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EXTENSIONS OF SUBDIFFERENTIAL CALCULUS 
RULES IN BANACH SPACES 

A. JOURANI AND L. THIBAULT 

ABSTRACT. This paper is devoted to extending formulas for the geometric approx­
imate subdifferential and the Clarke subdifferential of extended-real-valued functions 
on Banach spaces. The results are strong enough to include completely the finite di­
mensional setting. 

0. Introduction. This paper continues a research program introduced in [ 14] whose 
results will be frequently used throughout the text. It concerns the basic rules of subdif­
ferential calculus for nonsmooth functions on arbitrary Banach spaces. Ioffe [12,13] and 
Rockafellar [26] have respectively proved for the Ioffe's geometric approximate subdif­
ferential and the Clarke subdifferential that 

d(f + g)(xo)(Zdf(xo) + dg(x0) 

whenever one of the functions is directionally Lipschitzian (see also Kruger [18] for the 
particular case where the Banach space admits an equivalent norm which is Frechet dif-
ferentiable away from zero). Note that their results do not include the finite dimensional 
case (see Ioffe [11], Mordukhovich [23], Rockafellar [27], Ward and Borwein [29]) since 
for finite dimensional spaces neither function/ nor g need be directionally Lipschitzian. 

More generally combining Ioffe's sum rule (see Theorem 5.6 in [13]) and chain rule 
(see Corollary 7.8.1 in [13]) it is not difficult to see that the Ioffe geometric approximate 
subdifferential satisfies (under a constraint qualification) 

(0) d(f + h o g)(x0) C df(x0) + | J 3(y* o g)(x0) 
y*edh(g(xo)) 

whenever h is directionally Lipschitzian at g(xo) and whenever g is Lipschitz near xo 
and admits a strict prederivative having norm compact values. This is the best sufficient 
condition known so far ensuring the important subdifferential rule (0). This condition is 
not completely satisfactory since it does not include what can be said in the finite dimen­
sional case, for it requires h to be directionally Lipschitzian. Furthermore the existence of 
a strict prederivative (with norm compact values) is not always easy to check. The aim of 
the present paper is to weaken significantly the above conditions. We prove formula (0) 
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SUBDIFFERENTIAL CALCULUS RULES IN BANACH SPACES 835 

with the geometric approximate subdifferential (and a similar one with the Clarke subd-
ifferential) for general classes of functions including both the finite dimensional situation 
and directionally Lipschitzian functions on Banach spaces. More precisely we only as­
sume in our proof of (0) that g is compactly Lipschitzian at xo (a notion introduced in 
Thibault [28]) and that h is compactly epi-Lipschitz at xo in the sense of Borwein and 
Strojwas [3]. Although this result extends the above one of Ioffe and those known so far 
in the finite dimensional setting, it also provides a unified way to prove all these theorems. 

The paper is organized as follows. Section 1 develops some tangency formulae 
in terms of Ioffe geometric approximate subdifferentials and Clarke subdifferentials. 
These formulae allow us to extend formula (0) to the compactly-epi-Lipschitz and 
epi-Lipschitz-like functions in Section 2. 

Before concluding this introduction we have to say that Borwein and Strojwas in­
formed us that they also obtained some different extended calculus rules for the Clarke 
subdifferential. 

1. Formulae for G-normal cones and Clarke normal cones. In all the paper X 
and Y are Banach spaces, Ux the closed unit ball centered at the origin in X and X* the 
topological dual of X. If not specified, the norm in a product of two Banach spaces is 
defined as ||(wi, W2)|| = \\u\\\ + \\u2W. We denote by d(x,S) — infMG5 ||JC — w|| the usual 
distance function to the set S. 

For a function/: X—»IRU{+oo} and* G Xwe denote by d(f(x) and dof(x) the Clarke 
and the Ioffe geometric approximate subdifferential of/ at x and we refer to Clarke [6] 
and Ioffe [13] for the definitions. 

We recall our chain rule proved in Jourani and Thibault [16]. A similar result for 
Lipschitz mappings with compact prederivatives (hence which are strongly compactly 
Lipschitzian (see [28] or [16])) had been established before by Ioffe [13]. We state our 
result in terms of G-subdifferentials. 

THEOREM 1.1. Letf: Y —> R be Lipschitz around yo and g:X —> Y be strongly 
compactly Lipschitzian atxo G g-1(yo)- Thenfog is Lipschitz around XQ and 

dG(fog)(x0)C U dG(y*og)(xo). • 
ftdcfto) 

Borwein and Strojwas [3] have defined a subset S of Y to be compactly epi-Lipschitz 
at yo G S if there exist a real number r > 0 and a || ||-compact subset HofY such that 
for every t G]0, r] 

(1.1) (y0 + HBy)r\S + tr®Y CS-tH. 

It is not difficult to see that any epi-Lipschitzian set (in the sense of Rockafellar [25]) 
or any subset of a finite dimensional space Y is compactly epi-Lipschitz. Several other 
examples are given in [3]. 

The following Theorem, whose proof is given in Jourani and Thibault [14], will be 
crucial in our approach of formulae for normal cones in Theorems 1.10 and 1.11. We 
state it in terms of G-approximate subdifferentials. 
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836 A. JOURANI AND L. THIBAULT 

THEOREM 1.2 ([14]). Let C andD be two closed subsets of X and Y respectively with 
D compactly epi-Lipschitz atyo E D. Let g:X —> Y be strongly compactly Lipschitzian 
atxo E Cr\g~l(yo). Suppose that 

(R) y* E dGd(y0,Dl 0 E dG(y* og + rf(.,Q)(x0) = > / = 0. 

Then there exist r > 0 and 7 > 0 such that 

d(x,Cng-l(DJ)<ld(g(x),D) 

forallxe(x0+rnx)nC. 

Let us begin by proving, with the help of Theorem 1.2, the following result. Similar 
less general results have been proved in Hilbert spaces (in a different way) by Clarke an 
Raissi [7], with g = Id. See also Ioffe [13] for the case where D is epi-Lipschitzian and 
g is the identity mapping. Recall (see Ioffe [13]) that NG(C;x0) := R+dGd(xo, C) is the 
nucleus of the G-normal to C at x$. 

THEOREM 1.3. Under the assumptions of Theorem 2.4 there exists some real number 
K>0 such that 

dGd(xo,Cng-l(D)) C (J KdG(y* og + rf(.,O)(x0) 
y*edGd(g(xo)J)) 

and hence 

NG(Cng-\D);x0) C NG(C;x0) + (J S(y* og)(x0). 
y*£NG(D;g(xo)) 

PROOF. By Theorem 1.2, the function 

x \-+ ld(g(x\D) - d(x,Cng-l(D)) 

attains a local minimum at JCO relative to C and hence (see Proposition 2.4.3 in [6]) xo is 
a local minimum, over some ball JCO + sBx, of the function 

X H 4 ( 1 + lkg)d(x9Q + ld(g(x\D) -d(x,Cng-\DJ) 

where kg is a Lipschitz constant for g at JCO. Setting K := max(7,1 + lkg) we get for all 
x E xo + sBjr 

(1) d(x,CDg-l(D)) <K(d(x,Q + d(g(x),DJ). 

SetS:= Cng-\D)9H(x) := (g(x)9d(x9CJ) E Yx Rmdh(y,r) := r+d(y,D).Ifweput 
A := d(-, S) and AM(X) = A(x) if x E M and A^(x) = +oo otherwise, and if we denote by 
7QC) the collection of all finite dimensional subspaces of X, we have by Proposition 2.4 
in Ioffe [13] 

dGd(x0, S) = f| lim sup d~Ax+L(x) 
L^{X) xlXQ 

40 
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(where d~ denotes the Dini e-subdifferential in [13] and x —> JCO means x —> xo and 
x E S) and hence it follows from (1) that 

(2) dGd(x0,S)CKdG(hoH)(x0). 

But by Theorem 1.1, since H is strongly compactly Lipschitzian at x$, we may write 

dG(hoH)(x0) C (J do{y* og +J(.,Q)(x0). 
y*edGd(g{xQ)jy) 

This and relation (2) complete the proof. • 

REMARK. The arguments above also show that the inequality (1) (in the proof of 
Theorem 1.3) is equivalent to the (metric regularity) inequality in the statement of Theo­
rem 1.2. This inequality (1) has been used by Dolecki [8], when g is the identity mapping, 
as a starting point in the calculus of the Clarke tangent cone to the intersection of two 
sets. • 

Taking g as the identity mapping in the above theorem, we obtain the following corol­
lary. 

COROLLARY 1.4. Let C and D be two closed subsets ofX with D compactly epi-
Lipschitz at xo E COD. Suppose that 

dGd(x0,C)n(-dGd(xo,DJ) = {0}. 

Then there exists K > 0 such that 

dGd(xQ, C D D) C K(dGd(x0, Q + dGd(x0, DJ). 

Although the following corollary could be proved with the help of Corollary 1.4, we 
prefer to provide a proof using Theorem 1.2 and the Clarke subdifferential calculus rules 
for locally Lipschitz functions directly. 

COROLLARY 1.5. Let C and D be two closed subsets ofX and Y respectively and 
let g:X —> Y be strictly differentiable atxo E C Pi g~l(D). Assume that D is compactly 
epi-Lipschitz atyo := g(xo) and that the condition (corresponding to (R) in Theorem 1.2) 

A-l(dGd(C,x0)) H (-dGd(D9y0j) = {0}, 

holds with A := gfixo)* (the adjoint linear map ofgXxo)). Then for some K>0 one has 

dcd(x0,Cng-\DJ) cKdc(dc + dDog)(x0)CK[dcd(xo,Q + A(dcd(yo,DJ)l 

wheredG := d(,C). 

PROOF. AS in the proof of Corollary 1.4 we get for all x E xo + rEx 

d(x,Cng-\DJ) <K[d(x,Q + hog(x)] 
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where h(y) = d(y9 D). So (see [6]), for S := CDg l (D) the Clarke generalized directional 
derivative d%(xo; •) of the distance function to S satisfies 

d£(xo; h) = lim sup t~l d(x + th9 S) 
s 

no 

<K(dc + hog)\x0'9h) 

<K[d°c{x^h)^4{y^g\x0)h)} 

for all h G X. So the conclusion of the corollary is a direct consequence of these last 
inequalities and the subdifferential calculus rules for continuous convex functions. • 

REMARK. More generally under the assumptions of Theorem 1.2 one can prove that 

8Cd(x0, Cng~l(D)) C K\dcd(xo, Q + clw* co (J dc(y* og)(x0) 

m 
In Theorem 1.3, we have obtained a general formula for the nucleus Afc. We proceed 

now to establish some calculus rules much sharper and broader than those available for 
the G-normal cone as well as for the Clarke normal cone. First we need to prove Lem­
mas 1.7 and 1.8 which will be some keys to the proofs of Theorems 1.10 and 1.11. Let 
us recall before this lemma of Jourani and Thibault [14]. 

LEMMA 1.6 ([ 14]). Let She a subset ofX which is compactly epi-Lipschitz atxo G S 
and let H be the compact subset ofXas given in relation (1.1). There exist a real number 
(3 > 0 and a neighbourhood V ofxo such that for each e > 0 there are h\,...9hm in H 
satisfying 

||x*|| < e + j3Max(x*,A/> 
1 <i<m 

for all x G Vandx* G dGd(x,S). 

From this lemma we can deduce the following inequality for the G-normal cone. We 
refer the reader to Loewen [20] for many other important results for the limiting Frechet 
normal cones in reflexive spaces. Recall that the G-normal cone NG(X;X) to S at x G S 
is, by definition, the weak-star closure of R+dc(x, S). 

LEMMA 1.7. Let Sbea subset of X which is compactly epi-Lipschitz atxo G S and let 
Hbe the compact subset ofXas given in relation (1.1). Then there exists a real number 
/? > 0 and a neighbourhood V ofxo such that for each e G [0, /?"x ] there are h\,...,hm 

in H satisfying 
( l - / f e ) | | * l < / J Max <**,*,•> 

\<i<m 

for allx € VDSandx* G NG(S;x). 

PROOF. Choose /3 and V as given by Lemma 1.6. It is obvious that 

(1) ||**||<0Max<**,A> 

https://doi.org/10.4153/CJM-1996-042-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-042-1


SUBDIFFERENTIAL CALCULUS RULES IN BANACH SPACES 839 

for all x G VHS andx* G dcd(x,S). By positive homogeneity, (1) also holds for all 
x e VHS and x* G R+3G</(X, 5). Fix e G]0,1 ] and choose elements h\,...,hminH such 
that H C {Ai,...,hm} + eB*. We deduce from (1) that, for any x* G R+dGd(x,S) with 
x G VC\S, one has 

lk*||<^lk*||+/3Max(x*,̂ ) 
l</<m 

and hence 

(2) (l-/fe) | |**| |<fl*to(x%A,>. 
l</<m 

Then by the weak-star lower semicontinuity of the function (1 — pe)\\ || and the weak-
star continuity of x* i—> Maxi</<m(x*, hi), it follows that relation (2) still holds for all 
JC* G NG(S;X) = c\yv*[R+dGd(x,S)] and* G VC\S. So the proof of the lemma is complete. • 

Concerning the Clarke normal cone NC(S; •): we can prove the following similar result 
for epi-Lipschitz-like sets. Recall first that Borwein [2] has defined a subset S of X to 
be epi-Lipschitz-like at xo G S if there exist a real number r > 0, a vector v G F and a 
nonempty closed convex set Q containing zero such that Q° is weak-star locally compact 
and 

(jc0 + HBr) H S+JO, r](v + Q ) C 5 , 

where Q° is the polar of Q, that is, Q° = {x* G A* : (JC*,JC> < l,Vx G Q}. He has 
also proved that any epi-Lipschitz-like set is compactly epi-Lipschitz. Note that epi-
Lipschitzian sets and subsets of any finite dimensional space X are always epi-Lipschitz-
like. 

LEMMA 1.8. Let She a subset ofX which is epi-Lipschitz-like at xo G S. Then there 
exist a neighbourhood V ofxo in Xand elements h\, h2,...,hm G Xsuch that 

m 

11*1 < £ K**,A,)| 
i = l 

for allx* G Nc(S;x) andxeSHV. 

PROOF. Let Q be a closed convex subset with 0 G Q and Q° weak-star locally 
compact, r G]0, oof and v G X such that 

(1) (xo + rUx) PI S+]0, r](v + Q) C S. 

By Lemma 2.1 in Borwein [1] there exist a compact subset H in X and s G]0, oof such 
that 2sUx CCl + sH. Choose h2,...,hmeH such that H C B^ + {h2, ..-,hm}. Then 

2sEx C Q + sEx + co{sh2,...,shm} 

and hence by the Radstrom law (see [24]) 

sBx C Q + co{s/*2, •.. ,shm}. 
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Let V be an open neighbourhood of XQ with V C Jto + rB>x- Fix b G % and choose 
/* <E co{-/z2,.. •, -hm} such that s& + sh G Q. Fix JC G S n F and x* G A^S; JC). We get 
by (1) that v + sb + sh € Tc(S;x) (the Clarke tangent cone to S at JC, see Clarke [6]) and 
hence (x\v+sb+sh) < O.Set/zi := -s~lv and write h = - E ^ 2 M*with ^T=2 x* = * 
and A/ > 0. Then we obtain 

m 

i=2 
m 

<I(**,MI + E W A > I 

<EK**>MI 
and hence 

11**11 < E \(**M-
i=\ 

Before proving the theorems of extended calculus for normal cones let us mention the 
following important consequences of the above lemmas. 

PROPOSITION 1.9. Let S be a subset ofX which is compactly epi-Lipschitz (resp. 
epi-Lipschitz-like) at XQ G S. Then for any x* in NG(S;XO) (resp. in Nc(S;x)) there exist 
nets (A|)/G/ in ]0, oo[, (x*)/G/ in dcd(xo,S) (resp. in dcd(xo,S)) such that the net (A/x*)/G/ 
is bounded and w*-converges to x*. 

PROOF. AS NG(S;XO) — clw*(]0,oo[dGd(xo,S)} by definition, there are two nets 

(lj)jeJ in ]0, o°[ a n d («/)ye/ in dGd(xo, S) such that 7/w,* > x*. Let h\,...,hmbe given 

by Lemma 1.7 with e = \fi~l. Then for ally G J 

(1) | |7y«;| |<2/3Max(7;«;,M-
1 <k<m J 

As the net Max\<k<m(ljUJ,hk)jej converges in R, there exists a subnet 
(Maxi<^<w(7a(/)W*(/),^))/G/ which is bounded. By (1) the subnet (7a(/)W*(/))/G/ is also 
bounded and hence it is enough to set A/ := 7<*(0 and x* := w*(/). This completes the 
proof of the assertion relative to the geometric approximate normal cone. 

Concerning the Clarke normal cone it is enough to recall (see Clarke [6]) that 
Nc(S;xo) — clw*(]0,co[dc<i(;to,S)) and to repeat the above argument with Lemma 1.8 
instead of Lemma 2.9. • 

A new general rule for calculating or estimating G-normal cones can now be given. 

THEOREM 1.10. Let C and D be two closed subsets ofX and Y respectively with D 
compactly epi-Lipschitz atyo G D. Let g:X —> Y be strongly compactly Lipschitzian at 
xo G C n g(yo)- Suppose that 

(R') / G NG(D9y0)9 0 G dG(y* o g)(x0) + NG(C,x0) => / = 0. 
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Then one has 

NG(Cng-l(D%xo) C NG(Qx0) + U 8G(y*og)(x0). 
>*eAfc(Agto)) 

PROOF. The proof uses some ideas of Theorem 5.4 in Ioffe [13]. Let x* £ NG(Cn 

g~l (D)). By definition there are nets (A/),-G/ in ]0, oo[, (x/)/e/ in dGd(xo, CDg~l (D)) such 

that A/JC;XJC*. By Theorem 1.3 there are v* G #dG</(jto, Q , J* G KdGd(g(xo)9 D) and 
(w*) G SGO7* ° g)(xo) such that 

(1) x* = W* + v*. 

Assume for a moment that the net (A;j*);G/ has a bounded subnet (Aa^LA-e/. Put 
7/ := Aa(/> t* := x ^ , £* := i i ^ p * := v*^, q) := j * ^ . Then the net ( T / ^ e j is 
also bounded since IjlJ £ doilj-qj o g)(xo). Extracting a subnet if necessary, we may 
suppose that the net (7jlJ,ljqJ)jeJ weakly-star converges to some point («*,>>*). Then 

y* G NG(D,yo) and by Lemma 2.5 in [9] one has u* G dG(y* o g)(xo). Since 7/&y—>x* we 
also see by (1) that the net (ljPj)j£j weakly-star converges to some point v* G NG(C;XQ) 

and that x* = u* +v*. 
To get the inclusion it thus remains to prove that the net (A/j*),G/ admits a bounded 

subnet. Suppose the contrary. Then for each n G N this last supposition ensures that there 
exists, for each / G /, some a(n9 i) G / such that 

(2) <*(/!, 0 > i and || A ^ ^ ^ H > n. 

If we consider the preorder on N x / defined by 

(n, i) > («', /') & n>ri and i > /', 

then for each k G / there exists (no, k) G N x / (take any «0 G N) such that a(«, i) > i0 

for all («, i) in N x / satisfying (n, i) > (/i0, I'O). Then (A«(nfolb^-)l|)(ii,oeNx/ is a subnet 
(see [17]) and by (2) 

W l / « « > l l ^ ^ 
that is there exists some subnet (Aa^lb^lD/G/ converging to +oo. We may suppose 
ll^H^Oforaiiyey.Put 

$ := iba(,)irlva(,-)andz/:= ib^oir1^©' 
Then 6* e dG(zj o g)(jc0), c* e ArG(C,x0), Z* e tfG(A«(*>)) and 
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But a* ^ U 0 since a* = (Aaoolb^ll)"1 ' (X«<JK(J)1
 a n d (Xa(fK{/) weakly-star con­

verges and \a<j)1\y*a^\\ —+ +oo. Moreover since \\zjW = 1 and \\b*\\ < kg (where kg 

is a Lipschitz constant of g at JCO), we may assume (extracting another subnet if neces­

sary) that z* -^-> z* G NG(D;g(xo)) and b* -^-> b*. By Lemma 2.5 in [9] we have 

Z>*GaG(z*og)(x0)andby(3) 

(4) 0 = b* + c* for some c* G Afe(C, JC0). 

Let us prove that z* ^ 0. Choose, by Lemma 1.7, elements h\,...,hm EX such that 

(5) ||C||<Max(C,^) 
l<A:</n 

for all C G NG(D9g(xoj). As ||z*|| = 1, it follows from (5) that for ally G J 

and hence 

1 < Max(z;,A*> 
\<k<m J 

1 < Max (z*,hk) 
\<k<m 

which implies that z* ^ 0. Thus relation (4) is in contradiction with assumption (R/). 
This completes the proof of the theorem. • 

REMARK. 1) The above proof also shows that the theorem still holds whenever for 
nets of points belonging to NG(D, •) weak-star and norm convergences to zero coincide. 
2) The method of Ioffe [13] also shows the second member of the inclusion of the the­
orem is w* -closed. • 

A similar result also holds for the Clarke normal cone. See also Aubin [1], Rockafellar 
[27] and Ward and Borwein [29] for a similar result under conditions like (R") but in the 
finite dimensional setting. 

THEOREM 1.11. Let C and D be two closed subsets ofX and Y respectively and let 
g:X—>Ybestrictlydifferentiableatxo G CHg~l(D). AssumethatDisepi-Lipschitz-like 
atyo •= g(*o) and assume also that (for A := gfixo)*) the following regularity condition 
holds 

(*") A"1 {Nc(C;xoj) H (-Nc(D;yoj) = {0}. 

Then 

Nc(Cng-l(D);x0) CNc(Qx0) + A(Nc(D;y0)). 

PROOF. It is enough to use the result of Corollary 1.5 and to repeat, with the appro­
priate modifications, the arguments of Theorem 1.10. • 
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2. Subdifferential calculus. The result of the preceding section can be employed to 
obtain some general new subdifferential calculus rules. For use in subsequent arguments 
we need first to recall some notions. 

Let/: Jf—> R := RU {+00, —00} be lower semicontinuous nearxo with \f(xo)\ < 00. 
The function/ is called (see [2]) compactly epi-Lipschitz or epi-Lipschitz-like at XQ if 
epi/ is compactly epi-Lipschitz or epi-Lipschitz-like at (JCO,/(XO)). We refer to [2] for 
many examples of such functions. Note that it is not difficult to see that / is compactly 
epi-Lipschitz at xo iff there exist two real numbers /? and r > 0 and a || ||-compact subset 
KofX such that 

inf r 1 [f(x + tb + tk) - / (* ) ] < (3 
k€zK 

for all / G]0, r], b G rUx and* G *o + HB̂  satisfying |/"(x) - / ( x 0 ) | < r. 
Borwein [2] has proved 
(a) if/ is directionally Lipschitzian at xo then/ is epi-Lipschitz-like at xo, 
(b) if/ is epi-Lipschitz-like at xo then it is compactly epi-Lipschitz at JCO, 
(c) if Xis finite dimensional then each function is epi-Lipschitz-like at each point of 

its domain. 
We are now ready to prove our results concerning the G-approximate and Clarke 

subdifferentials of the sum and the composition of functions. 
The first theorem is an extension of Theorem 5.6 of Ioffe [13] and Theorem 4.1 of 

Mordukhovich [23]. Recall (Ioffe [13]) that** G dcfix) iff (JC*, - 1 ) G NG(cpif;x9f(x)). 

THEOREM 2.1. Let g:X—+ Ybe strongly compactly Lipschitzian at xo and letf: X —> 
R U {+00} and h:Y —> R U {+00} be lower semicontinuous near XQ andyo := g(*o) 
respectively (withf(xo) < 00 andh(yo) < 00/ Assume that h is compactly epi-Lipschitz 
atyo and 

(HG) y* e 8%h(y0) and 0 G dG(y* o g)(x0) + 5g/(x0) =» / = 0. 

Then 

dG(f+hog)(x0) C dcfixo) + U 3G(y* og)(x0). 
y*€dGh(yo) 

PROOF. Our results in Section 1 allow us to follow several parts of the proof of 
Theorem 5.6 in Ioffe [13]. Put 

C : = { f e r , 5 ) G l x R x R : f(x) < r} 

D := {(y,r,s) G Y x R x R : h(y) < s} 

B := {(x,r,s) GX x R x R :f(x) + hog(x) < r + 5}. 

By Lemma 5.5 in [11] we have NG(B;z0) C NG(C Pi g_1(D);z0) where z0 := 

(xo;/(xo), hiyofj and g is the mapping from X x R x R into itself defined by g(x, r, s) = 
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(g(jt),r,s). Let us show that the regularity condition in Theorem 1.10 holds. Observe 
first that 

(1) NG(Qx0J(xo\s) = {(xV*,0) eT x R x R : (x*,r*) G A^epi/^oJ^xo))} 

and 

(2) NG(D',yo,r,h(y0)) = {(y*,0,s*) G T x R x R : (y*,s*) G A^epi/*;j>0,%o))}. 

Then for all (y*,0,**) G #G(£>;g(z0)) and(jc*,r*,0) G NG(C;z0) satisfying 

0G(x*,r*,0) + 5G((y*,0,5*)og)(z0) 

we have 

0 G (x*,r\0) + 5G(y* ogX*o) x {0} x {5*} 

and hence r* = s* = 0 and 

(3) OG**+eG(y*og)(xo). 

Therefore we have x* G S£?/(JCO) and j * G S^ / J^O) and hence (3) and the assumption 
(//G) imply that >>* = 0. The regularity condition in Theorem 1.10 is thus satisfied and 
hence this theorem ensures that 

(4) NG(B;z0) C NG(C;z0) + | J dG(z* og)(z0). 
z*eNG(D;g(zo)) 

Nowletx* G dG(f+hog)(xo). It is not difficult to verify that (JC*,-1,-1) G NG(B;z0) 

and hence, by (1), (2) and (4), there exist («*,r*) G NG(epif;xo,f(xo)) and (y*,s*) G 
^(epi/^ijo^Cyo)) such that 

( * * , - l , - l ) G (>>V*,0) + dG(y* og)(*0) x {0} x {s*}. 

So r* = s* = — 1, w* G dcf(xo), y* G dGh(y0) and 

x*Gw* + aG(y*og)(x0). 

This completes the proof of the theorem. • 

COROLLARY 2.2. Z,ef/, h\X —* R U {+00} &e /ower semicontinuous near XQ and 
finite atXQ. Assume that h is compactly epi-Lipschitz atxo and 

d£f(x0)n(-c%h(xo)) = {0}. 

Then 
dG(f + h)(x0) C dof(x0) + dGh(x0). m 

Although this result extends Theorem 4.1 of Mordukhovich [23] where X = Y = Rn 

and Theorem 5.6 of Ioffe [13] whereXand Tare general Banach spaces but h is direction-
ally Lipschitz, it also provides a unified version for both theorems. Applying Theorem 1.3 
instead of Theorem 1.10, the reader can easily see that the results of Theorem 2.1 and 
Corollary 2.2 are also valid for the G-nuclei of the G-subdifferentials. 

The second theorem is the following new result which concerns the Clarke subdiffer-
ential. It generalizes in several ways the main calculus rules proved by Clarke [6], Ioffe 
[11], Rockafellar [25, 26], Ward and Borwein [29]. 
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THEOREM 2.3. Letg'.X-^ Ybe strictly differentiable atx0 andletf:X—> RU{+oo} 
and h:Y —* RU {+00} be lower semicontinuous nearxo andyo = g(xo) respectively 
(withf(xo) < 00 and h(yo) < co). Assume that h is epi-Lipschitz-like atyo and that, for 
A = g,(xo)*, 

(Hc) (-9?f(xoj) n A"1 {d?h(x0j) = {0}. 

Then 

dc(f + hog)(x0) C d<f(xo) + A(dh(xoj). 

Before giving the proof of this theorem, let us consider the following lemma which 
has been stated without proof by IofTe [11] in the finite dimensional setting. Because of 
its importance we sketch a proof. 

LEMMA 2.4. Let B, C, D andg be defined as in the proof of Theorem 2.1. Assume 
thatf and h are lower semicontinuous at XQ andyo •= g(*o) respectively and that g is 
continuous at XQ. Then 

Tc(Cng-\D);z0) C Tc(B;z0) 

where z0 := (xo,f(xo),h(y0j). 

PROOF. Note that the Clarke tangent cone is not isotone and hence we may not say 
that the lemma follows from the inclusion CDg_1(Z)) C B. Set S := Cng~l(D) and take 
(v,r,s)£ TC(S; z0). Let (xn,an,/3„)-+zo and tn j 0. The lower semicontinuity off+hog 
ensures for any e > 0 that for n large enough 

f(xo) + hog(xo)^s>an^pn>f(xn) + hog(xn)>f(xo) + hog(x0)-£ 

and hence 

(1) (f + ho g)(xn) ->/(*>) + h o g(x0). 

We claim thatf(xn) —*/(JCO) anc* h og(xn) —» h og(jc0). Indeed for any e > 0, there exists, 
by the lower semicontinuity off and h o g at xo and by relation (1), some N G N such 
that for every integer number n>N 

f(x0) - e </(*„), g(x0) - e/2 < g(xn) mdf(xn) + g(xn) <f(x0) +g(x0) + e/2. 

The last two inequalities ensure, for every integer n>N, thatf(x„) < f(xo)+e; hence 
f(x0) - e <f{xn) <f(xo) + e. Sof{xn) —•/(*>) and by (1) h o g(xn) —• /* o g(x0). 

Seta^ :=f(xn)andp'n := an + /3„ - a'n. Then/?; > h og(xn), a'n + pn = an+(3n, 
an —>/(*<>), fin ~^g(xo) and(xw,a£,/%) G S. As (v,r,s) G TC{S\ZQ\ it follows that there 
exists (vn, rn, sn) —> (v, r, s) such that for all n G N 
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(xn9an9(l'n) + tn(vn9rn9sn) e S C B. 

As a'n + (3'n = an + (3n we obtain by definition of B that 

(xn9an9(5n) + tn(v 

for all n G N and hence (v9r9s) G Tc(B;zo)9 by the sequential characterization of the 
Clarke tangent cone (Clarke [6]). • 

We can now follow the main idea of the proof of Corollary 4.4 in Ioffe [11]. 

PROOF OF THEOREM 2.3. Let B9 C and D be as in the proof of Theorem 2.1. It is 
not difficult to see that the assumption (Hc) ensures the assumption of Theorem 1.11. 
Applying the theorem and Lemma 2.4, we obtain (for S = CHg~l(D)) 

(1) Nc(B9z0) C Nc(S'9z0) C Nc(C9x0) + A(wc(Z);g(z0))) 

where A is the adjoint mapping of the derivative of g at z$. Moreover it is easily seen that 

Tc(B;z0) = {(v9r9z) GXx RX R: (v9r + s) G Tc(epi(f + h og);x0,(f+h og)(x0))}, 

Tc(C9z0) = {(v9r9s) eXxRxR:(y9r)e rc(epi/;x0,/(*o))} 

and 

Tc(D9z0) = {(v9r9s) G l x l x l : (v9s) G Tc(epih og;x0,h og(x0))}. 

Therefore 

Nc(B;z0) = {(x*9t9t)eX*x R x R : (**,*) G Nc(epi(f+h og);x0,(f + h og)(x0))}, 

(2) Nc(C9z0) ={(x\t90)eTxRxR: (JC*, t) G Nc(epif9 x0J(x0j)} 

and 

(3) Nc(D9z0)= {(x*909t)eX* x RxR:(x*9t)eNc(Gpihog;x09hog(xo))}. 

Now take any x* G dc(f+h og)(x0). Then (x*9 - 1 , - 1 ) G Nc(B'9z0) and, from (1), (2) and 
(3), there are (w*,-l) G Nc(epi/;*o9/(*o)) and (v*,- l ) G A^epi/* og;x0,h og(x0)) 
such that JC* = u* + A(v*). This completes the proof. • 

Obviously applications to necessary optimality conditions for general nonsmooth in­
finite optimization problems can be derived. This is left to the reader. 
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