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STRETCHING THE NET:
MULTIDIMENSIONAL

REGULARIZATION

JAUME VIVES-I-BASTIDA

Massachusetts Institute of Technology

This paper derives asymptotic risk (expected loss) results for shrinkage estimators
with multidimensional regularization in high-dimensional settings. We introduce a
class of multidimensional shrinkage estimators (MuSEs), which includes the elastic
net, and show that—as the number of parameters to estimate grows—the empirical
loss converges to the oracle-optimal risk. This result holds when the regularization
parameters are estimated empirically via cross-validation or Stein’s unbiased risk
estimate. To help guide applied researchers in their choice of estimator, we compare
the empirical Bayes risk of the lasso, ridge, and elastic net in a spike and normal
setting. Of the three estimators, we find that the elastic net performs best when the
data are moderately sparse and the lasso performs best when the data are highly
sparse. Our analysis suggests that applied researchers who are unsure about the level
of sparsity in their data might benefit from using MuSEs such as the elastic net. We
exploit these insights to propose a new estimator, the cubic net, and demonstrate
through simulations that it outperforms the three other estimators for any sparsity
level.

1. INTRODUCTION

Estimation problems that involve a large number of unknown parameters have
become increasingly common in economics. Applied researchers with large
datasets at their disposal are focusing on empirical questions that require
the estimation of many treatment effects—often with many subgroups—and
prediction problems with many covariates. A typical approach to dealing with
these high-dimensional problems is to use methods from the machine learning
literature. Yet given the wide range of available methods, choosing the right
one is not always straightforward. In the economics literature, for example,
considerable attention has been given to regularization-based methods with a
single regularization parameter; examples include the lasso and ridge methods.
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Abadie and Kasy (2019; hereafter AK19) provide some guidance on how to choose
among such regularization methods. Our study offers guidance for methods, such
as the elastic net (Zou and Hastie, 2005), with multiple regularization parameters.

Regularization through loss function penalization is a straightforward way of
improving the mean squared error (MSE) of an estimator and thereby helping
to prevent overfitting. The success of these methods relies on the data-driven
choice of the regularization parameters that control the amount of shrinkage on
the estimated parameters. Therefore, the choice of loss function penalization and
the procedure used to choose the regularization parameters are key for the success
of regularization-based methods. The chief takeaways from AK19 are that, among
methods that use only one type of regularization (e.g., lasso, ridge, and pretest): (a)
no method universally dominates the others, in terms of risk; and (b) under mild
conditions, data-driven choices of the regularization parameter that use Stein’s
unbiased risk estimator or cross-validation (CV) are guaranteed to work well in
high-dimensional settings. More precisely, AK19’s main theoretical result ensures
that the risk function of an estimator evaluated at a data-driven choice of the
regularization parameter is uniformly close to the risk function of the infeasible
estimator using the oracle-optimal regularization parameter, the regularization
parameter that minimizes the true risk.

1.1. Contribution

There are many applied settings in which the researcher is unsure whether the
parameters being estimated come from a sparse or a dense data distribution. In
these cases, the researcher might want to minimize the mean squared error by
using a more flexible regularization-based method with multiple types of regu-
larization. This paper presents guidelines concerning the choice of regularization-
based method for high-dimensional estimation problems. First, we show that
the AK19 result on the uniform validity of a data-driven approach to selecting
the regularization parameter extends, under mild conditions, to estimators with
multiple regularization parameters. Second, we compare the elastic net, lasso, and
ridge methods in both a spike and normal setting and establish that—in terms
of risk—the elastic net performs well for many levels of sparsity. Finally, we
propose a new and better-performing estimator, the cubic net, and use Monte Carlo
simulations to demonstrate that it outperforms the lasso, ridge, and elastic net
methods.

1.2. Setup

As in AK19, we focus on the problem of estimating the unknown means μ1, . . . ,μp

of observed random variables X1, . . . ,Xp, where the number p of parameters can
be large. This setting is quite flexible and is applicable also to more general
prediction and estimation problems, including multivariate regression under a
suitable transformation. In these extended settings, our results apply only to
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those cases in which the sample size exceeds the number of parameters.1 We
consider componentwise estimators of the form μ̂i = m(Xi,�), with the difference
that we allow the regularization parameter vector � to be multidimensional. It
is intuitive that � controls the amount of shrinkage, with higher values of the
components shrinking the estimates. Such shrinkage estimators are important in
high-dimensional settings, because they have been shown to outperform the maxi-
mum likelihood estimator when p ≥ 3 (Stein, 1956). Two reasonable assumptions
are that (i) if � = 0, then the estimates remain unregularized, m(x,0) = x, and
(ii) at the limit � =1, where 1 is a vector where all elements are ∞, the
estimates fully shrink to zero. Our results apply to componentwise estimators that
satisfy these assumptions along with a monotonicity assumption. We refer to these
estimators as multidimensional shrinkage estimators (MuSEs). Many commonly
used shrinkage estimators are MuSEs—not only the aforementioned lasso, ridge,
and elastic net, but also the adaptive lasso (Zou, 2006), scad (Fan and Li, 2001),
and lava (Chernozhukov et al. 2017) estimators.

1.3. Theoretical Results

The primary object of interest in this study is the risk function for componentwise
estimators. To define that function, we consider a setting in which (Xi,μi) are
realizations of the random variables (X,μ) with a joint distribution π . Our notion
of risk in this setup is the integrated (or empirical Bayes) risk, defined as the
average componentwise loss of the estimator integrated over π . In the case of the
squared loss, this notion of risk can be understood as the expected MSE. We cannot
compute such risk directly, in practice, because the underlying distribution π may
be unknown; hence, we rely on the empirical counterparts—namely the compound
loss and the compound risk (i.e., average loss and risk across components).
According to our results, as the number p of parameters grows: (i) the differences
between the compound loss, compound risk, and integrated risk vanish uniformly;
(ii) the integrated risk function is uniformly close to the integrated risk function
evaluated at the oracle-optimal regularization parameters; and (iii) we can use data-
driven methods such as CV and Stein’s unbiased risk estimator (a.k.a. Sure) to
estimate the risk function consistently. These results for MuSEs are analogous to
the AK19 results for estimators with scalar regularization.

1.4. Spike and Normal Risk

To study the performance of regularization-based methods with multiple regular-
ization parameters, we derive and compare the integrated risk functions of the
elastic net, ridge, and lasso when π follows a spike and normal distribution. This
parametric assumption allows us to evaluate how the various methods fare under

1In Section A.1 in the Appendix, we discuss one of AK19’s examples that shows how to transform this model for
multivariate regression and why we require the sample size to be larger than the number of parameters.
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different sparsity settings. Our analysis is in line with AK19 and the literature: the
ridge estimator performs best in nonsparse settings and the lasso performs best in
very sparse settings. The elastic net is better for “in-between” scenarios, prompting
our recommendation that it should be used when the researcher is unsure about the
data’s sparsity. It is interesting that, according to our results, the ridge estimator
should rarely be used, because that method is nearly always outperformed by the
elastic net. We complement this analysis by comparing the cross-validated MSEs
of each method for a prediction problem with a varying number of parameters. For
estimation problems with a small number of parameters, we observe that the lasso
and ridge methods perform better; but as the problem’s dimensionality increases,
the elastic net matches their performance. Finally, we introduce the cubic net and
use simulations to show that it outperforms lasso, ridge and, elastic net methods
irrespective of the setting’s sparsity.

1.5. Overview

Section 2 sets up the theoretical framework and defines the MuSEs. Our paper’s
main theoretical results are presented in Section 3. In Section 4, we derive the
risk formulas for the normal, spike, and slab distributions and then compare the
estimators by way of simulations. Section 5 introduces the cubic net estimator and
evaluates its performance via Monte Carlo simulations. We conclude in Section 6
with a brief summary and suggestions for further research. All proofs are relegated
to the Appendix.

2. SETUP

We consider the problem of estimating a p-dimensional vector � from a random
vector X. Each component of � can be understood as a parameter to be estimated
in a high-dimensional problem. This setting can be extended to more general
prediction and estimation problems as shown in Section A.1 in the Appendix. In
particular, we consider

X =
⎡
⎢⎣

X1
...

Xp

⎤
⎥⎦, �=

⎡
⎢⎣

μ1
...

μp

⎤
⎥⎦,

where the components of X are mutually independent and Xi ∼ Pi. Each dis-
tribution Pi has finite mean μi, and we denote the vector of distributions by
P = [

P1, . . . ,Pp
]
.

In this paper, we focus on componentwise estimators of μi with multidimen-
sional regularization. We define a componentwise estimator as a function m : R×
[0,∞]k → R that depends on Xi and on k nonnegative regularization parameters
denoted by the vector �; hence, our estimate of each parameter will be given by
μ̂i = m(Xi,�). A crucial observation is that our estimate μ̂i will depend not just

https://doi.org/10.1017/S0266466621000347 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000347


STRETCHING THE NET 193

directly on Xi, but also indirectly on X—through the common regularization vector
� when that vector is estimated from X by a data-driven procedure.

2.1. MuSE Estimators

Many of the regularization-based estimators used, in practice, can be formulated
as component-wise estimators. In this paper, we focus on a large class of compo-
nentwise estimators that we refer to as MuSEs.

Definition 1 (MuSE). A componentwise estimator m : R× [0,∞]k → R is an
MuSE if it satisfies the following conditions:

(i) m(x,�) is monotonic in all components of � for all x ∈ R; and
(ii) m(x,0) = x and lim�→1m(x,�) = 0 for all x ∈ R.

This definition ensures that any MuSE has two desirable properties. First,
increasing any of the regularization parameters must lead to more shrinkage. Sec-
ond, maximal shrinkage (to zero) can be achieved as we increase the regularization
parameters without bound; in the absence of regularization, there is no shrinkage
and the estimate is simply x (i.e., the maximum likelihood estimate).

Some of the most commonly used regularization-based methods satisfy the
MuSE conditions. In this paper, we focus on the lasso, ridge, elastic net, and
lava methods, which are characterized by the following componentwise estimator
functions:

mridge(x,λ) = argmin
m∈R

{(x−m)2 +λm2} (ridge)

= 1

1+λ
x;

mlasso(x,λ) = argmin
m∈R

{(x−m)2 +2λ|m|} (lasso)

= 1(x < −λ)(x+λ)+1(x > λ)(x−λ);
mEN(x,�) = argmin

m∈R
{(x−m)2 +2λ1|m|+λ2m2} (elastic net)

= 1(x < −λ1)
x+λ1

1+λ2
+1(x > λ1)

x−λ1

1+λ2
;

mlava(x,�) = argmin
(δ,β)∈R2

{(x−β − δ)2 +λ1|δ|+λ2β
2} (lava)

= 1

(
x >

λ1

2k

)(
x− λ1

2

)
+1

(
− λ1

2k
≤ x ≤ λ1

2k

)
(1− k)x

+1

(
x < −λ1

2k

)(
x+ λ1

2

)
.

In the last equality, k = λ2/(1+λ2).
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Figure 1. Componentwise estimator functions for the MLE, ridge, lasso, elastic net, and lava. For
ridge, lasso, elastic net, and lava, the regularization parameters are set to λ1 = 1 and λ2 = 2. A color
version of this figure can be found in the online Appendix.

To develop a full appreciation of the different shrinkage types induced by these
estimators, in Figure 1, we plot the functions for regularization parameters λ1 = 1
and λ2 = 2. In this figure, the 45◦ line represents the unregularized estimate, which
coincides with the maximum likelihood estimate. The regularized estimators either
shrink the estimates toward the maximum likelihood estimate, as does the ridge
estimator (dotted line), or—like the lasso estimator (dot-dashed line)—induce
sparsity by setting the estimate to zero in a region. The appeal of the elastic net
(solid line) is that it applies both types of shrinkage; thus, it sets the estimate to zero
in the same region as the lasso but otherwise behaves like the ridge. In contrast,
the lava estimator (dashed line) applies ridge-like shrinkage only in the area where
the lasso shrinks estimates to zero. In Section 4, we focus on the ridge, lasso, and
elastic net methods in order to assess the trade-off between shrinking all estimates
uniformly and inducing sparseness.

2.2. Measuring Risk

We are interested in the efficiency of componentwise estimators as we increase the
number p of parameters. Given a realization of the vector X, a standard measure
of efficiency is the compound squared loss:

Lp(X,m(·,�),P) = ‖m(X,�)−�‖2

= 1

p

p∑
i=1

(m(Xi,�)−μi)
2.
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Given the component distribution P, we define the compound risk Rp as the average
expected loss over the components:2

Rp(m(·,�),P) = E[Lp(X,m(·,�),P)|P]

= 1

p

p∑
i=1

E[(m(Xi,�)−μi)
2|Pi]

= 1

p

p∑
i=1

∫
(m(Xi,�)−μi)

2 dPi.

One of our goals is to show that, as the number of parameters grows, the expected
loss of our estimator converges to the risk function of the estimator when the
underlying distribution P is known. A notion of risk that captures this idea is
the empirical Bayes risk (Robbins, 1956), otherwise known as integrated risk.
We follow AK19 and define integrated risk by considering P1, . . . ,Pp to be draws
from an underlying distribution � ∈ Q, for a set of distributions Q with bounded
fourth moments, that induces a joint distribution π for (Xi,μi). In this setting, the
integrated risk r̄π refers to the expected risk over π :

r̄π (m(·,�)) = Eπ [Lp(X,m(·,�),P)]

=
∫∫

(m(Xi,�)−μi)
2 dPi d�(Pi).

It is worth noting that the setting we consider differs from the one adopted in
other analyses of shrinkage estimators (e.g., Leeb and Potscher, 2006; Jia and Yu,
2010), which deliver negative consistency results. First of all, we are interested in
the integrated risk of our estimator and not in the consistency of our parameter
estimation. In the second place, as the number of components increases, we get a
larger sample of the generating distribution � that is common to all tuples (Xi,μi);
this allows for better estimates of the integrated risk.

2.3. Optimal Regularization

The risk function depends on the regularization vector �. The choice of regular-
ization is extremely important in minimizing risk. As shown by James and Stein
(1961) and Morris (1983), for settings with at least three parameters (p ≥ 3), the
estimator that minimizes risk is a shrinkage estimator. With this in mind and given
P, we define the so-called oracle-selector regularization parameter as

�∗(P) = argmin
�∈[0,∞]k

Rp(m(·,�),P).

2Section A.2 in the Appendix explains why we use the compound risk rather than the minimax criterion.
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The population-level oracle-selector is similarly given by

�̄∗(π) = argmin
�∈[0,∞]k

r̄π (m(·,�)).

3. THEORETICAL RESULTS

Now, we present our principal theoretical results. We show that, under some
regularity conditions and when the regularization parameter � is chosen using a
data-driven procedure, the risk function of MuSE estimators is uniformly close
to the oracle-optimal risk with respect to the joint distribution π of (Xi,μi).
The oracle-optimal risk is the integrated risk for a given shrinkage estimator
evaluated at the oracle selector.3 This result is the multidimensional regularization
extension of AK19, who establish it for estimators with scalar regularization. The
result is useful, because: (a) it confirms that oracle-optimal risk can be achieved
using data-driven procedures to hyper-tune the regularization parameter; and (b)
it ensures that comparing the oracle-optimal risk is a valid method for evaluating
the performance of different MuSEs. In Section 4, we focus on this comparison in
a spike and normal setting.

We organize our findings as follows. Theorem 1 states that, as the number
of parameters increases, the compound loss converges in L2 to the integrated
risk under the MuSE assumptions, when the fourth moments are bounded, and
assuming a technical condition on the componentwise function and the data. These
assumptions are satisfied by the MuSEs considered in this paper: the lasso, ridge,
and elastic net. Theorems 2 and 3 characterize the uniform convergence of (i)
the compound loss to the infeasible minimum loss and (ii) the integrated risk to
the oracle-optimal integrated risk when the regularization parameter is chosen to
minimize the empirical loss. These two theorems are critical, because, in practice,
the regularization parameter is chosen by way of a data-driven procedure that relies
on empirical loss minimization. Thus Theorems 2 and 3 ensure that we can, in fact,
achieve the oracle-optimal integrated risk as p increases. Finally, in Theorem 4, we
establish that CV can be used as a data-driven method to estimate the regularization
parameter.

In what follows, we use shorthand notation for the main objects of interest: (i)
Lp(�) ≡ Lp(X,m(·,�),P), and (ii) r̄π (�) ≡ r̄π (m(·,�)).

3.1. Uniform Risk Convergence

Our first result (Theorem 1) states that, as the number p of parameters grows,
the compound loss converges (in L2) to the integrated risk for any MuSE. The
intuition behind this result is that, as p increases, we have more observations from

3The oracle-optimal risk should not be confused with the optimal risk over a class of alternative feasible shrinkage
estimators; the former is, rather, optimal within the class of estimators indexed by the regularization parameter.
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the underlying joint distribution π of (Xi,μi); hence, the compound loss becomes a
better approximation of the integrated risk over π for any regularization parameter.
The practical relevance of this result is to ensure that, in high-dimensional settings,
the compound loss of MuSEs will be close to the infeasible integrated risk for
a broad set of underlying distributions. In particular, Theorem 1 holds for any
underlying distribution with bounded fourth moments and for any MuSE that
satisfies a technical restriction on the estimating function m.

THEOREM 1 (General uniform risk convergence). For an MuSE estimator,
suppose that the following assumptions hold.

(i) supπ∈QEπ

[
X4
]
< ∞.

(ii) For all i ∈ {1, . . . ,k} and for all εi > 0, there exists 0 = λi
1 < · · · < λi

T =
∞ subject to Eπ

[
(|X −μ|+ |μ|)

∣∣∣m(X,�i
j)−m(X,�i

j−1)

∣∣∣] ≤ εi, for all j ∈
{1, . . . ,T} and for all π ∈ Q.

Then,

sup
π∈Q

Eπ

[
sup

�∈[0,∞]k
(Lp(�)− r̄π (�))2

]
→ 0.

The proof of Theorem 1 relies on the two intermediate lemmas given in Sections
A.3 and A.4 in the Appendix. The conditions for Theorem 1 apply to the lasso,
ridge, and elastic net estimators. For condition (ii), observe that, if we treat one
regularization parameter as a constant, the condition is satisfied for the other
parameter because the elastic net then behaves like the ridge or the lasso. It follows
that condition (ii) holds also for the elastic net.

3.2. Uniform Risk and Loss Consistency

Next, we show that the convergence results hold when we estimate the regular-
ization parameter. Let �̂p be an estimator of the oracle selector �̄∗(π). Theorem 2
stipulates conditions under which the compound loss function converges uniformly
over π to the empirical Bayes risk as p increases—provided that the regularization
parameter �̂p is chosen so as to minimize a uniformly consistent estimate of the
integrated risk.

THEOREM 2 (General uniform loss consistency). For all ε > 0, assume that

sup
π∈Q

Pπ

(
sup

�∈[0,∞]k
|Lp(�)− r̄π (�)| > ε

)
→ 0,

and that there exist functions r∗
π (�),cπ, and r̂p(�) such that r̄π (�) = r∗

π (�)+ cπ
and

sup
π∈Q

Pπ

(
sup

�∈[0,∞]k
|r̂p(�)− r̄π (�)| > ε

)
→ 0.
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Then,

sup
π∈Q

Pπ

(∣∣∣Lp(�̂p)− inf
�∈[0,∞]k

Lp(�)

∣∣∣ > ε
)

→ 0,

where �̂p = argmin�∈[0,∞]k r̂p(�).

The proof follows directly from AK19 and Theorem 1, which also gives
conditions under which the first assumption in Theorem 2 is satisfied (since L2

convergence implies convergence in probability). Theorem 3 states that, under the
conditions of Theorem 1, we also obtain uniform risk consistency in this sense:
the integrated risk evaluated at �̂p is uniformly close to the oracle-optimal risk as
the number of components grows.

THEOREM 3 (General uniform risk consistency). Under the assumptions of
Theorem 1,

sup
π∈Q

∣∣∣r̄π (m(X,�̂p),π)− inf
�∈[0,∞]k

r̄π (�)

∣∣∣ → 0.

3.3. Data-Driven Risk Estimation

Theorems 2 and 3 lead naturally to proposing a data-driven method to estimate the
oracle-optimal regularization parameter and thereby obtain a consistent integrated
risk estimator. Abadie and Kasy (2019) propose two methods: Stein’s unbiased
risk estimator, or Sure; and CV. The result for Sure follows directly from AK19,
and, in Section A.7 in the Appendix, we describe it in more detail for the case of
elastic net. Next, we focus on a result to choose the tuning parameter using CV.

3.4. Cross-Validation

To derive the result for CV, we consider (as in AK19) a setting in which n
observations are available for each parameter. For each i ∈ {1, . . . ,p}, we draw
an independent and identically distributed (i.i.d.) sample (x1i, . . . ,xni,μi,σi) from
π ; here, π is the distribution of the random variable (x1, . . . ,xk,μ,σ ). We assume
that, conditional on (X,μ), the samples (x1, . . . ,xk) are i.i.d. and assume also that,
for all j ∈ {1, . . . ,n},
E[xj|μ,σ ] = μ, var[xj|μ,σ ] = σ 2.

We define the compound loss from using n − 1 observations to estimate the nth
observation as follows:

Lp,n(�) = 1

p

p∑
i=1

(m(Xn−1i,�)−μi)
2;
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here, Xni = 1
n

∑n
j=1 xij is the data used to estimate the nth term xni with mean μi.

Then, the “leave one out” CV estimator is given by

rp,n(�) = 1

p

p∑
i=1

(m(Xn−1i,�)− xni)
2.

Theorem 4 shows that this CV estimator converges to the integrated risk as the
number of components p increases and n is fixed.

THEOREM 4 (General uniform CV consistency). For MuSEs and for
supπ Eπ [x4

j ] < ∞, j ∈ {1, . . . ,n}, where n ≥ 2, let

r̄π,k(�) = Eπ [rp,n(�)] = Eπ [m(Xn−1i,�)− xni)
2]+Eπ [σ 2],

and let �̂p = argmin�∈[0,∞]k rp,n(�). Then,

sup
π∈Q

Eπ

[
sup

�∈[0,∞]k
(rp,n(�)− r̄π,n(�))2

]
→ 0,

and

sup
π∈Q

Pπ

[∣∣∣Lp,n(�̂p)− inf
�∈[0,∞]k

Lp,n(�)

∣∣∣ > ε
]

→ 0 ∀ε > 0.

When combined with our previous results, Theorem 4 implies that using an
MuSE with data-driven regularization is a valid approach to minimizing expected
risk in high-dimensional settings. Following this insight, in the next section, we
derive analytical results for the purpose of comparing the integrated risk of MuSEs
with the expected MSE obtained through CV—for a spike and normal DGP.

4. COMPARING RIDGE, LASSO, AND ELASTIC NET

In this section, we compare the oracle-optimal integrated risk for the lasso, risk,
and elastic net estimators in the spike and normal setting. Doing so allows us
to evaluate the performance of the three estimators for data generating processes
(DGPs) characterized by varying degrees of sparsity. By describing the scenarios in
which each estimator performs best, we provide guidance for applied researchers
looking to choose among MuSEs. We complement this analysis by simulating
MSEs for a prediction task while changing the number of parameters.

4.1. Spike and Normal Process

To study the performance of regularization-based methods with multiple regu-
larization parameters, we derive and compare the integrated risk functions of
the elastic net, ridge, and lasso methods when π follows a spike and normal
distribution. This parametric assumption allows us to evaluate how the methods
fare under settings that differ in terms of sparsity. Our findings suggest that the
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ridge method yields only a marginal improvement over the elastic net in nonsparse
settings and that the elastic net performs better in the in-between scenarios. We
therefore recommend that the elastic net should be used by researchers who are not
sure about their data’s sparsity—and might always be preferred to the ridge method
unless the researcher is confident that the data are not sparse. We complement this
analysis by comparing the cross-validated MSEs of each method for a prediction
problem with a varying number of parameters. Our results indicate that the lasso
performs better for problems with a small number of parameters, but that, as we
increase the dimension, the elastic net matches the lasso’s performance.

Recall that, in our setup, (Xi,μi) is assumed to have joint distribution π . We shall
consider the parametric family where Xi ∼ N(μi,σ

2) with probability p, μi = 0,
and μi ∼ N(μ0,σ

2
0 ) with probability (1−p). This framework allows us to generate

data with different sparse and dense components. For example, increasing the
parameter p makes the spike of zeros “taller” and therefore increases the sparsity
of the DGP; in contrast, a larger σ0 makes the dense component “wider.”

In Propositions 1 and 2 (see Sections A.9 and A.10 in the Appendix), we derive
the componentwise and integrated risk functions for this setting. When evaluated
at the optimal selector, these functions are the measure of interest for comparing
the performance of different estimators. The oracle-optimal selector can be found
analytically for the ridge estimator, but it must be found numerically for the lasso
and the elastic net. For a plot of the integrated risk surfaces, see Figure A.1.

An intuitive way of comparing the estimators is by finding the estimator with
lowest integrated risk. In Figure 2, we project the estimator with minimum risk
to the (μ0,σ0) plane. As expected, ridge and lasso dominate the cases with no
sparsity (p = 0) and significant sparsity (p = 0.75). Elastic net only has minimum
integrated risk for a small region in cases with moderate sparsity.

Even though Figure 2 seems to reflect poorly on the elastic net, measures of
relative integrated risk between the estimators tell a different story; namely, the
ridge estimator should almost never be used. In support of this claim, Figure 3
plots the ratio of the elastic net’s integrated risk to that of the lasso and the ridge.
We can see from the figure’s lower panel that the ridge and the elastic net have
nearly the same integrated risk function for low-sparsity settings, while the latter
has lower risk in highly sparse settings. In other words: the elastic net always
performs better—even if just weakly—than does the ridge.

The upper panel of Figure 3 suggests another interesting fact: the elastic net
performs better than the lasso for some values of (μ0,σ0) regardless of how sparse
the data are. When μ0 = 1 and σ0 is small, the conditional distributions Xi|μ0 
= 0
and Xi|μ0 = 0 do not overlap and are close enough that inducing too much sparsity
might lead to increased integrated risk. In that case, the lasso performs worse,
because it sets some positive values belonging to Xi|μ0 = 0 to zero, whereas the
elastic net shrinks them. As μ0 increases, the lasso improves, because the region
where it shrinks values to zero is farther from the dense component. Elsewhere,
the behavior is as expected: the elastic net has lower risk only in lower sparsity
data settings.
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Figure 2. Minimum integrated risk estimators for a 900-point (μ0,σ0) grid. The “x”, filled dot,
and “+” markers correspond to (respectively) the ridge, lasso, and elastic net having the minimum
integrated risk in the (μ0,σ0) plane. A color version of this figure can be found in the online Appendix.

4.2. Expected Mean Squared Errors

Another way of evaluating the different methods is by comparing their MSE in a
prediction task. The process we follow is first to train the models on a dataset of
size N that is generated from the spike and normal distribution and then to hyper-
tune the regularization parameters using 10-fold CV. Next, we compute the MSE
for an independent test set drawn from the same distribution and repeat the process
200 times to approximate the expected MSE. We do this for N ∈ {50,250,1,000}
in order to investigate how the estimators differ as we increase the number of
parameters. The results are tabulated in Section A.11 in the Appendix for p ∈
{0,0.25,0.5,0.75}, μ0 ∈ {0,2,4}, and σ0 ∈ {1,3,5}. Three conclusions follow from
this exercise.

First, an increase in N reduces the expected MSE overall, and so the difference
between the models becomes less significant. Thus, when N = 50, the lasso has
minimum MSE in 16 cases, the ridge in 12 cases, and the elastic net in 8 cases. For
N = 250, the respective numbers are 15, 6, and 15; for N = 1,000, we obtain 11, 12,
and 13. It is intuitive that, for larger values of N, all models perform closer to the
oracle-optimal integrated risk. Second, for low-sparsity settings, the three methods
behave similarly; yet for high-sparsity settings, the lasso and the elastic net have

https://doi.org/10.1017/S0266466621000347 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000347


202 JAUME VIVES-I-BASTIDA

Figure 3. Elastic net’s integrated risk relative to lasso and ridge for the spike and normal distribution.
Values that exceed unity indicate that the elastic net has higher integrated risk. The discontinuities in
the neighborhood of zero occur, because (i) we use a numerical solver to compute the regularization
parameter for the lasso and the elastic net and (ii) in the neighborhood of zero, the risk functions are
so close to zero that small perturbations lead to larger changes in the ratio. Contours of the surface are
projected in the (μ0,σ0) plane. A color version of this figure can be found in the online Appendix.
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lower MSE. Third, when N is smaller, the elastic net’s expected MSE is higher. The
reason is that approximating the oracle selector for two regularization parameters
is more difficult, and so the elastic net converges more slowly (than do the lasso and
the ridge) to the oracle-optimal integrated risk. Furthermore, shrinkage estimators
with multidimensional regularization are more flexible and, hence, are more likely
to overfit in small samples. It follows that applied researchers dealing with a low-
dimensional problem might well be better served by a shrinkage estimator (e.g.,
lasso or ridge) with just one type of regularization.

5. THE CUBIC NET

Now, we propose a new MuSE: the cubic net, which is similar to the elastic net but
with a cubic feature. Instead of inducing sparsity, the cubic net smoothly shrinks
the parameters toward zero following a cubic polynomial. The idea is that this
“softer” regularization might be preferable for cases in which the dense and sparse
components of the data are separated—for example, in the spike and normal setting
with μ0 = 1 and small σ0 (see Figure 3). The componentwise function of the cubic
net is given by

mCN(x,�) = 1(x < −λ1)
x

1+λ2
+1(x > λ1)

x

1+λ2
+1(|x| < λ1)

x3

λ2
1(1+λ2)

.

The cubic net has the same inflection points as the lava and coincides with the
ridge estimator outside the cubic shrinkage region (see Figure A.2). Furthermore,
the cubic net satisfies the MuSE assumptions and also the conditions of Theorem 1,
so we can use oracle-optimal integrated risk to compare the cubic net with the lasso
and the ridge. In this case, we estimate the integrated risk by sampling 10,000
times (with replacement) from the spike and normal generating distribution and
then compute the average MSE of the cubic net for a 900-point (μ0,σ0) grid.

Figure 4 plots the minimum risk estimator for each parameter value. Overall,
the cubic net seems to have lower risk than the lasso and the ridge regardless of
the sparsity level. Perhaps surprisingly, it performs like ridge for p = 0 and better
than the lasso for high-sparsity settings. It also universally outperforms the elastic
net in a similar exercise. The main feature that drives these results is that the cubic
net has lower integrated risk for larger (μ0,σ0); the reason is that it mitigates the
error from setting a parameter to zero when it is not a true zero.

Although this analysis may not apply to other settings, it does suggest that
there is a value in constructing shrinkage estimators with different types of
regularization—especially for researchers who are unaware of their data’s sparsity
structure.

6. CONCLUSION

Applied researchers using regularization-based estimators might be interested in
estimators with multiple types of regularization. In this paper, we characterize
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Figure 4. Minimum integrated risk estimators, including the cubic net, for a 900-point (μ0,σ0)
grid. The “x”, filled dot, and “+” markers correspond to (respectively) the ridge, lasso, and cubic
net having the minimum risk. The risk surfaces are nonmonotonic, because the cubic net integrated
risk is simulated. A color version of this figure can be found in the online Appendix.

a large class of such estimators, the MuSEs, and provide theoretical guarantees
for the uniform convergence to the oracle-optimal risk when the regularization
parameters are chosen by a data-driven procedure (e.g., CV or Sure). To provide
guidance regarding the choice among the various MuSEs, we compare the lasso,
ridge, and elastic net methods in spike and normal settings. Our analysis suggests
that the elastic net should be used in settings with medium and low sparsity
or when the researcher is uncertain about the structure of the DGP. The ridge
estimator should be favored only when the researcher is confident that the setting
is not sparse—and even then, its superiority vis-à-vis the elastic net appears to be
marginal. In contrast, the lasso estimator performs best when the data are extremely
sparse. The applied researcher should also consider the problem’s dimension, since
MuSEs with multiple regularization parameters (e.g., the elastic net) might exhibit
slower convergence rates when the risk estimate is data-driven; so for lower-
dimensional problems, the ridge and lasso methods might perform better. Finally,
we introduce the cubic net estimator and show that it can outperform the lasso,
ridge, and elastic net; thus, we demonstrate that other MuSEs could be of practical
relevance. Hence, a promising avenue for future research is the analysis of other
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MuSEs, such as the adaptive lasso and scad, and their behavior under different
DGPs.

APPENDIX

A.1. From Multiple Means to Multivariate Regression

This example is discussed also—with the same setting—in Abadie and Kasy (2019).
Risk minimization in a multivariate regression setting can be approached as a “many

means” estimation problem similar to the one described in this paper. Consider the standard
multivariable linear problem

Y = X′β + ε;
here (for simplicity), Y and ε are scalar, X is a p×1 vector of features, and ε|X ∼ N(0,σ 2).
The risk minimization problem for a sample (Yi,Xi)

n
i=1 and loss function L requires that we

minimize

R = E[L(Y,Ŷ)].

Suppose that X is drawn from the empirical distribution of (X1, . . . ,Xn) for n > p, and
assume linearity of conditional expectations and also normality. Note that these assumptions
can be relaxed; we make them for ease of explanation and to avoid asymptotic arguments.
Then, we can derive the form of the risk for the square loss as

R = tr
(
	 ·E[(β̂ −β)(β̂ −β)′]

)+E[ε2],

where we assume that 	 = 1
n
∑

i=1 XiX
′
i has full rank. Consider the orthogonalization X̃ =

	1/2X and the ordinary least-squares regression of y on X̃; then, conditional on (X1, . . . ,Xn),
we have

X̃ ∼ N

(
	1/2β,

σ 2

n
Ip

)
.

Under this change of variables, it is easy to see that (i) the problem is equivalent to the
many-means problem with μ = 	1/2β and (ii) we can construct regularized estimators μ̂

for μ by componentwise shrinkage of X̂—as discussed previously and in Abadie and Kasy
(2019).

It is noteworthy that our results and those of AK19 do not apply when the sample size
is smaller than the number of parameters of interest. The reason is that if n > p, then 	 has
rank of at most n. If 	 has rank n, then the least-squares predictor is Ŷj = Yj, and so we can

directly set both X̂ = X and μ = E[Y | X1, . . . ,Xn]. Then, the risk of prediction is the MSE
plus E[ε2].

A.2. Motivation for Using the Compound Risk

Consider the means estimation setup described in Section 2. Given a loss function l and a
limiting distribution Lμi , we want to minimize the asymptotic risk:

r(m(Xi,�),Pμi) ≡
∫

l(m(Xi,�),μi)dLμi .
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To do so, we could use the minimax criterion (van der Vaart, 1998) that defines the
best estimator relative to a loss function l as the estimator that minimizes the maximum
asymptotic risk over all randomized estimators:

rmax(m(Xi,�),Pμi)) = sup
μi

Eμi l(m(Xi,�)−μi).

It follows from Anderson’s lemma (see van der Vaart, 1998) that, for a bowl-shaped (convex
and symmetric about the origin) loss function, m(Xi,�) = Xi is a lower bound for asymptotic
risk and is therefore minimax (i.e., it minimizes the maximum risk). Furthermore, this
occurs when the limit distribution Lμi is normal. In fact, Xi is the best regular estimator.
A regular estimator is defined as asymptotically equivariant-in-law; in other words, the
distribution of the limiting distribution does not depend on local parameters. Yet as we
have seen in the motivating example of Stein (1956), when we estimate multiple means and
if p ≥ 3, then a shrinkage estimator with a non-normal limiting distribution can have a lower
asymptotic risk than the best regular estimator. So instead of using the minimax risk, we are
interested in defining the compound loss and risk over all components.

A.3. Lemma 1

The proof is similar to that for the scalar case in AK19 (but with minor adaptations).

LEMMA. For a finite partition of regularization parameters 0 = λi
0 < · · · < λi

T (where

λi is the ith component of �) and for some c ∈ R, define:

ui
j = sup

λi∈[λi
j−1,λ

i
j]

L(�i);

lij = inf
λi∈[λi

j−1,λ
i
j]

L(�i).

Here,�i = [c1, . . . ,ci−1,λ
i,ci+1, . . . ,ck]′ for some constants cl ∈ [0,∞], and L is the vector-

valued loss function. Assume that, for all εi > 0, there exists a partition 0 = λi
0 < · · · < λi

T
with T(εi) such that

sup
π∈Q

max
1≤j≤T

Eπ [ui
j − lij] ≤ εi,

sup
π∈Q

max
1≤j≤T

max{varπ (lij),varπ (ui
j)} < ∞.

Then,

sup
π∈Q

Eπ

[
sup

λi∈[0,∞]
(Lp(�i)− r̄π (�i))

2
]

= o(1).

It follows that

sup
λi∈[0,∞]

(Lp(�i)− r̄π (�i))
2 = op(1)

with respect to any measure π ∈ Q.
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Proof. Fix a �i that depends on a set of constants and a parameter λi, and consider the
partition 0 = λi

0 < · · · < λi
T = ∞. Then, by construction, we have:

Ep[L(�i)]−Eπ [L(�i)] ≤ Ep[ui
j]−Eπ [ui

j]+Eπ [ui
j − lij];

Ep[L(�i)]−Eπ [L(�i)] ≥ Ep[lij]−Eπ [lij]+Eπ [ui
j − lij].

Therefore,

sup
�i∈[0,∞]

(En[L(�i)]−Eπ [L(�i)])
2 ≤

T∑
j=1

((En[ui
j]−Eπ [ui

j])
2 + (En[lij]−Eπ [lij])

2 + ε2
i

+2ε

T∑
j=1

(|En[ui
j]−Eπ [ui

j]|+ |En[lij]−Eπ [lij]|).

Now, taking expectations over π yields the desired result:

Eπ

[
sup

�i∈[0,∞]
(Ep[L(�i)]−Eπ [L(�i)])

2]

≤
T∑

j=1

(varπ (ui
j)

p
+

varπ (lij)

p

)
+ ε2

i +2ε

T∑
j=1

(√√√√varπ (ui
j)

p
+

varπ (lij)

p

)
.

Hence, as p → ∞, we obtain Eπ [sup�i∈[0,∞](Ep[L(�i)]−Eπ [L(�i)])
2] → 0 as required.

�

A.4. Lemma 2

LEMMA. Let the assumptions of Lemma A.3 be satisfied for all λi(i ∈ {1, . . . ,k}), and
let m(x,�) be monotonic in all components of � for all x ∈ R

∗. In addition, let m(x,0) = x
and lim�→1m(x,�) = 0. Then,

sup
π∈Q

Eπ

[
sup

�∈[0,∞]k
(Lp(�)− r̄π (�))2

]
= o(1).

Proof . We show that if Lemma A.3 holds, then we can find a regularization path for the
components of � that asymptotically bounds sup�∈[0,∞]k (Lp(�)− r̄π (�))2.

Without loss of generality, consider Lemma A.3 for λ1, c ∈ R, and let A1 = {λ1 ∈
R

∗+|(Ep[L(�1)]−Eπ [L(�1)])2}. It follows that sup�1 A1 = op(1) with respect to π . Since

m is monotonic for all λ components and m(x,0) = x and lim�→1m(x,�) = 0, A1 is
bounded below by the oracle lambda (the optimal lambda) and above by �̃1 which happens
when λ1 = λ̃1 (the rest of the components are equal to c). Note that λ̃1 exists, because
λi ∈ R

∗, the extended reals are compact, and the loss function is continuous in lambda,
so by Weierstrass Theorem, the extrema must exist. It is straightforward to show that
(Ep[L(�̃1)]−Eπ [L(�̃1)])2 ∈ A1.

Hence, let:

λ̃1 = sup
λ1

A1,
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and define the �2 = [λ̃1,λ2,c, . . . ,c] and repeat the same procedure as before fixing λ̃1 as
a constant. It follows that:

sup(A1) ≤ sup(A2) ≤ ·· · ≤ sup(Ak).

Furthermore, we can repeat this for any initial choice of c ∈ R+ and so:

sup
�

A ≤ sup
c∈R+

Ak

by the limiting conditions on the choice of c, and knowing from Lemma A.3 that Ak = op(1),
the result follows. It is sufficient to ensure that the choice of c would not be made better
by ∞. This is the case since we know that it is never optimal for λ̃i to be ∞ because of
the limiting conditions on m. If � =1, that would mean that the estimator m(x,.) = 0 is
the maximizer of A. However, it can be shown that since m is monotonic in �, we would
increase the value of the empirical loss by setting m > 0 for components with measure
centered on a positive value and m < 0 for components with measure centered on a negative
value. Furthermore, we can achieve this by increasing/decreasing the λ parameters. Hence,
it is never strictly dominant to have c = ∞. �

A.5. Proof of Theorem 1

We need to show that the assumptions of Theorem 1 imply the assumptions of Lemma A.4.

Proof. We follow the AK19 proof closely and show that the conditions for Lemma A.4
are satisfied. The only conditions that we need to check are those of Lemma A.3 (i.e.,
since the others are assumed by Theorem 1). First, note that the convexity of fourth powers
yields bounded variances. Second, the square loss is strictly convex, and so any extrema are
achieved at the boundary. It follows that, for ui

j and lij as defined in Lemma A.3,

varπ (ui
j) ≤ Eπ [(ui

j)
2] ≤ Eπ [max{(X −μ)4,μ4}] ≤ Eπ [(X −μ)4]Eπ [μ4].

Similarly, the variance of lij is also bounded as varπ (lij) ≤ Eπ [(ui
j)

2]. Hence, the condition
of Lemma A.3 on the variances is satisfied. For the condition on the expectations, we use
the strong monotonicity of m with respect to �. We need to find a partition for each i such
that Eπ [ui

j − lij] < εi. Fix �i = [c1, . . . ,ci−1,λ
i,ci+1, . . . ,ck] for some constants cj, in which

case m(·,�i) will be monotonic in λi. Consider a partition 0 = λi
0 < · · · < λi

T with T(εi).

Then, for any λi
j: since the compound loss L is convex (because the square loss is convex

and the support is bounded), it follows that the supremum lies at the boundary. So for the
interval [λi

j−1,λ
i
j], we have

ui
j = max{L(�i

j−1),L(�i
j)},

lij = min{L(�i
j−1),L(�i

j)}.

Note that if μ is predicted correctly for some point in the interval, then lij = 0. However, in
both cases, we obtain

ui
j − lij = |L(�i

j−1)−L(�i
j)|,
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since if lij = 0 then ui
j − lij = max{L(�i

j−1),L(�i
j)}. Yet because one of the maxima’s two

terms is zero, the right-hand side is equivalent to |L(�i
j−1)− L(�i

j)|, since the compound

loss function is nonnegative. Let mj = m(X,�i
j); then,

ui
j − lij = |(mj −μ)2 − (mj−1 −μ)2| ≤ (|mj −μ|+ |mj−1 −μ|)|mj −mj−1|.

By condition (ii) in Theorem 1, the expectation of this result is bounded; hence, the condition
in Lemma A.3 is satisfied, and so the result follows. �

A.6. Proof of Theorem 3

This proof is similar to AK19’s proof for the scalar case but is adapted for MuSEs.

Proof. By the assumptions of Theorem 1, convergence in L2 implies convergence in
probability, and so

sup
π∈Q

Pπ

(
sup

�∈[0,∞]k
|Lp(�̂p)− inf

�∈[0,∞]k
Lp(�)| > ε

)
→ 0,

since r̄(m(X,�̂p),π) = Eπ [Lp(�̂p)] by definition. We need to show that uniform conver-
gence in probability implies L1 convergence. By van der Vaart (1998, Theorem 2.20), this
is the case if and only if the estimator sequence Lp(�̂p) is asymptotically uniform integrable.
Hence, we must check that

lim
M→∞ lim sup

p→∞
Eπ |Lp(�̂p)|1(|Lp(�̂p)| > M) = 0.

By the conditions of Theorem 1, we know that if �̂ = 0, then m(x,0) = x and Lp(0) =
1
p
∑p

i (Xi − μi)
2. We choose �̂p to minimize the empirical compound risk r̄. Given the

convexity of fourth powers of X, the bowl shape of L, and the boundary conditions in
Theorem 1, we conclude that |Lp(�̂p)| is bounded from above; otherwise, Theorem 1 would
not hold—a contradiction. It follows that, as M → ∞, we have uniform integrability, and
so the theorem holds. �

A.7. Sure Derivation

The main takeaway is that, under some assumptions, the risk estimator solves a penalized
loss function minimization problem of the following form:

r̂p = argmin
�

1

p

p∑
i=1

(m(Xi,�)−Xi)
2 +Penalty.

The penalty term, which should not be confused with the penalty term built in m(Xi,�),
depends on the gradient of the componentwise estimator function and captures the type
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of shrinkage that the estimator induces. For the estimators, we consider, in this paper, the
penalties are

Ridge :
2

1+λ
.

Lasso :
2

p

p∑
i=1

1(|Xi| > λ).

Elastic net :
2

p

p∑
i=1

1

1+λ2
1(|Xi| > λ1).

As expected, the penalty for the elastic net combines both types of regularization, both
shrinking the estimates toward zero and inducing sparsity.

To derive the formula for Sure, we consider the setting where μ ∼ � and X|μ ∼ N(μ,1)

as in Abadie and Kasy 2019. We impose the additional assumptions that X has a density
and m is differentiable with respect to x. Let fπ = � ∗ φ be the marginal density of X,
where φ is the standard normal pdf. Consider an estimator m(X,�) of μ differentiable with
respect to x everywhere except for {x1, . . . ,xJ} where m might be discontinuous. Then, let
∇xm be the gradient with respect to X and �mj(�) = limx↓xj m(x,�)− limx↑xj m(x,�), for

j ∈ {1, . . . ,J}. Under the assumption that Eπ [(m(X,�)−X)2] < ∞, Eπ [∇x(m(X,�)] < ∞,
and m(x,�)− x)φ(x −μ) → 0 as |x| → 0, it can be shown that the Sure risk estimator is
given by:

r̂p = argmin
�∈[0,∞]k

1

p

p∑
i=1

(m(Xi,�)−Xi)
2 +2

⎛
⎝1

p

p∑
i=1

∇xm(Xi,�)+
J∑

j=1

�mj(�)f̂ (xi)

⎞
⎠,

where f̂ is the estimator for fπ .

A.8. Proof of Theorem 4

Proof. Consider the following decomposition as in AK19:

rp,n(�) = 1

p

p∑
i=1

[
(m(Xn−1i,�)−μi)

2 + (xni −μi)
2 +2((m(Xn−1i,�)−μi)(xni −μi)

]

= Ln,p(�)+ 1

p

p∑
i=1

(xni −μi)
2 + 2

p

p∑
i=1

(m(Xn−1i,�)−μi)(xni −μi).

Note that Eπ

[
sup�∈[0,∞]k (rp,n(�) − r̄π,n(�))2] is bounded above by the sum of the

squares for each term in rp,n minus its population counterpart. Now, observe that the
general loss consistency theorem holds for the first term (the CV loss), and so the first
term converges uniformly to Eπ [m(Xn−1i,�) − xni)

2]. Given the convexity of fourth
powers and the equality varπ (xj) = σ 2, it follows that 1

p
∑p

i=1(xni − μi)
2 converges

uniformly in probability to Eπ [σ 2] by a suitable law of large numbers. Because r̄π,k(�) =
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Eπ [m(Xn−1i,�) − xni)
2] +Eπ [σ 2] asymptotically, the Eπ [σ 2] cancels out. For the last

term, note that the linearity of the expectations operator and Jensen’s inequality together
imply that

Eπ

[(
1

p

p∑
i=1

(m(Xn−1i,�)−μi)(xni −μi)

)4]

≤ 1

p

p∑
i=1

Eπ [(m(Xn−1,�)−μ)4]Eπ [(xn −μ)4]

≤ 1

p

p∑
i=1

Eπ [(Xn−1 −μ)4 +μ4]Eπ [(xn −μ)4].

It follows from the assumptions of Theorem 1 and the inequality supπ Eπ [x4
j ] < ∞ that the

two expectations are uniformly tight and so op(1). Therefore, (r̂p,n(�)− r̄π,n(�)) tends to
zero in mean squared for all � and the first result holds. Given this first result, the second
result follows from Theorem 2, because all conditions are satisfied. �

A.9. Proposition 1

PROPOSITION 1. Given Xi ∼ N(μi,σi), for i ∈ {1, . . . ,p}, the componentwise risks are
given by

rmridge =
(

1

1+λ

)2
σ 2

i +
(

1− 1

1+λ

)2
μ2

i ,

rmlasso =
(

1+�

(−λ−μi

σi

)
−�

(
λ−μi

σi

))
(σ 2

i +λ2)

+
((−λ−μi

σi

)
φ

(
λ−μi

σi

)
+
(

λ+μi

σi

)
φ

(−λ−μi

σi

))
σ 2

i

+
(

�

(
λ−μi

σi

)
−�

(−λ−μi

σi

))
μ2

i ,

rmEN = l
(−2μ2

i −2(l−1)λ1μi + l(μ2 +σ 2
i )+ lλ2

1
)(

1−�

(
λ1 −μi

σi

))

+ lσ(l(μi +λ1)−2μ−2lλ1)φ

(
λ1 −μi

σi

)

+ l
(−2μ2

i +2(l−1)λ1μi + l(μ2
i +σ 2

i )+ lλ2
1
)(

1−�

(−λ1 −μi

σi

))

− lσi(l(μi −λ1)−2μi +2lλ1)φ

(−λ1 −μi

σi

)
;

here, l = 1/(1+λ2), and φ and � are the standard normal pdf and cumulative distribution
function (cdf), respectively.

The results for lasso and ridge are derived in AK19. Our goal here is to derive the form of
r(mEN(Xi,�),Pμi) = E[(m(Xi,�),μi] for a normal limiting distribution Lμi = N(μi,σ

2
i ).

We drop the subscript i in order to simplify the notation.
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We have that

mEN = 1(x > λ1)

(
x−λ1

1+λ2

)
+1(x < −λ1)

(
x+λ1

1+λ2

)
.

Then, for l = 1/(1+λ2),

mEN −μ = l(x−μ)1(|x| > λ1)+ lλ1(1(x < −λ1)−1(x > λ1))

− lλ1μ1(|x| > λ1)−μ1(|x| < λ1).

By squaring, taking expectations, and simplifying, we obtain

E[(mEN −μ)2] = l2E[(x−μ)1(|x| > λ1]

+2l2(λ1 −λ2μ)E[1(x < −λ1)(x−μ)]

−2l2(λ1 +λ2μ)E[1(x > λ1)(x−μ)]

+ l2λ2
1(1+μ2)1(|x| > λ1)

+2l2λ1λ2μE[1(x > λ1)−1(x < −λ1)]

+μ2E(1(|x| < λ1).

Next, we use the following standard normal integration results to derive the necessary
integrals:

∫ b
a v2φ(v)dv = �(b)−�(a)− [bφ(b)−aφ(a)];∫ b
a vφ(v)dv = φ(a)−φ(b).

These results allow us to derive the following expressions:

E
[( x−μ

σ

)21(|x| > λ1)
] = 1 + �

(−λ1−μ
σ

) − Phi
(

λ1−μ
σ

) + (
λ1−μ

σ

)
φ
(

λ1−μ
σ

)
− (−λ1−μ

σ

)
φ
(−λ1−μ

σ

)
;

E
[( x−μ

σ

)
1(x > λ1)

] = φ
(

λ1−μ
σ

)
;

E[1(|x| > λ1)] = 1−�
(

λ1−μ
σ

)+�
(−λ1−μ

σ

)
;

E[1(|x| < λ1)] = �
(

λ1−μ
σ

)−�
(−λ1−μ

σ

)
.

By applying these results to the expectations derived previously and then simplifying,
we obtain the desired result. The calculations are not shown, because they are both tedious
and uninteresting.

A.10. Proposition 2

PROPOSITION 2. Let π be such that μi ∼iid N(μ0,σ0) with probability p and 0
otherwise, and let Xi ∼ N(μi,σ

2). Then, the integrated risk for the ridge estimator may
be written as
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r̄mridge =
(

1

1+λ

)2
σ 2 +

(
λ

1+λ

)2
(μ2

0 +σ 2
0 ),

where λ̄∗(π) = σ 2

(1−p)(μ2
0+σ 2

0 )
.

For the lasso and the elastic net, the normal part is given by

r̄1(mlasso) =
(

1+�

(−λ−μ0

s

)
−�

(
λ−μ0

s

))
(σ 2 +λ2)

+
(

�

(
λ−μ0

s

)
−�

(−λ−μ0

s

))
(μ2

0 +σ 2
0 )

− 1√
s
φ

(
λ−μ0

s

)
(λ+μ0)s

− 1√
s
φ

(−λ−μ0

s

)
(λ−μ0)s;

r̄1(mEN) = l(−2(σ 2
0 +μ2

0)−2(l−1)λ1μ0 + l(μ2
0 + s2)+ lλ2

1)

− l(l−2)

[
�

(
λ1 −μ0√

s

)
(μ2

0 +σ 2
0 )− 1√

s
σ 2

0 φ

(
λ1 −μ0√

s

)

×
(

λ1 +μ0 +σ 2 λ1 −μ0

s

)]

+2l(l−1)

[
�

(
λ1 −μ0√

s

)
μ0 − σ 2

0√
s
φ

(
λ1 −μ0√

s

)]
− l2(σ 2 +λ2

1)�

(
λ1 −μ0√

s

)

+ lσ 2
√

s
φ

(
λ1 −μ0√

s

)[(
−λ1 + σ 2(μ0 −λ1)

s

)
(l−2)+ lλ1

]

+ l(l−2)

[
�

(−λ1 −μ0√
s

)
(μ2

0 +σ 2
0 )− 1√

s
σ 2

0 φ

(−λ1 −μ0√
s

)

×
(

−λ1 +μ0 +σ 2 −λ1 −μ0

s

)]

+2l(l−1)

[
�

(−λ1 −μ0√
s

)
μ0 − σ 2

0√
s
φ

(−λ1 −μ0√
s

)]

+ l2(σ 2 +λ2
1)�

(
− λ1 −μ0√

s

)

− lσ 2
√

s
φ

(−λ1 −μ0√
s

)[(
λ1 + σ 2(μ0 +λ1)

s

)
(l−2)+ lλ1

]

+σ 2
0 +μ2

0.

In addition, when μ = 0, we have

r̄0(mlasso) = 2�

(−λ√
s

)
(σ 2 +λ2)−2

λ

σ
φ

(
λ√
s

)
σ 2,

r̄0(mEN) = 2�

(−λ1√
s

)
l2(σ 2 +λ2

1)−2l2σφ

(
λ1√

s

)
;
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here, l = 1/(1+λ2) and s = σ 2 + sigma2
0. Then, the integrated risk is given by

r̄lasso = pr̄0(mlasso)+ (1−p)r̄1(mlasso);
r̄EN = pr̄0(mEN)+ (1−p)r̄1(mEN).

The lasso and ridge results are derived in AK19. In order to obtain the integrated risk,
we must integrate the elastic net risk with respect to the cdf of N(μ0,σ

2
0 ) for the case where

μ 
= 0. Let N(μ) = 1
σ0

φ
(μ0−μ

σ0

)
. Then, it follows that μ0 = ∫∞

−∞ μN(μ)dμ and that

σ 2
0 +μ2

0 = ∫∞
−∞ μ2N(μ)dμ. Furthermore, we derive 12 other Gaussian integrals from first

principles with s = σ 2 +σ 2
0 . Consider the integral limits to be from −∞ to ∞. Then, the

following equalities hold:

∫
�
(±λ1−μ

σ

)
N(μ)dμ = �

(±λ1−μ0√
s

)
;∫

φ
(±λ1−μ

σ

)
N(μ)dμ = −σ√

s
φ
(±λ1−μ0√

s

)
;∫ ±λ1−μ

σ
φ
(±λ1−μ

σ

)
N(μ)dμ = σ 2(±λ1−μ0)

s
1√
s
φ
(±λ1−μ0√

s

)
;∫

μφ
(±λ1−μ

σ

)
N(μ)dμ = 1√

s
φ
(±λ1−μ0√

s

)
σ
(±λ1 + σ 2(μ0∓λ1)

s

)
;∫

μ2�
(±λ1−μ

σ

)
N(μ)dμ = �

(±λ1−μ0√
s

)
(μ2

0 + sigma2
0)− 1√

s
φ
(±λ1−μ0√

s

)
(±λ1 +μ0)σ

2
0 +

σ 2σ 2
0

1√
s
φ
(±λ1−μ0√

s

)(±λ1−μ0
s

)
;∫

μ�
(±λ1−μ

σ

)
N(μ)dμ = μ0�

(±λ1−μ0√
s

)− σ 2
0√
s
φ
(±λ1−μ0√

s

)
.

We use these integrals to compute the required expectations with respect to μ for the
normal risk of the elastic net. (The derivations are again tedious and uninteresting, so they
are not reproduced here.) The result follows from applying these 12 integrals and then
simplifying.

A.11. Integrated Risk (Figure A.1)

Figure A.1 illustrates the integrated risk for each estimator when p ∈ {0.0,0.25,0.5,0.75}
for a grid of (μ0,σ0).

Figure A.1 highlights some relevant features of the estimators. As expected, integrated
risk improves as p increases, because the spike and dense components become more similar.
The ridge’s integrated risk surface is symmetric and does not plateau as μ0 increases. At
the same time, the lasso induces sparsity and therefore achieves lower integrated risk for
smaller values of μ0, when the dense component’s mean is closer to zero. The elastic net
trades off both behaviors and manages integrated risk well even as μ0 increases.

A.12. Mean Squared Error Comparison

Table A.1 presents the MSE comparison for all p and (μ0,σ0) values that we consider. In
bold are the minimum values of the MSE for each DGP.
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Figure A.1. Integrated risks for ridge, lasso, and elastic net for the spike and normal distribution over a (μ0,σ0) grid. Contours of
the integrated risk surface are shown in the (μ0,σ0) plane. A color version of this figure can be found in the online Appendix.
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Table A.1. MSE from CV for different spike and normal settings

N = 50 N = 250 N = 1,000

p μ0 σ0 L R EN L R EN L R EN

0.0 0 1 0.521 0.511 0.519 0.505 0.512 0.511 0.502 0.508 0.5
0.0 2 1 0.528 0.518 0.501 0.51 0.51 0.498 0.499 0.502 0.502

0.0 4 1 0.526 0.533 0.535 0.505 0.516 0.509 0.507 0.502 0.505

0.0 0 3 0.961 0.928 0.921 0.927 0.904 0.895 0.904 0.9 0.898
0.0 2 3 0.98 0.989 0.929 0.922 0.927 0.92 0.913 0.906 0.895
0.0 4 3 0.953 1.014 0.954 0.906 0.909 0.912 0.9 0.9 0.904

0.0 0 5 1.039 1.034 1.066 0.972 0.996 0.978 0.97 0.968 0.962
0.0 2 5 1.003 1.021 1.01 0.985 0.953 0.955 0.965 0.961 0.963

0.0 4 5 1.021 1.02 1.052 0.964 0.963 0.976 0.969 0.966 0.965
0.25 0 1 0.463 0.48 0.467 0.435 0.436 0.437 0.427 0.427 0.426
0.25 2 1 0.653 0.609 0.636 0.606 0.596 0.599 0.6 0.597 0.603

0.25 4 1 0.837 0.813 0.811 0.808 0.797 0.79 0.795 0.791 0.794

0.25 0 3 0.927 0.916 0.938 0.887 0.884 0.896 0.871 0.871 0.878

0.25 2 3 0.92 0.931 0.962 0.892 0.897 0.9 0.883 0.888 0.896

0.25 4 3 0.971 1.018 0.988 0.909 0.91 0.906 0.906 0.904 0.906

0.25 0 5 0.947 0.976 1.023 0.96 0.966 0.966 0.955 0.95 0.946
0.25 2 5 1.003 0.983 1.0 0.949 0.973 0.955 0.962 0.951 0.953

0.25 4 5 1.018 1.035 1.009 0.97 0.966 0.952 0.958 0.958 0.963

0.5 0 1 0.4 0.36 0.369 0.343 0.342 0.334 0.339 0.33 0.336

0.5 2 1 0.624 0.613 0.632 0.607 0.608 0.625 0.594 0.609 0.601

0.5 4 1 0.869 0.917 0.892 0.836 0.826 0.827 0.821 0.827 0.825

0.5 0 3 0.886 0.843 0.871 0.839 0.836 0.814 0.822 0.814 0.816

0.5 2 3 0.876 0.915 0.941 0.858 0.847 0.839 0.844 0.849 0.85

0.5 4 3 0.98 0.986 1.012 0.909 0.903 0.9 0.896 0.889 0.89

0.5 0 5 0.992 1.039 1.07 0.965 0.948 0.917 0.927 0.931 0.935

0.5 2 5 0.966 1.017 0.964 0.933 0.936 0.938 0.928 0.934 0.942

0.5 4 5 1.016 1.007 1.043 0.95 0.956 0.956 0.951 0.946 0.945
0.75 0 1 0.197 0.235 0.24 0.202 0.203 0.2 0.203 0.201 0.2
0.75 2 1 0.549 0.521 0.537 0.504 0.5 0.509 0.502 0.501 0.507

0.75 4 1 0.831 0.849 0.824 0.764 0.764 0.788 0.767 0.767 0.763
0.75 0 3 0.814 0.817 0.862 0.703 0.718 0.711 0.698 0.693 0.696

0.75 2 3 0.859 0.833 0.944 0.773 0.784 0.767 0.758 0.755 0.756

0.75 4 3 0.898 0.911 0.926 0.849 0.857 0.865 0.843 0.85 0.836
0.75 0 5 1.05 1.033 0.967 0.876 0.888 0.864 0.857 0.868 0.876

0.75 2 5 0.977 1.035 1.03 0.922 0.895 0.881 0.893 0.876 0.869
0.75 4 5 0.917 1.103 1.079 0.916 0.918 0.926 0.906 0.904 0.894

https://doi.org/10.1017/S0266466621000347 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000347


STRETCHING THE NET 217

A.13. Cubic Net (Figure A.2)

Figure A.2. Componentwise estimator functions for the MLE, ridge, lasso, elastic net, and cubic
net. For the ridge, lasso, elastic net, and cubic net, the regularization parameters are set to λ1 = 1 and
λ2 = 2. A color version of this figure can be found in the online Appendix.
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