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This paper extends the spurious factor analysis of Onatski and Wang (2021, Spurious
factor analysis. Econometrica, 89(2), 591–614.) to high-dimensional data with
heterogeneous local-to-unit roots. We find a spurious factor phenomenon similar
to that observed in the data with unit roots. Namely, the “factors” estimated by the
principal components analysis converge to principal eigenfunctions of a weighted
average of the covariance kernels of the demeaned Ornstein–Uhlenbeck processes
with different decay rates. Thus, such “factors” reflect the structure of the strong
temporal correlation of the data and do not correspond to any cross-sectional
commonalities, that genuine factors are usually associated with. Furthermore, the
principal eigenvalues of the sample covariance matrix are very large relative to
the other eigenvalues, creating an illusion of the “factors”capturing much of the
data’s common variation. We conjecture that the spurious factor phenomenon holds,
more generally, for data obtained from high frequency sampling of heterogeneous
continuous time (or spacial) processes, and provide an illustration.

1. INTRODUCTION

In a recent paper, Onatski and Wang (2021) (OW) describe a spurious factor
phenomenon observed in high-dimensional data with unit roots. When principal
components analysis (PCA) is applied to such data, the extracted “common
factors” apparently explain very large portions of variation even in situations where
the data are cross-sectionally independent. The time series plots of such estimated
“factors” resemble cosine waves corresponding to the principal eigenfunctions
of the covariance operator of a demeaned Brownian motion. The danger for an
empirical researcher is to take the high explanatory power of these waves for
evidence of common economic factors, and read too much into the associated
cyclical pattern.
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Figure 1. Distribution of the coefficients of AR(1) fitted series-by-series to the BGM data.

An early warning came from Uhlig’s (2009) discussion of Boivin, Giannoni, and
Mojon (2009) (BGM), who study a factor augmented VAR with factors extracted
from 245 quarterly macroeconomic series, for the period from 1980:1 to 2007:3.
As illustrated by Figure 1 (which reproduces Uhlig’s Figure 3), the data are
rather persistent. Uhlig (2009) generated cross-sectionally independent data with
similar high degree of persistence and compared the explanatory power of the
factors extracted from the original data with that of “factors” extracted from the so
generated factorless data. He found a similarity so striking (see Figure 2) that he
initially attributed the finding to a coding error.

OW provides a theoretical explanation of Uhlig’s finding under the assumption
that the data have unit roots. However, a cursory look at Figure 1 suggests
that the assumption of unit roots in all of the persistent macroeconomic series
is extreme. In fact, the null of the unit root is not rejected by the augmented
Dickey–Fuller test at 5% significance level only for about half of the 245 series
used in BGM. Furthermore, about a third of these non-rejections correspond to
“marginal” p-values in between 0.05 and 0.15. This supports an obvious idea that
it may be more appropriate to model typical macroeconomic data as a combination
of stationary, unit root, and local-to-unit root series with potentially different
localizing parameters. This paper extends OW’s analysis to such data.

Precisely, we consider N-dimensional data Xt, t = 1, . . . ,T, satisfying a near
integrated system

Xt −μX = ρ (Xt−1 −μX)+� (L)εt, (1)
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Actual data
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Artificial data

Figure 2. Factor contribution to the overall variance. Left panel: Actual BMG data. Right panel:
Factorless simulated data with similar autocorrelation properties.
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Figure 3. The probability “limits” of the first three spurious factor estimates. Local-to-unity
parameter uniformly distributed on [0,10].
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where ρ = diag {ρ1, . . . ,ρN} with ρj = exp
{−φj/T

}
and φj ≥ 0, μX is an arbitrary

deterministic vector, and εt are N-dimensional innovation vectors. The data may
have unit roots (φj = 0) and local-to-unit roots with different localizing parameters
(φj > 0). Furthermore, we allow the N ×N matrix lag polynomial �(L) to be such
that some of these unit or local-to-unit roots “cancel out” so that a portion of the
data may be not persistent, and cointegration is allowed.

Literature on near integrated systems (e.g., Phillips, 1988; Elliott, 1998) usually
considers a triangular form of the system, where the data generating process for
near integrated stochastic trends and the “cointegrating” relationships are modeled
explicitly as two sub-systems. We work with (1) because this form naturally
generalizes OW, which considers a special case of such a system with ρ equal
to the identity matrix IN .

Our focus is on the asymptotic properties of the principal components extracted
from data generated by (1) as both N and T go to infinity with unconstrained
relative rate of the divergence. In modern economic studies that deal with high-
dimensional data, PCA is often used as a dimension reduction technique, usually
justified by an assumption that the data have a common factor structure (see, e.g.,
Stock and Watson, 2016).

The PCA estimate, F̂k, of the kth factor is simply the normalized eigenvector of
the matrix

�̂ := (X − X̄)′(X − X̄)/N,

which corresponds to its kth largest eigenvalue λ̂k. Here, X = [X1, . . . ,XT ], and X̄ is
an N ×T matrix with all columns equal to 1

T

∑T
t=1 Xt. The eigenvalue λ̂k measures

the explanatory power of the kth factor, with
(
λ̂k/ tr�̂

)
× 100% expressing this

power in percentage terms.
Of course, system (1) does not necessarily generate data with common factors.

In fact, if �(L) is diagonal, then the data are cross-sectionally independent.
However, an empirical researcher would not know the data generating process
and may want to reduce the data dimensionality using PCA. The main point of
this paper is to show that, even in the absence of any common factors, such
PCA would reveal disproportionally large explanatory power of a few extracted
“factors.” The time series plots of these “factors” would reflect the form of the
principal eigenfunctions of the covariance operators associated with the series,
and would have nothing to do with a history of common shocks driving the data’s
dynamics. We call this phenomenon the spurious factor analysis.

To develop intuition, consider first the unit root case, studied in OW.
Then rows of matrix X can be viewed as discrete approximations to Brow-
nian motions. Hence, the sample covariance matrix �̂ can be interpreted as
a discrete analog of the covariance kernel (aka covariance function) of a
demeaned Brownian motion. Therefore, we would expect the eigenstructure
of �̂ to resemble that of the covariance kernel. The latter is characterized by
quickly decaying eigenvalues 1/π2,1/(2π)2,1/(3π)2, . . . , so that the principal
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ones appear to be disproportionally large, and cosine-wave eigenfunctions√
2cos(πx),

√
2cos(2πx),

√
2cos(3πx), . . . with x ∈ [0,1].

For the local-to-unit root case studied here, the rows of X can be viewed as
discrete approximations to OU processes with decay rates φj (e.g., Phillips, 1988;
Stock, 1994). Had these decay rates been the same for all j, the situation would
have been analogous to the unit root case with the Brownian motion replaced by
the Ornstein–Uhlenbeck (OU) process. Then we would have expected that the
PCA “factors” correspond to the eigenfunctions of the covariance kernel of the
demeaned OU process. As we show below, when φj’s are different, the spurious
factors correspond to eigenfunctions of a weighted average of the covariance
kernels of the demeaned OU processes with different decay rates. Such weighted
averages still have very large principal eigenvalues and wave-like eigenfunctions,
even though explicit formulas describing these eigenvalues and eigenvectors do
not exist.

Our strategy for the asymptotic analysis of the eigenstructure of �̂ in the
heterogeneous local-to-unit root case can be outlined as follows. First, we use an
extension of the Beveridge–Nelson decomposition to nearly integrated series (1)
to extract the “long-run component” of Xt, and define an analog of �̂, denoted as
�̃, that substitutes this long-run component for Xt. We show that the asymptotics
of the principal eigenvalues and eigenvectors of �̂ and �̃ are the same so that it is
sufficient to analyze the latter.

Then we split �̃ into deterministic and random parts: E�̃ and �̃ − E�̃,
respectively. We show that the asymptotics of the principal eigenstructure of �̃ and
E�̃ coincide. Finally, we show that there exist “approximating integral operators”
KN,T acting on the space of continuous functions on [0,1], such that, on one hand,
their nonzero eigenvalues coincide with those of E�̃/T2 and the correspond-
ing eigenfunctions, evaluated on the grid 1/T,2/T, . . . ,T/T , are eigenvectors of
E�̃/T2. On the other hand, the principal eigenvalues and eigenfunctions of KN,T

converge to those of a weighted average of covariance kernels of OU processes.
This yields our main results (see Theorem 1).

Anselone (1967) traces the technique of approximating integral operators by
matrices back to Fredholm, and the idea of mapping matrices to operators with
essentially same spectral properties to Nystrom. Our proof of the convergence
of KN,T (in Section 4) is based on the ideas of Anselone (1967). The key facts
to establish are: the pointwise convergence KN,T and the so-called collective
compactness of the sequence of operators

{
KN,T : N,T = 1,2, . . .

}
. We find these

techniques and ideas are very powerful and hope that they may be useful for
econometricians working with high-dimensional asymptotics beyond the analysis
of near integrated systems.

We conjecture that the spurious factor phenomenon holds, more generally, for
data obtained from high frequency sampling of heterogeneous continuous time
(or spacial) processes.1 In Section 5, we illustrate this conjecture by considering
PCA analysis of data that comes from high frequency sampling of continuous time
1We are grateful to Yixiao Sun for his stimulating questions regarding such a possibility.
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Markov chains with only two states, and low probabilities of switching between the
states. We show that the PCA analysis of such data delivers very similar results to
the PCA analysis of stationary data with local-to-unit roots. In addition, Section 5
discusses the spurious factor phenomenon in data with nearly explosive roots, and
data that may contain a growing number of genuine factors.

Before turning to the detailed analysis, let us briefly discuss some related
previous literature. Phillips (1998) provides an analytic foundation and intuitive
explanation for results of the type we find, in the context of spurious regression.
In particular, that paper explains that prototypical spurious regressions reproduce
Karhunen–Loève representation (based on the spectral decomposition of the
covariance kernels) of the relevant stochastic processes, such as Brownian motion
and diffusions. Gonzalo and Pitarakis (2021) study the asymptotic behavior of the
eigenvalues of the sample covariance matrix of vector auto-regression series with
strong or mild persistence, including the local-to-unit root case. They show that the
largest eigenvalues are disproportionally large even in the absence of any factors
in the series. They consider a special case of (1) with homogeneous localizing
parameter φ and �(L) = I. Zhang, Gao, and Pan (2020) find the probability limits
of the largest eigenvalues of the sample covariance matrix of high-dimensional
near unit root time series. They show that the asymptotic fluctuations around
these probability limits are Gaussian. Their assumptions about the data gener-
ating process are different from ours. In particular, their Assumption 3 restricts
relative rates of divergence of the cross-sectional and temporal dimensions of the
data whereas we leave these rates unrestricted. Furthermore, their Assumption 7
essentially assumes away the heterogeneity in the local-to-unit root localizing
parameters, asymptotically. Neither of the latter two papers discusses the behavior
of the eigenvectors.

Similar to PCA, cointegration analysis could be viewed as another dimension
reduction device, where a large system of persistent time series is dominated
by a smaller number of common components. Accordingly, we do observe the
counterpart of spurious factors, that is, spurious cointegration in large vector
auto-regressions. The possibility of spurious cointegration was noted in many
previous works. For recent exciting advances in this area, we refer the reader to
Bykhovskaya and Gorin (2022a, 2022b).

The remaining part of the paper is organized as follows: Section 2 describes
our setup and discusses assumptions that we make. Section 3 formulates and
discusses the main result, Theorem 1. Section 4 contains the proof of the theorem.
Section 5 considers various extensions and provides a more general discussion of
the spurious factors phenomenon. Section 6 concludes. Proofs of auxiliary results
are given in the Supplementary Material.

2. SETUP

Recall system (1):

Xt −μX = ρ (Xt−1 −μX)+� (L)εt, (1)
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where ρ = ρ(N,T) = diag {ρ1, . . . ,ρN} with ρj = exp
{−φj/T

}
and φj ≥ 0. We

suppress the dependence of ρ on N and T to make our notations simpler. Similarly,
the dependence of �(L) on N and T is tacitly assumed.

System (1) generalizes the setting in OW, which considers ρ = IN . Here, we do
allow some of ρj = 1 (hence, φj = 0). Without loss of generality, we may assume
that φj = 0 for j ≤ N1 and φj > 0 for j > N1. That is, the first N1 ≤ N components of
Xt are unit root processes. Let us denote the subvector of Xt that consists of these
components as X(1)

t and the complementary subvector as X(2)
t . Conformably to this

partition, let us partition μX into μ
(1)
X and μ

(2)
X . We impose no constraints on the

initial values X(1)
0 of the unit root components, and set X(2)

0 so that the process X(2)
t

is stationary (albeit with local-to-unity roots). Precisely,

X(2)
0 −μ

(2)
X =

∑∞
s=0

(
ρ(2)

)s
�(2) (L)ε−s,

where ρ(2) = diag
{
ρN1+1, . . . ,ρN

}
and �(2) (L) is the matrix lag polynomial that

consists of the last N −N1 rows of � (L) . A similar assumption on the initial values
of local-to-unity processes is made in Elliott (1999) (for a discussion of other initial
conditions, see Section 5).

Denote the ith component of the vector εt as εit, and let N × N matrices �k be
the coefficients of the matrix lag polynomial � (L) = ∑∞

k=0 �kLk. We make the
following assumptions.

Assumption A1. Random variables εit with i ∈ N and t ∈ Z are independent
and such that Eεit = 0, Eε2

it = 1, and 	4 = supi∈N,t∈ZEε4
it < ∞.

Note that εit may have different distributions, although they have to be inde-
pendent. Further, the normalization Eε2

it = 1 is not restrictive as it may be
accommodated by the matrix lag polynomial � (L).

Assumption A2. As N,T → ∞ at arbitrary relative rates,
∑∞

k=0 (1+ k)‖�k‖ =
O(1), where ‖·‖ denotes the spectral norm of a matrix.

Assumption A2 is implied by uniform (over N and T) one-summability of
filter �(L) (see Brillinger, 1981, Sect. 2.7). Such an assumption mildly restricts
temporal and cross-sectional dependence of �(L)εt, and is often used in the
analysis of finite-dimensional integrated series (e.g., Watson, 1994, Sect. 2.3).

Assumption A3. The effective rank of the long-run covariance matrix 
 =
� (1)� (1)′, defined as tr
/‖
‖, diverges to infinity as N,T → ∞ at arbitrary
relative rates.

The divergence of the effective rank implies the divergence of the usual concept
of rank. Hence, Assumption A3 implies that the number of stochastic trends in the
data has to diverge, possibly slowly, as N,T → ∞.

Further, Assumption A3 allows some of the local-to-unit roots in (1), or even
most of them, to cancel out. For example, suppose �(L) is diagonal with �(L)ii =
1−1{i > n}ρiL, where n → ∞, possibly slowly, as N,T → ∞. Then, for any i > n,
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the local-to-unit roots cancel out, and we have Xit = μXi + εit which are serially
uncorrelated processes. In this example, ‖
‖ = 1 and tr
 > n so that Assumption
A3 holds.

Our last assumption involves the covariance kernels of demeaned OU processes.
As mentioned in the introduction, the jth row of X can be viewed as a discrete
time approximation to an OU process with decay rate φj (unless a cancellation of
roots takes place). Such a process, let us call it xφj(s), s ∈ [0,1], is generated by a
stochastic differential equation

dxφj(s) = −φjxφj(s)ds+

1/2
jj dW(s),

with the standard Wiener process W(s). The scaling 

1/2
jj is the long-run standard

deviation of the jth component of �(L)εt. The initial observation xφj(0) is drawn
from the unconditional distribution of xφj(s).

As is well-known (e.g., Karatzas and Shreve, 1991, p. 358), the covariance
kernel of xφj(s) is given by 
jjRφj(s,t), where Rφj(s,t) = e−φj|t−s|/

(
2φj
)

. It is
straightforward to verify that the covariance kernel of the demeaned OU process
equals 
jjkφj(s,t) with

kφj (s,t) = Rφj (s,t)−
∫ 1

0
Rφj (s,t)ds−

∫ 1

0
Rφj (s,t)dt +

∫ 1

0

∫ 1

0
Rφj (s,t)dsdt. (2)

Define the weighted average kernel as

kF (s,t) =
∫ ∫

ωkφ (s,t)F (dω,dφ),

where F is a probability distribution on [0,∞)2 . We will interpret F as a weak
limit of FN—the empirical joint distribution of 
jj and φj, j = 1, . . . ,N. Let KF be
the integral operator, acting in the space C [0,1] of continuous functions on [0,1],
with kernel kF (s,t).

Assumption A4. FN weakly converges to F as N,T → ∞ at arbitrary relative
rates. The supports of FN and F belong to [0,ω̄]× [0,φ̄] for some 0 < ω̄,φ̄ < ∞.
The eigenvalues μ1 > μ2 >.. . of KF are simple.

The weak convergence of FN to F would happen almost surely if pairs
(

jj,φj

)
were drawn at random from the distribution F . However, such a random sampling
is not necessary for the convergence, and we leave its underlying mechanism
unspecified. The assumption of simple eigenvalues sharpens our results and makes
them easier to interpret. Furthermore, cases of multiple eigenvalues are not stable
under perturbations. Therefore, the potential loss of generality due to the exclusion
of such cases seems relatively minor to us.

The restriction on the supports of FN and F implies that 
jj ≤ ω̄ for all j. Note
that 
jj/(2π) equals the spectral density at frequency zero of the quasi-difference
Xjt − ρjXj,t−1. Hence, Assumption A4 requires that such spectral densities are
bounded. Furthermore, the assumption μ1 > μ2 >.. . implies that the distribution
F cannot be concentrated at ω = 0. In other words, a nontrivial fraction of the
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series have spectral densities at frequency zero that are bounded away from zero,
and hence, tr
 diverges to infinity at the same rate as N.

3. MAIN RESULT

Recall that λ̂k and F̂k denote the kth principal eigenvalue and eigenvector of matrix
�̂, respectively. Under necessary identifying restrictions (e.g., Bai and Ng, 2013),
one would normally interpret these quantities as a measure of the strength of the
kth factor in the data and an estimate of the kth factor itself. The following theorem
shows that, if the data are persistent, such an interpretation may be deceiving.

Theorem 1. Let N,T → ∞ at arbitrary relative rates. Then under Assumptions
A1–A4, for any fixed positive integer k,

(i)
∣∣∣F̂′

kdk

∣∣∣ P→ 1, where dk = (ϕk(1/T), . . . ,ϕk(T/T))/
√

T and ϕk(s) is the kth

principal eigenfunction of KF .

(ii) λ̂k/T2 P→ μk, where μk is the kth principal eigenvalue of KF .

(iii) λ̂k/ tr�̂
P→ μk/

∑∞
j=1 μj.

Although, in general, Theorem 1 does not give us closed form expressions for the
limits of the normalized principal eigenvalues and eigenvectors of �̂, its message is
similar to that of theorems in OW. First, the PCA may be spurious in the sense that
the estimated factors do not reflect cross-sectional linkages in the data. Second, the
principal eigenvalues of the sample covariance matrix decay fast (μk, k = 1,2, . . . ,
being summable (see, e.g., Gohberg and Goldberg, 1981, Sect. IV.4) and thus, fast
decreasing), creating an impression of high “explanatory” content of the “factors.”

In the special case where there is no heterogeneity in local-to-unit roots, so that
φi = φ > 0 for all i = 1, . . . ,N, the principal eigenvalues μk and eigenfunctions
ϕk(x) of KF admit explicit expressions (see Section A1 of the Supplementary
Material for a derivation)

μk = 1

φ2 +ω2
, ϕk(x) = hk (ak cos(ωkx)+bk sin(ωkx)+ ck), (3)

where the normalizing constant hk > 0 is chosen so that
∫ 1

0 ϕ2
k (x) = 1,

ak = 1

ωk
+ φωk

φ2 +ω2
k

− cosωk

ωk
,

bk = φ2

φ2 +ω2
k

− sinωk

ωk
,

ck = φ2

φ2 +ω2
k

(
cosωk −1

ωk
− sinωk

φ

)
,
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Figure 4. Proportions of the data variation “explained” by the first three spurious factors as functions
of φ̄.

and ωk is the kth smallest positive root of the equation

−2(ω2 +φ2)+ω(φ2 −2φ −ω2 −2ω2/φ)sinω+2(ω2 +φ2 +φω2)cosω = 0.

For example, if φ = 1, then the smallest three solutions of the latter equation are

ω1 ≈ 3.68, ω2 ≈ 6.39, and ω3 ≈ 9.53.

For comparison, in the pure unit root case (φ = 0), these roots degenerate to π ,
2π , and 3π .

In general, the local-to-unit roots may all be different, and the eigenfunctions
of the operators corresponding to the individual-specific kernels kφi(s,t) will not
match. Then the eigenfunctions of the operator KF corresponding to the weighted
average of the individual-specific kernels will not admit explicit expressions. How-
ever, intuitively, since all individual-specific kernels have similar eigenstructures,
we would still expect wave-like graphs of the eigenfunctions of KF with the waves’
frequency increasing as the corresponding eigenvalues decrease.

To illustrate Theorem 1 in such a general case, consider a simple scenario
where � (L) = IN so that F is concentrated at ω = 1, and where F is uniform
on

[
0,φ̄

]
with respect to the local-to-unity parameter φ. Figure 3 plots the

principal eigenfunctions ϕ1,ϕ2, and ϕ3, which we compute numerically for the
case, where φ̄ = 10. These eigenfunctions are similar to the principal eigenfunc-
tions

√
2cos(πx),

√
2cos(2πx), and

√
2cos(3πx) of the covariance kernel of the

demeaned Brownian motion.
Figure 4 shows the proportions of variation “explained” by the first three

spurious factors as functions of 0 ≤ φ̄ ≤ 10. For φ̄ = 0 (the unit root case),
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Table 1. Monte Carlo analysis of finite sample approximations based on
Theorem 1

√
EMC(1−|F̂′

kdk|)2 1
μk

√
EMC

(
λ̂k
T2 −μk

)2 ∑
μi

μk

√
EMC

(
λ̂k

tr�̂
− μk∑

μi

)2

T N k = 1 k = 2 k = 3 k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

20 20 0.228 0.379 0.501 0.568 0.440 0.453 0.219 0.240 0.289

20 50 0.110 0.181 0.298 0.373 0.354 0.371 0.146 0.180 0.209

20 100 0.039 0.090 0.185 0.289 0.306 0.331 0.111 0.140 0.162

20 1,000 0.007 0.019 0.039 0.186 0.236 0.278 0.045 0.046 0.073

50 20 0.217 0.354 0.463 0.475 0.344 0.294 0.220 0.234 0.249

50 50 0.110 0.174 0.263 0.296 0.247 0.224 0.149 0.179 0.189

50 100 0.032 0.065 0.132 0.218 0.190 0.179 0.111 0.131 0.141

50 1,000 0.003 0.007 0.013 0.093 0.100 0.106 0.040 0.048 0.049

100 20 0.209 0.349 0.464 0.516 0.321 0.278 0.239 0.238 0.258

100 50 0.090 0.160 0.264 0.295 0.222 0.207 0.154 0.178 0.189

100 100 0.036 0.068 0.128 0.211 0.165 0.152 0.116 0.136 0.140

100 1,000 0.003 0.006 0.010 0.072 0.066 0.066 0.038 0.046 0.048

1,000 20 0.219 0.363 0.470 0.451 0.290 0.245 0.239 0.243 0.256

1,000 50 0.094 0.163 0.260 0.282 0.210 0.172 0.162 0.188 0.179

1,000 100 0.036 0.068 0.124 0.193 0.149 0.137 0.117 0.140 0.142

1,000 1,000 0.003 0.005 0.008 0.061 0.051 0.046 0.037 0.046 0.045

Note: All reported numbers are square roots of the Monte Carlo means (denoted as EMC) of squared
deviations from the probability limits, divided by these limits.

these proportions equal 6/(kπ)2, k = 1,2,3, as in Theorem 1(iii) in OW. As φ̄

increases so that the local-to-unity roots may deviate from the unity further, the
proportion of variation “explained” by the first factor decreases. For φ̄ = 10, it
equals 38%, which brings it closer to the explanatory power of Uhlig’s first “factor”
(see Figure 2) extracted from factorless persistent, but stationary, data.

To see how well the probability limits described by Theorem 1 approximate
the corresponding finite sample quantities, we simulate N × T data from model
(1) with N = 20,50,100,1,000 and T = 20,50,100,1,000. We set μX = 0, ρ =
diag{e−φ1/T, . . . ,e−φN/T} with i.i.d. φi ∼ U[0,10], �(L) = IN , i.i.d. εit ∼ N (0,1),
and draw the initial values from the stationary distribution. We repeat the Monte
Carlo (MC) simulations 1,000 times.

Table 1 reports root mean squared deviations of |F̂′
kdk|, λ̂k/T2, and λ̂k/ tr�̂

from their probability limits, 1, μk, and μk/
∑

μi, respectively. These root mean
squared deviations are divided by the corresponding probability limits, so they are
expressed in relative terms. We see that the deviations quickly decrease when N
increases. They are much less sensitive to the magnitude of T. This is consistent
with Zhang, Pan, and Gao (2018) and Zhang, Gao, and Pan (2020) who established
(under different assumptions than ours) that the rate of convergence of λ̂k/T2 to
μk is N−1/2.
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Overall, the MC results suggest that the probability limits described in Theorem
1(i) and (iii) are reasonably well approximating the corresponding finite sample
quantities when N ≥ 50. The probability limit described in Theorem 1(ii) needs
larger N to provide finite sample approximations of similar quality. We leave a
formal analysis of the rates of convergence in our setting to future research.

4. PROOF OF THE MAIN RESULT

As mentioned in the introduction, our proof proceeds in several steps. First,
we introduce matrix �̃ by replacing X in the definition of �̂ with its long-run
component. Second, we derive a result analogous to Theorem 1 for eigenvalues
and eigenvectors of the deterministic part of �̃, E�̃. Next, we show that adding
the stochastic part of �̃ does not change the result, so that the theorem holds for
�̃. Finally, we prove that the result does not change when �̃ is replaced by �̂.

4.1. Step 1: Introducing �̃

Consider the following extension of the Beveridge–Nelson (BN) decomposition to
nearly integrated series (1),

Xt = Zt +�∗∗(L)εt, (4)

where

Zt −μX = ρ (Zt−1 −μX)+� (1)εt (5)

with

Z0 = X0 −�∗∗(L)ε0, (6)

and �∗∗(L) =∑∞
k=0 �∗∗

k Lk with

�∗∗
k =

k∑
j=1

(
ρk−j −ρk

)
�j −ρk

∞∑
j=k+1

�j.

The series Zt can be interpreted as the “long-run component” of Xt. When ρ = IN,

the decomposition reduces to the standard BN one.
To see the validity of (4), use a standard recursive substitution in (1) and (5) to

obtain

Xt −μX =
∑t−1

j=0
ρ j�(L)εt−j +ρ t (X0 −μX) and (7)

Zt −μX =
∑t−1

j=0
ρ j�(1)εt−j +ρ t (Z0 −μX) . (8)

Subtract (8) from (7), substitute ρ t (X0 −Z0) by ρ t�∗∗(L)ε0, and verify that the
right-hand side of the so obtained equality has form �∗∗(L)εt by matching the
coefficients on different lags of εt.
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We will show that the first-order asymptotic behavior of principal eigenvalues
and eigenvectors of �̂ is not affected when X is replaced by its long-run component
Z = [Z1, . . . ,ZT ]. Intuitively, most variation in the data with near unit roots
comes from the long-run component. Hence, one would expect an asymptotically
negligible effect on �̂ of such a replacement. This is similar to the unit root case,
studied in OW.

By definition, �̂ = MX′XM/N, where M is the projection matrix on the space
orthogonal to the T-dimensional vector of ones. In contrast to the unit root case,
MZ′ZM/N is not invariant with respect to the initial values Z0, which are not
eliminated by time averaging Z 
−→ ZM.

To handle the effect of the initial values, we will treat components of Zt

having unit root (first N1 components) and local-to-unity roots with positive local
parameters (last N −N1 components) separately. Denote the jth rows of � (L) and
Z as �j· (L) and Zj·, respectively. By assumption, for any j > N1, we have Xj0 −
μXj = ∑∞

i=0 ρ i
j�j· (L)ε−i. Using this in (6) yields Zj0 − μXj = ∑∞

i=0 ρ i
j�j· (1)ε−i.

Combining this with (8), we see that for any j > N1, Zjt is a stationary process with
the initial value Zj0 distributed according to its unconditional distribution.

The recursive substitution in the equation Zjt −μXj = ρj
(
Zj,t−1 −μXj

)+�j· (1)εt

yields

Zjt −μXj = �j· (1)
∑τ+t−1

i=0
ρ i

jεt−i +ρτ+t
j

(
Zj,−τ −μXj

)
(9)

for any τ ≥ 0 and j > N1. For τ ≥ 0 and j ≤ N1, let us define Zj,−τ as Zj0 −
�j· (1)

∑τ−1
i=0 ε−i. With this definition, representation (9) holds for any τ ≥ 0 and

all j = 1, . . . ,N, not only for j > N1.
Let us set τ = T3, and let ξ = [

ε1−T3,ε2−T3, . . . ,εT
]

. Finally, let Uj be a
T
(
T2 +1

)×T matrix such that

U′
j =

⎛
⎜⎜⎜⎜⎝

ρT3

j . . . ρ1
j ρ0

j 0 . . . 0

ρT3+1
j . . . ρ2

j ρ1
j ρ0

j . . . 0
...

...
...

...
. . .

...

ρT3+T−1
j . . . ρT

j ρT−1
j ρT−2

j . . . ρ0
j

⎞
⎟⎟⎟⎟⎠ .

With this notation, we have

Zj· = �j· (1)ξUj +ρT3

j

[
ρ1

j ,ρ
2
j , . . . ,ρ

T
j

](
Zj,−T3 −μXj

)+μXj�
′
T

for all j = 1, . . . ,N, where �T is a T-dimensional vector of ones. Using this
representation together with (4), we obtain

XM =
⎡
⎢⎣

�1· (1)ξU1
...

�N· (1)ξUN

⎤
⎥⎦M +XiniM +�∗∗ (L)εM, (10)
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14 ALEXEI ONATSKI AND CHEN WANG

where

Xini = ρT3 [
ρ1
(
Z−T3 −μX

)
, . . . ,ρT

(
Z−T3 −μX

)]+μX�′
T .

We will show that, under the assumptions of Theorem 1, the behavior of a few of
the largest eigenvalues and the corresponding eigenvectors of �̂ is asymptotically
equivalent to that of a few of the largest eigenvalues and corresponding eigenvec-
tors of

�̃ = 1

N
M

⎡
⎢⎣

�1· (1)ξU1
...

�N· (1)ξUN

⎤
⎥⎦

′⎡
⎢⎣

�1· (1)ξU1
...

�N· (1)ξUN

⎤
⎥⎦M. (11)

Therefore, our proof strategy is as follows. First, establish statements (i)–(iii) of
Theorem 1 for λ̃k,F̃k,�̃ instead of λ̂k,F̂k,�̂ and then, prove that replacing “tildes”
by “hats” does not affect the theorem’s validity. Here, λ̃k and F̃k denote the kth
principal eigenvalue and eigenvector of �̃ defined by (11).

4.2. Step 2: Analyzing E�̃

As we will see below, the asymptotic behavior of the principal eigenstructure of
�̃ is the same as that of its expected value, E�̃. In this subsection, we analyze this
expected value.

Write �̃ in the following form:

�̃ = 1

N

N∑
i=1

MU′
iξ

′� ′
i· (1)�i· (1)ξUiM. (12)

Taking expectation of the left- and right-hand sides yields

E�̃ = 1

N

N∑
i=1

�i· (1)� ′
i· (1)MU′

iUiM = 1

N

N∑
i=1


iiMU′
iUiM.

Let us denote the kth principal eigenvalue and eigenvector of E�̃ as μ̃k and ϕ̃k,

respectively. Further, denote the kth principal eigenvalue and eigenfunction of the
integral operator KF as μk and ϕk, and let dk = (ϕk(1/T), . . . ,ϕk(T/T))/

√
T . We

are going to show that, under Assumptions A1–A4, for any fixed positive integer
k, as N,T → ∞ at arbitrary relative rates,

μ̃k/T2 → μk, (13)∣∣ϕ̃′
kdk

∣∣→ 1, and (14)

μ̃k/ trE�̃ → μk/
∑∞

j=1
μj. (15)

To establish (13–15), we will prove that there exist approximating integral oper-
ators KN,T acting on the space of continuous functions on [0,1] equipped with
the supremum norm, ‖·‖sup, such that, on one hand, their principal eigenvalues
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and eigenfunctions converge to those of KF , and on the other hand, the nonzero
eigenvalues of KN,T coincide with those of E�̃/T2, and the corresponding eigen-
functions evaluated on the grid 1/T,2/T, . . . ,T/T are eigenvectors of E�̃/T2.
Convergences (13 and 14) immediately follow from the existence of such approx-
imating operators. Convergence (15) would follow from such an existence and an
auxiliary result (Lemma 4).

Let us now establish the existence of KN,T with the above described properties.
Consider the stationary (unscaled) OU process zφ(s), generated by stochastic
differential equation

dzφ(s) = −φzφ(s)ds+dW(s),

with the standard Wiener process W(s) and φ > 0. The initial observation zφ(0) is
drawn from the unconditional distribution of zφ(s). As follows from a discussion
in Section 2, the covariance kernel of demeaned zφ(s) is kφ(s,t).

Using (2), it is straightforward to verify that

kφ (s,t) = aφ (s,t)−bφ(t)−bφ(s)+ cφ ,

where

aφ (s,t) =
{(

e−φ|t−s| −1
)
/(2φ), if φ > 0,

−|t − s|/2, if φ = 0,

bφ(t) =
{(

2−φ − e−φt − e−φ(1−t)
)
/
(
2φ2

)
, if φ > 0

−t2/2+ t/2−1/4, if φ = 0,

cφ =
{

(e−φ −1+φ −φ2/2)/φ3, if φ > 0,

−1/6, if φ = 0.

Let

Uφ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−T2φ e
−
(

T2+1/T
)
φ

. . . e
−
(

T2+1−1/T
)
φ

...
...

...
e−φ/T e−2φ/T . . . e−φ

1 e−φ/T . . . e−φ(T−1)/T

0 1 . . . e−φ(T−2)/T

...
...

. . .
...

0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note thatE�̃ = 1
N

∑N
k=1 
kkMU′

kUkM, where Uk = Uφk . The following elementary
lemma is established in Section A2 of the Supplementary Material.

Lemma 2. For any φ ≥ 0,(
MU′

φUφM
)

ij
/T = kφ,T

(
si,tj

)
(16)
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with si = i/T, tj = j/T, and

kφ,T (s,t) = ωφ1,Taφ (s,t)−ωφ2,T
(
bφ(t)+bφ(s)

)+dφ,T − eφ,T (s,t),

where aφ and bφ are as defined above, whereas ωφ1,T , ωφ2,T , dφ,T, and eφ,T (s,t)
are as follows. For φ > 0,

ωφ1,T = 2φ

T
(
1− e−2φ/T

), ωφ2,T = 2φ2

T2
(
1− e−2φ/T

)(
eφ/T −1

),

dφ,T = 2e−φ/T
(
e−φ −1

)+T
(
1− e−2φ/T

)−T2
(
1− e−φ/T

)2

T3
(
1− e−2φ/T

)(
1− e−φ/T

)2 ,

and

eφ,T (s,t) = 2− e−φs − e−φt

T2
(
1− e−2φ/T

) − 2(eφ/T −1−φ/T)

T(1− e−2φ/T)(eφ/T −1)
+ e−2φT2

(
e−φ(t+s)

T
(
1− e−2φ/T

)
−

(
e−φs + e−φt

)(
1− e−φ

)
T2
(
1− e−2φ/T

)(
eφ/T −1

) +
(
1− e−φ

)2

T3
(
1− e−2φ/T

)(
eφ/T −1

)2

)
.

For φ = 0,

ω01,T = ω02,T = 1,

d0,T = (T +1)(2T +1)/
(
6T2

)−1/2, and

e0,T (s,t) = (s+ t)/(2T) .

Now consider integrated kernels

kN,T (s,t) =
∫

ωkφ,T (s,t)dFN (ω,φ) and

kF (s,t) =
∫

ωkφ (s,t)dF (ω,φ),

where FN (ω,φ) is the empirical distribution function of the pairs (
ii,φi), i =
1, . . . ,N, and F (ω,φ) is its weak limit as N → ∞. By definition, kF (s,t) is the
kernel of the operator KF .

Let KN,T be approximating operators, acting on x ∈ C [0,1] as follows:

(
KN,Tx

)
(s) = 1

T

∑T

j=1
kN,T

(
s,tj
)

x(tj)

= 1

T

∑T

j=1

∫
ωkφ,T

(
s,tj
)

x(tj)dFN (ω,φ) .

Identity (16) implies that the eigenvalues of E�̃/T2 are also eigenvalues of
KN,T . Moreover, if x(t) is an eigenfunction of KN,T, then (x (t1), . . . ,x (tT))′ is an
eigenvector of E�̃/T2. Vice versa, if (x1, . . . ,xT)′ is an eigenvector of E�̃/T2, then
there exists x ∈ C [0,1] with x

(
tj
) = xj such that x is an eigenfunction of KN,T . In
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other words, the spectral properties of KN,T and E�̃/T2 are essentially the same,
even though the first is an operator in C [0,1] while the second is a T ×T matrix.

It remains to prove that the principal eigenvalues and eigenfunctions of KN,T

converge to those of KF . As discussed in the introduction, we need to establish the
pointwise convergence KN,T → KF and the collective compactness of the sequence
of operators

{
KN,T : N,T = 1,2, . . .

}
(see Anselone, 1967 and the discussion

below for the definition of collective compactness). After establishing these
facts, we show how they imply the convergence of the principal eigenvalues and
eigenfunctions.

4.2.1. Pointwise Convergence. Let x be an arbitrary function from C [0,1] .
In this subsection, we show that

∥∥KN,Tx−KFx
∥∥

sup → 0 as N,T → ∞ at arbi-
trary relative rates. In other words, ∀ε > 0 ∃N0,T0 s.t. ∀N > N0 and T > T0,∥∥KN,Tx−KFx

∥∥
sup < ε. Without loss of generality, we assume that ‖x‖sup ≤ 1.

Let φε > 0 and N2 > 0 be such that∫
1{φ ≥ φε}dF (z,φ) < ε/(3ω̄) and

∫
1{φ ≥ φε}dFN (z,φ)< ε/(24ω̄)

for all N > N2, where 1{·} denotes the indicator function. For any ε > 0, the
displayed inequalities can be satisfied by choosing φε sufficiently large because
F (z,φ) is a cumulative distribution function of a proper probability distribution
and FN weakly converges to F as N → ∞. In fact, by Assumption A4, any φ

from the supports of F (z,φ) and FN (z,φ) satisfies φ ≤ φ̄. In particular, we can
set φε = φ̄. However, in this subsection, we do not need to (and will not) assume
the boundedness of the supports of F (z,φ) and FN (z,φ) with respect to φ.

Let fε (φ) be a continuously differentiable function of φ ≥ 0, such that |fε (φ)| ≤
1, fε (φ) = 1 for φ ≤ φε, and fε (φ) = 0 for φ ≥ 2φε . We split the difference KN,Tx−
KFx into three parts, P1 +P2 +P3, where

P1 = −
∫ 1

0

∫
ω(1− fε (φ))kφ (s,t)x(t)dF (ω,φ)dt,

P2 = 1

T

∑T

j=1

∫
ω(1− fε (φ))kφ,T

(
s,tj
)

x(tj)dFN (ω,φ),

and P3 = KN,Tx−KFx−P1 −P2 is the remainder. To analyze P1 and P2, we need
the following lemma. Its proof is in Section A6 of the Supplementary Material.

Lemma 3. Kernels kφ (s,t) and kφ,T (s,t) are bounded by absolute value uni-
formly in φ ≥ 0. Specifically,

sup
φ≥0

max
s,t∈[0,1]2

∣∣kφ (s,t)
∣∣≤ 1 and sup

φ≥0
sup
T≥1

max
s,t∈[0,1]2

∣∣kφ,T (s,t)
∣∣≤ 8.
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Lemma 3 implies that, for all N > N2,

|P1| ≤
∫ 1

0

∫ ∣∣ω(1− fε (φ))kφ (s,t)x(t)
∣∣dF (ω,φ)dt

≤
∫

ω̄1{φ ≥ φε}dF (ω,φ) < ω̄ε/(3ω̄) = ε/3. (17)

Similarly, for all N > N2,

|P2| ≤ 1

T

∑T

j=1

∫ ∣∣ω(1− fε (φ))kφ,T
(
s,tj
)

x(tj)
∣∣dFN (ω,φ)

≤
∫

8ω̄1{φ ≥ φε}dFN (ω,φ) < 8ω̄ε/(24ω̄) = ε/3. (18)

To establish the pointwise convergence of KN,T to KF, it remains to prove that
|P3| < ε/3 for all sufficiently large T and N.

Consider the following decomposition:

P3 = y1(s)+ y2(s)+ y3(s),

where

y1(s) =
∫ 1

0

∫
ωfε (φ)kφ (s,t)x(t)d(FN (ω,φ)−F (ω,φ))dt,

y2(s) =
∫ 1

0

∫
ωfε (φ)

(
kφ,T (s,t)− kφ (s,t)

)
x(t)dFN (ω,φ)dt,

and

y3(s) = 1

T

∑T

j=1

∫
ωfε (φ)kφ,T

(
s,tj
)

x(tj)dFN (ω,φ)

−
∫ 1

0

∫
ωfε (φ)kφ,T (s,t)x(t)dFN (ω,φ)dt.

Note that fε (φ)kφ (s,t), viewed as a function of s is Lipschitz with the Lipschitz
constant that depends on ε, but not on φ and t. Therefore, function y1(s) is Lipschitz
on s ∈ [0,1] with the Lipschitz constant that does not depend on N. Furthermore, for
each fixed s ∈ [0,1], it converges to 0 as N → ∞ because FN weakly converges
to F and

∫ 1
0 ωfε (φ)kφ (s,t)x(t)dt is a bounded continuous function on (ω,φ) ∈

[0,ω̄]× [0,∞) . Therefore, y1(s) converges to zero uniformly on [0,1].
Next, the uniform convergence of y2(s) to zero would follow from the conver-

gence

sup
φ≥0

sup
s,t∈[0,1]2

∣∣fε (φ)
(
kφ (s,t)− kφ,T (s,t)

)∣∣→ 0 (19)

as T → ∞. To see that (19) holds, consider the decomposition
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fε (φ)
(
kφ (s,t)− kφ,T (s,t)

)
= fε (φ)

(
1−ωφ1,T

)
aφ (s,t)− fε (φ)

(
1−ωφ2,T

)(
bφ(t)+bφ(s)

)
+ fε (φ)

(
cφ −dφ,T

)+ fε (φ)eφ,T (s,t) .

As follows from the proof of Lemma 3,
∣∣aφ (s,t)

∣∣ and
∣∣bφ(t)+bφ(s)

∣∣ are bounded
uniformly in φ ≥ 0. On the other hand, 1 −ωφ1,T → 0, 1 −ωφ2,T → 0, and cφ −
dφ,T → 0 uniformly on φ ∈ [0,2φε] (the support of fε). Hence, the first three terms
on the right-hand side of the above display converge to zero uniformly in φ,s,
and t.

For the last term, we have (see a derivation in Section A5 of the Supplementary
Material)

∣∣fε (φ)eφ,T (s,t)
∣∣≤ 4

T
. (20)

Hence,
∣∣fε (φ)eφ,T (s,t)

∣∣→ 0 uniformly over s,t ∈ [0,1]2 and φ ≥ 0.
Turning to the analysis of y3(s), let us define, similar to Anselone (1967, p. 9),

bounded linear functionals

ψx =
∫ 1

0
x (t)dt and ψTx = 1

T

∑T

j=1
x (j/T) .

Functionals ψT converge to ψ uniformly on totally bounded subsets of C [0,1] .
We have

y3(s) = −
∫

ω
(
(ψ −ψT)gsφ

)
dFN (ω,φ),

where

gsφ(t) = fε (φ)kφ,T (s,t)x(t).

The family of functions
{
gsφ(t) : s ∈ [0,1],φ ≥ 0

}
is bounded and equicontin-

uous. Hence, by Arzela–Ascoli lemma, this family forms a totally bounded set
in C [0,1] . Therefore, (ψ −ψT)gsφ converges to zero uniformly over (s,φ) ∈
[0,1]× [0,∞) . This yields the uniform convergence of y3(s) to zero.

To summarize, functions y1,y2,y3 converge to zero as N,T → ∞ at arbitrary
relative rates. Hence, there exist N3,T0 such that for all N > N3 and T > T0,
‖P3‖sup < ε/3. Combining this with (17) and (18), and setting N0 = max {N2,N3},
we see that, for all N > N0 and T > T0,

∥∥KT,Nx−KFx
∥∥

sup < ε, which finishes the
proof of the pointwise convergence KT,N → KF .

4.2.2. Collective Compactness. The set of operators
{
KN,T : N,T = 1,2, . . .

}
is called collectively compact if the subset

{
KN,Tx : N,T = 1,2, . . . , ‖x‖sup ≤ 1

}
of C [0,1] is totally bounded. Recall that a set S is totally bounded if and only
if for any ε > 0, there exists a finite set {x1, . . . ,xm}, such that for any x ∈ S,
min1≤i≤m ‖x− xi‖ < ε.
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We have KN,Tx = K(1)
N,Tx+P2, where(

K(1)
N,Tx

)
(s) = 1

T

∑T

j=1

∫
ωfε (φ)kφ,T

(
s,tj
)

x(tj)dFN (ω,φ),

with fε (φ) and P2 defined in the previous subsection. As we have seen above,
‖P2‖sup < ε/3. Therefore, to establish the collective compactness of KN,T, it is

sufficient to show that ∀ε, the set
{

K(1)
N,Tx : N,T = 1,2, . . . , ‖x‖sup ≤ 1

}
is totally

bounded. But such total boundedness follows from the Arzela–Ascoli lemma and
the fact that functions gφ,t(s) = fε (φ)kφ,T (s,t)x(t) are bounded and equicontinu-
ous for φ ≥ 0 and t ∈ [0,1] .

4.2.3. Convergence of the Principal Eigenvalues and Eigenfunctions. Recall
that we denote the eigenvalues of KF as μ1,μ2, . . . and corresponding eigenfunc-
tions as ϕ1,ϕ2, . . . . By Assumption A4, these eigenvalues are simple so that μ1 >

μ2 >.. . . Denote the eigenvalues of KN,T as μ1,NT ≥ μ2,NT ≥ . . . and corresponding
eigenfunctions as ϕ1,NT,ϕ2,NT, . . . . Let us show that, for any fixed k, μk,NT → μk

and ϕk,NT → ϕk, the latter convergence being in C [0,1] .2

Take k = 1. Since μ1,NT , N,T = 1,2,3, . . . forms a bounded sequence, there
exists a converging sub-sequence μ1,NjTj → m1. By Lemmas 2.5 and 2.6 of
Anselone (1967), ϕ1,NjTj → y1 and m1,y1 is an eigenvalue–eigenfunction pair for
KF . On the other hand, it must be the case that m1 = μ1. Indeed, if m1 < μ1, then
by Theorem 2.2 of Anselone (1967), μ1 must belong to the resolvent set of KF,

which is not true. Hence, any convergent sub-sequence of μ1,NT , N,T = 1,2,3, . . .
converges to μ1 and the sub-sequence of corresponding eigenfunctions converges
to ϕ1. Therefore, μ1,NT → μ1 and ϕ1,NT → ϕ1. Similar convergences for any
positive integer k follow by mathematical induction.

This finishes our proof of equations (13) and (14). To establish (15), we need
the following lemma. Its proof is in Section A6 of the Supplementary Material.

Lemma 4. For any fixed positive integer J,∑T

j=J+1
μ̃j ≤ T2 tr
/(9JN)

for all sufficiently large T. Furthermore, for any fixed positive integer k, there exists
a constant Ck > 0 such that

μ̃k ≥ CkT2 tr
/N (21)

for all sufficiently large T.

Convergence (15) now follows from (13), Lemma 4, and the fact that, by
Assumption A4, tr
/N ≤ ω̄ < ∞. Indeed, in light of (13), it is sufficient to prove
that trE�̃/T2 →∑∞

j=1 μj. Consider an arbitrary ε > 0, and let Jε ∈Z+ be such that

2The eigenfunctions are defined up to sign, and we assume that it is chosen so that
∫

ϕk,NT (s)ϕk(s)ds > 0.
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Jε > ω̄/(3ε) and
∑∞

j=Jε

μj < ε/3.

Then, by Lemma 4 and the fact that tr
/N ≤ ω̄ < ∞, we have for all sufficiently
large T∑T

j=Jε+1
μ̃j/T2 < ε/3.

Therefore, for such T, we have∣∣∣trE�̃/T2 −
∑∞

j=1
μj

∣∣∣≤ ∣∣∣∑Jε

j=1
μ̃j/T2 −

∑Jε

j=1
μj

∣∣∣+2ε/3.

On the other hand, by Lemma 4, the first term on the right-hand side is smaller
than ε/3 for all sufficiently large T. Hence, we have proven the convergence
trE�̃/T2 → ∑∞

j=1 μj, and thus, have established (15). Note that this proof does
not rely on (21), which will be used later.

4.3. Step 3: Proof of Theorem 1 for λ̃k,F̃k,�̃

Given equations 13–15, Theorem 1 with λ̂k, F̂k, and �̂ replaced by λ̃k, F̃k, and �̃

would follow from∣∣∣F̃′
kϕ̃k

∣∣∣ P→ 1, λ̃k/μ̃k −1
P→ 0, and λ̃k/ tr�̃ − μ̃k/ trE�̃

P→ 0. (22)

Let us now prove the convergencies in (22).
We start from the case k = 1, and then extend the analysis to k > 1 using

mathematical induction. Let us represent F̃1 in the form

F̃1 =
∑T

q=1
αqϕ̃q =

∑T−1

q=1
αqϕ̃q,

where the latter equality holds because F̃1 must be orthogonal to lT/
√

T = ϕ̃T,

which is an eigenvector of �̃ and of E�̃ corresponding to the zero eigenvalue (we
remind the reader that lT denotes the T-dimensional vector of ones). The above
representation and the definition (12) of �̃ yield

λ̃1 =
∑T−1

r,q=1
αrαq

1

N

∑N

i=1
ϕ̃′

rA
(i)ϕ̃q, (23)

where

A(i) = MU′
iξ

′� ′
i· (1)�i· (1)ξUiM.

Let K be a fixed positive integer. Represent λ̃1 in the form λ̃11 + λ̃12 + λ̃13, where

λ̃11 =
∑K

r,q=1
αrαq

1

N

∑N

i=1
ϕ̃′

rA
(i)ϕ̃q, (24)

λ̃12 =
∑T−1

r,q=K+1
αrαq

1

N

∑N

i=1
ϕ̃′

rA
(i)ϕ̃q, (25)
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and

λ̃13 = 2
∑K

r=1

∑T−1

q=K+1
αrαq

1

N

∑N

i=1
ϕ̃′

rA
(i)ϕ̃q. (26)

Note that

λ̃1 ≤
(
λ̃

1/2
11 + λ̃

1/2
12

)2
. (27)

To analyze λ̃1i, we need the following elementary lemma, established in Section
A7 of the Supplementary Material.

Lemma 5. Suppose Assumption A1 holds. Let a,b,c,d and A,B be any determin-
istic T-dimensional vectors and N ×N matrices, respectively. Then

E
(
a′ε′Aεb

)= a′b trA, and (28)∣∣Cov
(
a′ε′Aεb,c′ε′Bεd

)− (a′c
)(

b′d
)

tr
(
A′B

)− (a′d
)(

b′c
)

tr (AB)
∣∣

≤ 2	4

∑Nε

i=1

∑T

t=1
|AiiBiiatbtctdt|, (29)

where at,bt,ct, and dt are the tth components of vectors a,b,c, and d.

Consider the inner sum in the expression (24) for λ̃11. Equation (28) of Lemma 5
yields

E
1

N

∑N

i=1
ϕ̃′

rA
(i)ϕ̃q = 1

N

∑N

i=1
ϕ̃′

rMU′
iUiMϕ̃q tr

(
� ′

i· (1)�i· (1)
)

= ϕ̃′
r

(
1

N

∑N

i=1

iiMU′

iUiM

)
ϕ̃q

= ϕ̃′
rE�̃ϕ̃q = μ̃rδrq.

Further,

Var

(
1

N

∑N

i=1
ϕ̃′

rA
(i)ϕ̃q

)
= 1

N2

∑N

i=1

∑N

j=1
Cov

(
ϕ̃′

rA
(i)ϕ̃q,ϕ̃

′
rA

(j)ϕ̃q
)

.

Equation (29) of Lemma 5 yields

Cov
(
ϕ̃′

rA
(i)ϕ̃q,ϕ̃

′
rA

(j)ϕ̃q
)

≤ϕ̃′
rMU′

iUjMϕ̃rϕ̃
′
qMU′

iUjMϕ̃q tr
(
� ′

i· (1)�i· (1)� ′
j· (1)�j· (1)

)
+ ϕ̃′

rMU′
iUjMϕ̃qϕ̃

′
qMU′

iUjMϕ̃r tr
(
� ′

i· (1)�i· (1)� ′
j· (1)�j· (1)

)
+2	4 ‖UiMϕ̃r‖

∥∥UiMϕ̃q

∥∥∥∥UjMϕ̃r

∥∥∥∥UjMϕ̃q

∥∥∑N

s=1

(
�is (1)�js (1)

)2
.

Section A8 of the Supplementary Material proves the following inequality:

sup
ρi∈[0,1]

‖UiM‖2 ≤ sup
ρi∈[0,1]

trMU′
iUiM ≤ 2T2. (30)
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This inequality and the above bound for Cov
(
ϕ̃′

rA
(i)ϕ̃q,ϕ̃

′
rA

(j)ϕ̃q
)

yield

Cov
(
ϕ̃′

rA
(i)ϕ̃q,ϕ̃

′
rA

(j)ϕ̃q
)≤ 8T4

((
�i· (1)� ′

j· (1)
)2 +	4

∑Nε

s=1

(
�is (1)�js (1)

)2
)

and

Var

(
1

N

∑N

i=1
ϕ̃′

rA(i)ϕ̃q

)
≤ 8T4

N2

∑N

i=1

∑N

j=1

[(
�i· (1)� ′

j· (1)
)2 +	4

∑N

s=1

(
�is (1)�js (1)

)2] .

We have

∑N

i=1

∑N

j=1

∑Nε

s=1

(
�is (1)�js (1)

)2 =
∑Nε

s=1

∑N

i=1
(�is (1))2

∑N

j=1

(
�js (1)

)2

=
∑N

s=1

((
� ′ (1)� (1)

)
ss

)2 ≤ tr
[(

� ′ (1)� (1)
)2
]

= tr
[(

� (1)� ′ (1)
)2
]

.

Therefore,

Var

(
1

N

∑N

i=1
ϕ̃′

rA
(i)ϕ̃q

)
≤ 8T4

N2
(1+	4) tr

[(
� (1)� ′ (1)

)2
]

(31)

= 8T4

N2
(1+	4) tr

[

2
]= o(1)

T4

N2
(tr
)2 ,

where the last equality follows from Assumption A3 because tr
2 ≤ ‖
‖ tr
. By
Chebyshev’s inequality,

λ̃11 =
∑K

r=1
α2

r μ̃r +oP(1)T2 tr
/N. (32)

Next, consider λ̃12. The definition of A(i) yields

λ̃12 = 1

N

∑N

i=1

(∑T−1

r=K+1
αr�i· (1)ξUiMϕ̃r

)2

.

By the Cauchy–Schwarz inequality,

λ̃12 ≤ 1

N

∑N

i=1

∑T−1

r=K+1
α2

r

∑T−1

r=K+1
(�i· (1)ξUiMϕ̃r)

2

≤ 1

N

∑N

i=1

∑T−1

r=K+1
(�i· (1)ξUiMϕ̃r)

2 .

Lemma 5 yields

E
1

N

∑N

i=1

∑T−1

r=K+1
(�i· (1)ξUiMϕ̃r)

2 =
∑T−1

r=K+1
μ̃r (33)
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and

Var

(
1

N

∑N

i=1

∑T−1

r=K+1
(�i· (1)ξUiMϕ̃r)

2
)

= 1

N2

∑N

i,j=1

∑T−1

r,q=K+1
Cov

(
(�i· (1)ξUiMϕ̃r)

2 ,
(
�j· (1)ξUjMϕ̃q

)2)

≤ 2

N2

∑N

i,j=1

∑T−1

r,q=K+1
‖UiMϕ̃r‖2 ∥∥UjMϕ̃q

∥∥2
[(

�i· (1)� ′
j· (1)

)2 +	4
∑T

s=1
�2

is (1)�2
js (1)

]
.

Note that∑T−1

r,q=K+1
‖UiMϕ̃r‖2

∥∥UjMϕ̃q

∥∥2 ≤ tr
(
MU′

iUiM
)

tr
(
MU′

jUjM
)≤ 4T4,

where the latter inequality follows from (30).
Therefore,

Var

(
1

N

∑N

i=1

∑T−1

r=K+1
(�i· (1)ξUiMϕ̃r)

2
)

≤8T4

N2

∑N

i,j=1

[(
�i· (1)� ′

j· (1)
)2 +	4

∑T

s=1
�2

is (1)�2
js (1)

]
.

Following the steps of the above analysis leading to (31), we obtain

Var

(
1

N

∑N

i=1

∑T−1

r=K+1
(�i· (1)ξUiMϕ̃r)

2
)

≤ o(1)
T4

N2
(tr
)2 . (34)

Chebyshev’s inequality together with (33) and (34) yields

λ̃12 ≤
∑T−1

r=K+1
μ̃r +oP(1)T2 tr
/N. (35)

Using the first inequality of Lemma 4 in (35), we obtain

λ̃12 ≤ (1+oP(1))
T2

9K
tr
/N. (36)

Now, use (36) and (32) in (27), noting the following two facts. First, as implied
by the two inequalities of Lemma 4,

∑K
r=1 μ̃r/(tr
/N) is of order T2 for large T .

Second, 1/K in (36) can be chosen arbitrarily close to zero. Hence, (27) yields

λ̃1 ≤
∑T

r=1
α2

r μ̃r +oP(1)T2 tr
/N

≤ α2
1μ̃1 + (1−α2

1)μ̃2 +oP(1)T2 tr
/N. (37)

On the other hand, λ̃1 must be no smaller than ϕ̃′
1�̃ϕ̃1. Since

Eϕ̃′
1�̃ϕ̃1 = ϕ̃′

1

(
E�̃

)
ϕ̃1 = μ̃1

and, by (31),

Var(ϕ̃′
1�̃ϕ̃1) = o(1)

T4

N2
(tr
)2 ,
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we have by Chebyshev’s inequality

ϕ̃′
1�̃ϕ̃1 = μ̃1 +oP(1)T2 tr
/N. (38)

Therefore,

λ̃1 ≥ μ̃1 +oP(1)T2 tr
/N. (39)

Combining this with (37), we obtain

μ̃1 +oP(1)T2 tr
/N ≤ α2
1μ̃1 + (1−α2

1)μ̃2 +oP(T
2) tr
/N,

which implies

1−α2
1 ≤ oP (1)

T2

μ̃1 − μ̃2
.

But by (13), μ̃1/T2 → μ1 and μ̃2/T2 → μ2. Since by Assumption A4, μ1 > μ2,

we have(
F̃′

1ϕ̃1

)2 = α2
1

P→ 1. (40)

This establishes the first convergence in (22) for k = 1.
Next, inequalities (37) and (39) yield∣∣∣λ̃1 − μ̃1

∣∣∣≤ ∣∣1−α2
1

∣∣(μ̃1 + μ̃2)+oP(1)T2 tr
/N.

Combining this with the facts that α2
1 = 1 + oP (1) and, by Lemma 4, μ̃1 ≥

CT2 tr
/N for some C > 0, we obtain

λ̃1 = μ̃1 (1+oP(1)), (41)

which gives us the second convergence in (22) for k = 1.
Further,

tr�̃ = 1

N

N∑
i=1

T∑
j=1

ϕ̃′
jA

(i)ϕ̃j.

Hence,

E tr�̃ = tr
(
E�̃

)
=

T∑
j=1

μ̃j

and, by (34) which holds for all fixed K, including K = 0,

Var
(

tr�̃
)

= o(1)
T4

N2
(tr
)2 .

Hence, by Chebyshev’s inequality

tr�̃ =
T∑

j=1

μ̃j +oP(1)T2 tr
/N
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and

λ̃1

tr�̃
= μ̃1 (1+oP(1))∑T

j=1 μ̃j +oP(1)T2 tr
/N
= μ̃1∑T

j=1 μ̃j

+oP(1),

where the latter equality is a consequence of Lemma 4. Thus,

λ̃1/ tr�̃ − μ̃1/ trE�̃
P→ 0,

which establishes the last convergence in (22) for k = 1. Note that, by Lemma 4,
μ̃1/ trE�̃ remains bounded away from zero as N,T → ∞.

For k = m > 1, the statements of (22) follow by mathematical induction. Indeed,
suppose they hold for k < m. Consider a representation F̃m = ∑T−1

q=1 αqϕ̃q. Since

F̃′
mF̃j = 0 for all j < m, and since

∣∣∣F̃′
jϕ̃j

∣∣∣= 1+oP (1) by the induction hypothesis,

we must have αj = oP (1) for all j < m. In particular,

F̃′
m�̃F̃m =

T−1∑
q,r=m

αqαr
1

N

∑N

i=1
ϕ̃′

rA
(i)ϕ̃q +oP (1)T2 tr
/N. (42)

Indeed, to see that (42) holds, it is sufficient to establish equalities

αjϕ̃
′
j�̃

T−1∑
r=m

αrϕ̃r = oP (1)T2 tr
/N

for any j < m, and equalities

αjαrϕ̃
′
j�̃ϕ̃r = oP (1)T2 tr
/N

for any j,r < m. Such equalities easily follow from the facts that αj = oP (1) for all

j < m and
∥∥∥�̃∥∥∥= λ̃1 = OP (1)T2 tr
/N. In addition to (42), we must have

m−1∑
i=1

λ̃i + F̃′
m�̃F̃m ≥

m∑
j=1

1

N

∑N

i=1
ϕ̃′

jA
(i)ϕ̃j =

m∑
i=1

μ̃i +oP (1)T2 tr
/N,

where the latter equality is obtained similarly to (38). Combining the above two
displays, and using the induction hypothesis, this time regarding the validity of the
identities

λ̃i/μ̃i −1 = oP (1)

for all i < m, we obtain

T−1∑
q,r=m

αqαr
1

N

∑N

i=1
ϕ̃′

rA
(i)ϕ̃q ≥ μ̃m +oP (1)T2 tr
/N. (43)

Statements of (22) for k = m now follow by arguments that are very similar to
those used above for the case k = 1.
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That is, we represent the sum on the left-hand side of (43) in the form λ̃m1 +
λ̃m2 + λ̃m3, defined similarly to (24–26). Then proceed along the lines of the above
proof to obtain an upper bound on λ̃m1 + λ̃m2 + λ̃m3, similar to the right-hand side
of (37). Then, combining this upper bound with the lower bound (43), we prove

the convergence α2
m

P→ 1. Finally, we proceed to establishing the other statements
of (22) using this convergence.

4.4. Step 4: Proof of Theorem 1 for λ̂k,F̂k,�̂

We need to show that the theorem’s validity for F̃k, λ̃k, and �̃ implies its validity
for F̂k, λ̂k, and �̂. By standard perturbation theory (e.g., Kato, 1980, Chap. 2), such
an implication for statements (i) and (ii) would follow if we are able to show that∥∥∥�̂ − �̃

∥∥∥ = T2

N tr
 · oP (1) . Equation (10) implies that it is sufficient to establish

two facts. First, ‖XiniM‖2 = T2 tr
 · oP (1), and second, ‖�∗∗ (L)εM‖2 = T2 tr
 ·
oP (1).

We have ‖XiniM‖2 ≤ ‖XiniM‖2
F , where ‖·‖F denotes the Frobenius norm. A

direct calculation yields

‖XiniM‖2
F =

∑N

i=N1+1
ρ2T3+2

i

(
1−ρ2T

i

1−ρ2
i

− 1

T

(
1−ρT

i

1−ρi

)2
)(

Zi,−T3 −μXi
)2

,

and

E‖XiniM‖2
F =

∑N

i=N1+1

ρ2T3+2
i

1−ρ2
i

(
1−ρ2T

i

1−ρ2
i

− 1

T

(
1−ρT

i

1−ρi

)2
)

�i· (1)� ′
i· (1)

=
∑N

i=N1+1

ρ2T3+2
i

1−ρ2
i

1−ρT
i

1−ρi

(
1+ρT

i

1+ρi
− 1

T

1−ρT
i

1−ρi

)
�i· (1)� ′

i· (1)

≤ T
∑N

i=N1+1

ρ2T3+2
i

1−ρ2
i

(
1+ρT

i

1+ρi
− 1

T

1−ρT
i

1−ρi

)
�i· (1)� ′

i· (1) .

Let us define

h(ρ) =
{

1
1−ρ2

(
1+ρT

1+ρ
− 1

T
1−ρT

1−ρ

)
, ρ ∈ [0,1),

0, ρ = 0.

Then

E‖XiniM‖2
F = T2

∑N

i=N1+1
ρ2T3+2

i h(ρi)�i· (1)� ′
i· (1) .

As shown in Section A8 of the Supplementary Material, h(ρi) is nonnegative,
continuous, |h(ρi)| ≤ 1 for all T, and h(1−x/T) ≤ x/4 for x ∈ [0,1) . This implies
that

max
ρi∈[0,1−1/T]

ρ2T3+2
i h(ρi) ≤ (1−1/T)2T3+2 ≤ e−2T2

,
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and

max
ρi∈[1−1/T,1]

ρ2T3+2
i h(ρi) ≤ max

ρi∈[1−1/T,1]
ρ2T3+2

i

T (1−ρi)

4

=
(

1− 1

2T3 +3

)2T3+2 T

4
(
2T3 +3

) ≤ 1

8T2
.

Since e−2T2 ≤ 1/
(
2T2

)
, we have overall, maxρi∈[0,1] ρ

2T3+2
i h(ρi) ≤ 1/(2T2) and

E‖XiniM‖2
F ≤ 1

2

∑N

i=N1+1
�i· (1)� ′

i· (1) ≤ 1

2
tr
. (44)

By Markov’s inequality, ‖XiniM‖2
F = tr
 · OP (1), so that

‖XiniM‖2 = tr
 · OP (1) = T2 tr
 · oP (1), (45)

as required.
It remains to show that ‖�∗∗ (L)εM‖2 = T2 tr
 · oP (1). To establish this

equality, we need the following lemma. The lemma may have an independent
interest because it describes a probabilistic bound on the norm of a large random
matrix, and such bounds are often useful, for example, in factor analysis.

Lemma 6. Suppose that Assumption A1 holds, and that N,T → ∞ at arbitrary
relative rates. Let Zt = �(L)εt and Z = [Z1, . . . ,ZT ], where �(L) = ∑∞

k=0 �kLk

is an N ×N matrix lag polynomial that may depend on N and T . If
∑T

k=0 ‖�k‖ =
O(1) and T

∑∞
k=T+1 ‖�k‖2

F = O(N), where ‖·‖F denotes the Frobenius norm, then

‖Z‖ = OP
(
T1/2 +N1/2

)
. (46)

Proof. This is a modification of Proposition 6 from Onatski (2015), where a
proportional asymptotic regime with N/T converging to a nonzero constant is
considered. The triangle inequality yields

‖Z‖ ≤
∑T

k=0
‖�k‖‖ε−k‖+‖rT‖,

where ε−k = [ε1−k, . . . ,εT−k] and rT = ∑∞
k=T+1 �kε−k. Obviously, for any k =

0, . . . ,T , ‖ε−k‖ ≤ ‖ε+‖, where ε+ = [ε1−T, . . . ,εT ] . Latała’s (2004, Thm. 2)
inequality implies that ‖ε+‖ = OP

(
T1/2 +N1/2

)
. Therefore,

‖Z‖ ≤ OP
(
T1/2 +N1/2

)∑T

k=0
‖�k‖+‖rT‖ = OP

(
T1/2 +N1/2

)+‖rT‖ . (47)

On the other hand,

E‖rT‖2 ≤
∑N

i=1

∑T

t=1
E
[
(rT)2

it

]=
∑N

i=1

∑T

t=1
E

[∑∞
k=T+1

∑N

s=1
(�k)is εs,t−k

]2

≤ T
∑∞

k=T+1
‖�k‖2

F = O(N) .

Hence, ‖rT‖ = OP
(
N1/2

)
. Combining this with (47) yields (46). �
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Remark 7. The lemma holds under following simple but stronger assumptions:∑∞
k=0 ‖�k‖ = O(1) and

∑∞
k=0 k‖�k‖2 = O(1). This follows from the inequalities

‖�k‖2
F ≤ N ‖�k‖2 and T

∑∞
k=T+1 ‖�k‖2 ≤∑∞

k=0 k‖�k‖2 .

Note that

∥∥�∗∗ (L)εM
∥∥2 ≤ ∥∥�∗∗ (L)ε

∥∥2 ≤ 2
∥∥�∗∗ (L)ε

∥∥2 +2
∥∥�∗∗ (L)ε

∥∥2
,

where �∗∗ (L) =∑∞
k=1 �∗∗

k Lk and �∗∗ (L) =∑∞
k=0 �∗∗

k Lk with

�∗∗
k =

k∑
j=1

(
ρk−j −ρk

)
�j and �∗∗

k = −ρk
∞∑

j=k+1

�j.

We have

∑∞
k=0

∥∥�∗∗
k

∥∥=
∑∞

k=0

∥∥∥ρk
∑∞

j=k+1
�j

∥∥∥≤
∑∞

k=0

∞∑
j=k+1

∥∥�j
∥∥≤

∞∑
j=1

j
∥∥�j

∥∥= O(1).

Further,

∥∥�∗∗
k

∥∥≤
∞∑

j=k+1

∥∥�j

∥∥≤ 1

k +1

∞∑
j=k+1

j
∥∥�j

∥∥= 1

k +1
O(1).

Combining the latter two displays, we obtain

∑∞
k=0

k
∥∥�∗∗

k

∥∥2 ≤ O(1)
∑∞

k=0

∥∥�∗∗
k

∥∥= O(1).

Hence, by Lemma 6 and Remark 7,

∥∥�∗∗ (L)ε
∥∥2 = OP (T +N). (48)

This equality and the fact that, under Assumption A4, N/ tr
 = O(1), yield

∥∥�∗∗ (L)ε
∥∥2 = OP(T +N)

tr


N

N

tr

= T tr
 · oP (1)

for N,T → ∞ at arbitrary relative rates.
Next, recall that �∗∗

k =∑k
j=1

(
ρk−j −ρk

)
�j. For any k ≥ 1,

∥∥∥∥ρk−j −ρk

j

∥∥∥∥=
∥∥∥∥(I −ρ)

ρk−j +·· ·+ρk−1

j

∥∥∥∥
≤
∥∥∥∥(I −ρ)

I +·· ·+ρk−1

k

∥∥∥∥=
∥∥∥∥ I −ρk

k

∥∥∥∥ .
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Therefore,

k
∥∥�∗∗

k

∥∥
F ≤ k

k∑
j=1

∥∥∥∥ρk−j −ρk

j

∥∥∥∥ j
∥∥�j

∥∥
F ≤ ∥∥I −ρk

∥∥ k∑
j=1

j
∥∥�j

∥∥
F

≤ N1/2
∥∥I −ρk

∥∥ k∑
j=1

j
∥∥�j

∥∥= O
(
N1/2

)

uniformly in k, where the last equality follows by Assumption A2. Therefore,

T
∑∞

k=T+1

∥∥�∗∗
k

∥∥2
F ≤ O(N)T

∑∞
k=T+1

1

k2
= O(N).

Further, �∗∗
0 = 0 and

∑T

k=1

∥∥�∗∗
k

∥∥≤
∑T

k=1

k∑
j=1

∥∥ρk−j −ρk
∥∥∥∥�j

∥∥ (49)

=
T∑

j=1

∥∥�j

∥∥∑T

k=j

∥∥ρk−j −ρk
∥∥ .

By Assumption A4, there exists φ̄ > 0 such that φj ≤ φ̄ for all j ∈ N. Note that
the maximum of rk−j − rk on r ∈ [0,1] is achieved at r = (1− j/k)1/j . On the other
hand, the smallest possible diagonal element of ρ equals e−φ̄/T, and

e−φ̄/T ≥ (1− j/k)1/j

for k ≤ T/φ̄. Therefore, for such k,∥∥ρk−j −ρk
∥∥≤ e−kφ̄/T

(
ejφ̄/T −1

)
and

∑[T/φ̄]
k=j

∥∥ρk−j −ρk
∥∥≤

(
ejφ̄/T −1

)(
e−jφ̄/T − e−1

)
1− e−φ̄/T

≤
(

ejφ̄/T −1
)(

1− e−1
)

1− e−φ̄/T
.

But for x ∈ [0,1], ex − 1 ≤ (e−1)x and 1 − e−x >
(
1− e−1

)
x. Therefore, for all

j = 1, . . . ,
[
T/φ̄

]
,

ejφ̄/T −1 ≤ (e−1)
(
jφ̄/T

)
and for all sufficiently large T,

1− e−φ̄/T ≥ (
1− e−1

)(
φ̄/T

)
.
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Hence,

∑[T/φ̄]
k=j

∥∥ρk−j −ρk
∥∥≤ (e−1)

(
jφ̄/T

)(
1− e−1

)
(
1− e−1

)(
φ̄/T

) ≤ 2j.

Next, for k > T/φ̄, we have

∥∥ρk−j −ρk
∥∥≤

(
k − j

k

)k/j−1 j

k
≤ j

k
(50)

and∑T

k=[T/φ̄]+1

∥∥ρk−j −ρk
∥∥≤ j

∑T

k=[T/φ̄]+1

1

k
≤ j
(
lnT − ln

(
T/2φ̄

))
= j ln

(
2φ̄
)

.

Hence, overall,∑T

k=j

∥∥ρk−j −ρk
∥∥≤ j

(
ln
(
2φ̄
)+2

)
and thus,

∑T

k=1

∥∥�∗∗
k

∥∥≤
T∑

j=1

∥∥�j

∥∥ j
(
ln
(
2φ̄
)+2

)= O(1).

In particular, the assumptions of Lemma 6 are satisfied and

∥∥�∗∗ (L)ε
∥∥2 = OP (T +N) = OP(T +N)

tr


N

N

tr

= T tr
 · oP (1), (51)

which concludes our proof of parts (i) and (ii) of the theorem.
Part (iii) of the theorem can be established similarly to part (iii) of Theorem 1

in OW, using the fact that, by Lemma 4, there exist positive constants C1 and C2

such that

C1
T2

N
tr
 ≤ tr�̃ ≤ C2

T2

N
tr
. (52)

Specifically, we need to show that
∣∣∣tr�̂ − tr�̃

∣∣∣ is asymptotically dominated by

tr�̃. The above inequalities and the fact that N/ tr
 = O(1) imply that it is

sufficient to establish the asymptotic dominance of
∣∣∣tr�̂ − tr�̃

∣∣∣ by T2.

From (10),∣∣∣λ̂1/2
i − λ̃

1/2
i

∣∣∣≤ ∥∥�∗∗ (L)εM
∥∥/

√
N +‖XiniM‖/

√
N

and λ̂i = λ̃i = 0 for i > min {N,T} . Therefore, by Minkowski’s inequality,∣∣∣∣(tr�̂
)1/2 −

(
tr�̃

)1/2
∣∣∣∣≤ (∥∥�∗∗ (L)εM

∥∥+‖XiniM‖)min
{

1,
√

T/N
}
,
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and∣∣∣tr�̂ − tr�̃
∣∣∣≤2

(∥∥�∗∗ (L)εM
∥∥+‖XiniM‖)min

{
1,
√

T/N
}(

tr�̃
)1/2

+2
∥∥�∗∗ (L)εM

∥∥2
min{1,T/N}

+2‖XiniM‖2 min{1,T/N} .

By (52),
(

tr�̃
)1/2 = OP (T) . Therefore, to establish the asymptotic dominance of∣∣∣tr�̂ − tr�̃

∣∣∣ by T2 it is sufficient to show that

∥∥�∗∗ (L)εM
∥∥2

min{1,T/N} = oP
(
T2
)

and (53)

‖XiniM‖2 min{1,T/N} = oP
(
T2
)

. (54)

Since ‖�∗∗ (L)εM‖ ≤ ‖�∗∗ (L)ε‖+‖�∗∗ (L)ε‖, equality (48) and the first equal-
ity in (51) yield∥∥�∗∗ (L)εM

∥∥= (
T1/2 +N1/2

)
OP(1).

Hence,∥∥�∗∗ (L)εM
∥∥2

min{1,T/N} = min{T +N,T2/N +T}OP(1) = oP(T
2)

as N,T → ∞ at arbitrary relative rates, and therefore (53) holds.
Finally, by (45),

‖XiniM‖2 = tr
 · OP (1)= N ·OP(1).

Therefore,

‖XiniM‖2 min{1,T/N} = min{N,T}OP(1) = oP(T
2)

as N,T → ∞ at arbitrary relative rates, and (54) holds too. This concludes our
proof of Theorem 1.

5. EXTENSIONS AND DISCUSSION

In general, the covariance kernel of an OU process with parameter φi has form (see
Karatzas and Shreve, 1991, p. 358)

Rφi(s,t)+ (Vi(0)− (2φi)
−1)e−φi(t+s), (55)

where Rφi(s,t) = e−φi|t−s|/(2φi) and Vi(0) is the variance of the initial value. So far,
we have assumed that the initial values Xi0 for i > N1 were distributed according
to their unconditional distribution, so that Vi(0) = (2φi)

−1 and the second term in
the above display disappears. This simplification yielded the covariance kernel of
the demeaned OU process given by kφi(s,t), described just above Lemma 2.

Had we initialized Xi0 differently, say making them zero, the second term in
(55) would have been equal −e−φi(t+s)/(2φi), and the covariance kernel of the
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demeaned OU processes would have changed as follows:

kφi(s,t) 
→ kφi(s,t)− (φieφit + e−φi −1)(φieφis + e−φi −1)

2φ3
i

. (56)

In such a case, the scaled sample covariance matrix of the data would have
converged to the weighted average of such a new kφi(s,t), and the results of
Theorem 1 would have needed a corresponding adjustment.

However, the main message of Theorem 1 would have remained the same:
even in the absence of any common factors in the data, PCA would find a few
relatively large eigenvalues of the sample covariance matrix, creating a misleading
impression of the existence of a few factors driving the dynamics of the entire
data. Indeed, the weighted average of the adjusted covariance kernels will still be a
continuous function on (s,t) ∈ [0,1]2. Hence, the eigenvalues of the corresponding
integral operator will be absolutely summable and thus, quickly decaying.

Note that the effect of the initial values on our PCA analysis has been cush-
ioned by the demeaning. For example, demeaning pure random walks completely
removes any effect of the initial values on the analysis based on second moments of
the data. Furthermore, demeaning local-to-unit root processes initialized from their
stationary distributions “regularizes” the behavior of the corresponding covariance
kernel as a function of φ. Indeed, it transforms Rφ(s,t) = e−φ|t−s|/(2φ), which has
a singularity at zero, to kφ(s,t), which is a continuous function of φ at φ = 0.
Although our main reason for the demeaning was that it is a standard feature of
practical PCA, we also used it to discipline the effect of the initial values.

Setting initial values at zero would have a similar regularizing effect on the
covariance kernels. Indeed, from (55), the covariance kernel of an OU process
initialized at zero (and not demeaned) is

Rφ(s,t)− (2φ)−1e−φ(t+s) = e−φ|t−s| − e−φ(t+s)

2φ
,

which is, obviously, a continuous function of φ at φ = 0. This would allow
one to obtain an analog of Theorem 1 for the eigenvalues and eigenvectors of
matrix X′X/N as opposed to MX′XM/N. In such an analog, the covariance kernel
kF (s,t) = ∫ ∫

ωkφ(s,t)F(dω,dφ) of the integral operator KF must be changed by
replacing kφ(s,t) with the right-hand side of the latter display.

Initializing at zero would also allow one to consider nearly explosive processes
with negative φi along with the processes with positive φi. Clearly, the weighted
average of the covariance kernels of not necessarily stationary OU processes with
zero initial values (demeaned or not demeaned) would remain a continuous func-
tion on (s,t) ∈ [0,1]2 (as long as |φi| is bounded). Hence, asymptotically, a few of
the eigenvalues of the sample covariance matrix of the data will still be comparable
with the sum of all the remaining eigenvalues, creating an impression of a few
sources of the data variation. Of course, the form of the principal eigenfunctions
ϕk(s), k = 1,2, . . . , would depend on the distribution of all parameters φi, positive,
zero and negative.
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Next, we would like to point out that the spurious factor phenomenon is not tied
up to the unit root and local-to-unit root cases, and to the corresponding Brownian
motion or Ornstein–Uhlenbeck limits. For example, we may still expect finding
spurious factors in the data with Xit, t = 1,2, . . . ,T , coming from a high frequency
sampling of continuous time processes with covariance kernels ki(s,t) as long as
weighted averages of such kernels converge to a continuous limit kF (s,t).

To give a concrete example, suppose that Xit = Zi(t/T), t = 1,2, . . . ,T , where
Zi(s),s ∈ [0,1] are independent (across i = 1, . . . ,N) continuous time stationary
Markov chains with only two states, 0 and 1. Suppose that, for some φi > 0, any
s2 ≥ s1 such that s2,s1 ∈ [0,1], and any k,j ∈ {0,1},

Pr(Zi(s2) = k|Zi(s1) = j) =
{

1+e−φi(s2−s1)

2 , if k = j,
1−e−φi(s2−s1)

2 , if k �= j,
(57)

and that the chain is initialized from its stationary distribution (0 or 1 with equal
probabilities). It is straightforward to verify that the covariance kernel of Zi(s)−∫ 1

0 Zi(s)ds equals φikφi(s,t)/2. That is, it is proportional with the coefficient of
proportionality φi/2 to the covariance kernel of the demeaned OU process with
parameter φi, initialized at its stationary distribution.

Of course, sample paths of Zi(s) would be very different from those of the
OU process. They will be step functions, jumping from zero to one and back to
zero with frequency depending on φi. However, the PCA analysis of Xit would
be similar to that of the data with local-to-unit roots. The only difference will
be that kernels with relatively small φi will be downweighted (because of the
coefficient of proportionality φi/2) in the weighted average kernel. Intuitively, it
is because sample paths of Zi(s) corresponding to small φi will be just constants
with relatively high probability, so they will not substantially contribute to the PCA
analysis of the data variation.

In the special case of no heterogeneity in φi, say all φi = 1, the asymptotics of
the eigenvectors of the sample covariance of the data with local-to-unit roots and
the Markov chain data will be identical. Figure 5 illustrates this. The left and right
panels correspond to the local-to-unit root and the Markov chain data, respectively.
They show the first three normalized eigenvectors of the corresponding sample
covariance matrix (rougher lines) superimposed with the plots of the three principle
eigenfunctions of the integral operator with kernel kφ(s,t),φ = 1 (smoother lines).
The explicit form of these eigenfunctions is given in (3) for general values of φ. The
eigenvectors are computed using single realizations of data with N = T = 1,000.
As expected, we see very similar behavior of the eigenvectors in the local-to-
unity and the Markov chain cases. This is yet another manifestation of the old
observation (see, e.g., Perron, 1989) that it is easy to misinterpret data with
structural breaks as having unit roots. A detailed analysis of the Markov chain
example can be found in Section A10 of the Supplementary Material.

It may be worthwhile to note that, in general, the time series plots of the spurious
factors in the data obtained by high frequency sampling of continuous processes

https://doi.org/10.1017/S0266466624000094 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000094


SPURIOUS FACTORS IN DATA WITH LOCAL-TO-UNIT ROOTS 35

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Local-to-unit-root data
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Markov chain data

Figure 5. Three principal eigenvectors (rough blue lines) of the sample covariance matrix and
eigenfunctions (smooth black lines) of the limiting integral operator. Left panel: N × T data with
homogeneous local-to-unit roots e−1/T . Right panel: N × T Markov chain data. In both cases, T =
N = 1,000, and the lines corresponding to the eigenvectors are piece-wise linear functions connecting
the consecutive 1,000 components of the vectors.

do not need to resemble cosine waves. In fact, one may pre-specify virtually any
probability limits for such spurious factors by constructing a covariance kernel
with corresponding principal eigenfunctions and sampling from continuous time
process having that covariance kernel. Hence, although observing the cosine-type
time series plots of the principal eigenvectors in PCA analysis should be taken
as a warning sign of possibly spurious factors, not observing such cosine-type
fluctuations does not necessarily exclude the possibility of spurious factors.

Another observation that we would like to make here concerns interchanging the
roles of the temporal and cross-sectional dimensions. One could imagine data that
come from “high frequency” sampling of a continuous spacial processes, with such
a sampling repeated over time. We would expect similar results for PCA analysis
of such data. For a recent discussion of the failure of PCA in such a situation in
the context of the analysis of the term structure of interest rates, see Crump and
Gospodinov (2022).

In the remaining part of this section, we would like to consider situations where
data do have some genuine common factors, but the PCA is still spurious. Suppose
that the econometrician observes N-dimensional vectors Yt, t = 1, . . . ,T , satisfying

Yt = �Ft +Xt,

where Xt are as in the previous sections, � is an N × r matrix of factor loadings,
and Ft, t = 1, . . . ,T , are r-dimensional vectors of latent factors at time t. For now,
we assume that the number of factors, r, is fixed. We will briefly comment on the
case when r is growing later. Whether results of PCA applied to such data will still
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be spurious or reflect some information about true factors Ft would depend on the
nature of these factors and the magnitude of their loadings.

A standard assumption on factor loadings (see, e.g., Bai and Ng, 2023) is that

�′�/Nα → �� as N → ∞, (58)

where �� is a fixed positive-definite r × r matrix. Strong (or pervasive) factors
correspond to α = 1, whereas weak factors have α < 1. Similarly, for factors,
typical assumptions yield

F′F/Tβ P→ �F as T → ∞, (59)

where F = [F1, . . . ,FT ]′ is a T × r matrix of factors, and �F is a (possibly
random) positive-definite r × r matrix. Stationary factors correspond to β = 1 and
deterministic �F, whereas factors with local-to-unit roots correspond to β = 2 and
random �F.

Let Y = [Y1, . . . ,YT ] be the N ×T matrix of data, M be the T ×T projector IT −
�T�′

T/T , as above, and λ̂Y,k denote the kth largest eigenvalue of MY ′YM/N (similar
to the kth largest eigenvalue, λ̂k, of MX′XM/N). Then, by Weyl’s inequalities for
singular values (e.g., Horn and Johnson, 1985, p. 423),

λ̂
1/2
r+j ≤ λ̂

1/2
Y,j ≤ ‖�F′M‖/√N + λ̂

1/2
j .

These inequalities together with the standard perturbation theory imply that
Theorem 1 continues to hold with λ̂k replaced by λ̂Y,k and F̂k replaced by the kth
principal eigenvectors of MY ′YM/N, as long as ‖�F′M‖/√N = oP(T).

Now, by (58) and (59), ‖�F′M‖/√N = OP(N(α−1)/2Tβ/2). Therefore, the
spurious factor phenomenon, described in Theorem 1, still holds for data with
genuine factors as long as Nα−1 = o(T2−β). The latter equality holds for both
stationary and nonstationary factors (β = 1 or β = 2), which are weak (α < 1), and
for stationary strong (α = 1) factors. However, the existence of a fixed number r
of strong nonstationary factors in the data will break Theorem 1.

Interestingly, the spurious factor phenomenon will reappear if r is growing, even
very slowly. Indeed, consider for simplicity the case with �′�/N = Ir and Ft

represented by an r-dimensional random walk so that Fit −Fi,t−1 are i.i.d. random
variables with mean zero, unit variance, and finite fourth moment.

Consider matrix

MF�′�F′M
N

= MFF′M.

Theorem 1 applied to r-dimensional data represented by F implies that the largest
eigenvalue of MFF′M/r is of stochastic order T2. Hence, ‖�F′M‖/√N = ‖F′M‖
is of stochastic order

√
rT . This means that when r grows, at whatever slow rate,

‖�F′M‖/√N dominates λ̂
1/2
1 = OP(T). Therefore, the behavior of the principal

eigenvalues and eigenvectors of MY ′YM/N is asymptotically the same as that
of the principal eigenvalues and eigenvectors of MFF′M, governed by Theorem
1. In particular, the principal eigenvector will be asymptotically collinear with
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the discretized version (ϕ1(1/T), . . . ,ϕ1(T/T)) of the principal eigenfunction of
the covariance kernel of demeaned Brownian motion instead of any of the rows of
the matrix of true factors F.

Intuitively, a few strong factors in the data break the spurious factor phenomenon
because they may influence the principal eigenvectors of the sample covariance �̂.
However, when there is a growing number of such factors, they themselves start
to spuriously “correlate” along the eigenfunctions of the covariance kernel of a
persistent process. This “correlation” will again overwhelm any genuine common
cross-sectional features in the data making PCA relatively useless.

6. CONCLUSION

Extending OW, this paper considers applying PCA to data with heterogeneous
local-to-unit roots. A similar spurious factor phenomenon is observed, that is, a
few principal components explain most of the data variation, with the estimated
spurious factors corresponding to the eigenfunctions of a weighted average of
covariance kernels of demeaned OU processes with different decay rates. As in
OW, the warning to empirical researchers that a very high explanatory power of
a few principal components of persistent data does not necessarily indicate the
presence of factors and the suggestion to always first difference such data before
conducting factor analysis still apply (for a discussion of the properties of factor
estimates obtained from differenced data, see Bai and Ng, 2004).

SUPPLEMENTARY MATERIAL

Onatski, A. and C. Wang (2024): Supplement to “Spurious factors in data with
local-to-unit roots”, Econometric Theory Supplementary Material. To view, please
visit https://doi.org/10.1017/S0266466624000094.

REFERENCES

Anselone, P. M. (1967). Collectively compact operator approximations. Technical Report 76, Computer
Science Department, Stanford University.

Bai, J., & Ng, S. (2004). A panic attack on unit roots and cointegration. Econometrica, 72(4), 1127–
1177.

Bai, J., & Ng, S. (2013). Principal components estimation and identification of static factors. Journal
of Econometrics, 176, 18–29.

Bai, J., & Ng, S. (2023). Approximate factor models with weaker loadings. Journal of Econometrics,
235(2), 1893–1916.

Boivin, J., Giannoni, M. P., & Mojon, B. (2009). How has the euro changed the monetary transmission
mechanism? In D. Acemoglu, K. Rogoff, and M. Woodford (Eds.), NBER macroeconomics annual
2008, vol. 23. University of Chicago Press, pp. 77–126.

Brillinger, D. R. (1981). Time series: Data analysis and theory. Holden Day.
Bykhovskaya, A., & Gorin, V. (2022a). Asymptotics of cointegration tests for high-dimensional

VAR(k). Preprint, arXiv:2202.07150.

https://doi.org/10.1017/S0266466624000094 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000094
https://arxiv.org/abs/2202.07150
https://doi.org/10.1017/S0266466624000094


38 ALEXEI ONATSKI AND CHEN WANG

Bykhovskaya, A., & Gorin, V. (2022b). Cointegration in large VARs. Annals of Statistics, 50(3),
1593–1617.

Crump, R. K., & Gospodinov, N. (2022). On the factor structure of bond returns. Econometrica, 90,
295–314.

Elliott, G. (1998). The robustness of cointegration methods when regressors almost have unit roots.
Econometrica, 66, 149–158.

Elliott, G. (1999). Efficient tests for a unit root when the initial observation is drawn from its
unconditional distribution. International Economic Review, 40, 767–783.

Gohberg, I., & Goldberg, S. (1981). Basic operator theory. Birkhäuser.
Gonzalo, J., & Pitarakis, J. (2021). Spurious relationships in high-dimensional systems with strong or

mild persistence. International Journal of Forecasting, 37, 1480–1497.
Horn, R. A., & Johnson, C. R. (1985). Matrix analysis. Cambridge University Press.
Karatzas, I., & Shreve, S. E. (1991). Brownian motion and stochastic calculus. (2nd ed.) Springer.
Kato, T. (1980). Perturbation theory for linear operators. Springer.
Latała, R. (2004). Some estimates of norms of random matrices. Proceedings of the American

Mathematical Society, 133, 1273–1282.
Onatski, A. (2015). Asymptotic analysis of the squared estimation error in misspecified factor models.

Journal of Econometrics, 186, 388–406.
Onatski, A., & Wang, C. (2021). Spurious factor analysis. Econometrica, 89(2), 591–614.
Perron, P. (1989). The great crash, the oil price shock and the unit root hypothesis. Econometrica, 57,

1361–1401.
Phillips, P. C. B. (1988). Regression theory for near-integrated time series. Econometrica, 56,

1021–1043.
Phillips, P. C. B. (1998). New tools for understanding spurious regression. Econometrica, 66,

1299–1325.
Stock, J. H. (1994). Unit roots, structural breaks and trends. In R. F. Engle and D. L. McFadden (Eds.),

Handbook of econometrics, vol. 4, ch. 46. Elsevier, pp. 2739–2841.
Stock, J. H., & Watson, M. W. (2016). Factor models and structural vector autoregressions in

macroeconomics. In J. B. Taylor and H. Uhlig (Eds.), Handbook of macroeconomics, vol. 2A.
Elsevier, pp. 415–526.

Uhlig, H. (2009). Comment on “How has the euro changed the monetary transmission mechanism?”.
In D. Acemoglu, K. Rogoff, and M. Woodford (Eds.), NBER macroeconomics annual 2008, vol. 23.
National Bureau of Economic Research, Inc., pp. 141–152.

Watson, M. W. (1994). Vector autoregressions and cointegration. In R. F. Engle and D. L. McFadden
(Eds.), Handbook of econometrics, vol. 4, ch. 47. Elsevier, pp. 2843–2915.

Zhang, B., Gao, J., & Pan, G. (2020). Estimation and testing for high-dimensional near unit root time
series. Working paper 12/20, Monash Econometrics and Business Statistics.

Zhang, B., Pan, G., & Gao, J. (2018). CLT for largest eigenvalues and unit root testing for high-
dimensional nonstationary time series. Annals of Statistics, 46, 2186–2215.

https://doi.org/10.1017/S0266466624000094 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000094

	1 INTRODUCTION
	2 SETUP
	3 MAIN RESULT
	4 PROOF OF THE MAIN RESULT
	4.1 Step 1: Introducing ˜Σ
	4.2 Step 2: Analyzing E˜Σ
	4.2.1 Pointwise Convergence
	4.2.2 Collective Compactness
	4.2.3 Convergence of the Principal Eigenvalues and Eigenfunctions

	4.3 Step 3: Proof of Theorem 1 for ˜λk,˜F k,˜Σ
	4.4 Step 4: Proof of Theorem 1 for k, k,

	5 EXTENSIONS AND DISCUSSION
	6 CONCLUSION

