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Abstract

We study Tate motives with integral coefficients through the lens of tensor triangular
geometry. For some base fields, including Q and Fp, we arrive at a complete description
of the tensor triangular spectrum and a classification of the thick tensor ideals.
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1. Introduction

Although the theory of (mixed) motives has in recent years made significant progress, especially
in regards to motivic sheaves (i.e. motives over general schemes), our understanding of motives
over a field is still limited. It is therefore natural to restrict one’s attention to certain subclasses
of motives in order to gain some intuition. One subclass, which has proven particularly fruitful
for that purpose, is the class of (mixed) Tate motives. These are the motives that can be
constructed from the simple building blocks Z(n) (the ‘Tate twists’, n ∈ Z) by extensions,
(de)suspensions, and direct summands. Another view is that they encode the motivic cohomology
of the base field. As should be clear from these two descriptions, Tate motives are at the same
time relatively simple (compared to the class of all motives), and yet contain complex and
interesting information. A striking illustration of the latter fact is their role in the theory of
periods, particularly their relation to multiple zeta values, as explained in [DG05, Ter02, Bro12].
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tt-geometry of Tate motives over algebraically closed fields

One long strand of research into Tate motives has been concerned with uncovering the

structural properties of the category of Tate motives, with some success (e.g. [Blo91, BK94,

Lev92, KM95, Pos11, Wil09, Iwa14]). The motivation for the present paper is to advance in this

direction, by focusing on the particular properties visible to tensor triangular geometry. Indeed,

Tate motives form a triangulated category with a compatible tensor structure (a tt-category

for short), and one may try to classify its tt-ideals, i.e. its thick subcategories closed under

tensor products with arbitrary Tate motives. The classification of tt-ideals gives insights into

the composition and complexity of the tt-category; if two objects generate different tt-ideals,

this means that they cannot be constructed out of each other using extensions, (de)suspensions,

tensor products, and direct summands: they are quite far from being ‘the same’.

The main device in tt-geometry is Balmer’s tt-spectrum [Bal05], a spectral space associated

to the tt-category which encodes the (radical) tt-ideals through its topology. For a number of

classical mathematical domains, the tt-spectrum has been studied; we refer to [Bal10b] for an

overview of the basic theory, its early successes and applications. In relation to the present article,

there has been earlier work on the tt-spectrum of certain motives (including Tate motives) [Pet13,

Kel16]. However, the arguments were restricted to rational coefficients (and certain base fields)

so that the tt-spectrum turned out to be a singleton space. In other words, in these categories

every object can be constructed from every other (non-zero) object.

In contrast, here we work with integral coefficients and find non-trivial tt-spectra. In

particular, we determine completely the tt-spectrum of Tate motives over the algebraic numbers

(for more general base fields see Theorem 8.6 and Corollary 9.3).

Theorem 1. The tt-spectrum of DTMgm(Q,Z) consists of the following points, with

specialization relations, depicted by the lines, going upward.

Here, ` runs through all prime numbers, and the points are defined by the vanishing of the

cohomology theories as indicated on the right. Moreover, the proper closed subsets are precisely

the finite subsets stable under specialization.

From this result we easily deduce a classification of the tt-ideals in DTMgm(Q,Z) (see

Theorem 9.5).

Given that motives are supposed to encode the cohomological aspects of algebraic varieties,

it is of course not surprising that the tt-spectrum above contains points coming from the different

cohomology theories available. But it is reassuring to find that all points are of this form, lending

some support to the belief that motives are the universal cohomology theory. (Having said that, it

would be very interesting to find non-expected points as these could hint at cohomology theories

not yet discovered, or other more mysterious phenomena.)

In order to generalize from rational to integral coefficients we need to understand,

in particular, the case of finite coefficients. The following is our result in that direction

(cf. Corollary 8.3).
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Theorem 2. Let F be an algebraically closed field, and ` a prime number invertible in F. The

tt-spectrum of DTMgm(F,Z/`) is canonically isomorphic to the homogeneous spectrum of the

polynomial ring in one variable Z/`[β].

In the proof of this theorem we use on the one hand Positselski’s description of Tate motives

in terms of filtered Galois representations [Pos11], and on the other hand our study of the tt-

geometry of filtered modules in [Gal18]. Some of Balmer’s new results in tt-geometry [Bal18] allow

us then to patch our findings together with the findings for rational coefficients by Peter [Pet13],

to determine the underlying set of the tt-spectrum in Theorem 1.

Some interesting properties of Tate motives turn out to be encoded in the tt-spectrum in

a slightly subtle way. Indeed, the topology of the tt-spectrum reflects the conservativity of the

`-adic realization as well as the fact that the motivic cohomology of (Tate) motives behaves like

a finitely generated abelian group (see Remark 5.7).

The theory of étale motives is closely related to the theory of motives. For example, the two

theories coincide with rational coefficients. We study étale motives both for their own interest,

and because we will use the comparison of the two theories to bear on our understanding of

Tate motives. This works because with finite coefficients the étale theory is much simpler: the

rigidity theorem of Suslin and Voevodsky identifies étale motives with Galois representations.

We will use this result together with Rost, Voevodsky, and others’ resolution of the Bloch–Kato

conjecture to confirm this simplicity in tt-geometric terms (cf. Theorem 6.2).

Theorem 3. Let F be a field, and ` a prime number invertible in F. Assume that F contains a

primitive `th root of unity (respectively, primitive 4th root of unity if `= 2). Then the tt-spectrum

of DMét
gm(F,Z/`) has a single point.

When the tt-category is rigid, i.e. every object has a strong tensor dual, then the tt-spectrum

can be endowed with a natural structure sheaf turning it into a locally ringed space. This has

been used by Balmer to, for example, recover a topologically noetherian scheme from its category

of perfect complexes [Bal05, 6.3]. Over fields such as the algebraic numbers, where we know the

underlying topological space of the tt-spectrum of Tate motives completely by Theorem 1, we will

describe this sheaf explicitly (cf. Proposition 10.2). To do so we need to understand the category

one obtains from Tate motives by inverting the image of the Bott elements β : Z/`(0)→ Z/`(1)

appearing in Theorem 2 (it amounts to the choice of a primitive `th root of unity). It has been

shown by Haesemeyer and Hornbostel in [HH05] that (under some assumptions on the base field),

by inverting motives with finite coefficients with respect to the Bott element one obtains étale

motives. We will upgrade this result to integral coefficients (cf. Theorem C.4).

Theorem 4. Let F be a field of exponential characteristic p, containing all roots of unity of
order coprime to p, and of finite `-cohomological dimension for all primes ` 6= p. Then there are
canonical equivalences of tt-categories

DM(F,Z[1/p])/〈cone(β`) | ` 6= p〉⊕ '−→ DMét(F,Z[1/p]),

(DMgm(F,Z[1/p])/〈cone(β`) | ` 6= p〉)\ '−→ DMét
gm(F,Z[1/p]).

The same result holds for the effective versions.
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2. Conventions

Our conventions regarding tensor triangular geometry mostly follow those of [Bal05, Bal10a].
A tensor triangulated category (or tt-category for short) is a triangulated category with a
compatible (symmetric, unital) tensor structure. If not specified otherwise, the tensor product is
denoted by ⊗ and the unit by 1. A tt-functor is an exact tensor functor between tt-categories.

A tt-ideal in a tt-category T is a thick subcategory I ⊂ T such that T ⊗ I ⊂ I. If S is a
set of objects in T we denote by 〈S〉 the tt-ideal generated by S. To a small tt-category T one
associates a ringed space Spec(T ), called the tt-spectrum of T , whose underlying topological
space is denoted by Spc(T ). It is a spectral space and consists of prime ideals in T , i.e. proper
tt-ideals I such that a ⊗ b ∈ I implies a ∈ I or b ∈ I. A base for the closed subsets of the
topology is given by the supports supp(a) of objects a ∈ T ; here, supp(a) = {P | a /∈ P}. The
complement of supp(a) is denoted by U(a). If T is rigid then Spec(T ) is a locally ringed space.1

All rings are commutative with unit, and morphisms of rings are unital. For R a ring, we
denote by Spec(R) the Zariski spectrum of R (considered as a locally ringed space) whereas
Spc(R) denotes its underlying topological space (as for the tt-spectrum). We adopt similar
conventions regarding graded rings R: they are commutative in a general graded sense [Bal10a,
3.4], and possess a unit. Spech(R) denotes the homogeneous (Zariski) spectrum with underlying
topological space Spch(R). This differs from Proj(R) in that the prime ideals making up the
underlying space may contain the irrelevant ideal in R. It is still a spectral space though.

Recall also that Balmer constructs [Bal10a] comparison maps between the tt-spectrum
and certain Zariski spectra. Explicitly, there is a canonical spectral morphism ρ : Spec(T ) →
Spec(RT ), where RT = EndT (1) denotes the endomorphism ring of the unit in T , called the
central ring. More generally, fixing an invertible object u ∈ T , he considers the graded central ring
R•T = homT (1, u⊗•). There is then a canonical spectral morphism ρ• : Spec(T )→ Spech(R•T ),
given by

ρ•(P) = {r ∈ R•T homogeneous | cone(r) /∈ P}.
The map ρ is just the restriction of ρ• to the degree 0 part. We will repeatedly use the fact
that ρ (respectively, ρ•) is a homeomorphism if and only if it is an isomorphism of locally ringed
spaces [Bal10a, 6.11].

3. Triangulated category of (Tate) motives

Fix a ring R and a field F. In these two preliminary sections (§§ 3 and 4) we are going to recall
some generalities on categories of motives over F with coefficients in R. Many of the constructions
and proofs go back to work of Voevodsky, Suslin, Bloch, Levine, and many others. Our discussion
will be too brief for some: we recommend [Voe00, MVW06] as introductions instead. As the main
reference for this section we will use [CD12].

There is a (large) tt-category of ‘big’ motives DM(F, R) [CD12, 11.1.1, 11.1.2] constructed
from the derived category of Nisnevich sheaves with transfers of R-modules on the category
Sm/F of smooth (finite type, separated) F-schemes. In particular, it comes with an ‘associated
motive’ functor

R(−) : Sm/F→ DM(F, R)

X 7→ R(X).

The tensor structure on DM(F, R) is determined by two facts.

1 We will say a bit more about the association of T 7→ Spec(T ) in Appendix A.
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• The functor R(−) is symmetric unital monoidal (also with respect to transfers), for example,

R(X ×SpecF Y ) = R(X)⊗R(Y ), and R(Spec(F)) =: R(0) is the unit. (If the context allows

we will write simply R for R(0).)

• The reduced motive of P1
F, denoted by R(1)[2], is (⊗-)invertible. One then gets for any

integer n an invertible R(n), called the Tate twist of weight n. Clearly, R(i)⊗R(j) = R(i+j),

and the dual of R(i) is R(−i).
The triangulated category DM(F, R) is compactly generated, and a set of compact generators

is given by the motives of smooth F-schemes [CD12, 11.1.6]. In fact, in a sense one can make

precise, DM(F, R) is generated by R(X) (X runs through smooth F-schemes) and R(−1), subject

to Nisnevich descent and the relations R(1) ⊗ R(−1) = R(0), R(A1
F) = R(0). We denote the

subcategory of compact objects by DMgm(F, R). Its objects are often called geometric motives,

or just motives if no confusion with big motives is possible (or if the distinction in the given

context is immaterial). By what was said above, DMgm(F, R) is the thick subcategory generated

by R(X)(n) := R(X)⊗R(n), where X is a smooth F-scheme and n ∈ Z. It is a (small) idempotent

complete tt-category. Moreover, it is rigid if the exponential characteristic2 of F is invertible in R

[Kel17, 5.3.18], [CD15, 8.1]. (Conjecturally, rigidity also holds without inverting the exponential

characteristic as shown in [Voe00].)

The triangulated category of Tate motives is the thick subcategory generated by the Tate

twists R(n), n ∈ Z. It is denoted by DTMgm(F, R). It is a (small) rigid, idempotent complete tt-

category. There is also a ‘big’ version: DTM(F, R) denotes the localizing subcategory of DM(F, R)

generated by Tate twists. It is a (large) tt-category.

Given a ring morphism R→ R′, one can associate to a Nisnevich sheaf with transfers of R-

modules F the sheafification of X 7→ F (X)⊗RR′, a Nisnevich sheaf with transfers of R′-modules.

This induces an adjunction

γ∗ : DM(F, R)� DM(F, R′) : γ∗,

the right adjoint being induced by forgetting the R′-structure. The functor γ∗ is conservative (see

the proof of [Ayo14b, A.6] or [CD16, 5.4.2]), and for any motive M ∈ DM(F, R), we have

γ∗γ
∗(M) = M ⊗R′, where R′ is the constant sheaf associated to R′, considered as an object in

DM(F, R). The tt-functor γ∗ sends R(X)(n) to R′(X)(n) and therefore restricts to tt-functors

DMgm(F, R)→ DMgm(F, R′), DTM(gm)(F, R)→ DTM(gm)(F, R′). (3.1)

If R′ is a perfect R-module (i.e. R′ ∈ Dperf(R)) then the right adjoint γ∗ also preserves compact

objects.

The hom sets in the triangulated category of motives are closely related to important

algebraic geometric invariants. Specifically, for a smooth F-scheme X and integers m,n, the

groups

Hm,n
M (X,R) := homDM(F,Z)(Z(X), R(n)[m]) = homDM(F,R)(R(X), R(n)[m]) (3.2)

are the motivic cohomology groups of X with coefficients in R. There is a canonical identification

[Voe02],

Hm,n
M (X,R) = CHn(X, 2n−m;R), (3.3)

2 Recall that the exponential characteristic of F is 1 if char(F) = 0, and p if char(F) = p > 0.
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with a direct generalization of Chow groups, called Bloch’s higher Chow groups, thereby linking
motivic cohomology to algebraic cycles. In particular, the motivic cohomology groups of Spec(F)
on the ‘diagonal’ are canonically isomorphic to Milnor K-theory [Tot92, NS89]:

Hn,n
M (Spec(F), R) = KM

n (F)⊗R. (3.4)

More generally, we define for any motive M ∈ DM(F, R) and any ring R′ over R,

Hm,n
M (M,R′) := homDM(F,R)(M,R′(n)[m]) = homDM(F,R′)(γ

∗M,R′(n)[m])

the motivic cohomology groups of M with coefficients in R′.

4. Triangulated category of étale (Tate) motives

We want to discuss étale versions of the constructions in the previous section. Thus instead of
Nisnevich sheaves with transfers we consider étale sheaves with transfers. Our main references
for this section are [Ayo14a, Ayo14b, CD16].

There is a (large) tt-category of ‘big’ étale motives DMét(F, R) [Ayo14a, § 4.1.1], [CD16,
2.2.4] constructed from the derived category of étale sheaves with transfers of R-modules on the
category Sm/F of smooth (finite type, separated) F-schemes. In particular, it comes again with
a symmetric unital monoidal ‘associated étale motive’ functor

Rét(−) : Sm/F→ DMét(F, R)

X 7→ Rét(X).

In contrast to the situation of the previous section, the image is, in general, not compact, and
DMét(F, R) is, in general, not compactly generated (the reason being that the étale cohomological
dimension of F can be infinite). We denote the thick subcategory generated by Rét(X)(n) for
X smooth and n an integer by DMét

gm(F, R). It is called the triangulated category of geometric
étale motives [Ayo14a, 4.3]. It is a (small) idempotent complete tt-category. Moreover, for many
coefficient rings R (including any localization or quotient of Z) it is rigid, by [CD16, 6.3.26]
and Remark 4.1 below. The triangulated category of étale Tate motives DTMét

gm(F, R) is the

thick subcategory generated by the Tate twists Rét(n), n ∈ Z. It is a (small) rigid, idempotent
complete tt-category.

Remark 4.1. There are at least two other models for the categories just introduced. One uses étale
sheaves without transfers [Ayo14a, Ayo14b], the other uses h-sheaves on the category of finite
type F-schemes [CD16, 5.1.3]. That they indeed coincide up to canonical equivalence follows, for
example, from [Ayo14b, B.1] and [CD16, 5.5.5]. When citing results from the literature about
étale motives we will therefore freely use any of the three models.

One can define analogous étale motivic cohomology groups, and these again are closely related
to algebraic cycles (see [Ayo14a, 4.12] and [CD16, 7.1.2]), except that one loses all p-torsion
information if char(F) = p > 0. Indeed, the categories of étale motives just introduced are all
Z[1/p]-linear. This follows from the existence of the Artin-Schreier sequence of étale sheaves

0→ Z/pZ→ Ga
Fp−1
−−−→ Ga→ 0,

where Fp denotes the Frobenius. It induces a triangle in DTMét
gm(F, R), and since Fp− 1 induces

an isomorphism on Rét = Rét(Ga) in DMét
gm(F, R), multiplication by p is an automorphism.
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As before, a ring morphism R→ R′ induces tt-functors (see [Ayo14b, A.2] and [CD16, 5.4.1])

γ∗ : DMét
gm(F, R)→ DMét

gm(F, R′), γ∗ : DTMét
gm(F, R)→ DTMét

gm(F, R′),

and again, if R′ is perfect over R then they admit a right adjoint γ∗, in which case one has

γ∗γ
∗(M) = M ⊗R′.
Fix a prime number `, which is invertible in F, and consider the category Mod(GF,Z/`) of

discrete GF-modules over Z/`, where GF denotes the absolute Galois group of F. Its derived

category is denoted by D(GF,Z/`). There is an étale realization functor (see [Ivo07], [Ayo14b,

5.2] and [CD16, 7.2])

Re` : DMét
gm(F,Z)→ Db

c(GF,Z/`)

to the subcategory of D(GF,Z/`) spanned by complexes with bounded, finite-dimensional

cohomology. This is a tt-functor that, moreover, factors through a fully faithful tt-functor [CD16,

5.5.4], abusively denoted by the same symbol,

Re` : DMét
gm(F,Z/`)→ Db

c(GF,Z/`). (4.2)

This is a form of the rigidity theorem of Suslin and Voevodsky. Equation (4.2) is an equivalence

if F is of finite `-cohomological dimension.

Finally, there is a canonical étale sheafification tt-functor

aét : DMgm(F, R)→ DMét
gm(F, R), (4.3)

which takes R(X)(n) to Rét(X)(n), restricts to a corresponding tt-functor on Tate (respectively,

étale Tate) motives, and is compatible with change of coefficients. We continue to denote by

Re` the composition Re` ◦ aét whenever this makes sense. Essentially because higher Galois

cohomology is torsion, the étale sheafification induces an equivalence

aét : DMgm(F, R)
∼−→ DMét

gm(F, R) (4.4)

whenever Q ⊂ R [CD12, 16.1.2].

5. Torsion and finite generation in motivic cohomology

In this section we collect some basic properties concerning rational and mod-` motivic coho-

mology for (Tate) motives. The discussion will culminate in the proof that the motivic

cohomology groups of Tate motives behave ‘as if they were finitely generated’. We refer to

Remark 5.7 for elaboration.

For the reader unfamiliar with the objects introduced in the previous two sections, this is a

good opportunity to get better acquainted with the formalism. Throughout the section, F is an

arbitrary field.

We start with a result characteristic of Tate motives.

Lemma 5.1. Let M ∈ DTMgm(F, R) be a Tate motive. The following are equivalent:

(1) M = 0;

(2) H•,•M (M,R) = 0.
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Proof. If M has trivial motivic cohomology groups Hm,n
M (M,R) for all integers m,n, this means

that for the dual M∨ of M , we have

homDTMgm(F,R)(R(−n)[−m],M∨) = homDTMgm(F,R)(M,R(n)[m]) = Hm,n
M (M,R) = 0

for all integers m,n. Since the set of Tate twists generates DTMgm(F, R) we see that M∨ = 0
and this implies M = 0. 2

Convention 5.2. From now on and until the end of the section we assume that R is a localization
of Z such that Z ⊂ R ⊂ Q.

Let F : DTMgm(F, R)→ T be a tt-functor, and M ∈ DTMgm(F, R) a Tate motive. We say
that M is F -acyclic if F (M) = 0. The F -acyclic objects clearly define a tt-ideal in DTMgm(F, R).

Example 5.3. Suppose ` is a prime number invertible in F. Consider the tt-functor Re` :
DTMgm(F,Z)→ Db

c(GF,Z/`). The Re`-acyclic objects are those whose mod-` étale cohomology
vanishes.

If A ∈ DM(F, R) is any motive, we say that M is A-acyclic if it is acyclic with respect to the
functor −⊗A : DTMgm(F, R)→ DM(F, R). We will be most interested in A = Z/` (` a prime)
or A = Q.

Lemma 5.4. Let S be the multiplicative subset Z\0. In each case of motives, Tate motives, étale
motives, or étale Tate motives, we have canonical equivalences of tt-categories

(S−1D(T )M(ét)
gm (F, R))\ = (D(T )M(ét)

gm (F, R)⊗Q)\ = D(T )M(ét)
gm (F,Q),

where (−)\ denotes the idempotent completion.

Proof. The categorical (or Verdier) localization at S is the naive localization (i.e. the category
obtained by localizing each hom set), by [Ayo14b, 9.1] and [Bal10a, 3.6]. This gives the first
equivalence. For the second equivalence, the étale version is [CD16, 5.4.9]; the non-étale version
is simpler, and can be found in [CD12, 11.1.5]. 2

Corollary 5.5. Let M ∈ DTMgm(F, R) be a Tate motive. The following are equivalent:

(1) H•,•M (M,Q) = 0;

(2) M is Q-acyclic;

(3) M is n-torsion for some positive integer n, i.e. n · idM = 0.

Proof. By the change of coefficients adjunction for R→ Q, we have

homDTMgm(F,Q)(γ
∗M,Q(n)[m]) = Hm,n

M (M,Q),

and by Lemma 5.1 these groups all vanish if and only if γ∗M = 0. But γ∗ is conservative (§ 3)
so this is equivalent to

0 = γ∗γ
∗M = M ⊗Q,

i.e. it is equivalent to M being Q-acyclic. Lemma 5.4 shows that the second and third condition
are equivalent as well. 2
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The first part of the proof also gives the following result.

Lemma 5.6. Let M ∈ DTMgm(F, R) be a Tate motive, and ` a prime number. The following are
equivalent:

(1) H•,•M (M,R/`) = 0;

(2) M is R/`-acyclic.

Remark 5.7. Among finitely generated abelian groups there is a stark divide between finite and
infinite ones. This simple observation is used in many arguments in algebraic topology, which
involve the universal coefficient theorem. More explicitly, if X is a topological space with finitely
generated cohomology groups H•(X,Z) then there is the following dichotomy:
• if Hm(X,Q) = 0 then for almost all primes `, Hm(X,Z/`) = 0;
• if Hm(X,Q) 6= 0 then for all primes `, Hm(X,Z/`) 6= 0.

Now, it is of course not true that the motivic cohomology groups of Tate motives are finitely
generated in general. (For example, (3.4) shows that H1,1

M (F,Z) = F×.) However, we would
like to establish that they still exhibit a similar behavior. We can prove the first part of the
dichotomy here, as a consequence of the preceding results in this section. The second part of
the dichotomy will not be stated here, but is also true (for ` ∈ F×). It will be seen to follow
from the conservativity of the `-adic realization for Tate motives (cf. the proof of Theorem 6.10).

This observation will have important ramifications for the topology of the tt-spectrum of
Tate motives.

Proposition 5.8. Let M ∈ DTMgm(F, R) be a Tate motive and assume H•,•M (M,Q) = 0. Then
for almost all primes ` we have H•,•M (M,R/`) = 0.

Proof. Assume that M ∈ DTMgm(F, R) has trivial rational motivic cohomology, i.e. M is n-
torsion for some positive integer n, by Corollary 5.5. Let ` be any prime not dividing n. Consider
the object γ∗M ∈ DTMgm(F, R/`), where γ∗ is the change of coefficients functor associated to
R → R/`. Multiplication by n on γ∗M is at the same time zero (since it is so on M), and an
isomorphism (since the category DTMgm(F, R/`) is R/`-linear). We conclude that γ∗M = 0 as
claimed, cf. Lemma 5.6. 2

Remark 5.9. We have phrased most of the results in this section so far for Tate motives but it
should be remarked that they equally hold for étale Tate motives with the same proofs, taking
into account the following observations.
• Rational étale motivic cohomology is the same thing as rational motivic cohomology as

discussed above (4.4).
• By rigidity (4.2), mod-` étale motivic cohomology is the same thing as mod-` étale

cohomology.
• One sometimes has to modify the statements and arguments to take into account that the

category of étale motives is Z[1/p]-linear, where p is the exponential characteristic of F.
Moreover, although we are mainly interested in Tate motives in this article, it should be said
that some of the arguments in this section apply to motives in general. In particular, we have
just shown that an implication similar to the one in Proposition 5.8 holds in DMgm(F, R) or
DMét

gm(F, R).

Proposition 5.10. Let M ∈ DMgm(F, R) (or DMét
gm(F, R)) be a motive, and assume M⊗Q = 0.

Then for almost all primes ` we have M ⊗R/` = 0.
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6. tt-geometry of étale (Tate) motives

The tt-geometry of étale Tate motives is easier to describe than the one of Tate motives, mostly
due to our good understanding of étale motives with finite coefficients (the rigidity theorem,
see (4.2)). In fact, with finite coefficients it is not more difficult to describe the tt-geometry of
étale motives (not necessarily Tate) at the same time, which is what we are going to start with.
The integral versions considered subsequently require the (rational) motivic cohomology of the
base field to satisfy certain vanishing conditions, and are proved for Tate motives only.

Fix a field F and a prime number ` invertible in F. We want to recall the Bloch–Kato
conjecture (now a theorem). The short exact sequence of étale sheaves

0→ µ`→ O×
·`−→ O×→ 0

induces a canonical map F×→ H1
ét(F, µ`) in étale cohomology. Using the cup product this extends

to a morphism of graded rings KM
• (F) → H•ét(F, µ

⊗•
` ), which clearly annihilates `. Voevodsky,

Rost, and others, show that the induced map is an isomorphism (as Bloch and Kato conjectured):

KM
• (F)/`

∼−→ H•ét(F, µ
⊗•
` ) = H•(GF, µ`(F)⊗•).

In order to apply this result we need to know the homogeneous spectrum of the graded rings
involved.

Lemma 6.1. Let F be a field, and ` a prime. If ` = 2 we assume that −1 is a sum of squares in F.
Then the graded ring KM

• (F)/` has a unique homogeneous prime ideal (namely, KM
>0(F)/`).

Proof. We distinguish two cases.
` = 2: We are assuming that −1 is a sum of squares in F. This is equivalent,

by [Mil69/70, 1.4], to every element in KM
• (F) of positive degree being nilpotent.

In particular, the only homogeneous prime ideal containing 2 is 〈KM
1 (F), 2〉.

` 6= 2: For the reader’s convenience we reproduce the argument in [Tho16, 3.9]. Let p be
a homogeneous prime in KM

• (F), which does not contain 2. Let us write [a] for the
symbol in KM

1 (F) associated to a ∈ F×. Since 2[−1] = [(−1)2] = [1] = 0 we have
[−1] ∈ p. But then for every a ∈ F×, [a]2 = [a][−1] ∈ p [Mil69/70, 1.2], and so, again,
we find KM

1 (F) ⊂ p. 2

Theorem 6.2. Let F be a field, and let ` be a prime invertible in F. Assume that F contains
a primitive `th root of unity (respectively, primitive 4th root if ` = 2). Then both canonical
morphisms in the following composition are isomorphisms of locally ringed spaces:

Spec(DMét
gm(F,Z/`))→ Spec(DTMét

gm(F,Z/`)) ρ−→ Spec(Z/`).

Proof. The proof will proceed in several steps.

(1) Note that it suffices to prove that Spec(DMét
gm(F,Z/`)) has at most one point. Since

DMét
gm(F,Z/`) is not the trivial category, its spectrum then has exactly one point, and

therefore the composition ρ : Spec(DMét
gm(F,Z/`))→ Spec(Z/`) is a homeomorphism. Since

the inclusion DTMét
gm(F,Z/`)→ DMét

gm(F,Z/`) is (fully) faithful, the induced morphism on
tt-spectra is surjective [Bal18, 1.8]. It follows that if the composition is a homeomorphism
then so are both maps in the statement. But ρ being a homeomorphism already implies
that it is an isomorphism of locally ringed spaces.
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(2) By rigidity, DMét
gm(F,Z/`) embeds fully faithfully into Db

c(GF,Z/`) thus again a surjective
map on tt-spectra

Spc(Db
c(GF,Z/`))→ Spc(DMét

gm(F,Z/`)),

and we reduce to prove that the former is a singleton set.

(3) By the combination of Lemma 6.4 and Proposition 6.5 below, the morphism

ρ• : Spc(Db
c(GF,Z/`))→ Spch(H•(GF,Z/`))

is an injection. Since we are assuming that Z/` ∼= µ`, and by Bloch–Kato, the target of
this map is the homogeneous spectrum of Milnor K-theory KM

• (F)/`. But we found in
Lemma 6.1 that the latter has indeed just a single point. 2

To complete the proof we need to compare the tt-spectrum of Db
c(G, k), for a (discrete) field

k and a profinite group G, to the homogeneous spectrum of the cohomology ring of G. This will
be done in two steps. Consider the category mod(G, k) of finite-dimensional discrete G-modules
over k, and its bounded derived category Db(mod(G, k)). There is a canonical tt-functor

ι : Db(mod(G, k))→ Db
c(G, k). (6.3)

Lemma 6.4. The functor ι of (6.3) is an equivalence and therefore induces a homeomorphism of
tt-spectra:

Spc(ι) : Spc(Db
c(G, k))

∼−→ Spc(Db(mod(G, k))).

Proof. Let M be a finite-dimensional discrete G-module over k, let N be an arbitrary one, and let
f : N →M be an epimorphism. By the definition of discrete modules there exists a finite quotient
G/H through which G acts on N . Choose representatives g1, . . . , gr ∈ G for this quotient, and
choose lifts n1, . . . , ns ∈ N of a k-basis of M . It is then clear that the k-linear hull of

{ginj | 1 6 i 6 r, 1 6 j 6 s} ⊂ N

is a G-submodule of N , which is in addition finite-dimensional and still surjects onto M . This is
enough to deduce that the functor Db(mod(G, k))→ Db(G, k) is fully faithful [Kel96, 12.1]. The
image of this functor consists of those complexes with finite-dimensional cohomology. Indeed,
the latter subcategory is generated, as a triangulated subcategory, by complexes with finite-
dimensional cohomology concentrated in a single degree; and these are clearly in the image of
the functor. 2

Let us now consider the graded central ring R•G in Db(mod(G, k)) with respect to k[1].
The following statement generalizes the analogous result for finite groups, which was proved
in [Bal10a, 8.5], completing the work of many others. Our proof will consist in reducing to the
finite case and is therefore not independent.

Proposition 6.5. Let G be a profinite group, and k a field. Then:

(1) R•G is canonically isomorphic to H•(G, k);

(2) the comparison morphism

ρ• : Spec(Db(mod(G, k)))→ Spech(H•(G, k))

is an isomorphism of locally ringed spaces.
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Figure 1. Vanishing in Hm,n
M (Spec(F),Q).

Proof. The group G is the inverse limit lim
←−iGi of a cofiltered diagram I 3 i 7→ Gi of finite

groups (with the discrete topology). For every transition map Gi → Gj we obtain a functor
mod(Gj , k)→ mod(Gi, k) by restricting the action. Notice that a finite-dimensional G-module
is discrete (i.e. the action of G is continuous) if and only if the action factors through Gi, for
some i. It follows easily that lim−→i

mod(Gi, k) = mod(G, k) and this equivalence passes first to the
level of bounded cochain complexes, and then to the bounded derived category so that we have
lim−→i

Db(mod(Gi, k)) = Db(mod(G, k)).

We now obtain the first part of the statement since R•Gi
= H•(Gi, k) and therefore

R•G = lim−→R
•
Gi

= lim−→H•(Gi, k) = H•(G, k).

For the second statement, consider the following square, which is commutative by naturality
of ρ• ([Bal10a, 5.6]; recalled in Appendix A).

Spc(Db(mod(G, k))) //

ρ•

��

lim
←−i Spc(Db(mod(Gi, k)))

lim
←−i

ρ•

��
Spch(H•(G, k)) // lim

←−i Spch(H•(Gi, k))

By [Gal18, 8.2], the top horizontal arrow is a homeomorphism. By [Bal10a, 8.5], so is the
right vertical map. And, again by lim−→H•(Gi, k) = H•(G, k), the bottom horizontal map is a
homeomorphism. Necessarily then, the left vertical map is a homeomorphism as well. We now
conclude since ρ• is then automatically an isomorphism of locally ringed spaces. 2

Having described the tt-geometry for finite coefficients, we next consider rational coefficients.
Here, we restrict to Tate motives in order to invoke the results of [Pet13]. Recall also (4.4) that we
have an equivalence of tt-categories DTMgm(F,Q) ' DTMét

gm(F,Q) and the discussion therefore
applies to both topologies; we will phrase them for DTMgm(F,Q).

Consider Hm,n
M (Spec(F),Q), the rational motivic cohomology ring of the field (see (3.2). There

is the following relation between Bloch’s higher Chow groups and algebraic K-theory (cf. (3.3):

Hm,n
M (Spec(F),Q) = CHn(F, 2n−m;Q) = (K2n−m(F)⊗Q)(n),

where the latter denotes the weight n eigenspace of the Adams operations (ψk)k [Blo94, Lev94].
It might be helpful to visualize this bigraded ring as in Figure 1, regarding which we offer a few
comments.
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• The Milnor K-theory is displayed on the diagonal for visual aid.
• The darker area always vanishes: for n < 0 or n < m this is for dimension reasons; for n = 0

and m < 0 this follows from a simple computation with higher Chow groups.
• The lightly shaded area is what we are now interested in: the Beilinson–Soulé vanishing

conjecture predicts that the left patch vanishes. It is known in a few cases, for example, if
F is any of the following: a finite field, a global field (in any characteristic), a function field
of a genus 0 curve over a number field. We now introduce an even stronger hypothesis.

Hypothesis 6.6 (Vanishing hypothesis on F). The rational motivic cohomology groups
Hm,n

M (Spec(F),Q) vanish whenever:
• m 6 0 < n; or
• n > m > 2.

Remark 6.7. If F is the union of subfields all of which satisfy Hypothesis 6.6 then so does F. This
can be seen as a very special case of the ‘continuity’ of the assignment DMgm(−,Q) discussed
in [CD12, 4.3.3].

Remark 6.8. Using Remark 6.7, classical computations in algebraic K-theory imply that
Hypothesis 6.6 is notably satisfied in the following cases:

(1) if F is an algebraic extension of Q this follows from Borel’s computation of the algebraic
K-theory of number fields;

(2) if F is an algebraic extension of a finite field this follows from Quillen’s computation of the
algebraic K-theory of finite fields;

(3) if F is an algebraic extension of a global field of positive characteristic this follows from
Harder’s theorem [Har77].

We recall the following result on Tate motives with rational coefficients.

Proposition 6.9 [Pet13, 4.17]. Let F be a field satisfying Hypothesis 6.6. Then both morphisms
in the following composition are isomorphisms of locally ringed spaces:

Spec(DTMét
gm(F,Q))

Spec(aét)−−−−−→ Spec(DTMgm(F,Q))
ρ−→ Spec(Q).

The Beilinson–Soulé part of Hypothesis 6.6 is used to invoke [Lev92] and obtain a bounded
t-structure on DTMgm(F,Q). The second part of Hypothesis 6.6 then implies that the tt-spectrum
is identified with the ‘coherent spectrum’ of the heart [Pet13, 4.2], which is easily seen to be a
singleton.

Now we can put the results on finite and rational coefficients together to arrive at an integral
statement (for more general statements see Remarks 6.11 and 6.13).

Theorem 6.10. Let F be a field of exponential characteristic p, and assume that for every ` 6= p
prime, F contains a primitive `th root of unity (respectively, 4th root of unity if ` = 2). Assume
also that F satisfies Hypothesis 6.6. Then:

(1) the central ring RDTMét
gm(F,Z) is Z[1/p];

(2) the comparison morphism

ρ : Spec(DTMét
gm(F,Z))→ Spec(Z[1/p])

is an isomorphism of locally ringed spaces.
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Proof. We discussed in § 4 why p is a unit in the central ring. A more precise statement is [CD16,
7.1.2] from which the first part of the theorem follows immediately.

For the second part, it suffices to show that ρ is a homeomorphism. First we show it is a
bijection. For ` 6= p, the fiber of ρ over 〈`〉 is by definition supp(Z/`). Since Z/` is the image of
the unit under γ∗, the right adjoint in the adjunction

γ∗ : DTMét
gm(F,Z)� DTMét

gm(F,Z/`) : γ∗,

we deduce from [Bal18, 1.7] that the fiber of ρ over 〈`〉 is precisely the image of Spc(γ∗). And
by Theorem 6.2 this consists of a single point.

For the generic fiber of ρ we note that the central localization at Z\0 gives, up to idempotent
completion, exactly DTMét

gm(F,Q) (Lemma 5.4). By [Bal10a, 5.6] (recalled in Corollary A.4), it
suffices to show that the latter has a one-point spectrum. This is Proposition 6.9.

Finally, we need to show that the topologies of the two spaces are the same. We use that a
bijective spectral map between spectral spaces is a homeomorphism if specializations lift along
the map, which allows us to work in DTMét

gm(F,Z〈`〉) (for every ` different from p). In other
words, we need to show the inclusion of prime ideals

ker(−⊗ Z/`) ⊂ ker(−⊗Q)

in DTMét
gm(F,Z〈`〉). But suppose M ⊗Z/` = 0 for some M ∈ DTMét

gm(F,Z〈`〉). This implies that
the `-adic realization of M is zero, as is plain from the identification of this realization with `-adic
completion in [CD16, 7.2.24]. By conservativity of the `-adic realization (see Proposition 6.9) we
deduce that M ⊗Q = 0 as well, and this concludes the proof. 2

Remark 6.11. Of course, if S ⊂ Z\{0} is a saturated multiplicative subset containing the
exponential characteristic of F and such that for each prime ` /∈ S, F contains a primitive
`th root of unity (respectively, 4th root of unity if ` = 2) then the same arguments show (still
assuming F satisfies Hypothesis 6.6):

(1) the central ring RDTMét
gm(F,Z[S−1]) is Z[S−1];

(2) the comparison morphism

ρ : Spec(DTMét
gm(F,Z[S−1]))→ Spec(Z[S−1])

is an isomorphism of locally ringed spaces.

Example 6.12. Let F = Q(ζ`) be the `th cyclotomic field, where ` is an odd prime number. Then,
canonically, Spec(DTMét

gm(Q(ζ`),Z〈`〉)) = Spec(Z〈`〉). It follows [Bal05, 4.10] that the thick tensor

ideals of DTMét
gm(Q(ζ`),Z〈`〉) are exactly

0, {M |M is torsion}, DTMét
gm(Q(ζ`),Z〈`〉).

Notice, in particular, that étale cohomology DTMét
gm(Q(ζ`),Z〈`〉) → Db(Z/`) is conservative

(as its kernel is a tt-ideal).

Remark 6.13. A statement analogous to Theorem 6.10 (or Remark 6.11) holds for étale Artin–
Tate motives if, in addition, Hypothesis 6.6 is satisfied for every finite extension F′/F. Indeed,
Theorem 6.2 clearly applies for finite coefficients; and for rational coefficients, [Pet13, 4.17] gives
the required result.
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7. Filtered Galois representations

In this section we recall Positselski’s approach to describing Tate motives with finite coefficients

in [Pos11]. The upshot is Proposition 7.7, which tells us that the tt-geometry of Tate motives over

certain fields and with finite coefficients is the same as the tt-geometry of Galois representations

with a ‘unipotent filtration’, the latter being seemingly more tractable. Although in this article

we will eventually deal with algebraically closed fields only, it does not cause any difficulties to

treat the general case here.

Convention 7.1. Throughout this section we fix a field F and a prime ` invertible in F. The

absolute Galois group of F is denoted by GF as before. We also assume that F contains a

primitive `th root of unity ζ ∈ µ`(F), which we interpret as a morphism β : Z/`(0)→ Z/`(1) in

DTMgm(F,Z/`), in view of

homDTMgm(F,Z/`)(Z/`,Z/`(1)) = µ`(F).

To see this identification, notice that by the change of coefficients adjunctions (3.1) we are

supposed to identify homDTMgm(F,Z)(Z,Z/`(1)) with the `th roots of unity. This follows readily

from identifying Z(1) with the complex O×[−1] of sheaves with transfers [MVW06, 4.9].

For any integer n, define the replete triangulated subcategories DTMgm(F,Z/`)>n
(respectively, DTMgm(F,Z/`)<n) generated by (Z/`)(n′) for n′ > n (respectively, n′ < n). The

vanishing of motivic cohomology Hp,q(F,Z/`) when q < 0 (cf. our remarks regarding Figure 1),

implies that the pair

(DTMgm(F,Z/`)>n,DTMgm(F,Z/`)<n)

defines a t-structure on DTMgm(F,Z/`). Indeed, the arguments of [Lev92, 1.2] go through

word for word. In particular, this gives rise to adjoints W>n,W<n to the inclusions of these
subcategories, and one deduces that every object M ∈ DTMgm(F,Z/`) admits a functorial

descending filtration, called the weight filtration,

0→W>n0M →W>n0−1M → · · ·→W>n1M →M, (7.2)

such that the associated graded piece grnM := W>nW<n+1M is a finite direct sum of copies of

shifts of Z/`(n) (as Hp,q
M (F,Z/`) vanishes when q = 0 and p 6= 0).

Define the subcategory F(F,Z/`) ⊂ DTMgm(F,Z/`) as the smallest full subcategory

containing Z/`(n) for all integers n, and closed under extensions. (The latter condition means that

for any triangle in which the outer two terms lie in the subcategory, the middle one does as well.)

The Bloch–Kato conjecture (recalled in § 6) implies the Beilinson–Lichtenbaum conjecture [SV00,

GL01], i.e. the étale realization functor induces identifications:

Hp,q
M (F,Z/`) =

{
Hp(GF, µ`(F)⊗q), p 6 q,
0, p > q.

For one, this implies that there are no negative Ext groups between the Tate objects Z/`(n),

and from this one deduces that F(F,Z/`) is in fact an exact subcategory of DTMgm(F,Z/`) (i.e.

the triangles of DTMgm(F,Z/`) lying in F(F,Z/`) define an exact structure, see [Dye05]). And

secondly, the Beilinson–Lichtenbaum conjecture essentially implies the following result.
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Proposition 7.3 (Cf. [Pos11, 3.1]). The étale realization induces an equivalence of exact tensor
categories

Re`,ζ : F(F,Z/`) ∼−→ modfil-un(GF,Z/`),

where the latter denotes the category of (discrete) Galois modules over Z/` equipped with a
unipotent filtration, i.e. a finite decreasing filtration whose graded pieces are finite direct sums
of copies of the trivial Galois module Z/`.

A few words about the latter category. The tensor product a⊗ b of two filtered Galois modules
a and b has an induced filtration given by

(a⊗ b)n = Σp+q=na
p ⊗ bq,

these tensor products being over Z/`. And the exact structure on modfil-un(GF,Z/`) is defined as
follows: a conflation is a short sequence a� b� c with zero composition such that the associated
graded sequences 0→ grna→ grnb→ grnc→ 0 are all split short exact in mod(GF,Z/`).

The étale realization Re` sends Z/`(n) to µ`(F)⊗n ∼= Z/`, using the primitive `th root of
unity ζ. Since the heart of Db

c(GF,Z/`) with respect to the standard t-structure is closed under
extensions, we see that the image of F(F,Z/`) under the étale realization is contained in the
heart. Applying the realization to the weight filtration (7.2) of an object M ∈ F(F,Z/`) therefore
yields a discrete Galois module together with a unipotent filtration. This describes the functor
in the statement of Proposition 7.3. Note, in particular, that under this identification, the étale
realization corresponds to forgetting the (unipotent) filtration of the discrete Galois module.

Proof of Proposition 7.3. The fact that this is an equivalence of exact categories is [Pos11, 3.1].
(This obviously relies crucially on the truth of the Beilinson–Lichtenbaum conjecture.) We only
want to explain why it is compatible with the tensor structure.

Let T stand for the category DTMgm(F,Z/`), and correspondingly T >n and T <n for the
subcategories considered above. We first note that the tensor product sends T >p × T >q into
T >p+q, as follows immediately from Z/`(m) ⊗ Z/`(m′) = Z/`(m + m′). Also, note that every
object M ∈ T sits in a functorial triangle

W>nM →M →W<nM →W>nM [1]. (7.4)

Now fix integers p, q, and objects M,N ∈ T . The two facts just mentioned imply that the
canonical morphism W>pM ⊗ W>qN → M ⊗ N factors through W>p+q(M ⊗ N), and this
defines a natural transformation W>p ⊗W>q

→ W>p+q ◦ ⊗. For M and N in F(F,Z/`), there
is then an induced morphism

Re`,ζ(M)⊗ Re`,ζ(N)→ Re`,ζ(M ⊗N) (7.5)

of filtered modules, using the fact that Re` is a tensor functor. By functoriality of this
construction, it is obvious that (7.5) endows Re`,ζ with a lax symmetric unital monoidal structure.

It remains to check that (7.5) is in fact invertible for all M,N ∈ F(F,Z/`). It is certainly
invertible if M = Z/`(m) and N = Z/`(n). Moreover, since the tensor product in DTMgm(F,Z/`)
is exact in both variables, and the étale realization an exact functor, it follows that, in both
variables, the set of objects for which (7.5) is invertible is closed under extensions. Thus the
claim is proven. 2
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Let us take stock: we have found an exact tensor category F(F,Z/`) inside the tt-category
DTMgm(F,Z/`), which we understand reasonably well, by Proposition 7.3. The question arises
whether DTMgm(F,Z/`) is simply the (bounded) derived category of F(F,Z/`). This kind of
question is, in general, very hard to answer, not least because there is no canonical functor in
either direction. Typically, this problem can be solved if the triangulated category has a model.
In our case we do not know whether DTMgm(F,Z/`) does, but it is a triangulated subcategory
of DMgm(F,Z/`), which does. This is enough for Positselski to construct an exact functor

pos : Db(F(F,Z/`))→ DTMgm(F,Z/`). (7.6)

Instead of invoking Koszulity of the graded Galois cohomology algebra H•(GF,Z/`) as
in [Pos11, 9.1], we will show directly that pos is an equivalence if F is algebraically closed
(Proposition 7.9).

Unfortunately, it is not clear whether (7.6) is compatible with the tensor structures, and
although it should be possible to construct a tensor equivalence using an extension of the methods
employed in [Pos11, Appendix D], we leave it as an open problem for now. Instead, we will
establish the following weaker result, which is enough for our purposes.

Proposition 7.7. Assume that (7.6) is an equivalence. Then it induces, together with the
equivalence Re`,ζ of Proposition 7.3, a bijection

{tt-ideals of DTMgm(F,Z/`)}←→ {tt-ideals of Db(modfil-un(GF,Z/`))}.

Proof. In order to construct the exact functor of (7.6), a weaker version of filtered triangulated
categories is used in [Pos11]. One can easily phrase the proof to be given here in this language
but we prefer to work with derivators that we feel yield a conceptually more satisfying argument.
The reason is that in the context of derivators, the bounded derived category of an exact category
has the expected universal property [Por15, 2.17].

We place ourselves in the following abstract situation: ι : A ↪→ T is an exact tensor
subcategory of a (possibly large) tt-category T , which is the base of a stable monoidal derivator
T (defined on finite categories). We also assume that homT (X,Y [−1]) = 0 for all X,Y ∈ A.

The universal property mentioned above yields an exact morphism of derivators F : A→ T,
where A denotes the derivator with base Db(A). It induces an exact functor F : Db(A) → T ,
which is the identity on A, and is unique up to unique isomorphism for these properties. Now
fix an object M ∈ A and consider the two functors

F1 : Db(A) → T F2 : Db(A) → T
N 7→ F(M ⊗N) N 7→ M ⊗F(N).

They coincide on A, and satisfy the ‘Toda conditions’ [Por15, 2.17]

homT (FiX,FjY [n]) = 0, i 6 j, n < 0, X, Y ∈ A,

because M ∈ A and A is closed under tensor products. It follows again from the universal
property that the associated functors F1,F2 : A→ T are canonically isomorphic. We deduce, in
particular, that the following square commutes on the level of objects.

A×Db(A)
ι×F //

⊗
��

T × T

⊗
��

Db(A)
F

// T

(7.8)
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We apply this to A = F(F,Z/`), and T the derivator associated to the stable monoidal model
category modeling DM(F,Z/`). It follows from the uniqueness statement of [Pos11, A.17] that
F : A→ T in this case induces an exact equivalence

F : Db(F(F,Z/`)) ∼−→ DTMgm(F,Z/`) ⊂ DM(F,Z/`).

In particular, it induces a bijection of thick subcategories. The proof will be complete once we
check that:
• tt-ideals in Db(modfil-un(GF,Z/`)) are exactly the thick subcategories closed under tensoring

with Z/`(n) (i.e. Z/` placed in filtration degree n), n ∈ Z;
• tt-ideals in DTMgm(F,Z/`) are exactly the thick subcategories closed under tensoring with

Z/`(n), n ∈ Z.
Indeed, Z/`(n) ∈ A; now apply commutativity of the diagram in (7.8).

The two bullet points are an immediate consequence of the fact that in both cases the objects
Z/`(n) generate the category as a thick subcategory [see Gal18, 3.6]. 2

Proposition 7.9. Assume F is algebraically closed. Then the exact functor of (7.6) provides an
equivalence

pos : Db
fil(Z/`)

∼−→ DTMgm(F,Z/`)
between the (bounded) filtered derived category of Z/`-vector spaces and the triangulated
category of Tate motives over F with coefficients in Z/`.

Proof. Since F is algebraically closed, the exact category modfil-un(GF,Z/`) identifies with
modfil(Z/`), the category of filtered (finite-dimensional) vector spaces over Z/`. Its (bounded)
derived category is the classical filtered derived category Db

fil(Z/`). The category DTMgm(F,Z/`)
is generated, as a thick subcategory, by objects of the form Z/`(n). These lie in modfil(Z/`), and
Db

fil(Z/`) is idempotent complete, therefore it suffices to prove fully faithfulness of the functor.
Let M,N be two complexes in modfil(Z/`) and let us prove that

homDb
fil(Z/`)

(M,N)
pos−−→ homDTMgm(F,Z/`)(pos(M),pos(N))

is bijective. By induction on the length of these complexes and the five-lemma we reduce to M,N
shifts of objects in modfil(Z/`). Similarly, by induction on the length of the filtration we reduce
to M = Z/` and N = Z/`(n)[m], some n,m ∈ Z. In other words, we need to show that

homDb
fil(Z/`)

(Z/`,Z/`(n)[m])
pos−−→ homDTMgm(F,Z/`)(Z/`,Z/`(n)[m]) ∼= Hm,n

M (F,Z/`)

is bijective. Both sides vanish whenever m < 0. It is automatically bijective for m = 0 since
modfil(Z/`) is a full subcategory of DTMgm(F,Z/`), and the same holds for m = 1 since the
subcategory is closed under extensions, cf. [Dye05]. By the Beilinson–Lichtenbaum conjecture
recalled above, the right-hand side vanishes when m > 2 (in fact, when m > 1) and the
same is true for the left-hand side since the t-structure on Db

fil(Z/`) is strongly hereditary,
see [Gal18, 7.6]. This completes the proof. 2

8. tt-primes

In this section we are going to determine the prime ideals in the triangulated category of Tate
motives over certain algebraically closed fields. This will use the results in the previous section,
as well as the results in [Gal18] where we determined the tt-geometry of filtered modules. As in
the étale case (§ 6) we will first treat the case of finite coefficients; the case of rational coefficients
is the same as in the étale case due to the equivalence DTMgm(F,Q) ' DTMét

gm(F,Q).
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Convention 8.1. If not mentioned explicitly otherwise we assume that F is algebraically closed

throughout this section. (The only exception is Lemma 8.5.)

Let ` be a prime invertible in F, and fix a primitive `th root of unity ζ ∈ µ`(F), which we

interpret as a morphism β : Z/`(0)→ Z/`(1) as in § 7. From the results of the previous section

and [Gal18, 7.8] we deduce the following result.

Proposition 8.2. The tt-category DTMgm(F,Z/`) has a unique non-trivial tt-ideal given by

ker(Re`) = 〈cone(β)〉.

Proof. We may apply Propositions 7.7 and 7.9 to replace DTMgm(F,Z/`) by Db
fil(Z/`). The étale

realization functor then is identified with the functor π : Db
fil(Z/`)→ Db(Z/`), which forgets the

filtration.

In [Gal18, 7.8] we studied the tt-category Db
fil(Z/`), and found that it has a unique non-trivial

tt-ideal given by ker(π) = 〈cone(β)〉.3 2

Fix the invertible object Z/`(1) in DTMgm(F,Z/`) and define the graded central ring

R•` = homDTMgm(F,Z/`)(Z/`,Z/`(•)).

Corollary 8.3.

(1) The graded central ring R•` is canonically isomorphic to the polynomial ring Z/`[β].

(2) The comparison morphism

ρ•F,` : Spec(DTMgm(F,Z/`))→ Spech(Z/`[β])

is an isomorphism of locally ringed spaces.

Proof. The first part can be deduced from the Beilinson–Lichtenbaum conjecture, recalled in

§ 7. For the second part, it suffices to show that the map is a homeomorphism. The map is a

bijection by Proposition 8.2. And the only non-trivial open {〈cone(β)〉} is mapped to the open

subset U(β). 2

Corollary 8.4. The support of Z/`(0) in Spc(DTMgm(F,Z)) is the subspace

ker(γ∗)

ker(Re`)

where γ∗ : DTMgm(F,Z) → DTMgm(F,Z/`) is the change of coefficients functor, and the

specialization relation is indicated by the line going upward.

3 In the category of filtered Z/`-vector spaces, Z/`(0) (respectively Z/`(1)) is the one-dimensional vector space
placed in filtration degree 0 (respectively, 1). The map β : Z/`(0)→ Z/`(1) is then given by the identity on the
underlying one-dimensional vector space.
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Proof. Since Z/` is perfect over Z, the corresponding change of coefficients functor γ∗ has a right
adjoint γ∗. By [Bal18, 1.7], the image of Spc(γ∗) is precisely the support of γ∗γ

∗(Z) = Z/`(0).
On the other hand, using Corollary 8.3 we see that the image of Spc(γ∗) is the set of primes

in the statement. It follows from Lemma B.6 below that the two primes are distinct since

γ∗ cone(β) ∈ ker(Re`)\ker(γ∗).

The inclusion ker(γ∗) ⊂ ker(Re`) gives the specialization relation in the statement. (And, of
course, there can be no other specialization relation by continuity of Spc(γ∗).) 2

We now have a good understanding of the tt-spectrum of DTMgm(F, R) for coefficients
R = Z/` and R = Q, and our last step consists in patching these two cases together. For this we
will use the results on étale Tate motives in the following form.

Lemma 8.5. Let F be a field of exponential characteristic p, and assume that for every ` 6= p
prime, F contains a primitive `th root of unity (respectively, 4th root of unity if ` = 2). Assume
also that F satisfies Hypothesis 6.6. Then the étale sheafification induces a map

Spc(Z[1/p])
Spc(aét)−−−−−→ Spc(DTMgm(F,Z[1/p])),

which is a homeomorphism onto the subspace {m0, e` | ` 6= p} of torsion objects m0 and
Re`-acyclics e`.

Proof. By Theorem 6.10 and naturality of ρ ([Bal10a, 5.6]; recalled in Appendix A), the étale
sheafification induces a section to ρ on the level of spectra:

Spc(Z[1/p])
Spc(aét)−−−−−→ Spc(DTMgm(F,Z[1/p]))

ρ−→ Spc(Z[1/p]),

and therefore a homeomorphism onto its image. It is obvious that this image is precisely
{m0, e` | ` 6= p}. 2

With this preparation we can now state and easily prove our main result in this section.

Theorem 8.6. Let F be an algebraically closed field of exponential characteristic p, which
satisfies Hypothesis 6.6. The primes of DTMgm(F,Z[1/p]) are depicted in the following diagram,
including the specialization relations pointing upward.

Here, ` runs through all prime numbers different from p, and the prime tensor ideals are defined
by the vanishing of the cohomology theories as indicated on the right.

Proof. The central ring R = homDTMgm(F,Z[1/p])(Z[1/p],Z[1/p]) is simply Z[1/p], and we get a
canonical map

ρ : Spc(DTMgm(F,Z[1/p]))→ Spc(Z[1/p]),

which we analyse fiberwise, i.e. we identify the primes in each fiber of ρ with the corresponding
primes in the statement of the theorem.
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• For a prime ` 6= p we have

ρ−1(〈`〉) = {P | ` ∈ ρ(P)}
= {P | Z/`(0) = cone(`) /∈ P}
= supp(Z/`(0)),

and therefore we can apply Corollary 8.4.
• Over the generic point, the fiber is the spectrum of the central localization of

DTMgm(F,Z[1/p]) at Z\0 (see [Bal10a, 5.6] or Corollary A.4). Up to idempotent completion,
this localization is DTMgm(F,Q), by Lemma 5.4. The contention now follows from
Proposition 6.9.

At this point all that remains to be justified is the specialization relation m0  e`, for every
` 6= p. This follows from Lemma 8.5. 2

9. Classification of tt-ideals

Convention 9.1. Throughout this section we fix a field F as in Theorem 8.6.

We determined the prime ideals of DTMgm(F,Z[1/p]), as well as the specialization relations
among these. This is not enough to determine the tt-spectrum as a topological space, nor its
Thomason subsets. The goal of this section is to remedy this, and then deduce the classification
of the tt-ideals in DTMgm(F,Z[1/p]).

The main input we need was already proved in Proposition 5.8. Here is the tt-geometric
content of this result.

Proposition 9.2. The topology of Spc(DTMgm(F,Z[1/p])) is coarser than the cofinite topology.

Proof. Since the sets supp(M) with M ∈ DTMgm(F,Z[1/p]) generate the closed subsets for
the topology it suffices to show that if supp(M) is infinite then it is already the whole space.
Lemma 8.5 implies that if supp(M) ∩ {e` | ` 6= p} is infinite then supp(M) is the whole
space. Otherwise supp(M) ∩ {m` | ` 6= p} must be infinite, i.e. for infinitely many primes `, the
mod-` motivic cohomology of M is non-trivial. By Proposition 5.8, M has non-trivial rational
motivic cohomology, i.e. m0 ∈ supp(M), and this shows that supp(M) is the whole space. 2

Corollary 9.3. For a proper subset Z ( Spc(DTMgm(F,Z[1/p])) the following are equivalent:

(1) Z is closed;

(2) Z is finite and specialization closed.

Corollary 9.4. The topological space Spc(DTMgm(F,Z[1/p])) is noetherian.

We are now in a position to classify the tt-ideals in DTMgm(F,Z[1/p]). In order to state the
classification concisely, let us introduce the following notation:

• P = {prime numbers ` different from p};
• for every ` ∈ P, choose a Bott element β` : Z/`→ Z/`(1) in DTMgm(F,Z/`), i.e. a primitive
`th root of unity; we denote abusively by cone(β`) the image of its cone in DTMgm(F,Z[1/p])
under the right adjoint γ∗ of the change of coefficients functor.
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Theorem 9.5. Let F be an algebraically closed field of exponential characteristic p, which
satisfies Hypothesis 6.6. The following two maps are inverses to each other and set up a bijection

{proper tt-ideals in DTMgm(F,Z[1/p])}←→ {subsets E ⊂M ⊂ P}
I 7−→ {` | H•ét(I,Z/`) 6= 0} ⊂ {` | H•,•M (I,Z/`) 6= 0}

〈cone(β`),Z/`′(0) | ` ∈M, `′ ∈ E〉 ←−[ (E ⊂M).

Proof. Since Spc(DTMgm(F,Z[1/p])) is noetherian (Corollary 9.4), the Thomason subsets are
precisely the specialization closed ones. It is then clear that the proper Thomason subsets
correspond bijectively to {subsets E ⊂M ⊂ P}. One now applies [Bal05, 4.10]. 2

Example 9.6. The étale sheafification functor

aét : DTMgm(F,Z[1/p])→ DTMét
gm(F,Z[1/p])

is a non-trivial tt-functor and its kernel therefore a proper tt-ideal. It corresponds to the subsets
∅ = E ⊂M = P. We must then have

ker(aét) = 〈cone(β`) | ` ∈ P〉.

In fact, we will prove in Appendix C that aét is a Verdier localization of the tt-category
DTMgm(F,Z[1/p]) at cone(β`) for all ` 6= p.

10. Structure sheaf

Convention 10.1. We continue to denote by F an algebraically closed field of exponential
characteristic p, satisfying Hypothesis 6.6.

At this point we know Spec(DTMgm(F,Z[1/p])) as a topological space, and in this last section
we want to describe the structure sheaf of this locally ringed space. We denote it simply by OF.

Proposition 10.2. Let Oét
F denote the structure sheaf on DTMét

gm(F,Z[1/p]) (which is according
to Theorem 6.10 essentially just Z[1/p]). The canonical map

OF→ Spc(aét)∗Oét
F

is an isomorphism.

Proof. By Theorem C.4, we know that the functor aét is a Verdier localization, and by
Example 9.6, the kernel is 〈cone(β`) | ` 6= p〉. By Remark A.5, the map in the statement of
the proposition is an isomorphism on all stalks in the image of Spc(aét), i.e. on all non-closed
points. For a closed point m`, ` 6= p, we may localize at ` and consider the functor

aét : DTMgm(F,Z〈`〉)→ DTMét
gm(F,Z〈`〉)

instead (cf. Corollary A.4). In that case the prime m` is the zero ideal (the category
DTMgm(F,Z〈`〉) is local; cf. Example 6.12) hence

OF,m`
= EndDTMgm(F,Z〈`〉)(Z〈`〉) = Z〈`〉.

Again since the space Spc(DTMgm(F,Z〈`〉)) is local, this is also the stalk of Spc(aét)∗Oét
F at m`.

The morphism induced between these stalks is clearly an isomorphism, which concludes the
proof. 2

1909

https://doi.org/10.1112/S0010437X19007528 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007528


M. Gallauer

Corollary 10.3. The stalks at the primes are

OF,e` = OF,m`
= Z〈`〉, OF,m0 = Q.

Corollary 10.4. The locally ringed space Spec(DTMgm(F,Z[1/p])) is not a scheme.

Proof. The canonical functor from schemes to locally ringed spaces preserves fiber products.
Localizing at S = Z\〈`〉, it would follow from Lemma A.3, that Spec(DTMgm(F,Z〈`〉)) is a
scheme as well. Since it is local it would have to be affine, the spectrum of Z〈`〉. But the latter
has two, not three, points. 2
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Appendix A. Some remarks on Balmer’s structure sheaf

Balmer in [Bal05] (see also [Bal10a]) associates to every (small) rigid tt-category T a locally
ringed space Spec(T ), its tt-spectrum. It is fairly obvious that this actually extends canonically
to a functor satisfying certain good properties. Since we have not seen this explained in the
literature and since we need it in the body of the text, let us spell out the details here. For this
section only, we assume that all tt-categories are rigid.

Lemma A.1. Balmer’s construction canonically extends to a contravariant functor
Spec : ttCatrig

→ LRS from the category of rigid tt-categories to the category of locally ringed
spaces.

Proof. That Spc is a contravariant functor ttCatrig
→ Top is proved in [Bal05, 3.6] so that

we need only consider the structure sheaves. Recall that these are defined as the sheafification
of a presheaf pO on the canonical base for the topology, whose definition we now recall. Let T be
a tt-category, and a ∈ T . Sections of pOT over U(a) are given by endomorphisms of the unit in
T /〈a〉. Given an inclusion U(b) ⊂ U(a), we have 〈a〉 ⊂ 〈b〉 from which a functor T /〈a〉→ T /〈b〉
and then an induced morphism of rings.

We note that the association U(a) 7→ T /〈a〉 can be made into a functor T /− with values in
ttCatrig. We can then compose with the functor R− = End−(1) : ttCatrig

→ Rng to the category
of rings, and this defines the presheaf pOT on the distinguished base for the topology.

Given a tt-functor F : T → T ′, denote its induced continuous map Spc(F ) by f . We have
f−1(U(a)) = U(Fa) and F : T /〈a〉 → T ′/〈Fa〉 thus a natural transformation F/− : T /− →
T ′/F (−). Whiskering with End−(1) we obtain a morphism of presheaves of rings

pOT → f∗pOT ′ .

After sheafifying we clearly obtain a functor ttCatrig,op
→ RS, the category of ringed spaces.

The objects are sent to locally ringed spaces, by [Bal10a, 6.6], and it remains to check that the
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morphisms are local. This can be checked on the level of presheaves. Fix a prime P ∈ Spec(T ′)
and let Q = f(P) = F−1(P). Using [Bal10a, 6.5] we see that the morphism on stalks at these two
points naturally identifies with the morphism RT /Q→RT ′/P induced by F : T /Q→ T ′/P. But
this functor is conservative by definition, i.e. detects isomorphisms, in particular, automorphisms
of 1, and hence RT /Q→ RT ′/P is local. 2

Lemma A.2. The comparison morphism ρ : Spec(T )→ Spec(RT ) defines a natural transforma-
tion of functors ttCatrig,op

→ LRS.

Proof. Naturality on the level of topological spaces is [Bal10a, 5.3]. Also, ρ is a morphism of
locally ringed spaces, by [Bal10a, 6.11]. It remains to check naturality on the level of sheaves,
or indeed, presheaves. In other words, for F : T → T ′ we need to show commutativity of the
square

pOT ′(U(cone(Fr))) pOT (U(cone(r)))
Foo

pORT ′ (D(Fr))

OO

pORT (D(r))

OO

F
oo

where by definition [Bal10a, 6.10] the vertical arrows are isomorphisms, identifying both rings
with RT ′ [1/Fr], respectively, RT [1/r]. By the universal property of localization at the level of
rings, it suffices to prove that the diagram commutes on the image of RT → pORT (D(r)). But
for s ∈ RT = EndT (1), the image under both possible paths traversing the square is simply Fs
considered as an endomorphism of 1 ∈ T ′/〈cone(Fr)〉. 2

Lemma A.3. Let T be a tt-category, and S ⊂ RT a multiplicative system. Then the following
square is cartesian in LRS.

Spec(S−1T ) �
� Spc(Q) //

ρS−1T
��

Spec(T )

ρT
��

Spec(RS−1T ) = Spec(S−1RT ) �
� // Spec(RT )

(Here Q denotes the canonical localization functor Q : T → S−1T .)

Before giving the proof let us recall that for this type of diagram (where the bottom horizontal
map is an isomorphism on stalks) the fiber product in the category LRS is simple to describe: it
coincides with the fiber product in the category RS [Gil11, Corollary 11]. So, this result can be
made more explicit as follows.

Corollary A.4. In the situation of Lemma A.3, Spec(S−1T ) maps homeomorphically onto
{P ∈ Spec(T ) | ρT (P) ∩ S = ∅}, and its structure sheaf identifies with the restriction of OT to
this subset.

Proof. By the remarks just made, Lemma A.3 and Corollary A.4 are equivalent. Moreover,
[Bal10a, 5.6] shows that the square is cartesian on the level of sets. Both S−1T and T have the
‘same’ base for the topology, namely U(a) where a ∈ T , and we see that the diagram is cartesian
on the level of topological spaces as well.
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The square is commutative in LRS, by Lemma A.2. Consequently we obtain a canonical
morphism of locally ringed spaces Spec(S−1T ) → X where X is the fiber product in LRS.
To show that it is an isomorphism we check that it is so on stalks. If P ∈ Spec(T ) such that
ρT (P) ∩ S = ∅, and S−1P is the corresponding prime in S−1T , then the stalk of OS−1T at
S−1P is

OS−1T ,S−1P = RS−1T /S−1P = RT /P = OT ,P,

and we conclude. 2

Remark A.5. The last argument in this proof also shows that for any Verdier localization T →
T /K the induced map on spectra (which is a homeomorphism onto its image)

Spc(T /K)→ Spc(T )

identifies the structure sheaf on the domain with the restriction of the structure sheaf on the
codomain.

Appendix B. The motivic Bott element and change of coefficients

In this section we will perform some computations regarding how the Bott elements behave under
certain changes of coefficients. Our main goal is Corollary B.12, which states that inverting a Bott
element of any prime power order is equally good. We fix a field F, a localization Z ⊂ R ⊂ Q, and
two integers 1 < n,N such that n | N and N is invertible in F. We also assume that F contains

a primitive Nth root of unity ζN , and we let ζn = ζ
N/n
N , a primitive nth root of unity. Finally,

we use a subscript (−)R to denote tensoring with R.
For any positive integer k, the triangle

R
k−→ R→ R/k→ R[1] (Bk)

gives rise to a long exact sequence

→ homDMgm(F,R)(R,R(1))→ homDMgm(F,R)(R,R/k(1))

→ homDMgm(F,R)(R,R(1)[1])
k−→ homDMgm(F,R)(R,R(1)[1])→,

which identifies with

0→ homDMgm(F,R)(R,R/k(1))→ F×R
k−→ F×R →,

and we see that homDMgm(F,R)(R,R/k(1)) = µk(F)R. By adjunction, also

homDMgm(F,R/k)(R/k,R/k(1)) = µk(F)R.

We can therefore interpret the Nth root of unity ζN as a morphism βN : R/N → R/N(1) in
DMgm(F, R/N). This is called the motivic Bott element (with R/N -coefficients). Similarly we
obtain βn : R/n→ R/n(1) in DMgm(F, R/n).

Fix the following notation

R
Γ
//

γ

))
R/N π

// R/n

with associated change of coefficients adjunctions Γ∗ a Γ∗, γ
∗ a γ∗, π∗ a π∗.
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Lemma B.1. The following square in DMgm(F, R) commutes.

R/N
π //

Γ∗βN
��

R/n

γ∗βn
��

R/N(1) π
// R/n(1)

Proof. Applying homDMgm(F,R)(−, R/n(1)) to (BN) we obtain part of a long exact sequence

0→ homDMgm(F,R)(R/N,R/n(1))→ homDMgm(F,R)(R,R/n(1)) = µn(F)R
N=0−−−→ µn(F)R.

In particular, it suffices to show commutativity of the square after precomposing with
Γ : R→ R/N . It also shows that γ∗βn ◦ π corresponds to ζn ∈ µn(F)R.

Now, π fits into a morphism of triangles

R
N //

N/n

��

R // R/N //

π

��

R[1]

N/n

��
R n

// R // R/n // R[1]

and applying homDMgm(F,R)(R,−(1)) we obtain

µN (F)R

π

��

// F×R
N/n
��

µn(F)R // F×R

thus π ◦ Γ∗βN corresponds to ζ
N/n
N = ζn ∈ µn(F)R. This concludes the proof. 2

Lemma B.2. Let m = N/n. The following square in DMgm(F, R) commutes.

R/n
m //

γ∗βn
��

R/N

Γ∗βN
��

R/n(1) m
// R/N(1)

Proof. We have a morphism of triangles

R
n // R

m

��

// R/n

m

��

// R[1]

R
N
// R // R/N // R[1]

which implies the commutativity of the bottom half of the following diagram.

hom(R/n,R/n(1))
m //

��

hom(R/n,R/N(1))

��
hom(R,R/n(1))

m //

��

hom(R,R/N(1))

��
hom(R,R(1)[1]) hom(R,R(1)[1])
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The upper half clearly commutes and the vertical arrows are injections. We deduce that m◦γ∗βn
corresponds to ζn ∈ F×R.

Next consider the following diagram.

hom(R/N,R/N(1))
m //

��

hom(R/n,R/N(1))

��
hom(R,R/N(1))

m //

��

hom(R,R/N(1))

��
hom(R,R(1)[1])

m // hom(R,R(1)[1])

The commutativity of the upper half again follows from the morphism of triangles above, while
the lower half clearly commutes. The vertical arrows are injections and we deduce that Γ∗βN ◦m
corresponds to ζmN = ζn and thus the claim. 2

Lemma B.3. Let F a G : C → D be an adjunction. For any c ∈ C and d ∈ D the following map
is injective:

homD(Fc, d)
G−→ homC(GFc, Gd).

Proof. By adjunction, the target is identified with homD(FGFc, d) and under this identification,
the map is induced by the counit FGFc → Fc, which is a split epimorphism (the splitting is
given by the unit of the adjunction). Thus the claim is proven. 2

Lemma B.4. For any M ∈ DMgm(F, R) we have

γ∗γ∗γ
∗M ∼= γ∗M ⊕ γ∗M [1].

Proof. Tensoring M with (Bn) and applying γ∗ we obtain a triangle

γ∗M
n−→ γ∗M

π−→ γ∗γ∗γ
∗M → γ∗M [1],

and since the first map is zero (the category DMgm(F, R/n) is Z/n-linear), the triangle splits
and the lemma follows. 2

Lemma B.5. For any M ∈ DMgm(F, R/n) we have

γ∗γ
∗γ∗M ∼= γ∗M ⊕ γ∗M [1].

Proof. Tensoring γ∗M with (Bn) we obtain a triangle

γ∗M
n−→ γ∗M

π−→ γ∗γ
∗γ∗M → γ∗M [1],

and since the first map is zero the triangle splits and the lemma follows. 2

Lemma B.6. We have in DMgm(F, R/n) that

γ∗γ∗ cone(βn) = cone(βn)⊕ cone(βn)[1].
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Proof. We have

γ∗γ∗ cone(βn) = cone(γ∗γ∗γ
∗R

γ∗γ∗βn−−−−→ γ∗γ∗γ
∗R(1)),

and by Lemma B.4, γ∗γ∗βn is a morphism between γ∗R⊕ γ∗R[1] and γ∗R(1)⊕ γ∗R(1)[1]. Such
a morphism is therefore described by a 2 × 2-matrix, whose diagonal entries ‘are’ elements of
µn(F)R, while the off-diagonal entries necessarily vanish. To describe the non-trivial entries we
can do so after applying γ∗, by Lemma B.3. But by Lemma B.5, we have γ∗γ

∗γ∗ cone(βn) =
γ∗ cone(βn)⊕ γ∗ cone(βn)[1], which completes the proof. 2

Lemma B.7. We have in DMgm(F, R/n) that

γ∗Γ∗ cone(βN ) ∈ 〈cone(βn)〉.

Proof. First, we have

γ∗Γ∗ cone(βN ) = π∗Γ∗Γ∗ cone(βN )

= π∗ cone(βN )⊕ π∗ cone(βN )[1]

by Lemma B.6. It now suffices to show that

π∗ : homDMgm(F,R/N)(R/N,R/N(1))→ homDMgm(F,R/n)(R/n,R/n(1))

maps βN to βn. This follows easily from Lemma B.1. 2

Lemma B.8. Assume the existence of a primitive (N · n)th root of unity in F. We then have in
DMgm(F, R/N) that

Γ∗γ∗ cone(βn) ∈ 〈cone(βN )〉.

Proof. More precisely we are going to prove that the cone C of multiplication by n on cone(βN )
is cone(βn)⊕ cone(βn)[1].

Consider the following commutative diagram of solid arrows.

Γ∗R
n //

βN
��

Γ∗R

βN
��

// Γ∗γ∗γ
∗R //

��

Γ∗R[1]

βN [1]

��
Γ∗R(1) n

// Γ∗R(1) // Γ∗γ∗γ
∗R(1) // Γ∗R(1)[1]

(B.9)

We want to prove that Γ∗γ∗βn makes this diagram commutative. Taking cones of the vertical
maps and applying the octahedral axiom the lemma would then be proved. We may prove
commutativity after applying Γ∗ by Lemma B.3. In fact, we will prove that after applying Γ∗,
the morphism Γ∗γ∗βn is identified with α, the ‘natural’ cone coming from a model. For this we
will work in the homotopy category of bounded complexes of Nisnevich sheaves with transfers
(i.e. before A1-localization). As a model for R(1) we will use O×R [−1]. The Bott element βN can
then be modeled by the following morphism of complexes, where the last term is in degree −1.

R

N
��
R

ζN // O×R
N
��
O×R
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Taking the mapping cone of multiplication by n we obtain the following model for α.

R(
−N
−n

)
��

R⊕R(
−n N

)
��

(
ζN 0

)
// O×R(
−N
−n

)
��

R (
0
ζN

) // O×R ⊕O
×
R(
−n N

)
��
O×R

The last term being in degree −1.
Now, since n | N , the domain and the codomain split into direct sums of two-term complexes,

and under these identifications, α is identified with the following.

R(
0
−n

)
��

R⊕R(
n 0

)
��

(
ζ−1
N ζ

N/n
N

)
// O×R(

0
−n

)
��

R ζN/nN
ζN


// O∗R ⊕O

×
R(
n 0

)
��
O×R

Let ζNn be an nth root of ζN , and define the homotopy ζ−1
Nn : R → O×R . It shows that α is

homotopic to the map
(
0 ζn

)
(in degree 1),

(
ζn
0

)
(in degree 0), i.e. a model for Γ∗Γ

∗γ∗βn. This
concludes the proof. 2

For the last two results we specialize to the case N = `m and n = ` for some m > 1.

Lemma B.10. We have in DMgm(F, R) that

Γ∗ cone(β`m) ∈ 〈γ∗ cone(β`)〉.

Proof. The proof is by induction on m. Assume m > 1 and consider the following diagram in
DTMgm(F, R).

R/`m−1 ` //

β`m−1

��

R/`m

β`m

��

// R/`

β`
��

δ // R/`m−1[1]

β`m−1 [1]
��

R/`m−1(1)
` // R/`m(1) // R/`(1)

δ // R/`m−1(1)[1]

(B.11)

The two rows are triangles thus if the diagram commutes we can take cones of the vertical maps
and the induction hypothesis will allow us to conclude.
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We now proceed to describe this diagram using the same model as in the previous proof.
Commutativity of the first square is Lemma B.2. We may therefore compute the induced
morphism on the mapping cones of multiplication by ` as follows.

R(
−`m−1

−1

)
��

R⊕R(
−` `m

)
��

(
ζ`m−1 0

)
// O×R(
−`m−1

−1

)
��

R (
0
ζ`m

) // O×R ⊕O
×
R(
−` `m

)
��
O×R

The last term being in degree −1.
Now, the domain and codomain of this morphism identifies with R/` and R/`(1), respectively.

R(
−`m−1

−1

)
��

R

`

��

(
−1
0

)
// R⊕R(

−` `m
)
��

(
ζ`m−1 0

)
// O×R(

−`m−1

−1

)
��

R
1

// R (
0
ζ`m

) // O×R ⊕O
×
R(
−` `m

)
��

(
−1 `m−1

)
// O×R

`
��

O×R 1
// O×R

The composition is a model for β` using that ζm−1
`m = ζ`. 2

Corollary B.12. Assume that F contains a primitive `m+1th root of unity. Then in
DMgm(F, R) we have

〈Γ∗ cone(β`m)〉 = 〈γ∗ cone(β`)〉.

Proof. The forward inclusion is Lemma B.10. For the reverse inclusion we may invoke Lemma B.8
and obtain that

Γ∗Γ
∗γ∗ cone(β`) ∈ 〈Γ∗ cone(β`m)〉.

But Γ∗Γ
∗γ∗ cone(β`) = Γ∗Γ

∗Γ∗π∗ cone(β`) = γ∗ cone(β`) ⊕ γ∗ cone(β`)[1] by Lemma B.5. We
conclude that also γ∗ cone(β`) ∈ 〈Γ∗ cone(β`m)〉. 2

Appendix C. Inverting the motivic Bott element

In [HH05], Haesemeyer and Hornbostel prove that under certain assumptions on F, the étale
sheafification functor

aét : DMgm(F,Z/n)→ DMét
gm(F,Z/n)
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can be seen as the functor inverting the Bott element βn : Z/n → Z/n(1). In other words, it
induces an identification

DMgm(F,Z/n)[β−1
n ] ' DMét

gm(F,Z/n).

Our goal in this section is to prove an analogous result with integral coefficients.
We first restate Haesemeyer–Hornbostel’s result in a slightly improved form.

Theorem C.1 [HH05]. Let F be a field, and n an integer. We assume that:
• n is prime to the characteristic of F;
• F contains the nth roots of unity (respectively, and the 4th roots of unity if n is even);
• F has finite étale n-dimension.

Then étale sheafification induces equivalences of tensor triangulated categories

DMeff(F,Z/n)/〈cone(βn)〉⊕ ∼−→ DMét,eff(F,Z/n)

(DMeff
gm(F,Z/n)/〈cone(βn)〉)\ ∼−→ DMét,eff

gm (F,Z/n)

DM(F,Z/n)/〈cone(βn)〉⊕ ∼−→ DMét(F,Z/n)

(DMgm(F,Z/n)/〈cone(βn)〉)\ ∼−→ DMét
gm(F,Z/n).

Proof. Haesemeyer and Hornbostel prove the first two equivalences under the additional
assumption that F is perfect and admits resolution of singularities. These assumptions are
used to apply Voevodsky’s fundamental results on DMgm. As we are inverting the exponential
characteristic of F, Kelly’s [Kel17] allows the removal of the resolution of singularities assumption.
Now let F be arbitrary and let Fs denote its inseparable closure. Then we have the following
commutative square induced by scalar extension and étale sheafification.

DMeff(F,Z/n)/〈cone(βn)〉⊕ ∼ //

��

DMeff(Fs,Z/n)/〈cone(βn)〉⊕

∼
��

DMét,eff(F,Z/n) ∼
// DMét,eff(Fs,Z/n)

The right vertical arrow is an equivalence since Fs is perfect, the top horizontal arrow by [CD15,
8.1], and the bottom horizontal arrow by [CD16, 6.3.16]. It follows that the left vertical arrow is
an equivalence as well. This proves the first equivalence of the theorem, and the second follows
by restricting to the compact objects.

For the third equivalence we notice that both sides are compactly generated and the functor
maps onto a set of compact generators. We therefore reduce to prove the 4th equivalence, or
indeed that

DMgm(F,Z/n)/〈cone(βn)〉→ DMét
gm(F,Z/n)

is fully faithful. For this consider the following commutative square.

DMeff
gm(F,Z/n)/〈cone(βn)〉 //

��

DMgm(F,Z/n)/〈cone(βn)〉

��
DMét,eff

gm (F,Z/n) // DMét
gm(F,Z/n)

The left vertical arrow is fully faithful and the bottom horizontal arrow is an equivalence since
Z/n ∼= Z/n(1). It therefore suffices to prove that the top horizontal arrow is an equivalence as
well. This follows immediately from DMgm(F,Z/n) = DMeff

gm(F,Z/n)[(⊗Z/n(1))−1] and again
the fact that Z/n ∼= Z/n(1) after inverting βn. 2
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Remark C.2. The assumption on the cohomological dimension of F seems reasonable since,
for example, the first equivalence in Theorem C.1 implies that the triangulated category
DMét,eff(F,Z/n) is compactly generated by smooth varieties.

Convention C.3. From now on we fix a field F and a set of primes S containing the exponential
characteristic of F. We denote by R the localization S−1Z ⊂ Q. F is assumed to have finite
`-cohomological dimension for every prime ` /∈ S, and to contain a primitive `nth root of unity
for every ` /∈ S and every n > 1.

For any ` /∈ S, fix a primitive `th root of unity and interpret it as a morphism
β` : Z/`→ Z/`(1) in DMgm(F,Z/`). We denote (abusively) the image of its cone in DMgm(F, R)
by γ∗ cone(β`).

Theorem C.4. The étale sheafification functor induces an equivalence of tt-categories

DM(F, R)/〈γ∗ cone(β`) | ` /∈ S〉⊕
'−→ DMét(F, R).

In particular, it induces an equivalence on the level of geometric motives

(DMgm(F, R)/〈γ∗ cone(β`) | ` /∈ S〉)\
'−→ DMét

gm(F, R).

The same results hold for the effective versions.

Proof. In this proof, we denote by D the category DM(F, R), by Dét its étale version, by B
(respectively, Bc) the localizing (respectively, thick) subcategory of D generated by γ∗ cone(β`),
` /∈ S.
D is compactly generated, and the objects γ∗ cone(β`) are compact. It follows that the full

subcategory of compact objects in the localization D/B is canonically identified with the
idempotent completion of the localization Dc/Bc. Thus the second statement follows from
the first.

The generators Rét(X)(n) (X smooth, n ∈ Z) for Dét clearly lie in the image of aét. It thus
suffices to show that the functor in the first statement is fully faithful on compact objects. Let
M ∈ D be a geometric motive, N ∈ D an arbitrary motive, and consider the triangle

N → N ⊗Q→ N ⊗Q/R→ N [1]

in D/B. By the long exact sequence associated to the functor homD/B(M,−) and the 5-lemma,
it suffices to show that the following two maps are bijections (for arbitrary N):

homD/B(M,N ⊗Q)→ homDét(M,N ⊗Q), (C.5)

homD/B(M,N ⊗Q/R)→ homDét(M,N ⊗Q/R). (C.6)

For the first map, consider the diagram

D
γ∗ //

aét

��

DQ

aét∼
��

γ∗
oo

Dét
γ∗ét // Dét

Q
γét
∗

oo
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where D(ét)
Q denotes the corresponding category of motives with rational coefficients. The

subdiagram with the right adjoints removed is commutative. The left vertical map factors through
the localization with respect to B, and we obtain another diagram

D
γ∗ //

q

��

DQγ∗
oo

D/B
γ∗ //

aét

��

DQ

aét∼
��

γ∗

oo

Dét
γ∗ét // Dét

Q
γét
∗

oo

which commutes in the same sense. (Here, the existence of the right adjoint in the second row
follows from Brown representability.)

We claim that the following identities hold:

qγ∗γ
∗ = γ∗γ

∗q, aétγ∗γ
∗ = γ ét

∗ γ
∗
étaét.

To prove the first identity, let A,B ∈ D and consider the following sequence of canonical maps
and identifications:

homD/B(qA, γ∗γ
∗qB) = homDQ(γ∗qA, γ∗qB)

= homDQ(γ∗A, γ∗B)

= homD(A, γ∗γ
∗B)

→ homD/B(qA, qγ∗γ
∗B).

We need to show that the last map (induced by the localization) is bijective, which means that
γ∗γ
∗B is local with respect to the localization, in other words, γ∗γ

∗B ∈ (B)⊥. But for any prime
` /∈ S and any integer p, we have

homD(γ∗ cone(β`)[p], γ∗γ
∗B) = homDQ(γ∗γ∗ cone(β`)[p], γ

∗B) = homDQ(0, γ∗B) = 0

and thus the claim.
For the second identity, recall that in D (respectively, Dét), the composition γ∗γ

∗

(respectively, γ ét
∗ γ
∗
ét) is simply tensoring with Q. Since aét is monoidal, we get indeed

aétγ∗γ
∗A = aét(A⊗Q) = aétA⊗ aétQ = aétA⊗Q = γ ét

∗ γ
∗
étaétA.

Let us come back to the map in (C.5). It decomposes as the following composition:

homD/B(qM, qγ∗γ
∗N) = homD/B(qM, γ∗γ

∗qN)

= homDQ(γ∗M,γ∗N)

= homDét
Q

(aétγ
∗M,aétγ

∗N)

= homDét
Q

(γ∗étaétM,γ∗étaétN)

= homDét(aétM,γ ét
∗ γ
∗
étaétN)

= homDét(aétM,aétγ∗γ
∗N) (C.7)

and is therefore a bijection.
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We now turn to (C.6). The motive Q/R is a sum ⊕`/∈SR[`∞] where R[`∞] is the homotopy
colimit of (R/`n)n with transition maps R/`n → R/`n+1 given by multiplication by `. As the
tensor product commutes with direct sums and homotopy colimits and M is compact, we reduce
to show that

homD/B(M,N ⊗R/`n)→ homDét(M,N ⊗R/`n) (C.8)

is a bijection.

Write D(ét)
`n for the corresponding categories of motives with R/`n-coefficients. Let B`n be

the localizing subcategory of D`n generated by cone(β`n). By Lemma B.8, γ∗ maps B to B`n so
that we obtain a diagram

D
γ∗ //

q

��

D`n

q

��

γ∗
oo

D/B
γ∗ //

aét

��

D`n/B`n

aét∼
��

γ∗

oo

Dét
γ∗ét // Dét

`n
γét
∗

oo

as before. The bottom right equivalence follows from Theorem C.1.
We now claim that the analogous identities hold:

qγ∗γ
∗ = γ∗γ

∗q, aétγ∗γ
∗ = γ ét

∗ γ
∗
étaét.

The second identity is proved as before, while the first one can be verified as follows. Since γ∗

preserves compact objects γ∗ commutes with small sums, and it follows that γ∗ maps B`n to B,
by Lemma B.10. It follows from Lemma C.9 that γ∗ and γ∗ are simply the functors induced by
γ∗ and γ∗, respectively. The first identity follows immediately. The map in (C.8) is now seen to
be a bijection precisely as in (C.7). 2

Lemma C.9. Let D,D′ be two triangulated categories, let γ∗ a γ∗ : D → D′ be an adjunction,
and suppose B ⊂ D and B′ ⊂ D′ are thick subcategories such that the corresponding Bousfield
localizations exist.

If γ∗B ⊂ B′ and γ∗B′ ⊂ B then γ∗ and γ∗ descend to an adjunction on the quotient categories:
γ∗ a γ∗ : D/B→ D′/B′.

Proof. By our assumption, these functors do descend to the quotient categories. To see that the
induced functors are still adjoint to each other, let us denote by L′ the localization functor
on D′ with respect to B′, and consider the following sequence of morphisms and canonical
identifications, where a ∈ D and b ∈ D′:

homD′/B′(γ
∗a, b) = homD′/B′(γ

∗a, L′b)

= homD′(γ
∗a, L′b)

= homD(a, γ∗L
′b)

→ homD/B(a, γ∗L
′b)

← homD/B(a, γ∗b).

It remains to check that the last two maps are bijections. We know that L′b ∈ (B′)⊥ and hence
for any x ∈ B we have

homD(x, γ∗L
′b) = homD′(γ

∗x, L′b) = 0
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since γ∗B ⊂ B′. In other words γ∗L
′b ∈ B⊥ and the first map above is therefore a bijection.

We also know that b→ L′b becomes invertible in D′/B′, i.e. its cone lies in B′. It follows that
the cone of γ∗b→ γ∗L

′b lies in γ∗B′ ⊂ B and the second map above is therefore a bijection as
well. 2
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