shown in figure 10(c). Comparing the magnitude of the azimuthal response, also a close
correspondence can be seen. Deviations are noticeable close to the wall where fluctuations
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Figure 10. Flow response at f ∗ = 0.16 obtained by the (a) volume-forced RA of the plug flow with solid-body
rotation (S1), (b) boundary-forced RA of the swirling pipe flow, (c) phase average from the acoustically excited
experiments (Bluemner et al. 2019; Müller et al. 2022); first column, axial velocity fluctuation at arbitrary
phase angle; remaining columns, magnitude of azimuthal velocity fluctuation.

are very strong and more pronounced in the experiment than in the RA. Most importantly,
both the global RA and the experiments reveal only a single branch of waves that will be
shown to be travelling slower than the centreline velocity further below. The global RA of
the swirling pipe flow does not detect any fast-travelling waves in the subleading response
modes, and the phase-averaged fields from the experiment only reveal short wavelengths
as well.

The coherent fluctuations of the swirling pipe flow are now compared with the coherent
fluctuations of the plug flow with solid-body rotation. Figure 10(a) shows the leading S1
inertial wave of the plug flow with solid-body rotation at equal Reynolds number, swirl
number and frequency. Evidently, the axial wavelength is very similar to the swirling pipe
flow configuration. The rotating plug flow case features a three-peak structure from wall to
wall for the axial component and a two-peak structure from wall to wall in the azimuthal
component. Since the swirling pipe mean flow is not homogeneous in the x-direction, and
has large axial and radial velocity gradients in contrast to the rotating plug flow case, the
coherent structure is exposed to larger changes throughout the swirling pipe flow and the
radial distribution of the mode is altered including additional peaks close to the wall.

Figure 11 shows the magnitude of the spatial modes for the slow-travelling mode S1 to
further corroborate the similarities between the three considered cases. Within the region
of solid-body rotation (|y/D < 0.3|), the overall peak distribution of the modes is very
similar among all three cases. In the experiment, additional peaks in the wall region occur
that the RA is also able to capture. With regard to the magnitude ratios among the three
velocity components, the rotating plug flow predicts slightly different values compared
with the RA of the swirling pipe flow. In the swirling pipe flow, the relative magnitude
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Figure 11. Optimal response modes in the swirling pipe flow at x/D = 2.2 and f ∗ = 0.16, identified as inertial
waves of the slow-travelling branch S1, compared with optimal response mode in the plug flow with solid-body
rotation and with experiment.
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Figure 12. Propagation of the inertial waves in the swirling pipe flow on the centreline (y/D = 0) characterized
by (a) phase velocity (black curve shows power law fit) and (b) group velocity, both averaged between
x/D = 1.3 and 2.2.

of radial and azimuthal fluctuations is larger in relation to the axial fluctuation. This
agrees well with the experiment for the azimuthal component. For the axial component,
the RA of the swirling pipe flow underestimates the relative magnitude compared with
the experiment. Notwithstanding, the large similarities between both RA results and the
experiment clearly suggest that the coherent structure of the swirling pipe flow closely
resembles a typical slow-travelling inertial wave.

At last, we analyse the spatio-temporal structure of the inertial-wave-driven coherent
structures by examining their propagation through the mixing tube. Figure 12 compares
the phase and group velocity on the centreline for the RA-based swirling pipe flow modes
with the rotating plug flow modes as well as the experimental measurements spatially
averaged between x/D = 1.3 and 2.2. The phase and group velocity are normalized with
the centreline velocity that is likewise averaged between x/D = 1.3 and 2.2. Both phase
and group velocity of RA and experiment agree very well. Moreover, the phase and group
velocity are evidently lower than one and close to the velocity values of the rotating pipe
flow’s S1 branch, in major contrast to the velocity values of the F1 branch that are larger
than one (see figure 9). This demonstrates that in the RA as well as the experiment, only
inertial waves of the S branch are found.

In summary, we observe that the flow response measured in the forced experiments
consists only of slow-travelling inertial waves and no evidence for the existence
of fast-travelling waves are found. Likewise, the global RA selects the S branch
and reproduces the measured response fairly well regarding mode shape, amplitude
distribution and propagation velocity. The remaining deviations might be rooted in the
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fact that the RA predicts the optimally forced structures, while the experiments show the
response to a specific acoustic forcing.

7. Physical mechanisms of amplification

This section is dedicated to reveal the physical mechanisms that are linked with the
inertial-wave-driven swirl fluctuations observed in the swirling pipe flow. First, the role
and interpretation of boundary and volume forcing in RA is discussed. Second, the
coherent structures associated with the inertial waves are examined on a phenomenological
level, and the interplay and coupling between forcing and response is investigated. Third,
the coherent kinetic energy budgets are considered to uncover where and how the coherent
structures associated with the inertial waves are gaining energy. All of these discussions
concerning the swirling pipe flow case are conducted in juxtaposition to the rotating plug
flow case to highlight where the ‘classical’ inertial wave mechanism is at work and where
alterations occur.

7.1. Role of boundary, volume and optimal forcing
In § 6, RA was conducted assuming an optimal boundary forcing at the swirler. Boundary
forcing can be interpreted as a periodic perturbation that is introduced upstream at a
particular boundary from where its convective evolution is tracked throughout the domain.
This means that perturbations are coming from outside into the domain, which aligns
with our assumption that the hydrodynamic fluctuations are generated inside the swirler
through an acoustic-convective mode conversion process (Palies et al. 2011a). By that,
the convective amplification and decay of a locally introduced perturbation is considered.
Although this optimal boundary forcing does not necessarily correspond to a physically
realizable forcing, the dominance of one particular linear mechanism over all remaining
ones in the swirling pipe flow still leads to a very similar response mode when the
non-optimal true forcing is present. This dominance is indeed at hand in the swirling
pipe flow case and it can be determined by considering the gain distribution of the
volume-forced RA (see § 4.1 and Beneddine et al. 2016).

Figure 13 displays the gain distribution for the first three most amplified modes of the
volume-forced RA. There is a sufficiently large gain separation between the leading and
the subleading modes. Thus, the actual forcing structure to trigger the leading response
mode is only secondary since the actual response is directly proportional to the square
root of the gain value, σ , as stated in (4.10). In other words, the response is not sensitive
to the structure of the actually applied forcing and is heavily dominated by the leading
optimal response mode, even though the forcing may not be optimal or may not even
act in the entire domain. This explains why the response with arbitrary boundary forcing
at the swirler leads to a very similar result compared with the response with volume
forcing (which has not been shown yet for brevity). The gain separation, resulting in the
system being virtually agnostic to the actual forcing structure, further demonstrates that
the flow inside the swirler (and the associated mode conversion process) does not need to
be included in the linearized model and why the 2-D-based RA excluding the swirler is
justified.

On a physics level, the large gain separation is equivalent to an amplification mechanism
being significantly more dominant than any other in the flow (Symon et al. 2018).
In the swirling pipe flow, this mechanism is associated with the S branch of the inertial
wave mode. The acoustic forcing, which is non-optimal, may excite a number of different
response modes. However, due to its apparently high receptivity, only the S branch inertial

1000 A91-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

67
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.679


Linear amplification of swirl fluctuations

8
(×10–5)

σ2
1

σ2
j

σ2
2

σ2
3

6

4

2

0 0.05 0.10 0.15 0.20 0.25

f ∗

Figure 13. Resolvent gain distribution for volume-forced RA in the swirling pipe flow.
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Figure 14. Optimal forcing and response modes at f ∗ = 0.16 for the (a) plug flow with solid-body rotation
and (b) swirling pipe flow, with vector arrows indicating axial and radial fluctuations and contours indicating
azimuthal fluctuations.

wave is significantly amplified. This explains why the optimal response of the RA is a
good representation of the actual response to acoustic forcing measured in the experiment.

7.2. Forcing–response coupling and driving of the inertial wave
The interplay and coupling of forcing and response of the coherent structures associated
with the inertial waves is considered next to understand what drives these structures.

Figure 14(a) shows the optimal forcing and response modes at f ∗ = 0.16 for an arbitrary
phase angle for the plug flow with solid-body rotation. The vectors indicate axial and radial
fluctuations, and the contours represent azimuthal fluctuations. Evidently, the modes are
highly similar. This is the effect of a very weak convective-type non-normality, which leads
to a weak spatial separation and virtually zero phase shift of forcing and response (Chomaz
2005; Symon et al. 2018). In simple terms, the response has to be directly triggered by the
forcing since no convective instability mechanism amplifies the fluctuations.
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Figure 14(b) displays the optimal forcing and response modes for the volume-forced
RA in the swirling pipe flow. The picture is qualitatively similar to the rotating plug
flow case with virtually zero phase shift between the modes. However, the location of
highest magnitude in forcing and response is spatially strongly separated, in contrast to
the rotating plug flow case where it roughly coincides. This spatial separation indicates a
stronger convective-type non-normality than in the rotating plug flow (Chomaz 2005). The
forcing in the swirling pipe flow case resides mainly close to the swirler and is the strongest
in the azimuthal component. In the downstream direction, the forcing becomes weaker,
shifts towards the centreline and aligns with the region of approximate solid-body rotation,
|y/D| < 0.3. For the response, the largest amplitudes are reached further downstream and
are also mainly present in the region of approximate solid-body rotation. This is different
to the boundary forcing case, where high amplitudes also occur close to the walls (see
figure 10b).

Overall, the structure of the optimal forcing and response modes in the swirling pipe
flow show that inertial waves are most effectively amplified by azimuthal, i.e. swirl,
fluctuations at the swirler outlet. This explains why the RA using boundary forcing agrees
so well with the measured flow response, and more generally why inertial waves are
actually very effective in propagating swirl fluctuations, since the strong optimal forcing
close to the swirler indicates a high receptivity (Sipp & Marquet 2013).

7.3. Structural sensitivity of the resolvent gain
The coupling between forcing and response is now examined quantitatively by considering
the structural sensitivity tensor S of the gain σ 2 with regard to small perturbations of the
2-D linearized Navier–Stokes operator L, which is defined by (Qadri & Schmid 2017)

S = ∇Lσ = σ 2Re( f̂ ⊗ û∗), (7.1)

where ⊗ denotes the dyadic product defined by a ⊗ b = abT. The structural sensitivity
quantifies the effect of a localized perturbation of the linearized Navier–Stokes operator L
contained in the resolvent operator R that leads to a drift of the resolvent gain σ 2. In other
words, the structural sensitivity identifies the coupling between forcing and response that
causes this drift. A larger drift means the stronger the coupling must be. The structural
sensitivity provides a 3 × 3 tensor that reveals how each component of the optimal forcing
mode couples with each component of the optimal response mode.

Figure 15(a) shows each component of the structural sensitivity tensor of the rotating
plug flow case at f ∗ = 0.16 that characterizes the forcing–response coupling. The
forcing contribution is ordered row by row and the response contribution is ordered
column by column (first row, axial forcing; second row, radial forcing, etc.; first
column, axial response, etc.). Note the individual colour map range for each of the
sensitivity components and the normalization with the maximum component value of
the sensitivity tensor in the displayed domain extents. Evidently, the most dominant
forcing-response coupling occurs between axial forcing and axial response, Sxx: a forcing
in the momentum equation in the x-direction leads to a response in the velocity fluctuation
of the x-component. Essentially, these are the axial fluctuations of the aforementioned
inertial wave’s vortex rings that are driven through an axial forcing in the centreline
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Figure 15. Forcing–response coupling at f ∗ = 0.16 quantified with the structural sensitivity tensor S of the
resolvent gain for the (a) plug flow with solid-body rotation and (b) swirling pipe flow.

region. Another direct coupling occurs between azimuthal forcing and response (Sθθ ), as
already observed in figure 14(a). This direct coupling as well as the cross-coupling terms
Sxθ and Sθx are approximately one order of magnitude lower than Sxx. The remaining
components such as Sxr, Srx, Srθ and Sθr are lower but not necessarily negligible. The
former two describe a coupling between axial forcing and radial response (and vice versa)
whereas the latter two describe a coupling between radial forcing and azimuthal response
(and vice versa). Figure 15(b) displays the structural sensitivity for the swirling pipe
flow. The general picture is very similar. The strongest coupling occurs again in Sxx,
followed by an Sθθ and Sxθ as well as Sθx. The relative magnitudes of these components
are of the same order of magnitude as in the rotating plug flow. However, the other
cross-couplings Sxr, Srx, Srθ and Sθr are significantly increased by more than one order
of magnitude. This indicates a fundamental difference in the physical mechanisms behind
the forcing–response couplings in the swirling pipe flow, which are further explored in the
following.

A large value of Sxx is equivalent to a large sensitivity of the resolvent gain with
respect to changes of the linear operator component Lxx, per definition (see (7.1) and
Qadri & Schmid 2017). This component is mainly governed by convective and dissipative
terms (see (B1a)). This implies that small changes to the convective and dissipative
terms have a large impact on the resolvent gain. This also applies to the other main
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Figure 16. Momentum terms for axial convection in Lxx (left), axial-radial strain rate in Lxr (mid), and
radial-azimuthal strain rate plus Coriolis effect in Lθr (right) at f ∗ = 0.16 for the (a) plug flow with solid-body
rotation and (b) swirling pipe flow.

diagonal elements Lrr and Lθθ which also contain convective and dissipative terms.
Likewise, the off-diagonal elements of the sensitivity tensor are largely influenced by
the corresponding off-diagonal elements of L that contain terms associated with the
production of fluctuations. For example, Sθr quantifies the sensitivity of Lθr that contains
the Coriolis term (w/r)v̂ and the strain rate term (∂w/∂r)v̂ responsible for the production
of inertial waves.

The influence of selected terms in L on the structural sensitivity S is now further
corroborated by comparing their magnitudes between rotating plug flow and swirling
pipe flow. In the rotating plug flow in figure 16(a), the axial convection term contained
in Lxx is much more dominant than the radial-azimuthal strain rate plus Coriolis term
contained in Lθr. This explains the strong sensitivity in Sxx. Moreover, since there is
no axial-radial strain rate in Lxr, this term is zero. When examining the same terms for
the swirling pipe flow case in figure 16(b), the balance between these individual terms is
significantly different. The Coriolis and radial-azimuthal strain rate term are of the same
order of magnitude as the convection term. Additionally, the axial-radial strain rate term is
not zero any longer, and large in the region where the jets of the central hole and tangential
swirler merge. The significant increase of shear and Coriolis effects in the swirling pipe
flow explain the large increase in the off-diagonal sensitivity components observed in
figure 15(b). The strong shear being mainly located in the upstream region also explains
why many of the sensitivity components peak in that region.

Thus, the coherent fluctuations of the plug flow with solid-body rotation and swirling
pipe flow largely share similar coupling mechanisms, further demonstrating that the
identified response modes of the swirling pipe flow are indeed inertial waves. However,
the shear in the swirling pipe flow case, caused by the merging of central and radial jet,
increases the component-type non-normality (Marquet et al. 2009; Symon et al. 2018) and
intensifies the inertial wave amplification significantly compared with the rotating plug
flow case.

7.4. Energy budgets
At last, we examine parts of the coherent kinetic energy budget terms to reveal how and
where the inertial wave gains energy. For this, the energy source terms of the energy
budgets are considered, namely the production term and the additional source term due
to the forcing on the right-hand side of (4.5). These terms are readily obtained by
contracting the momentum equations of the spectral linearized Navier–Stokes equations,
(4.5), with the complex-conjugated spectral response mode û∗ and only retaining the real
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Figure 17. Coherent kinetic energy production and energy forcing term at f ∗ = 0.16 for the (a) plug flow
with solid-body rotation and (b) swirling pipe flow.

part (Symon et al. 2021). The production term is then given by

P = Re(û∗ · (û · ∇)u). (7.2)

It quantifies the energy transfer from the mean field to the coherent field due to linear
amplification mechanisms. The energy forcing term is given by

F = Re(û∗ · f̂ ), (7.3)

which quantifies the energy gain due to intrinsic (turbulent) and external forcing (see § 4.1).
The full expressions are provided in Appendix C.

Figure 17(a) shows the energy production P and energy forcing terms F normalized
with their summated maximum value (P + F)max for the rotating plug flow at f ∗ = 0.16.
The production peaks in the centre of the solid-body region and consists essentially of the
production due to the Coriolis force, ŵ∗v̂(w/r). Evidently, the production is just a very
small fraction of the total energy gain and the energy forcing term is the main contributor
(note the different ranges of the colour bars). Therefore, the forcing is vital for sustaining
the inertial wave. This is in line with the results of the sensitivity tensor, in which a Coriolis
term is active but comparably low, leading to a low forcing–response coupling.

For the swirling pipe flow, shown in figure 17(b), the contributions are switched. The
energy gain from production is increased significantly due to the strong shear at x/D ≈ 1
where the jets from the central hole and the swirler merge. The forcing distribution shows
that fluctuations are initially triggered close to the swirler. From there, they first pass
through the region of high shear where they are strongly amplified. Downstream, the
perturbations are convected as inertial waves as they pass through the region of solid-body
rotation. The amount of energy added by the forcing is comparably low. Thus, in the
swirling pipe flow case, the forcing inside the mixing tube is secondary in triggering and
driving the inertial waves.

In summary, the coherent structures of the plug flow with solid-body rotation and the
swirling pipe flow share similar coupling mechanisms. The mode selection process in
the swirling pipe flow is primarily governed by the immediate region close to the swirler
where the optimal forcing and, thus, receptivity (Sipp & Marquet 2013) of the inertial
waves is high. However, whereas in the rotating plug flow case the forcing is essential for
sustaining inertial waves, in the swirling pipe flow case, the shear-driven production is
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mainly responsible for providing energy. The lower magnitude of the energy forcing term
is related to a smaller projection of the response mode onto the forcing mode per definition
(see (7.3)) that suggests an increased component-type non-normality due to the additional
shear (Chomaz 2005; Symon et al. 2021).

8. Summary and discussion

In this study, the role of inertial waves in driving swirl fluctuations in a turbulent
swirling pipe flow was investigated. RA was conducted based on the turbulent mean
field taken from a LES. In addition, experimental measurements of the same set-up with
an acoustically excited flow were conducted and the flow response was extracted with
a phase-averaging procedure. Comparing the modelled RA response with the measured
response, a very similar spatio-temporal structure, i.e. mode shape and wave propagation,
was identified, especially in the centreline region where solid-body rotation occurs that
acts as a wave guide for the inertial waves (Gallaire & Chomaz 2003). Differences were
mainly detected regarding the relative magnitude ratios of the three velocity components,
which is probably related to a discrepancy between the actual forcing in the experiment
and the optimal forcing of the RA.

As a ‘canonical’ case for comparison with the swirling pipe flow, a plug flow with
solid-body rotation was considered. In this rotating plug flow, inertial waves occur in an
isolated fashion and, thus, can be fully characterized in the absence of any other physical
mechanism. We observe very weak convective-type non-normality for the rotating plug
flow case, with the leading RA response modes being very similar to the least decaying
linear stability eigenmodes of the slow- and fast-travelling branch (see Appendix A for
this discussion). Comparing the rotating plug flow to the swirling pipe flow case, the most
dominant modes of both cases share many similarities and the swirling pipe flow modes
are, therefore, verified to be inertial waves. However, in contrast to the rotating plug flow
case, the strong shear in some parts of the swirling pipe flow is identified to significantly
contribute to the amplification of the inertial waves due to a stronger component-type
non-normality. Moreover, in the swirling pipe flow case only slow-travelling branch waves
are found to occur both in the experiment and RA.

The origin of the swirl fluctuations at the swirler, the high receptivity to swirl
fluctuations closely downstream and the strong amplification due to the shear spatially
coincide. This spatial concurrence is responsible for the preferred selection of the inertial
waves over any other coherent structure, which makes the inertial waves particularly
dangerous for thermoacoustics. This is not necessarily the case for every type of
swirler/mixing tube configuration. The underlying mechanisms that feed the inertial wave
may be fundamentally different compared with other cases with less shear and, thus,
lower spatial amplification. For example, annular swirling flows that comprise swirlers
without a central hole but with a centrebody along the axis feature much less shear. These
types of flow probably resemble the rotating plug flow case much more and the annular
swirling flows select swirl fluctuations that travel faster than the bulk velocity (Palies et al.
2011b,c), which indicates inertial waves of the fast-travelling branch type. Therefore, the
fundamental difference of annular swirling flows with weak shear and swirling flows with
strong shear may be the root for the preferred selection of the slow-travelling branch in the
present swirling pipe flow case.

The high receptivity close to the swirler has important implications for flow control.
It suggests that inertial waves can be effectively manipulated by active flow control
with harmonic excitation in this region (Sipp & Marquet 2013). The proximity to
the walls would help in implementing devices such as zero-net-mass-flux actuators or
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fluidic oscillators. Furthermore, the strong coupling of the forcing in the x-direction with
the response in the x-direction demonstrates a high sensitivity to changes of the linear
operator, which translates to changes or modifications in the underlying mean flow (Brandt
et al. 2011; Qadri & Schmid 2017). In other words, minimizing the shear in the mean flow
could drastically reduce the amplitude of the inertial waves. The minimization could be
facilitated by a shape optimization of the central hole or swirler geometry.

9. Conclusion

In conclusion, this study has successfully identified and modelled the spatio-temporal
structure of inertial-wave-driven swirl fluctuations in a fully turbulent swirling pipe flow
using RA. The findings highlight the significance of these structures in the context
of swirling pipe flows and their relevance for thermoacoustic stability analysis using
a linearized mean field approach. The developed model represents a crucial step in
understanding the dynamics of swirl fluctuations and their potential impact on combustion
stability.

One noteworthy aspect for future research is the transition to an input–output analysis,
which holds promise for improving the agreement between the modelled and measured
responses by incorporating an actual, physically realizable forcing as an input parameter.
Additionally, the behaviour of the inertial-wave-driven swirl fluctuations as they exit the
mixing tube and enter the combustion chamber remains an open question, including their
distortion and changes in propagation speed, which warrants further investigation. In a
further step, the swirl fluctuations can be coupled with a flame model by introducing a
linearized reaction model (Kaiser et al. 2023b). This links hydrodynamic fluctuations with
heat release fluctuations, making it possible to assemble a flame transfer function purely
based on time-averaged fields.

The study’s resolvent framework reveals valuable insights into flow and thermoacoustic
stability. Due to the high shear and increased component-type non-normality of the
system, the amplification is larger than for inertial wave-driven swirl fluctuations that
are only governed by the Coriolis term. Furthermore, the increased convective-type
non-normality results in a spatial separation of the forcing and response modes, resulting
in a high receptivity and sensitivity near the swirler. This proximity to the swirler
emphasizes the relevance of swirl fluctuations in combustor flows and their critical role
in thermoacoustic interactions. However, the high receptivity and sensitivity also offer
opportunities for manipulation and flow control of inertial waves. The study suggests
that shape optimization could effectively reduce shear by altering the mean flow, thereby
mitigating a significant contributor to inertial wave amplification. Furthermore, periodic
actuation near the swirler, owing to its high receptivity, could be employed in closed-loop
control to directly reduce inertial wave amplitudes at critical thermoacoustic frequencies.
Thus, this research not only advances our understanding of inertial waves in swirling pipe
flows but also provides practical implications for improving flow stability and control in
combustion systems.
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Appendix A. Local linear stability analysis

A.1. Governing equations, normal mode ansatz and numerical implementation
Within the local linear stability analysis (LSA), the mean flow is assumed to be weakly
non-parallel in the streamwise direction and a normal mode ansatz for the perturbation
with harmonic fluctuations in x, θ and t is substituted in (4.2),

q̃(x, r, θ, t) = q̂(r) ei(αx+mθ−ωt) + c.c., (A1)

with the same naming convention as in § 4.1 and α ∈ C being the complex axial
wavenumber, where Re(α) = kx is the angular axial wavenumber and −Im(α) is the spatial
growth rate. Cancelling the nonlinear term (̃u ũ − ũ ũ), linearizing around the mean flow
and disallowing external forcing leads to the linearized Navier–Stokes equations in the
spectral domain:

−α2B2q̂ + iαB1q̂ + L1(ω, m, u)q̂ = [−(u′′ · ∇)u′′
∧

, 0]T, (A2)

where B1 and B2 are restriction operators and L1 is the one-dimensional (spatial)
linearized Navier–Stokes operator, which are all given in Appendix B.

For the unknown term of the coherent Reynolds stress tensor on the right-hand side
of (A2), the same eddy viscosity model is used as for the RA described in § 4.1. Then,
the equations can be discretized and recast as a quadratic eigenvalue problem. Reducing
the quadratic eigenvalue problem to a linear eigenvalue problem via a companion matrix
method (Khorrami et al. 1989) leads to the generalized eigenvalue problem of the form

L#
1q̂# = αB#q̂#, (A3)

where B# is the augmented restriction operator, L#
1 is the augmented one-dimensional

linearized Navier–Stokes operator and q̂# is the augmented eigenvector. The full
expressions for the operators and the augmented eigenvector are given in Appendix B.

Equation (A3) is solved numerically using a Chebyshev spectral collocation method
according to Khorrami et al. (1989), to which the reader is referred for a detailed
description of the numerical procedure. A number of 200 Chebyshev points is used to
ensure converged physical eigenmodes. On the axis, compatibility conditions are required
for the limit r → 0, in which homogeneous Dirichlet conditions are set for the radial and
azimuthal velocity, and the axial velocity and pressure are required to be finite. At the
walls, homogeneous Dirichlet conditions are set for the velocity vector and homogeneous
Neumann conditions for the pressure. As we are interested in the response to planar
acoustic forcing, only axisymmetric modes with m = 0 are considered. The eigenvalue
problem is implemented and solved with the standard EIG routine in MATLAB. Since the
local LSA is based on the weakly non-parallel flow assumption, the eigenvalue problem is
solved separately and independently for each axial position.
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Figure 18. Eigenvalue spectrum of the plug flow with solid-body rotation characterized by (a) growth rate over
phase velocity at f ∗ = 0.16, (b) growth rate over frequency, (c) phase velocity over frequency and (d) group
velocity over frequency.

A.2. Local linear stability analysis of plug flow with solid-body rotation
Figure 18(a) shows the eigenmode spectrum for the non-dimensional frequency
f ∗ = f δ/U = 0.16. Displayed is the non-dimensional spatial growth rate γ ∗ = −Im(αδ)

over non-dimensional phase velocity c∗
ph = cph/U = 2πf ∗/k∗

x with k∗
x = kxδ being

the non-dimensional axial wavenumber. The entire spectrum consists of convectively,
asymptotically stable, decaying modes with γ ∗ < 0. A two-branch structure can be
identified, dividing the spectrum into slow- (S) and fast- (F) travelling modes, similar
to the global RA results. For γ ∗ → 0, the slow- and fast-travelling modes have a phase
velocity that is lower and higher than the plug flow velocity, respectively. A number is
designated to every eigenmode on each branch separately, such that every number denotes
the mode order of least decaying modes in ascending order, e.g. S1 for the least decaying
mode on the S branch and so on. Without loss of generality, we focus only on the three
least decaying modes on each branch in the following, as highlighted in figure 18(a).

The change of growth rate over a range of frequencies is examined in figure 18(b). The
growth rate is virtually constant for each branch, with S1 being the exception becoming
less damped for higher frequencies. Comparing the slow modes with the fast modes of the
same mode number (i.e. S1 to F1 and so on), the F modes are always less damped. Overall,
the F1 mode is the most dominant, as its decay rate, i.e. magnitude of the negative growth
rate, is the lowest. This is due to the fact that the F1 mode has the longest wavelength and
is therefore least affected by viscous effects.
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Figure 19. Eigenmodes in the plug flow with solid-body rotation at f ∗ = 0.16 identified as inertial waves of
the (a) slow-travelling branch (S1, S2, S3) and (b) fast-travelling branch (F1, F2, F3), compared with optimal
response mode from global RA (RA S1 and RA F1).

The propagation behaviour of each mode is presented in figures 18(c) and 18(d). The
distribution of each mode’s phase velocity in figure 18(c) demonstrates the separation in
slow- and fast-travelling waves for the S and F branch, respectively. For each mode branch,
the phase velocity is almost constant for the entire frequency range. The leading modes S1
and F1 are the slowest and fastest modes, respectively. The group velocity in figure 18(d)
has very comparable trends as the phase velocity.

Figure 19(a) displays the magnitude of the S1 to S3 eigenmodes for the axial, radial and
azimuthal velocity components. Likewise, figure 19(b) displays the F1 to F3 eigenmodes.
Similar to the global RA results, the mode shapes of the slow- and fast-travelling modes
are almost identical. For S1 (and thus, F1), the axial component peaks on the centreline
and exhibits additional subpeaks at the walls. The radial and azimuthal components peak
in between the centreline and the walls. With increasing mode number, the number of
peaks from centreline to wall increases by one.

Furthermore, figures 18(c,d) and 19 compare the results of the global RA with the
results of the spatial LSA. Overall, it can be observed that the RA results are in very
good agreement with the LSA results. This finding demonstrates that the global RA and
local LSA reproduce the same type of coherent structure.

The presented results from the spatial local LSA also agree very well with the
observations in Albayrak et al. (2019), in which a temporal local LSA was performed
to investigate inertial waves in a uniform axial plug flow with solid-body rotation in a
cylindrical annulus with slip walls. The Reynolds number was Re = 18 000 and the swirl
number was S = 1.6, based on the hydraulic diameter and plug flow velocity. It was
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found that the inertial waves can be divided into two families of waves, in which one
family contains waves propagating slower and the other one those faster than the plug flow
velocity. With increasing frequency and mode number, the phase velocity approaches the
plug flow velocity. Furthermore, with increasing mode number, the decay rates increase
and the number of magnitude peaks increases by one for each velocity component. All of
these observations are in excellent agreement with the results of the present study, proving
that we indeed pick up inertial waves in our set-up, both using spatial local LSA and global
RA.

Appendix B. Linear operators of the resolvent and linear stability analysis

B.1. Resolvent analysis
For the global RA, the linearized Navier–Stokes equations in the spectral domain are

−iωBq̂ + L(m, u)q̂ = [−(u′′ · ∇)u′′
∧

+ f̂ , 0]T, (4.5)

with the linear operators

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A + ∂u
∂x

∂u
∂r

0
1
ρ

∂

∂x
∂v

∂x
A + ∂v

∂r
+ ν

r2 −2w
r

+ 2imν

r2
1
ρ

∂

∂r
∂w
∂x

∂w
∂r

+ w
r

− 2imν

r2 A + v

r
+ ν

r2
1
ρ

im
r

∂

∂x
∂

∂r
1
r

im
r

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B1a)

B =

⎡
⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎦ (B1b)

and

A = u
∂

∂x
+ v

∂

∂r
+ w

im
r

− ν

(
∂2

∂x2 + ∂2

∂r2 + 1
r

∂

∂r
− m2

r2

)
. (B2)

The resolvent operator is defined by

R = PT(−iωB − L)−1P, (B3)

with

P =

⎡
⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎦ . (B4)
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B.2. Linear stability analysis
The linearized Navier–Stokes equations of the local LSA in spectral domain read

−α2B2q̂ + iαB1q̂ + L1(ω, m, u)q̂ = [−(u′′ · ∇)u′′
∧

, 0]T, (A2)

with the linear operators

L1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
∂u
∂r

0 0

0 A1 + ν

r2 −2w
r

+ 2imν

r2
1
ρ

∂

∂r

0
∂w
∂r

+ w
r

− 2imν

r2 A1 + ν

r2
1
ρ

im
r

0
∂

∂r
+ 1

r
im
r

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B5a)

B1 =

⎡
⎢⎣

u 0 0 1
0 u 0 0
0 0 u 0
1 0 0 0

⎤
⎥⎦ , (B5b)

B2 =

⎡
⎢⎣

−ν 0 0 0
0 −ν 0 0
0 0 −ν 0
0 0 0 0

⎤
⎥⎦ (B5c)

and

A1 = −iω + w
im
r

− ν

(
∂2

∂r2 + 1
r

∂

∂r
− m2

r2

)
. (B6)

The linear eigenvalue problem of the reduced quadratic eigenvalue problem is

L#
1q̂# = αB#q̂#, (A3)

with the augmented eigenvector

q̂# = [
û v̂ ŵ p̂ αû αv̂ αŵ

]T
, (B7)

and with the modified operators

L#
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1
∂u
∂r

0 0 0 0 0

0 A1 + ν

r2 −2w
r

+ 2imν

r2
1
ρ

∂

∂r
0 0 0

0
∂w
∂r

+ w
r

− 2imν

r2 A1 + ν

r2
1
ρ

im
r

0 0 0

0
1
r

+ ∂

∂r
im
r

0 0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B8a)
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B# =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−iu 0 0 −i −ν 0 0
0 −iu 0 0 0 −ν 0
0 0 −iu 0 0 0 −ν

−i 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (B8b)

Appendix C. Energy production and energy forcing term of the coherent kinetic
energy budget equation

The explicit expression of the energy production term for m = 0 is

P = Re
(

û∗û
∂u
∂x

+ û∗v̂
∂u
∂r

+ v̂∗û
∂v

∂x
+ v̂∗v̂

∂v

∂r
+ ŵ∗û

∂w
∂x

+ ŵ∗v̂
∂w
∂r

+ ŵ∗v̂
w
r

)
. (C1)

The explicit expression of the energy forcing term is given by

F = Re(û∗ f̂ u + v̂∗ f̂ v + ŵ∗ f̂ w). (C2)

REFERENCES

ABREU, L.I., TANARRO, A., CAVALIERI, A.V.G., SCHLATTER, P., VINUESA, R., HANIFI, A. &
HENNINGSON, D.S. 2021 Spanwise-coherent hydrodynamic waves around flat plates and airfoils. J. Fluid
Mech. 927, A1.

ALBAYRAK, A., BEZGIN, D.A. & POLIFKE, W. 2018 Response of a swirl flame to inertial waves. Intl J. Spray
Combust. Dyn. 10 (4), 277–286.

ALBAYRAK, A., JUNIPER, M.P. & POLIFKE, W. 2019 Propagation speed of inertial waves in cylindrical
swirling flows. J. Fluid Mech. 879, 85–120.

ALDRIDGE, K.D. & LUMB, L.I. 1987 Inertial waves identified in the Earth’s fluid outer core. Nature
325 (6103), 421–423.

ALNAES, M.S., BLECHTA, J., HAKE, J., JOHANSSON, A., KEHLET, B., LOGG, A., RICHARDSON, C.,
RING, J., ROGNES, M.E. & WELLS, G.N. 2015 The FEniCS project version 1.5. Arch. Numer. Softw.
3 (100), 9–23.

BARKLEY, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75 (5), 750–756.
BENEDDINE, S., SIPP, D., ARNAULT, A., DANDOIS, J. & LESSHAFFT, L. 2016 Conditions for validity of

mean flow stability analysis. J. Fluid Mech. 798, 485–504.
BENJAMIN, T.B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14 (4), 593–629.
BLUEMNER, R., PASCHEREIT, C.O. & OBERLEITHNER, K. 2019 Generation and transport of equivalence

ratio fluctuations in an acoustically forced swirl burner. Combust. Flame 209, 99–116.
BRANDT, L., SIPP, D., PRALITS, J.O. & MARQUET, O. 2011 Effect of base-flow variation in noise amplifiers:

the flat-plate boundary layer. J. Fluid Mech. 687, 503–528.
CASEL, M., OBERLEITHNER, K., ZHANG, F., ZIRWES, T., BOCKHORN, H., TRIMIS, D. & KAISER, T.L.

2022 Resolvent-based modelling of coherent structures in a turbulent jet flame using a passive flame
approach. Combust. Flame 236, 111695.

CHOMAZ, J.M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu.
Rev. Fluid Mech. 37, 357–392.

COLIN, O. & RUDGYARD, M. 2000 Development of high-order Taylor–Galerkin schemes for LES. J. Comput.
Phys. 162 (2), 338–371.

FAN, Y., KOZUL, M., LI, W. & SANDBERG, R.D. 2024 Eddy-viscosity-improved resolvent analysis of
compressible turbulent boundary layers. J. Fluid Mech. 983, A46.

FARRELL, B.F. & IOANNOU, P.J. 2001 Accurate low-dimensional approximation of the linear dynamics of
fluid flow. J. Atmos. Sci. 58 (18), 2771–2789.

GALLAIRE, F. & CHOMAZ, J.M. 2003 Instability mechanisms in swirling flows. Phys. Fluids 15 (9),
2622–2639.

GOLUBEV, V.V. & ATASSI, H.M. 1998 Acoustic-vorticity waves in swirling flows. J. Sound Vib. 209 (2),
203–222.

1000 A91-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

67
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.679


J.S. Müller and others

GREENSPAN, H.P. 1968 The Theory of Rotating Fluids. Cambridge University Press.
HUSSAIN, A.K. 1983 Coherent structures - reality and myth. Phys. Fluids 26 (10), 2816–2850.
IVANOV, P.B. & PAPALOIZOU, J.C. 2010 Inertial waves in rotating bodies: a WKBJ formalism for inertial

modes and a comparison with numerical results. Mon. Not. R. Astron. Soc. 407 (3), 1609–1630.
IVANOVA, E.M., NOLL, B.E. & AIGNER, M. 2013 A numerical study on the turbulent Schmidt numbers in a

jet in crossflow. Trans. ASME J. Engng Gas Turbines Power 135 (1), 1–10.
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