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Organised large structure in the post-transition
mixing layer. Part 3. Dynamics of the spatial
growth
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The first two parts of this study showed by experiment and by large-eddy simulation that,
in mixing layers formed of processions of spanwise-oriented vortex structures, there is a
fundamental change in the dynamics of the large-structure growth at what has been called
the ‘mixing’ transition. This third part examines the relationship of the post-transition
‘organised’ flow to the mixing layer of classical turbulence theory. Further large-eddy
simulations are presented which, like some of the experiments reported in Part 1, have
captured the mixing layer in both its classical and organised turbulent states, thereby
allowing them to be characterised separately. The simulation results are then used to
calibrate model-free integral analyses of the dynamics of the mixing layer’s spatial growth.
It is shown that the organised and classical flows are alternative self-preserving turbulent
flow states involving fundamentally different exchanges of mass, momentum and energy,
one or other of which emerges naturally in particular realisations depending on the initial
conditions.
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1. Introduction

This paper is a direct development from experimental and computational work that has
already been reported in this journal (D’Ovidio & Coats (2013), McMullan, Gao & Coats
(2015) – hereinafter referred to as Part 1 and Part 2, respectively) and, to avoid repetition,
readers are referred to those previous papers for more detailed reviews of the relevant
background literature. The introductory discussion given here will instead return to the
fundamental fluid-dynamic questions that have motivated all of this work, review the
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significant findings of Parts 1 and 2 in relation to these questions and explain how they
are extended in this third paper.

The classical understanding of turbulence as random fluctuation about some time- or
ensemble-averaged mean flow has its origins in the work of Reynolds (1895), who saw
that an analogy can be made between such turbulent motions and the random motions
of individual molecules. Provided that the scales of the individual fluctuations are small
in relation to the thickness of any region of mean shear, the Reynolds stresses which
quantify the fluctuations in the rate of transport of momentum within the flow then become
quasi-physical quantities in their own right, their values reflecting empirically the effective
local scale or intensity of the fluctuations. It therefore came as a severe challenge to
classical turbulence theory when, in some turbulent shear flows, hot-wire anemometry
showed individual fluctuations to be correlated over large intervals of space and time
and even to display some degree of periodicity. Then, fifty years ago, flow visualisations
unexpectedly showed high-Reynolds-number mixing layers with apparently normal mean
profiles and growth rates to consist of processions of coherent vortex-like structures which
occupied and effectively defined the full thickness of the region of turbulent shear (Brown
& Roshko 1974). This stimulated two decades of intensive research on the plane mixing
layer in the course of which a completely new model of its dynamics emerged and gained
widespread acceptance.

The essential features of this model were reiterated relatively recently by Brown
and Roshko as part of a wider-ranging review of the progress that had been made in
turbulence research during the previous half-century (Brown & Roshko 2012). They can
be summarised as follows:

(i) As in Taylor’s theory, it is the spanwise vorticity within the flow that effects
the transport of momentum in the cross-stream direction. However, that vorticity
does not remain stably distributed within a continuous mass of rotational fluid.
Instead, the growth of the layer involves a stepwise spontaneous concentration of
the spanwise vorticity under the action of its own induction in accordance with the
Biot–Savart relation. As was first proposed by Winant & Browand (1974), this begins
with a random excitation of the Kelvin–Helmholtz instability of the layer’s inflected
velocity profile, the resultant quasi-periodic concentrations of vorticity subsequently
amalgamating in pairs. These pairings are the products of sequential excitations of
the sub-harmonics of the original Kelvin–Helmholtz mode. The growth of the layer
is thus essentially a two-dimensional process which can be analysed without any
direct involvement of energy considerations.

(ii) As the vorticity becomes concentrated within discrete vortex structures, tongues
of irrotational fluid are drawn into the layer from the free streams and stagnate
against each other to produce saddle-flow patterns in the spaces between the vortices
(figure 1a). A consequence of this large-scale organisation is that the fluids entrained
from the free streams eventually become mixed together in the vortex structures in a
ratio that reflects the relative strengths of the entrainments from the two sides of the
layer. This differs from the pattern of mixing in the classical turbulent mixing layer
where the mean composition of the mixed fluid changes progressively from one side
of the layer to the other.

(iii) The main effect of increasing Reynolds number, seen when a critical threshold (the
‘mixing transition’) is crossed, is a step increase in the amount of molecular-scale
mixing within the layer. The small-scale turbulence that effects the additional
mixing does not, as in a classical turbulent shear flow, take its energy directly from
the mean shearing motion but is generated primarily at the interface between the
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Organised large structure

(b)(a)

Figure 1. (a) Schematic representation of primary flow pattern and (b) hypothetical arrangement of
secondary streamwise vortex lines (after Bernal & Roshko 1986) in organised mixing layer.

tongues of entrained irrotational fluid by the straining of ‘streamwise’ vorticity there
(i.e. of vorticity with components orthogonal to its original spanwise orientation)
and subsequently transported into the cores of the vortex structures. Secondary
streamwise vortices are formed in these interfaces upstream of the mixing transition
as a result of localised tilting and subsequent stretching of the spanwise vortex
lines and are assumed to survive the pairing interactions undergone by the primary
spanwise vortices. It has been suggested that these secondary vortices may form
a continuous thread of streamwise vorticity which winds forwards and backwards
along the stretched interfaces (‘braids’) and around the cores of the spanwise
vortex structures, as shown schematically in figure 1(b). Although not mentioned
in the Brown & Roshko (2012) review, there is experimental evidence that,
in some circumstances at least, the spacing of the streamwise vortices doubles
with each pairing of the spanwise ones (Huang & Ho 1990; Bell & Mehta
1992). This finding has led to the suggestion that simultaneous quasi-periodic
instability-driven doublings of both the streamwise and spanwise length scales
constitute the mechanism by which the organised turbulent mixing layer grows in
its fully developed self-similar state.

A question left completely unresolved by all this research was that of the relationship
of such ‘organised’ turbulent mixing layers to the completely random mixing layer of
classical turbulence theory. Mixing layers are notoriously sensitive to the initial conditions
from which they develop and it has often been argued that, where large-scale organisation
is present, it is a legacy of the initial conditions and will disappear eventually as the flow
becomes fully developed. An alternative suggestion is that mixing layers never ‘forget’
their initial conditions entirely but relax towards an asymptotic state which is a function of
both the free-stream and initial conditions (George 1989).

The wind-tunnel experiments reported in Part 1 were undertaken to examine in more
detail some earlier findings by Pedley (1990) which appeared to contradict certain aspects
of the two-dimensional instability-driven mixing-layer growth model outlined above.
These more extensive and sophisticated experiments confirmed Pedley’s finding that, at
the mixing transition, there was not just a step increase in the amount of molecular-scale
mixing within the developing mixing layer but also a change in the pattern of the
large-scale motions. Before the transition the growth of the layer occurred essentially
by vortex pairings, as had been proposed by Winant & Browand (1974), each pairing
interaction drawing irrotational fluid into the layer and producing a step increase in its
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thickness. Beyond the transition, in contrast, the spanwise vortex structures all grew
continuously at a constant rate. Interactions still occurred between neighbouring structures
at intervals but they served merely to reduce the number of structures present so that
their average spacing increased in proportion to their scale and the continuous growth of
the structures that remained could continue unimpeded. The interactions thus occurred
as a consequence of the growth but themselves contributed nothing to it. In most of
these interactions both of the participating structures broke down, leaving a length of
turbulent flow within which a new vortex structure would subsequently form and then grow
continuously at the same rate as all the others. Occasionally a vortex structure would find
itself closely confined between both of its immediate neighbours. In these circumstances
the confined structure would cease growing and be fed upon by its growing neighbours.
These latter were the sacrificial and ‘tearing’ interactions that had been identified earlier
by Damms & Küchemann (1974) and Hernan & Jimenez (1982). All of these features –
the change in the pattern of interaction and growth at the mixing transition, the continuous
constant-rate spanwise-averaged growth undergone by the individual vortex structures in
the post-transition flow and the different types of destructive interaction the structures
underwent there – were successfully replicated in the large-eddy simulations reported in
Part 2.

As discussed in Parts 1 and 2, the continuous constant-rate growth undergone by the
individual vortex structures in the post-transition flow is a feature of particular dynamic
significance because it indicates that these structures are not, as has been so widely
supposed, simple two-dimensional vortices containing turbulence of a much smaller
scale. Rather they are the largest in the equilibrium three-dimensional cascade of eddy
scales shown by hot-wire spectra to be active in the post-transition flow, continuously
extracting energy from the mean shearing motion and passing it on to the smaller-scale
motions. This in turn implies that the dynamics of the organised turbulent mixing layer
differ fundamentally from those assumed in the two-dimensional instability-driven model
outlined above in which the secondary streamwise vortices (figure 1b) responsible for
the production of the small-scale turbulence ride more or less passively on the primary
spanwise vortices. The stability of the continuously growing spanwise vortex structures
seems to instead involve some kind of balance between the rate at which they acquire
energy by the addition of fluid from the free streams and the rate at which that energy is
passed down to the smaller scales. The possibility of such a balance is likely to be specific
to the particular conditions of self-similarity that distinguish the spatially growing mixing
layer from other types of turbulent shear flow.

The other finding of Pedley that was confirmed by the experiments reported in Part 1
was that the mixing layer is not always organised in this way. Periods in which the flow
was organised into processions of spanwise-coherent vortex structures often alternated
with periods in which the turbulent part of the layer resembled a classical turbulent
shear flow. (A similar finding had been reported also by Karasso & Mungal 1996.) It
was observed moreover that, during the periods in which the large-scale organisation was
absent, the layer grew at a slower rate and took up a different orientation relative to the
fixed walls of the test section. The latter observation was particularly significant because
it indicated a change in the ratio of the entrainment from the two free streams. It may
be supposed that much of the well-documented variability in the mixing-layer growth
rates measured in different laboratories (Brown & Roshko 1974) is attributable to the
existence of these two different self-similar flow states for the same free-stream conditions.
Quite apart from its theoretical significance, this bimodal behaviour is of obvious practical
interest in connection with a wide range of engineering applications in which flows with
thin boundary layers separate from solid surfaces, including particularly those involving
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combustion (Coats 1996). There is renewed interest in such applications at the present
time in connection with the urgent need to move away from conventional fossil-fuel-based
combustion technologies.

The hypothesis tested in this paper is that the bimodality observed experimentally can
be plausibly rationalised as a spontaneous switching, in response to small changes in the
initial conditions, between two different self-similar turbulent flow states characterised
by different balances of mass, momentum and energy. In one of these flow states
the traditional Reynolds decomposition of the flow variables into their local first and
second moments remains appropriate because the fluctuations are essentially random and
relatively small in scale. In the other the eddies which effect most of the entrainment are
‘coherent’ in the sense that they are self-preserving, extend across the entire thickness
of the region of mean shear and have a preferred orientation that is orthogonal to the
mean shear. In this latter situation the individual fluid particles are no longer streaming
independently, on average, along near-parallel mean streamlines and the dynamics of
the spatial growth can be analysed only on an integral basis. Large-eddy simulations
are first presented in which, with suitable manipulation of the initial conditions, one
of the two-stream mixing layers studied experimentally in Part 1 and its single-stream
counterpart (i.e. an otherwise identical flow in which the stream with the higher velocity
entrains from a stagnant environment) have been simulated in both their classical and
organised turbulent states. The simulation results for both flow states are then analysed
dynamically on a model-free integral basis, showing clearly the differences in the mass,
momentum and energy balances involved.

Section 2 of the paper describes the wind-tunnel experiment being replicated and
outlines the simulation methods employed while § 3 summarises the findings of the
numerous preliminary simulations that were performed in order to examine the sensitivity
of the simulated flows to the use of different inflow and other boundary conditions. It was
on the basis of these findings that the four cases selected for more detailed study were
chosen. The results from these four simulations are then presented and compared in § 4
before being analysed theoretically in § 5. A summary of the main conclusions is given in
§ 6.

2. Wind-tunnel experiment replicated and simulation methods employed

The experiment chosen as the basis for all of the simulations presented here was the one
labelled in Part 2 as HW10. As detailed in Part 1, two parallel streams of air supplied from
a bank of high-pressure storage tanks had been smoothed, accelerated to the velocities
u1,0 = 32.0 m s−1 and u2,0 = 12.9 m s−1 in convergent nozzles and brought together at
the sharp trailing edge of a finely tapered splitter plate. Thus the Reynolds number
per unit length applicable to this mixing layer was (u1,0 − u2,0)/ν = 1.3 × 106 m−1,
where ν is the kinematic viscosity of the fluid. The boundary layers on the higher- and
lower-velocity sides of the splitter plate were both laminar at the point of separation
with momentum thicknesses θ1 = 1.1 × 10−4 m and θ2 ∼ 2.0 × 10−4 m, respectively, and
the root-mean-square (r.m.s.) intensities of the residual broad-band velocity fluctuations
in the free streams discharged from the nozzles were ≤0.5 %. The mixing transition
occurred approximately 0.075 m from the trailing edge of the splitter plate. The angle
of the test-section wall bounding the lower-velocity stream had been adjusted once the
flow was established to remove the positive streamwise pressure gradient which would
otherwise have been present within the test section.

This particular experiment was chosen for further study because it was the one which
best combined a relatively low value (0.43) of the velocity-ratio parameter R = (u1 −
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u2)/(u1 + u2) with a good length of self-similar post-transition flow. To represent the
limiting single-stream R = 1 case (one it had not been attempted to simulate in Part 2)
comparative simulations have also been performed for an otherwise identical flow in which
the higher-velocity stream was discharged with the same boundary-layer thickness and
free-stream fluctuation intensity into a stagnant environment. The experiments reported in
Part 1 had actually included some on single-stream mixing layers of different Reynolds
numbers but, for the purposes of these simulations, it was considered desirable to retain
exactly the same velocity and other inflow conditions for the moving stream. The Reynolds
number per unit length applicable to this second mixing-layer flow was 2.2 × 106 m−1.

In most respects the simulation methodology followed closely that which had been
successfully used to replicate the same experimental flow in Part 2 but employed
a differently constructed multigrid solver to permit the use of a wider range of
boundary conditions. The transport equations were discretised and filtered spatially on
a finite-volume basis as described in Part 2, the Wall-adapting Local Eddy-viscosity
(WALE) model (Nicoud & Ducros 1999) being again used to provide an energy sink of
approximately the correct magnitude for the cascading eddying motions resolved by the
filter. This model has the considerable attraction that the sub-grid-scale eddy viscosity is
zero in laminar shear flow so that, with a sufficiently fine grid, the developing unsteady
motions in the pre-transition part of the mixing layer can be simulated with good accuracy.
An earlier study (McMullan, Gao & Coats 2009) had shown that, in the type of flow of
interest here, there was no significant backscatter from the unresolved to the resolved scales
(Piomelli et al. 1991) so that the use of a computationally more expensive two-filter model
was not justified.

Simulations of free turbulent shear flows performed with adequate resolution using the
WALE model are relatively insensitive to the value of the model constant CW because
the rate at which energy is extracted from the mean shearing motion and passed down to
the dissipation scale is effectively determined by the rotations and straining interactions
of the eddies resolved by the filter. Excessive damping can occur, however, if too high a
value is used in simulations of flows containing wall boundary layers. To allow these new
simulations to include studies of the effects of using non-slip walls as boundaries CW was
therefore reduced from the value of 0.56 used in the earlier work to 0.325 – what has now
become the standard value for use in such situations. As was shown in Part 2, variations
over this range in the value of CW had no significant effect on the development of the
mixing layer itself.

As before, a conserved scalar was introduced to label the fluid entrained into the mixing
layer from the faster stream, a Schmidt number of 0.74 being applied to the sub-grid-scale
diffusion. As with any large-eddy approach, the simulations were unable to quantify the
mixing of the two fluids at the molecular scale but this was unimportant in the present
context because the eddying and other induced motions that effected the entrainment
and cross-stream transport in these turbulent flows were fully resolved by the filter. The
filtered equations were solved iteratively with second-order spatial and temporal accuracy,
a pressure correction being applied to maintain continuity of the fluid at each time step.
Central differencing was used for the convective terms in the momentum equations and an
implicit method for the time advancement.

In the simulations reported in Part 2, where the primary objective had been to produce
time-resolved spanwise-averaged visualisations that could be compared with those made
experimentally, approximately self-similar conditions had been created through the use of
a computational domain of large cross-stream extent. Here, where the objectives included
extension of the simulations to a higher value of R and – most critically – the production
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Figure 2. (a) Computational domain and co-ordinate system. (b) Velocity profiles imposed at cross-stream
inlet.

of conditions that were sufficiently self-similar to allow accurate determination of the
relevant entrainment velocities and pressures, a different strategy was adopted. A domain
of similar cross-stream extent to that of the wind tunnel’s test section was employed,
uniform free-stream conditions being created in the part of the domain containing the fully
turbulent mixing layer by introducing a suitably profiled inflow through the cross-stream
boundary on the low-velocity side (figure 2a).

Because the pre- and post-transition parts of the organised mixing layer entrain at
different rates, the forms of the velocity profiles imposed at the cross-stream inlet were as
shown in figure 2(b). Both the streamwise component u and the cross-stream component
v were ramped linearly in the pre-transition part of the flow (0 < x < xt) from their known
values at x = 0 to whatever constant values were found by trial and error to give the closest
approximation to self-similar flow at x > xt. The adjustments were made iteratively, the
simulation being continued between adjustments for as long as was necessary for the
fluctuation statistics to restabilise. To minimise the effects of the domain’s finite length and
prevent reverse flow through the outlet an exit section of variable length was introduced
downstream of the main part of the domain. The conditions produced in this way provided
a much closer approximation to self-similarity than was achieved in either the earlier
simulations or the wind-tunnel experiments where the setting of the wall angle had taken
no account of the differing entrainment appetites of the pre- and post-transition parts of
the mixing layer. A further and more serious problem in the experiments had been that
they often included periods of both organised and classical turbulent flow. Consequently,
as was demonstrated and discussed in Part 1, the wall angles set will not have reflected the
entrainment appetite of either turbulent flow state very accurately.

As in the original wind-tunnel experiment the span of the flow was 0.1 m. As was
shown in Part 2, this was more than sufficient for the avoidance of spanwise confinement
effects on the larger turbulent scales and the spatial growth rate of the mixing layer. Except
where otherwise discussed, periodic boundary conditions were imposed at the ends of the
span. The length of the main part of the computational domain was set at 0.3 m (nearly
3000θ1) while its cross-stream extent was chosen to facilitate the most accurate setting
of the required self-similar conditions. If the cross-stream boundaries were placed too
close to the edges of the mixing layer then the flow disruptions associated with occasional
interactions between the turbulent mixing layer and the domain boundary contaminated
the fluctuation statistics. If the boundary on the lower-velocity side was too far away then
it was no longer possible to profile the inflow through it to reflect the different entrainment
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appetites of the pre- and post-transition parts of the layer. The placements finally chosen
were arrived at following trial simulations with domains of different dimensions. For the
two-stream simulations these boundaries were placed at y =+0.035 and −0.045 m. For
the single-stream simulations they were moved out to y = +0.05 and −0.1 m.

A mild boundary condition was applied at the domain outlet, this functioning merely to
scale the velocities normal to the outlet so that the continuity of the fluid within the domain
was maintained. Because the flow was treated as incompressible no acoustic waves were
reflected at this boundary but the passage through it of concentrations of spanwise vorticity
inevitably generated short-wavelength upstream-propagating numerical waves (Buell &
Huerre 1988). To minimise their effect on the potentially susceptible pre-transition part of
the flow the static pressure was fixed at mid-span at the location representing the trailing
edge of the splitter plate, i.e. at the origin of the co-ordinate system shown in figure 2(a).
With the pressure and velocity both specified at this inlet boundary location the numerical
waves were progressively damped as they propagated upstream and were of near-zero
amplitude in the initial part of the flow. The consequent variations of pressure at the outlet
plane had no perceptible effect on the convection, growth and interactions of the turbulent
vortex structures in the main part of the domain.

Hexahedral grids of between 35 and 42 million cells were employed in the definitive
simulations, providing a similar spatial resolution to that in the simulations reported in
Part 2. The grid was finest, with spacings �x = 0.00015 m and �y = 0.00004 m, at the
trailing edge of the splitter plate and gradually expanded in both directions. These spacings
resolved both the boundary layer separating from the higher-velocity side of the splitter
plate and the wavelength of the fundamental Kelvin–Helmholtz mode with some 20 cells.
The span of the domain was resolved with the uniform spacing �z = 0.0006 m. To ensure
adequate temporal resolution fixed time steps of 2 × 10−6 and 1.4 × 10−6 s were used
in the two- and single-stream simulations respectively, giving cell Courant numbers <1
throughout the domain.

3. Effects of different inflow and other boundary conditions

A great many preliminary simulations were performed, mostly in smaller domains and
in many cases with greater spatial and temporal resolution, to investigate systematically
the effects of different inflow and other boundary conditions on the development of the
two flows selected for study. Space limitations prevent any detailed presentation of the
results here but, because of their direct relevance to the design of the full-scale simulations
presented in § 4 as well as to the broader objectives of this research, a brief summary will
be given of the principal findings.

In the simulations reported in Part 2 the low-level residual broad-band fluctuations that
had been present in the inflows to the original wind-tunnel experiments were represented
by introducing a spectrum of random uncorrelated fluctuations (effectively an injection of
high-amplitude numerical noise) into the three components of the inflow velocity. With
an r.m.s. fluctuation intensity equal to 0.5 % of the free-stream velocity this was sufficient
to trigger the fundamental Kelvin–Helmholtz instability into rapid growth, leading to the
development of an organised mixing layer in which the mixing transition occurred at a
similar distance from the splitter plate to that which had been observed experimentally.
This inflow noise was dissipated within the first few rows of grid cells, however, and
had little or no direct effect on the flow further downstream. In these new simulations
pseudo-physical inflow fluctuations were synthesised by the well-established method of
summing a set of Fourier harmonics in such a way as to produce a divergence-free vector
field in the form of small-amplitude three-dimensional wave motions (Kraichnan 1970;
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Smirnov, Shi & Celik 2001). A set of 100 harmonics was used, spanning the range
of wavenumbers defined by the dimensions of the inlet. As well as providing a better
representation of the fluctuations remaining in the smoothed and accelerated inflows of the
original wind-tunnel experiment, these coherent motions persisted within the free streams
and proved much more effective in triggering the growth of three-dimensional instabilities
in the developing mixing layer, even when of very small amplitude.

With inflow fluctuation intensities of up to 0.3–0.35 % of the free-stream velocity such
fluctuations had the effect of triggering the fundamental Kelvin–Helmholtz instability into
rapid growth, resulting again in the development of an organised turbulent mixing layer.
However, there was also a partial loss of two-dimensionality in the rolled-up pre-transition
flow. As seen in figure 3(a), individual vortices did not remain straight over the whole span
of the flow but interacted helically with their neighbours and became linked with each
other by streamwise-oriented vortices. This type of flow development has been studied
experimentally by Chandrsuda et al. (1978) and Browand & Troutt (1985) and seen also in
the direct numerical and large-eddy simulations performed by Comte, Lesieur & Fouillet
(1989) and Comte, Silvestrini & Bégou (1998).

At fluctuation intensities higher than 0.3–0.35 % there was a complete change in the
pattern of flow development. Here the development of three-dimensionality (apparently
associated with the growth of oblique instability modes rather than modes that were
secondary to the fundamental Kelvin–Helmholtz instability) overtook the initial roll-up
and the vortex sheet shed from the splitter plate broke down into a lattice of randomly
oriented vortex tubes with little or no spanwise coherence (figure 3c). The outcome was
a classical free turbulent shear flow in which there was a convoluted interface between
rotational and irrotational fluid at the edges of the mixing layer but little or no penetration
of irrotational fluid into its central region (figure 3d).

These results suggest that similar small variations in the inflow fluctuation intensity had
been responsible for the observed switching between the organised and classical flow types
in the experiments reported in Part 1. It is known that there had been small variations in
the intensity of the residual inflow fluctuations within this range of values, both within
and between individual experiments. The causes of these variations may have included
transient aerodynamic resonances within the blow-down air supply systems at particular
flow conditions and/or compaction of semi-rigid porous packings used within the flow
smoothing process.

Residual inflow fluctuations are not the only source of three-dimensionality in nominally
plane mixing layers, however. As was discussed in § 1, regular arrays of secondary
counter-rotating streamwise vortex pairs at fixed spanwise locations have often been found,
superimposed on the primary spanwise vortices, in mixing layers developing from laminar
initial conditions. In some cases at least the fixed locations of such vortex pairs have been
linked to the presence of imperfections in the screens used to smooth the experimental
inflows. It seems that the presence of a vestigial wake or other defect at a particular
spanwise location can excite the translative instability of the rolled-up flow (Pierrehumbert
& Widnall 1982) which then propagates itself laterally across the span of the flow
(Lasheras, Cho & Maxworthy 1986; Nygaard & Glezer 1991). Straining of the streamwise
vorticity in the braids connecting the spanwise vortices during the pairings undergone by
the latter then excites a braid instability which causes the streamwise vorticity to become
concentrated within a stationary array of counter-rotating streamwise-oriented vortices
(Lin & Corcos 1984; Neu 1984).

To accurately reproduce the spanwise propagation of the translative instability from
a single inflow defect would require direct numerical rather than large-eddy simulation.
However, with sufficient spatial and temporal resolution, the excitation of the translative
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(e) ( f )

(b)(a)

(d )(c)

Figure 3. Simultaneous perspective and spanwise views of iso-vorticity surfaces in initial part of mixing layer.
In all views the y axis is vertical on the page and the flow direction from left to right. Light and dark areas on
plotted iso-surfaces are regions in which the x component of vorticity is positive and negative respectively.
Panels (a) and (b) show two-stream flow with random inflow fluctuations of intensity 0.1 %, ω = 1.5 × 104 s−1

(perspective view) and 103 s−1 (spanwise view). Panels (c) and (d) show two-stream flow with random inflow
fluctuations of intensity 0.5 %, ω = 2.5 × 104 s−1 (perspective view) and 103 s−1 (spanwise view). Panels (e)
and ( f ) show single-stream flow with spanwise inflow sinuation of wavelength 0.003 m and r.m.s. amplitude
0.005u1,0, ω = 2.5 × 104 s−1.

instability and the subsequent formation of the secondary streamwise vortices were
successfully captured in these preliminary simulations in response to spanwise sinuations
in the inflow velocity with r.m.s. levels smaller than 0.5 % of its average value (figure 3e).
An unexpected and significant finding of these particular studies was that in no case did the
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Organised large structure

regular arrays of streamwise vortices formed in the pre-transition flow survive the mixing
transition. As will be discussed in § 4, both single and paired streamwise vortices were to
be found in the post-transition mixing layer but they were not, in general, continuous with
any formed upstream of the transition location. This suggests that continuous threads of
streamwise vorticity of the type represented schematically in figure 1(b) are specifically a
feature of the pre-transition flow.

In this connection there is an important distinction to be made between the streamwise
vortices formed in the separated flow, as described above, and the preformed arrays
of streamwise vortices that were introduced diagnostically as part of the inflow in the
large-eddy simulations of McMullan & Garrett (2016a,b). Those vortices were generated
in a ‘precursor’ flat-plate boundary-layer simulation by means of a recursive procedure
with two special features:- (i) the prescribed profiles for the velocity fluctuations in
the three co-ordinate directions were strongly anisotropic, promoting the creation of
streamwise vorticity; (ii) the statistical homogeneity imposed in the spanwise direction
was such that it was only the spanwise averages of the first and second velocity moments
that were constrained to match the prescribed profiles, allowing the streamwise vorticity
to become concentrated in a parallel array of counter-rotating vortices. The precursor
simulation thus functioned somewhat like a row of vortex generators mounted on the
splitter plate. In this situation the continuous counter-rotating threads of concentrated
streamwise vorticity shed from the splitter plate had the effect of delaying or preventing
altogether the transition of the mixing layer to its organised fully turbulent state, the layer
continuing to grow by a process of sequential vortex pairing.

Returning to the present simulations, it was found that, even without excitation of
the translative instability, the presence of any small spanwise non-uniformity in the
inflow tended to inhibit the development of more randomised three-dimensionality. In the
rolled-up flow a single small vestigial wake was sufficient to act as a fixed node, reducing
the effective span of the flow and thus preventing excitation of the lower-wavenumber
helical pairing modes. It thus seems that whether the pre-transition flow develops as in
figure 1(b) or figure 3(a), or as something between the two, depends on features specific to
individual realisations that it is difficult to either control in real mixing layers or represent
generically in simulations. It is important to note, however, that these differences in the
pattern of the pre-transition development had no obvious effect on the character or growth
rate of the post-transition flow – the part of the organised mixing layer of interest in this
study.

Attention was also given in the preliminary simulations to the influence, as sources
of three-dimensionality, of the boundary conditions applied at the ends of the span.
Replacement of the periodic boundaries with non-slip walls representative of those present
in the original experiment showed that the drag of the wall boundary layers imparted a
twisting moment to the ends of the spanwise vortices so that their pairings had a strongly
helical character. It was also found that, during the pairings, rotational boundary-layer fluid
was sucked away from the walls and along the axis about which the pairing vortices were
rotating. In simulations containing these non-slip walls it was usually the twisting of the
vortex ends during a pairing that initiated the mixing transition.

4. Simulation results

In the light of the results of the preliminary simulations summarised in § 3 and
following comparisons with spark-shadowgraph plan-view visualisations of the original
experimental flows (e.g. that reproduced in figure 5 of Part 1), four test cases were
chosen for more detailed study. To simulate both the single- and two-stream flows in
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Two-stream flow (R = 0.43) Single-stream flow (R = 1)

Variable Simulation Analysis Simulation Analysis

u1 (m s−1) 31.9 31.9 31.9–32.0 32.0
u2 (m s−1) 12.7–12.8 12.7 — —
v2 (m s−1) 0.152–0.158 0.155 1.00–1.10 1.05
−tan α2/tan α1 1.25–1.43 1.34 1.56–1.80 1.68
p1–p2 (Pa) 0.263–0.443 0.2187 2.02–3.72 1.351∫ tan α1

tan α2
ū( y) dy

tan α1−tan α2
(m s−1) 21.0–21.9 22.04 13.2–15.0 15.24∫ tan α1

tan α2
u2( y) dy

tan α1−tan α2
(m2 s−2) 501–540 541.6 352–387 382.1∫ tan α1

tan α2
uξ dy∫ tan α1

tan α2
ū( y) dy

0.611–0.638 0.6186 0.815–0.840 0.7835

EV 1.57–1.76 1.622 4.39–5.26 3.620

Table 1. Similarity parameters for test cases involving classical turbulent flow.

their organised states random fluctuations with intensities of 0.15 % were introduced into
the inflows through inlets 1 and 2 (figure 2a). This was the intensity level necessary for
completion of the mixing transition (in the sense that a spanwise-coherent fully turbulent
flow was established across the full span of the domain) at the experimentally observed
distance of about 0.075 m (700θ1) from the trailing edge of the splitter plate. Fluctuations
were not applied to the boundary layers separating from the two sides of the splitter plate
because these were of sub-critical Reynolds number and, in the original experiments,
viscous forces and the strong negative pressure gradient associated with the acceleration of
the inflows will have effectively damped out any fluctuations within them. To simulate the
two flows in their classical turbulent states the inflow fluctuation intensities were increased
to 0.5 %, the highest level recorded in the experiments. Periodic boundaries were retained
at the ends of the span because the local flow separations from non-slip walls induced by
the large-scale motions would have compromised significantly the creation of the desired
self-similar conditions for the organised post-transition flow.

As detailed in § 2, the magnitudes of the inflow velocities u2 and v2 through the
cross-stream inlet (figure 2) needed to produce self-similar conditions for the fully
turbulent part of the mixing layer were established for each of the four test cases by
a lengthy process of systematic iteration. This was achieved for v2 with an estimated
precision of ±2 % in the cases of the two-stream flows and ±5 % in those of the
single-stream ones, the magnitude of any residual variation in the value of u1 in the
notionally self-similar part of the flow being always less than 0.5 %. These v2 values
are listed as ranges of uncertainty in tables 1 and 2 together with the corresponding
values for the streamwise velocities u1 and u2 (which were measurably different from
the inlet values u1,0 and u2,0) and certain other characteristics of the self-similar flow
which will be discussed later. The mean static pressure difference across the mixing layer,
p1–p2, could be determined with reasonable precision for the two-stream flows but only
very approximately for the single-stream ones because of the practical impossibility of
completely eliminating induced streamwise motions (and consequent streamwise pressure
variations) in the irrotational fluid discharged from the cross-stream inlet. Once these
flow conditions had been established the simulations were continued for as long as was
necessary for the fluctuation statistics to stabilise.
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Two-stream flow (R = 0.43) Single-stream flow (R = 1)

Variable Simulation Analysis Simulation Analysis

U1 (m s−1) — 31.95 — 31.94
u1 (m s−1) 31.9–32.0 31.95 31.9–32.0 31.95
U2 (m s−1) — 12.86 — −0.04199
u2 (m s−1) 12.8–12.9 12.86 — —
UC (m s−1) — 22.45 — 16.10
V1 (m s−1) — 0.3035 — 0.9584
V2 (m s−1) — 0.3722 — 1.399
v2 (m s−1) 0.245–0.255 0.25 1.33–1.47 1.4
β (radians) 0.00838–0.0106 0.0095 0.0276–0.0335 0.03
−tan α2/tan α1 — 1.100 — 1.166
p1–p2 (Pa) 1.08–1.20 1.240 3.22–5.22 6.786
pS–p1 (Pa) — 55.26 — 154.1
g — 0.2939 — 0.1033
Φ — 0.1811 — 1.490
EV 1.20–1.48 1.2 1.28–1.32 1.3

Table 2. Similarity parameters for test cases involving organised turbulent flow.

As in Part 2, the mean velocity and scalar profiles presented will be of time-mean values
that have been averaged also over the span of the domain (denoted as 〈ū〉z,t, etc.). All of
the results and analyses are presented in dimensional form because:-

(i) as was discussed in § 1 and will be demonstrated in § 5, different analytical
frameworks are required for the mixing layer in its organised and classical states;

(ii) as will be shown, some of the features of the organised post-transition layer are
Reynolds-number-dependent.

As was noted in § 3, the streamwise vortices present in the organised post-transition mixing
layer were not continuous with any formed in the pre-transition flow and a close study
was therefore made of their genesis with the aid of visualisations such as that shown in
figure 4(a). As was shown in Parts 1 and 2 and summarised in § 1, pairs of spanwise
vortex structures break down at intervals when their continuous growth has reached the
point at which the saddle-flow pattern between them can no longer be sustained. Now the
cores of the structures are formed of bundles of vortex tubes with a preferential spanwise
orientation, each breakdown of two neighbouring structures leaving a three-dimensional
tangle of such tubes. As a single new structure forms to replace the two that have broken
down the vortex tubes that are to constitute its core become oriented in the spanwise
direction once more while those more remote from the axis of the roll-up become stretched
in the braids linking the new spanwise vortex structure to its neighbours. This appears to be
the process by which the braids are refreshed at intervals with concentrations of streamwise
vorticity, allowing the continuous energy cascade within the growing structures to be
sustained. Pairs of counter-rotating streamwise vortices of smaller scale may also be
formed within the braids by local excitations of the braid instability (Lin & Corcos 1984;
Neu 1984) but this is incidental. The spanwise distribution of the vorticity within both the
spanwise vortex structures and their linking braids is in consequence very irregular. In the
light of what is to be seen in visualisations of this kind, the suggestion made in Part 2 that
significant vorticity of the opposite hand to that of the mean shear might be introduced
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(b)

(a)

(d )

(c)

(e)

Figure 4. Instantaneous visualisations of organised post-transition flow: (a) ω = 104 s−1 iso-vorticity surfaces
(plan view with direction of flow from left to right) in two-stream mixing layer, shaded as in figure 3
and showing, near the middle of the visualised flow length, a region of chaotic flow resulting from the
breakdown of neighbouring vortex structures; (b) y–z cross-sections through braid, R = 0.43, x = 0.118 m;
(c) y–z cross-section through core of spanwise vortex structure, R = 0.43, x = 0.128 m; (d) y–z cross-section
through braid, R = 1, x = 0.136 m; (e) y–z cross-section through core of spanwise vortex structure, R = 1,
x = 0.182 m. The three contour lines plotted in (b–e) are of ξ = 0.1, 0.5 and 0.9, the light shading is vorticity
magnitude and the broken lines are the locations at which 〈ξ̄〉z,t = 0.01 and 0.99.

locally by the bending of stretched streamwise vortices around the cores of the spanwise
vortex structures (cf. figure 1b) must now be rejected.

The extent of this spanwise irregularity is evident from the representative instantaneous
y–z cuts presented in figure 4(b–e). Figure 4(b) shows clearly the presence of some
streamwise vortices of alternating hand in the braids of the two-stream flow. They
are barely evident at all, however, in the corresponding cut of the single-stream flow
(figure 4d). The significant difference here is that the Reynolds number, scaled on the
thickness of the mixing layer and the velocity difference across it, is some four times
greater and the thin semi-laminar braids of the two-stream flow have been replaced with
thicker strained sheets of more fully turbulent fluid.
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Figure 5. Normalised spanwise-averaged spatial growth of simulated mixing layers in their (a) organised and
(b) classical turbulent states. The reference line of gradient π−1 is the growth rate given by (5.4).

That this inherent large-scale spanwise irregularity and its sensitivity to Reynolds
number complicate the determination of a dynamically meaningful spatial growth rate
for the organised post-transition mixing layer is shown in figure 5(a). Here, an attempt
has been made to plot a normalised spatial growth rate, which in the asymptotic limit
is expected to be proportional to R, as a function of distance from a virtual origin at x0
for both the single- and two-stream flows using four different measures of the local layer
thickness. These are the momentum thickness

θ(x) =
∫ ∞
−∞ (u1 − 〈ū〉z,t)(〈ū〉z,t − u2) dy

(u1 − u2)
2 , (4.1)

the vorticity thickness

δω(x) = u1 − u2

(d〈ū〉z,t/dy)max
, (4.2)

and two others based on the mass fraction ξ of the fluid entrained from the faster stream.
These are the cross-stream distance between the points at which 〈ξ̄〉z,t = 0.01 and 0.99
(denoted as δ99) and that between the points at which 〈ξ̄〉z,t = 0.00001 and 0.99999
(denoted simply as δ). As can be seen from figure 4(b–e), δ99 is likely to be of comparable
magnitude to an experimental spanwise-integrated visual thickness. 〈ξ̄〉z,t = 0.00001 and
0.99999, on the other hand, approximated closely to the actual edges of the turbulent
mixing layer, i.e. the locations at which the mean velocities, static pressures and scalar
mass fractions all began to depart from their free-stream values. These locations could be
determined with some precision with the level of free-stream uniformity and the spatial
resolution available in these simulations. The significance of the reference line of gradient
π−1 will be discussed in § 5.1. It is important to note that all of the simulation results
presented in this and the subsequent figures were fully converged statistically. The minor
wiggles evident in the streamwise plots – most obviously those of δ/R and δ99/R – reflect
the minor departures from perfect uniformity of the free streams.

All of the data plotted in figure 5(a) are for the post-transition flow in the range of x
values 900θ1 < x < 2700θ1, a range within which self-similar growth might reasonably
be expected (Bradshaw 1966). Unsurprisingly, the integral measure of thickness, θ , and
that based on the velocity gradient in the centre of the mixing layer, δω, show something
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approximating more closely to self-similar growth than δ99 and δ, both of which were very
much more sensitive to local departures from perfect uniformity in the free streams. More
significantly, all four measures of the layer’s thickness show that the normalised growth
rates for the (lower-Reynolds-number) two-stream flow were up to 30 % greater than those
for the (higher-Reynolds-number) single-stream one. As shown by figure 4(b–e) this is
because, at the lower Reynolds number, the thickness of the mixing layer, as measured on
a time- and spanwise-averaged basis, included a greater proportion of completely unmixed
and irrotational fluid indistinguishable from that external to the layer. Much of this was to
be found in the tongues of entrained fluid which separated the cores of the vortex structures
but, as figure 4(c,e) show, a lot more was located at the edges of the mixing layer where
the turbulent cores of the vortex structures ‘nibbled’ directly at the free streams. Hot-wire
measurements would have shown these two mixing layers as differing from each other in
having not just different growth rates but also different turbulence intermittency levels.

This is in contrast with the situation in relation to the two classical turbulent mixing
layers (figure 5b) where, with the same Reynolds-number difference between the single-
and two-stream flows, their normalised self-similar growth rates are more nearly the
same. (The residual differences between the plots for the two flows are not significant
and can be attributed to the imperfect realisation of the desired self-similar conditions in
the simulations.) Comparison between the two figures shows that the growth rates for
the organised flow relax towards those for the classical flow as the Reynolds number
is increased. These characteristics explain why, in the flow-visualisation experiments
reported in Part 1, the growth rate was consistently observed to be greater when the flow
was in its organised state.

The profiles of 〈ū〉z,t and 〈ξ̄〉z,t at different streamwise locations are plotted as functions
of the non-dimensional co-ordinate η = y/(x − x0) in figure 6. Those of 〈ū〉z,t are of the
near-antisymmetric forms expected where the fluid is of uniform density, their shapes
reflecting the relationships between θ , δω and δ seen in figure 5. Indicated for the two
organised flows in figure 6(a,c) is the position on the profile at which 〈ū〉z,t was equal
to (u1 + u2)/2. This was the approximate location of the axis along which the entrained
tongues of irrotational fluid stagnated against each other and the centres of rotation of
the continuously growing vortex structures convected (Coles 1985; Dimotakis 1986) and
was close to the locations of both the maximum of d〈ū〉z,t/dy and the minimum of 〈p̄〉z,t.
In practice this location could be determined more accurately from the simulation results
than that of the maximum of d〈ū〉z,t/dy and its streamwise variation was extrapolated back
to y = 0 to establish a dynamically meaningful virtual origin for each of the two organised
mixing layers.

More interesting differences are to be seen between the corresponding profiles of 〈ξ̄〉z,t.
Those for the two classical flows (figure 6 f,h) are near linear over the central part of the
mixing layer, as predicted by classical turbulence theory, but become curved towards
the edges of the layer because of the presence there of sizeable indentations in the
interface between the entrained irrotational fluid and the rotational (turbulent) fluid that
has already undergone some mixing. The profiles for the two organised flows (figure 6b,d)
are significantly different, however, and show that the composition and distribution of the
mixed fluid within the layer continued to change long after the dynamics of the spatial
growth had attained approximate self-similarity. This is consistent with the experimental
observations of Karasso & Mungal (1996), Slessor, Bond & Dimotakis (1998) and Meyer,
Dutton & Lucht (2006). The location of the axis along which the entrained inflows
stagnated and the centres of rotation of the vortex structures convected is again indicated
in these two figures. In both cases there is a very obvious flattening of the profile in the
central part of the layer immediately downstream of the mixing transition, this feature
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Figure 6. Similarity profiles of 〈ū〉z,t and 〈ξ̄〉z,t: (a,b) organised flow, R = 0.43; (c,d) organised flow, R = 1;
(e, f ) classical flow, R = 0.43; (g,h) classical flow, R = 1. The vertical reference lines in (a–d) indicate the
location of the axis along which the entrained tongues of irrotational fluid stagnated against each other.
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Figure 7. Mixture-fraction pdfs at z = 0 in R = 0.43 mixing layer: (a) organised flow, x = 0.15 m; (b) organised
flow, x = 0.25 m; (c) classical flow, x = 0.25 m. The vertical reference lines in (a) and (b) indicate the location
of the axis along which the entrained tongues of irrotational fluid stagnated against each other.

becoming progressively less marked further downstream. In the case of the two-stream
flow (figure 6b) there is also a significant fall with increasing x in the value of 〈ξ̄〉z,t at the
axis of stagnation.

Both of these features are reflected in figure 7(a,b), which presents the
probability-density functions (pdfs) of ξ sampled at five different cross-stream and two
different streamwise locations in the two-stream organised layer. As was noted in § 2,
these pdfs do not take account of sub-grid-scale unmixedness but provide a level of spatial
resolution that is perfectly adequate for study of the scalar transport in these gaseous flows.
Marked in these figures is the value of η at which the entrained flows stagnated against each
other and the centres of rotation of the vortex structures were located. It is seen that the
values of 〈ξ̄〉z,t at this cross-stream location in figure 6(b) provide a good measure of the
average composition of the mixed fluid within the vortex structures and that the reduction
in the flattening of the profile of 〈ξ̄〉z,t with increasing x reflects an increasing amount of
mixing at more dispersed values of ξ . Figure 7(c) presents for comparison a representative
set of pdfs for the two-stream classical layer. As expected, these are of the ‘marching’
type showing, at each cross-stream location, a random distribution of compositions about
a mean value of ξ which falls continuously with decreasing η.

That the range of mixture fractions present within the organised mixing layer continues
to increase for some distance downstream of the mixing transition has been discussed fairly
extensively in the literature where it has been described as a switch from a ‘non-marching’
to a ‘tilted’ or ‘hybrid’ form of pdf. From consideration of the available empirical evidence,
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Organised large structure

Karasso & Mungal (1996) proposed that this switch occurred when the ‘pairing parameter’
Rx/λ, where λ is the wavelength of the initial Kelvin–Helmholtz instability, attained a value
of ∼22. Huang & Ho (1990) had earlier proposed that, in a mixing layer which grew by a
sequence of vortex pairings, those pairings might be expected to occur at the locations at
which this parameter attained the approximate values 4, 8, 16, etc., the mixing transition
typically being triggered by the second such pairing. The logic of the proposal made by
Karasso & Mungal was that the switch from the non-marching to the tilted form of pdf
occurred with the first vortex pairing following the mixing transition. As was shown in
Parts 1 and 2, vortex pairings of the pre-transition type do not actually occur downstream
of the mixing transition, the turbulent vortex structures instead interacting destructively
at intervals with the production of regions of temporarily chaotic turbulent shear flow.
A better explanation for the change in the forms of the mixture-fraction pdfs at x > 2xt is
therefore that this reflects the added contribution to the statistics of the intermittent local
breakdowns in the large-scale organisation. If, following Huang & Ho, λ is evaluated as
29.4θ1 then the pdfs presented in figure 7(a,b) will have corresponded to values of 19.9 and
33.2 for the pairing parameter, neatly bracketing the critical value proposed by Karasso &
Mungal.

The fall with increasing x, in the case of the two-stream organised mixing layer, in
the average value of ξ within the large structures (figure 7a,b) and in the resultant value
of 〈ξ̄〉z,t at the axis of stagnation (figure 6b) appears to be an effect of the presence
of the splitter-plate wake. Because the initial Kelvin–Helmholtz roll-up occurred on the
higher-velocity side of the wake most of the fluid within the pre-transition mixing layer
had originated in the faster stream. It was only downstream of the mixing transition that the
layer entrained and grew in a quasi-self-similar way, the more nearly balanced entrainment
of the two fluids progressively reducing the average value of ξ of the mixed fluid within
the layer.

This is a feature of some importance because most of the published experimental
research involving scalar measurements has, for practical reasons, been performed on
two-stream mixing layers of modest length. In all of this work the assumption has been
made that the average value of ξ at the measurement location was itself a measure of the
ratio of the self-similar entrainments from the two sides of the layer. On the basis of scalar
measurements made at R = 0.45 by Konrad (1976), supplemented by kinematic arguments,
Dimotakis (1986) has proposed that the ratio of the volumetric entrainments from the two
sides of uniform-density mixing layers is given by the relationship

EV = 1 + 0.68R. (4.3)

The present simulation results indicate that the asymptotic value of EV for the organised
layer is actually somewhat lower than this, increasing from ∼1.2 at R = 0.43 to only ∼1.3
at R = 1.

The final features of the simulation results to which attention will be drawn concern
the average shear stress acting across the fully turbulent mixing layer and the rate of
energy dissipation within it. It was suggested in Part 2 that the flow adopts its organised
state where the inflow and other conditions allow because this offers the ‘path of least
resistance’ for progressive relief of the shear stress across the layer. That this is so is
confirmed by the results presented in figure 8(a). Here, the principal component of the
shear stress, averaged across the layer as

〈
τy

〉
y,z,t =

∫ y0.99999
y0.00001

〈
(μ + μSGS)

du
dy

〉
z,t

dy

y0.99999 − y0.00001
, (4.4)
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Figure 8. Comparison of (a) normalised average shear stresses and (b) normalised energy dissipation rates
within the organised and classical turbulent mixing layers.

where μ and μSGS are the molecular and (sub-grid-scale) eddy viscosities and y0.00001

and y0.99999 the cross-stream locations at which 〈ξ̄〉z,t = 0.00001 and 0.99999, is plotted
with suitable normalisation as a function of distance from the virtual origin for all four
test cases. Too much significance should not be given to the absolute values estimated
in this way for the average shear stress acting across the layer because of the use of
a sub-grid-scale model to represent the eddying motions unresolved by the filter. The
same filter was used in all four simulations, however, and so the figure can be taken to
accurately reflect the effects of the differing vorticity distributions in the four simulated
flows. It is seen that the organisation of the mixing layer into a procession of roller-like
spanwise vortex structures separated from each other by regions of near-potential flow
does in fact reduce the shear stress against which work must be done by up to
some 50 %.

That the flow organises itself in this way where the inflow and other conditions allow
is a corollary of the second law of thermodynamics which requires that any macroscopic
non-equilibrium system with time-invariant boundary conditions must approach its final
equilibrium state by the path that minimises its internal rate of entropy production
(Glansdorff & Prigogine 1964). In figure 8(b) the average rates of energy dissipation per
unit volume of mixing-layer fluid

ρ〈ε̄〉y,z,t =
∫ y0.99999

y0.00001

〈
(μ + μSGS)S2

〉
z,t

dy

y0.99999 − y0.00001
, (4.5)

where ρ is the fluid density and S2 represents the second invariant of the rate-of-strain
tensor, are plotted on the same basis as the data in figure 8(a) showing directly this
principle in action. It should be noted that the plots for the two organised flows in
figure 8(b) show the same Reynolds-number dependence as was seen in figure 5(a).
This is because the amount of irrotational fluid (within which there is no energy
dissipation) swept along within the organised mixing layer decreases with increasing
Reynolds number.
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5. Theoretical analyses

5.1. Fundamental considerations
In text-book analyses of the classical turbulent mixing layer it is usual to concentrate on the
exchange of just the streamwise momentum between the fluids entrained from the two sides
of the layer and, in this context, it has often been found convenient to quantify the growth of
the mixing layer in terms of its momentum thickness. Indeed, the balance of cross-stream
momentum has usually been ignored altogether. As will be shown in § 5.3, in the case
of the organised layer the balances of the cross-stream momentum and the associated
stagnation energy are as important as that of the streamwise momentum. In order to be able
to compare the dynamics of the self-similar spatial growth of the organised and classical
layers in a meaningful way it is therefore necessary to establish also an analysis of the
classical layer which similarly includes a proper balance of the cross-stream momentum.
This will be the subject of § 5.2. A further complication, however, is that, as was shown in
§ 4, the organised layer (unlike its classical counterpart) contains a great deal of entrained
irrotational fluid which, by definition, has yet to exchange any of its mass, momentum
and energy with the rotational fluid within the layer. What is also required, therefore, is a
measure of the growth rate which defines specifically the rate of increase in the mass of
the rotational fluid within the layer.

Where the fluid is incompressible this growth rate can be defined kinematically by
reference to the equiangular (logarithmic) spiral that was introduced, in a slightly different
analytical context, in Part 2. Consider figure 9 which represents the situation in a
temporally growing mixing layer formed between two counter-flowing free streams of
speed u∞/2. Because the growth of the layer is self-similar the lengths of the straight lines
OP and OQ increase at the constant rate dr/dt as fluid particles detach themselves from
the free streams and begin to exchange momentum and energy. Because there is symmetry
with respect to the x axis and no momentum is being created or destroyed by the exchange
process, the net streamwise velocity with which fluid crosses the line POQ is zero. The two
equiangular spirals issuing from the pole at point O are the virtual streaklines formed by
the particles which, at successive instants of time, have entered the layer at the outwardly
moving points P and Q. Now it is a property of the equiangular spiral that its length
increases at a constant rate as it rotates. As will be shown, this figure therefore defines
the unique rate at which the ‘rotational thickness’ of the layer can increase linearly if the
essential continuity of the fluid is to be preserved.

Although it was used in Part 2 to estimate the growth rate of the spanwise structures
in the organised post-transition layer (a growth rate which can be taken to define that
of the layer as a whole where the flow is in its organised state), this spiral transform
should not be confused with the rolling-up of a vortex sheet. The spiral associated with
the rolling-up of a vortex sheet is formed of streamlines, not streaklines, and it is not an
equiangular one: its length increases continuously towards the centre of the rotation and,
in the absence of viscous forces, becomes infinite at the pole. All that is being analysed
here is the fundamental kinematic constraint imposed by the requirement for continuity
on the rate of a linearly self-similar simultaneous exchange of mass and momentum in an
incompressible fluid. This constraint necessarily applies in all such situations, irrespective
of the details of the actual exchange process involved.

Now the essential feature of an equiangular spiral is that the radius r at any point along
its length increases exponentially with that point’s angle of rotation ϕ such that

r
r0

= exp(c|ϕ − ϕ0|), (5.1)
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Figure 9. Equiangular spirals defining temporal growth rate of region of self-similar simultaneous mass and
momentum exchange between counter-flowing streams.

where r0 and ϕ0 are the radius and angle of rotation of some other reference point on the
spiral and c is a constant. Consequently, if one of these points is rotated through an angle
of 2π radians relative to the other, r = r0 exp(2πc). It also follows that for both points to
lie on the same line OP or OQ, so that the growth in the thickness of the mixing layer as
well as in the length of the spiral is self-similar, c must be (2π)−1, making r = er0and the
ratio r/r0 a constant.

Consider now the increases in the length l of each of the two spirals at the outwardly
moving points P and Q. Because dl = r dϕ,

l − l0 =
∫ ϕ

ϕ0

r dϕ = 2π(r − r0), (5.2)

from which dl/dr = 2π. But dl/dt at both P and Q is u∞/2 and consequently the temporal
growth rate of the mixing layer’s thickness is

2
dr
dt

= 2
dr
dl

dl
dt

= u∞
2π

. (5.3)

If the two counter-flowing streams are replaced with two streams moving in parallel with
the velocities u1 and u2 (u1 > u2) then

2
dr
dx

= 2
dr
dt

dt
dx

= u1 − u2

2π

2
u1 + u2

= R
π

. (5.4)

This equation defines, to a very close approximation, the rate of spatial growth of the
thickness of the rotational fluid within any real self-similar mixing layer of uniform
density. As already discussed, the temporal growth rate (5.3) is exact and fundamental. The
spatial growth rate (5.4) will be in error when applied to a real flow only to the extent that
streamwise momentum is not conserved overall in the growth process. In the real spatially
growing mixing layer there will be a very small gain or loss of streamwise momentum as
a result of the pressure differences associated with asymmetry of the entrainment from the
two sides of the layer but this is negligible in relation to the magnitudes of the streamwise
momentum fluxes involved and is conventionally ignored in all text-book analyses.
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Figure 10. Fraction of irrotational fluid within thickness of organised mixing layer vs. Reynolds number.

Figure 5(b) shows that, to within the precision with which δ was determined in the
simulations, (5.4) is in perfect agreement with the simulation results for the two classical
turbulent mixing layers – the two that contain little or no irrotational fluid within the
region of mean shear. This is not the case for the two organised layers, however, and in
figure 5(a) the ratio of δ/R to the reference thickness (x − x0)/π can be taken to provide a
direct measure of the relative proportions of the irrotational and rotational fluid contained
within the spanwise-averaged thickness δ. Figure 10 plots the resultant proportion of the
irrotational fluid within the two organised layers as a function of the local Reynolds
number Reδ = δ(u1 − u2)/ν. The trend discussed qualitatively in § 4 is very clear and
continues to a Reynolds number of at least 2.5 × 105. The apparent flattening of the
curve at the highest values plotted is not significant and reflects a small influence of the
increasing proximity of the exit boundary in the single-stream simulation.

It may be noted that, in wind-tunnel experiments, Clemens & Mungal (1995) observed
the large-scale organisation to persist to Reynolds numbers of roughly twice the highest
value attained in these simulations before the compressibility effects associated with their
use of high convective Mach numbers began to modify it significantly. More data would
be required to know whether or not there is a limiting Reynolds number above which the
layer cannot exist in its organised state. As was seen in figures 4(b) and 4(d), some of the
decrease in the proportion of the fluid within the layer that is irrotational can be attributed
to the thickening of the braids. However, the principal reason for the decrease appears to be
simply that the spanwise non-uniformity of the organised layer decreases with increasing
Reynolds number.

5.2. Dynamics of the classical turbulent mixing layer
The kinematically defined growth rate (5.4) will first be applied to the mass and
momentum exchanges occurring in the two test cases involving classical turbulent mixing
layers. The control volume OPQ in figure 11(a) represents unit length of the self-similar
layer plotted in co-ordinates which spring from its virtual origin. Outside this volume
is completely unmixed irrotational free-stream fluid in which the mean static pressure is
uniform, the static pressures being different on the two sides of the layer. The faster stream,
as in the simulations and the wind-tunnel experiments, is parallel to the x axis while the
slower one has a resultant velocity which is at an angle to this axis. In the single-stream
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Figure 11. Analytical frameworks for (a) classical and (b) organised turbulent mixing layer.

(R = 1) case u2 is zero and this angle becomes 90°. All angles will be taken as positive
when associated with anti-clockwise rotations.

For continuity the entrainment into the control volume from the free streams must be
equal to the outflow through the plane PQ. Consequently, if the control volume is taken to
be of unit length in the x and z directions,

u1 tan α1 − u2 tan α2 + v2 =
∫ tan α1

tan α2

ū( y) dy, (5.5)

where the overbar denotes a simple time average. Equation (5.4) provides the second
continuity equation

tan α1 − tan α2 = 1
π

u1 − u2

u1 + u2
. (5.6)

It may be noted that the invocation of this second constraint on the relative values of tan
α1 and tan α2 renders unnecessary the use of a turbulence model with an assumed mixing
length or something similar.

The balance of streamwise momentum can be written

u2
1 tan α1 − u2

2 tan α2 + u2v2 ≈
∫ tan α1

tan α2

u2( y) dy. (5.7)

In formulating this balance the usual assumption has been made that the pressure terms
and the integral of the normal fluctuation stress are of negligible magnitude in comparison
with the integral of the mean convective flux. In this frame of reference, with the faster
stream parallel to the x axis, the net momentum flux across the x-axis is zero (because, at
this location, the negative momentum flux associated with the mean v is balanced by the
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positive fluctuation stress). The overall balance of the cross-stream momentum is therefore

p1 − p2 = ρv2(v2 − u2 tan α2), (5.8)

where p1 and p2 are the static pressures in the two free streams. In all of the previously
published analyses with which the present author is familiar (e.g. Abramovich 1963) the
pressure difference across the layer has been assumed insignificant but this falsifies the
analysis. To balance the cross-stream momentum this assumption requires the faster stream
to have a negative component of velocity in the cross-steam direction, thus changing the
balance of the entrainment into the layer from the two streams.

Finally there is the ratio of the volumetric entrainments across OP and OQ

EV = u1 tan α1

v2 − u2 tan α2
, (5.9)

which is also a function of ξ̄( y) via the relation

EV =
∫ tan α1

tan α2
uξ( y) dy/

∫ tan α1
tan α2

ū( y) dy

1 − ∫ tan α1
tan α2

uξ( y) dy/
∫ tan α1

tan α2
ū( y) dy

. (5.10)

In evaluating the right-hand side of (5.10) the same assumption will be made concerning
the relative magnitudes of the integrals of the mean and fluctuating fluxes of ξ across PQ
as was made in (5.7) in respect of the corresponding fluxes of the streamwise momentum.
This assumption is valid where, as here, ξ is defined such that its value is zero in the slower
stream.

We thus have a system of the six equations (5.5)–(5.10) in the ten variables u1, u2, v2,
tan α1, tan α2, p1 − p2,

∫ tan α1
tan α2

ū( y) dy,
∫ tan α1

tan α2
u2( y) dy,

∫ tan α1
tan α2

uξ( y) dy and EV . With u1
and u2 set to match those of the simulations and the three integrals evaluated from the
simulations results as∫ tan α1

tan α2

ū( y) dy = tan α1 − tan α2

y0.99999 − y0.00001

∫ y0.99999

y0.00001

〈ū〉z,t dy, (5.11)

∫ tan α1

tan α2

u2( y) dy ≈ tan α1 − tan α2

y0.99999 − y0.00001

∫ y0.99999

y0.00001

〈ū〉2
z,t dy, (5.12)

∫ tan α1

tan α2

uξ( y) dy ≈ tan α1 − tan α2

y0.99999 − y0.00001

∫ y0.99999

y0.00001

〈ū〉z,t〈ξ̄〉z,t dy, (5.13)

this is sufficient to generate non-unique but dynamically consistent solutions that can be
compared with the other simulation results. Because

(i) EV is a defined function of
∫ tan α1

tan α2
ū( y) dy and

∫ tan α1
tan α2

uξ( y) dy,
(ii) p1–p2 is effectively a function of v2 and
(ii)

∫ tan α1
tan α2

ū( y) dy,
∫ tan α1

tan α2
u2( y) dy and

∫ tan α1
tan α2

uξ( y) dy are all functions of the ratio tan
α2/tan α1,

the procedure adopted here has been to set v2 and tan α2/tan α1 to values
representative of those found in the simulations. These and the corresponding
values of p1–p2,

∫ tan α1
tan α2

ū( y) dy/(tan α1 − tan α2),
∫ tan α1

tan α2
u2( y) dy/(tan α1 − tan α2),∫ tan α1

tan α2
uξ( y) dy/

∫ tan α1
tan α2

ū( y) dy and EV are listed in table 1 where they can be compared
with their simulation counterparts.
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The level of agreement between analytical and simulation results is seen to be reasonably
good for both the two- and single-stream flows. In making this judgement appropriate
allowance must be made for the approximate nature of the analysis, the sensitivity of the
integrals to what is taken as the edge of the mixing layer on the high-velocity side and
the imperfect nature of the simulations (more especially that for R = 1). The most obvious
discrepancies are in the values for the small static pressure difference across the layer,
those in the simulations being a little higher than those predicted analytically. This can be
attributed, at least in part, to the fact that the inflected form of its mean velocity profile
rendered the turbulent mixing layer slightly unstable to low-frequency disturbances in the
simulations – an effect not allowed for in the analysis.

5.3. Dynamics of the organised turbulent mixing layer
As was discussed in § 1, the organised turbulent mixing layer requires a different form
of analysis from its classical counterpart because, in the former, the whole thickness of
the layer is occupied by coherent parcels of fluid – the vortex structures and the masses
of fluid trapped between them – which all convect bodily along the layer at the same
constant velocity. This organisation of the flow into a procession of discrete coherent
masses violates the conditions necessary for the application of Reynolds averaging which
requires that, statistically, all of the fluid particles be convecting independently along
near-parallel mean streamlines (Reynolds 1895). It also changes the co-ordinate system
within which the analysis must be carried out. This must be rotated clockwise through
the angle β relative to the x,y co-ordinates of the simulations and the wind-tunnel
experiments so that the ‘streamwise’ axis runs through the stagnation points about which
the entrainment flows bifurcate in the regions of saddle flow (figure 1a). In what follows
these rotated co-ordinates and the velocity components parallel and normal to them will
be distinguished by the use of upper-case letters (figure 11b). The velocity components in
the two co-ordinate systems relate to each other as

U1 = u1 cos β, (5.14)

V1 = u1 sin β, (5.15)

U2 = u2 cos β − v2 sin β, (5.16)

V2 = u2 sin β + v2 cos β. (5.17)

It should also be noted that the angles α1 and α2 define the rates at which the fluid
entrained from each side of the layer becomes involved in the exchanges of momentum
and energy; they do not represent the physical edges of the mixing layer as defined by the
mean profiles of U, ξ and p measured on a spanwise-averaged basis.

In the rotated X,Y co-ordinates (5.5), representing the balance of the flows into and out
of the control volume, is replaced by

U1 tan α1 − V1 − U2 tan α2 + V2 = UC(tan α1 − tan α2), (5.18)

where UC is the velocity with which the coherent masses of fluid all convect along the X
axis. The second continuity equation (5.6) becomes

tan α1 − tan α2 = 1
π

U1 − U2

U1 + U2
. (5.19)

It should be noted that, because β is positive as defined in figure 11(b), U2 is negative
in the test case in which u2 is zero and so here the mixing layer is effectively growing
between two streams in counterflow.
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The convection velocity UC in (5.18) is determined not by a balance of streamwise
momentum but one of energy – that associated with the stagnation of the entrained flows
in the regions of saddle flow. This was recognised from consideration of the spatially
transformed temporally growing mixing layer by Coles (1985) and independently by
Dimotakis (1986). If account is taken of the asymmetry of the spatial growth this energy
balance can be written

p1 + ρ
(U1 − UC)2 + V2

1
2

= p2 + ρ
(U2 − UC)2 + V2

2
2

= pS, (5.20)

where pS is the stagnation pressure. The additional terms allowing for the asymmetry of
the spatially growing mixing layer produce only a very small increase in the value of UC
(which would otherwise be equal to (U1 + U2)/2) and so do not compromise the validity
of the spatio-temporal transform (5.4) significantly but they need to be taken into account
when analysing the balance of the streamwise momentum in the organised flow.

The analysis of this balance is not straightforward because (i) the motions associated
with the rotations of the vortex structures (including those within the regions of saddle
flow) make little or no contribution to the net flux of momentum in the X direction
and (ii) the variations of pressure within the layer are very significant. The net flux of
momentum per unit area through the plane PQ is clearly ρU2

C. However, the effective
average pressure in this plane, pE, will be influenced by such things as the relative
contributions of the periods during which the flow is organised around the rotations of
the dynamically stable vortex structures and those during which it is more chaotic in
character. (As was seen in figure 4(a), a length of temporarily chaotic flow results from
the breakdown of each pair of vortex structures.) All that can be said a priori is that it
can be expected to lie between two limiting values. One will be the stagnation pressure
pS and the other will be that which corresponds to the situation in which there is zero net
destruction of streamwise momentum within the layer. The momentum balance can then
be written in the form

p1 tan α1 + ρU1(U1 tan α1 − V1) − p2 tan α2 − ρU2(U2 tan α2 − V2)

=
[
(1 − g)pS + g

p1 tan α1 − p2 tan α2

tan α1 − tan α2
+ ρU2

C

]
(tan α1 − tan α2),

(5.21)

where the factor g is an unknown constant in the range 0 < g < 1. g would be zero in the
situation in which pE was equal to pS and unity in that in which there was no net destruction
of streamwise momentum within the layer.

In the organised mixing layer it is the balance of the cross-stream momentum that is
more determinative than that of the streamwise component. Notionally at least, there is
no net flux of momentum across the X axis and so the net balance of momentum in the
cross-stream direction is

p1 − ρV1(U1 tan α1 − V1) = p2 − ρV2(U2 tan α2 − V2). (5.22)

Finally, there is the ratio of the entrainments across OP and OQ which, like the balance
of streamwise momentum, is complicated by the presence of the local breakdowns in the
organisation of the flow. If all of the entrained fluid became rotational by streaming through
the regions of saddle flow and into the continuously growing vortex structures then the
factor g in (5.21) would be zero and (5.9) would become

EV = U1 tan α1 − V1

V2 − U2 tan α2
. (5.23)

But as has been discussed already, the real organised flow is more complex than this. Pairs
of spanwise vortex structures break down at intervals when their growth has reached the
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point at which the saddle-flow pattern between them can no longer be sustained, each
such pair being replaced after an interval by a single new structure. When each of these
breakdowns occurs the irrotational fluid trapped between the interacting vortex structures
is instantly worked upon by the surrounding rotational fluid and becomes rotational itself.
The net effect of this is that a larger proportion of the fluid entrained into the layer from
its lower-velocity side becomes rotational than would otherwise be the case. To allow for
this (5.23) must be replaced with the equation

EV = U1 tan α1 − V1

V2 − U2 tan α2 + Φ
, (5.24)

where Φ, like g, is to be evaluated empirically. EV remains a constant, as is required for
self-similarity, and there is no conflict with the continuity requirement (5.18) because the
average velocities of the two entrained fluids are modified differently in the regions of
potential flow within the mixing layer before these fluids become rotational and cross the
lines OP and OQ.

We thus have a system of the ten equations (5.14)–(5.22) and (5.24) in the eighteen
variables U1, u1, U2, u2, UC, V1, V2, v2, tan α1, tan α2, β, p1, p2, pS, ρ, g, Φ and EV .
Five of these variables (u1, u2, v2, p1 and ρ) are the boundary and property values set
in the simulations while the self-similar values of two others (β and EV ) are both known
with some precision from the simulation results. β is given, to a good approximation, by
the value of η at which 〈ū〉z,t is equal to (u1 + u2)/2 (figure 6a,c) and EV by the value
of 〈ξ̄〉z,t at this η (figure 6b,d). In the case of the two-stream flow (figure 6b) the value
taken for 〈ξ̄〉z,t was that for x = 0.25 m to minimise the residual effect of the more heavily
biased entrainment into the pre-transition part of the flow discussed in § 4. Solution of the
equations then yields the values for U1, U2, UC, V1, V2, tan α2/tan α1, p1–p2, pS–p1, g
and Φ listed in table 2.

The calculated values of Φ for the two- and single-stream flows indicate that, in the
former case, the bulk of the entrained fluid became rotational via the regions of saddle
flow but that, in the latter case, as much as half of it may have become rotational via
the regions of more chaotic flow associated with the local breakdowns of the large-scale
organisation. This trend with increasing R is as expected because the average number of
breakdowns in a given length of flow increases linearly with the spatial growth rate of the
layer. Consistent with this, the values calculated for the factor g in (5.21) are much less
than unity but significantly greater than zero, implying the existence of regions of parallel
shear within the organised layer as well as of regions in which the flow is organised around
the stagnation of opposed inflows.

Comparison of the analytical results in table 2 with those from the corresponding
simulations shows that, as was the case for the classical turbulent flows, the most obvious
and consistent differences are in the values for the small static pressure difference across
the layer, p1–p2. In the case of the classical flows the pressure differences in the simulations
were slightly larger than those calculated analytically. As was explained in § 5.2, this
discrepancy was attributable to the instability of the layer’s mean velocity profile, a feature
which will have manifested itself to some extent in the simulations but was not allowed
for in the analysis. In the case of the organised flows, in contrast, the pressure differences
in the analyses were slightly larger than those in the simulations. This is because, in the
analyses, p1–p2 was effectively determined by the balance (5.20). Had the simulations been
performed in domains of infinite extent in the cross-stream direction then this should also
have been the difference between the mean pressures at the upper and lower boundaries
of the domain. In domains of finite extent, however, the instantaneous pressures at the
boundaries responded to the presence of the short lengths of chaotic flow within the layer,
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with a consequent reduction in the difference between the mean pressures recorded at these
boundaries.

6. Conclusions

Although limited to just four test cases, the comparisons that have been made here between
the results of the numerical simulations and those of the theoretical analyses provide
strong support for the hypothesis that the organised and classical turbulent mixing layers
are distinct self-preserving flow types which (i) require different forms of analysis and
(ii) involve different balances of mass, momentum and energy. The analyses of the two
classical mixing layers gave values for the entrainment velocity v2, the pressure difference
across the layer, p1–p2, the asymmetry of the spatial growth, tan α2/tan α1, the integral
streamwise fluxes of mass, momentum and scalar mass fraction ξ within the layer and
the overall entrainment ratio EV which were all the same as or close to those found
in the simulations. Those for the two organised mixing layers showed similar levels of
agreement for the values of v2, p1–p2, the angle of deflection β of the axis of stagnation,
the mean convection velocity UC and the ratio EV in which the entrained fluids became
mixed together within the large structures. Both the simulations and the analyses showed
that switching from the classical to the organised flow type involved a similar increase
in the pressure difference across the layer, a similar change in the layer’s orientation
relative to the free streams and a similar change in the relative proportions in which fluid
was entrained from its two sides. This is in agreement with the experimental evidence
presented earlier in Part 1 and supplements the experimental evidence, extensively
documented in the literature, that the pdf distribution of the molecularly mixed fluid in
the organised layer is different from that predicted by classical turbulence theory. The
theoretical analyses presented here were carried out without resort to any empirical or
semi-empirical modelling assumptions beyond those implicit in the ways in which the
relevant dynamic balances were formulated.

It has also been shown analytically that the rate of growth of the thickness of
the rotational fluid within the organised mixing layer is the same as that in its
classical counterpart and remains constant from the mixing transition onwards. This
universal growth rate for the rotational thickness is a necessary corollary of the
fundamental requirement for fluid continuity. The simulation results show that the
measured spanwise-averaged growth rate of the organised mixing layer is (i) greater
than that of its classical counterpart and (ii) Reynolds-number-dependent because the
measured thickness of the organised layer includes, in addition to the rotational fluid, a
variable amount of irrotational fluid. (i) is again consistent with the experimental evidence
presented earlier in Part 1. The measured growth rate decreases as the Reynolds number
increases partly because of the increased mixing that occurs internal to the layer but also
because of a decrease in the layer’s spanwise non-uniformity. These findings, together
with that that the two types of mixing layer take up different orientations relative to the
free streams, may be expected to account for much – perhaps all – of the well-documented
variability in the mixing-layer growth rates measured in different laboratories.

Preliminary simulations performed with a range of different inflow fluctuations
and boundary conditions have shown that natural development of the organised (as
distinct from the classical) flow type ensues where excitation of the fundamental
Kelvin–Helmholtz instability is able to produce an initial quasi-periodic concentration of
the spanwise vorticity in the separated flow. Once this initial concentration of vorticity
has been established it is able to become self-preserving on a progressively increasing
scale. Initially the scale increase occurs via the well-known mechanism of vortex pairing
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but, with the establishment of an equilibrium energy cascade, this gives way to the cycle
of large-structure growth, collapse and replacement detailed in Parts 1 and 2. It has been
verified that, as was conjectured in Part 2, the mixing layer adopts this self-preserving
organised pattern of growth where the initial conditions permit because this minimises the
rate at which work must be done against the shear stress (and thus the rate of dissipation
of mechanical energy as heat).

It was found in the preliminary simulations that the three-dimensionality needed to
establish the energy cascade in the organised flow could be introduced as random
fluctuation within the inflow, by the presence of non-slip walls at the ends of the span
and/or as a result of small spanwise defects in the base flow, depending on the details of the
individual realisation. The first two of these sources triggered the growth of helical pairing
modes in the rolled-up flow. The third tended to inhibit the growth of such helical modes
and led instead to the development of an array of secondary streamwise vortices. These
studies showed the extent to which, in practical situations, the helical pairing modes grow
in competition with the translative instability and the subharmonics of the fundamental
Kelvin–Helmholtz mode.

An unexpected finding of the present simulations, made very evident by the iso-vorticity
visualisations produced during the course of this work, was that the streamwise vortices
present in the post-transition organised mixing layer are, in general, neither formed
in counter-rotating pairs nor continuous with any that might have been formed in the
pre-transition part of the flow. The spanwise vortex structures in the post-transition layer
are formed of bundles of vortex tubes with a preferential spanwise orientation, each
breakdown of two neighbouring structures leaving a three-dimensional tangle of such
tubes. As a single new structure forms to replace the two that have broken down the
vortex tubes which are to constitute its core become oriented in the spanwise direction
once more while those more remote from the axis of the roll-up become stretched in the
streamwise direction. This appears to be the main way in which the braids are refreshed
with concentrations of streamwise vorticity, allowing the continuous energy cascade
within the growing structures to be sustained.
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