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The motion of a finite layer of Bingham material on a solid plate that executes in-plane
oscillations was reported previously by Balmforth et al. (J. Non-Newtonian Fluid Mech.,
vol. 158, issue 1–3, 2009, pp. 46–53). There, it was suggested that multiple yielded regions
may arise within the material; this contrasts to start-up flow of the same material for
which only one yielded region is generated. Here, we explore quantitatively the fluid
physics of this oscillatory flow problem through analytical approximations and further
numerical computation. Four new key topological properties concerning the generation
and termination of the yielded regions are reported. It is shown that the existence of
multiple yielded regions is equivalent to the layer never becoming entirely rigid during
the periodic motion. For small inertia, the flow is approximately time-reversible with
only a single yielded region generated at the plate. For large inertia, shear stress in the
material decays rapidly as a function of distance from the plate. A thin zone of yielded
material detaches periodically from the plate, and subsequently terminates within the
layer. At high oscillation frequency, there can be any number N of distinct rigid regions,
satisfying N = �1 − π−1 log B� where B is the Bingham number. It is also shown that
for B > 0.5370, there are at most one yielded region and one rigid region throughout the
motion. These theoretical results can be used as a basis for oscillatory rheometry, allowing
for measurement of the yield stress using existing apparatus.

Key words: plastic materials, rheology

1. Introduction

The motion of an unbounded viscous fluid in contact with a solid plate, that is
executing in-plane oscillations, is a canonical problem in fluid mechanics that is usually
termed ‘Stokes’ second problem’ (Stokes 1851). Its solution forms the backbone for a
wide variety of applications, including oscillatory rheometry (Böhme & Stenger 1990),
measurements using quartz crystal microbalances (Rodahl, Höök & Kasemo 1996),
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modelling instabilities in oscillating boundary layers (Vittori & Verzicco 1998), and
particle migration in oscillatory microfluidics (Mutlu, Edd & Toner 2018; Asghari et al.
2020). Many of these applications involve fluid layers of finite height, bounded by a free
surface, for which an analytical solution is also available (Liu 2008). The flows arising
in Stokes’ second problem for bounded and unbounded domains of Newtonian fluid
are qualitatively similar due to the rapid (exponential) decay of vorticity away from the
oscillating boundary.

Many commercial applications involve non-Newtonian fluids, and an important class
of these fluids comprises yield-stress materials, characterised by the property that the
material will not flow until the magnitude of the deviatoric stress reaches some critical
value known as the ‘yield stress’. If the stress is below the yield stress, then the material
behaves as a solid. The simplest model for these materials, introduced by Bingham (1916),
states that (1) the material is rigid below the yield stress, and (2) the deviatoric stress
is a linear function of the strain rate above the yield stress; these are termed ‘Bingham
materials’. An important extension to this model was described by Herschel & Bulkley
(1926), whereby the stress–strain relationship replicates that of a power-law fluid above
the yield stress, enabling shear-thinning and shear-thickening behaviour in the materials’
‘fluid-like’ state. A distinctive characteristic of flows involving these materials is the
presence of ‘yield surfaces’, which separate regions of fluid-like and solid-like behaviour.

Considerable effort has focused on studying steady (or quasi-steady) flows of
yield-stress materials, i.e. where inertia can be neglected, including the canonical problems
of Couette flow (Landry, Frigaard & Martinez 2006) and Poiseuille flow (Safronchik
1960; Frigaard, Howison & Sobey 1994). For gravity-driven free-surface flows over solid
surfaces, the material motion is predominantly controlled by the lubricating shear flow
near the solid surface, with the remainder of the material moving in a plug-like fashion
(Liu & Mei 1989; Balmforth & Craster 1999; Hinton & Hogg 2022). Viscoplastic flows
often exhibit boundary layers because of the rapid decay of shear stress away from solid
surfaces and regions of deformation, even when inertia is negligible (Oldroyd 1947;
Chevalier et al. 2013; Balmforth et al. 2017). Consequently, the material is rigid away
from the region of deformation, and the boundary layer acts as a lubricant between no-slip
boundaries and predominately plug flow elsewhere.

The study of fully dynamic flows of yield-stress materials is intrinsically more
challenging owing to the nonlinear interactions of yield stress, inertia, viscosity and the
flow geometry. The creation and destruction of yield surfaces is a dynamic process, and the
yield surfaces can move through the material, driven by inertia (Burgess & Wilson 1997;
Huilgol 2004). Hinton, Collis & Sader (2022) studied the dynamics of the viscoplastic
Stokes’ first problem where a yield-stress material sits atop a solid plate that moves
suddenly. Unlike the Newtonian case, in which Stokes’ first and second problems can
be related via a linear transformation in time, the inherent nonlinearity generated by the
yield stress of a viscoplastic material means that solutions for these two settings must be
sought independently. The so-called ‘Stokes’ third problem’ – where a fluid is mobilised
under gravity by suddenly tilting the solid base upon which it sits – was studied by Ancey
& Bates (2017) for a layer of yield-stress material. This triggering mechanism is relevant
to the onset of avalanches and mudslides.

Stokes’ second problem for a finite layer of yield-stress material, the focus of this
study, has been investigated both numerically and experimentally by Balmforth, Forterre
& Pouliquen (2009). They carried out numerical simulations and laboratory experiments
with kaolin slurries (clay). Partial agreement between numerical and experimental
results was reported. Balmforth et al. (2009) hypothesised that the discrepancy arose
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from thixotropy of the slurry rather than elasticity. (For a detailed analysis of Stokes’
second problem for a thixotropic fluid, see McArdle, Pritchard & Wilson 2012.) Two
dimensionless groups control the dynamics of an oscillating viscoplastic layer, a Bingham
number and an oscillatory Reynolds number, which is the squared ratio of the layer
thickness to the Stokes penetration depth. In this study, we report on a multiplicity
of intricate phenomena that arise over this two-dimensional parameter space, using a
combination of numerical and analytical methods.

The work of Balmforth et al. (2009) is elaborated upon and extended along multiple
lines. This includes deriving an analytical formula to quantify the emergence of multiple
distinct plugged regions, and the dependency of this property on the dimensionless groups.
In particular, we show that it is possible for any number N of yield surfaces to co-exist.
Also, the phase delay between oscillations of the solid plate with those at the free surface is
studied and reported. In addition, four universal topological properties of the yield surfaces
are identified.

The results reported in this study provide a foundation for understanding the dynamics
of flows occurring in practice that involve yield-stress materials subject to oscillatory
forcing. One such example is the compaction of concrete via forced vibration that leads
to an increase in its mechanical strength (Banfill, Teixeira & Craik 2011). Another
related example is the motion of bubbles, which has received much attention recently.
Specifically, Karapetsas et al. (2019) predicted that bubbles rise rapidly when excited at
resonance, Zare, Daneshi & Frigaard (2021) have examined the propensity of bubbles
to follow each other in pathways, and Pourzahedi et al. (2022) have examined the effect
of shape on the onset of bubble motion. In the configuration studied in this paper, the
oscillating plate does not yield the material near the free surface, so this applied motion
cannot provide a mechanism for the liberation of bubbles that are stationary within rigid
material. Oscillatory forcing has also been used as a tool to measure the rheological
properties of yield-stress materials, such as foams (Rouyer, Cohen-Addad & Höhler 2005)
and lubricating grease (Cyriac, Lugt & Bosman 2015). Applications extend to the food
sciences, where oscillatory vibrations have been deployed to explore the appropriateness
of rheological models in describing the deformation of melted chocolate (De Graef et al.
2011; Garg et al. 2021). Complementary to these previous studies, we apply our results to
oscillatory rheometry to demonstrate how measuring the force on the plate could be used
to infer the material’s yield stress.

In relating our results to these applications, it is worth noting that we study the idealised
configuration of a layer that is infinite in the horizontal direction, and that the motion is
unidirectional. Even so, our results are expected to be a good approximation for layers of
finite lateral extent provided that they have small aspect ratio, i.e. the layer thickness is far
smaller than its lateral extent.

We start by defining the problem in § 2, and report overarching numerical results in § 2.1.
The physical mechanisms underlying these numerical results are explored in subsequent
sections. Four important and universal properties of the periodic yield surfaces are
reported and analysed in § 3. The asymptotic behaviour of the material layer motion over
the parameter space is presented in § 4, where we identify criteria for any given number
of distinct rigid regions. In § 5, we discuss the application of our results to oscillatory
rheometry, which is followed by the conclusions in § 6. Peripheral mathematical details
are relegated to appendices. The time scale to reach periodic motion is discussed in
Appendix A. Analytical results for motion of a Newtonian material layer are recalled in
Appendix B. Motion of the Bingham material layer when it yields only briefly during
each period is analysed in Appendix C. Appendix D gives the detailed dynamics of the
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Description Result Reference

Criterion for flow (yielding) B < 1 § 3.1

Property 1 ‘If the material ever yields, then there
are exactly four intersections of yield
surfaces with the plate in any 2π time
period.’

§ 3.2.1

Property 2 ‘Any yield surface emanating from the
plate, upon the material changing from a
yielded to a rigid state at that position,
cannot collide with the plate.’

§ 3.2.2

Property 3 ‘Two or more yield surfaces co-exist at
any time during the motion if and only if
the layer never becomes entirely rigid.’

§ 3.2.3

Property 4 ‘If the Bingham number exceeds
Bcritical = 0.5370, then there is at most
one yield surface.’

§ 3.2.4

Sufficient condition for maximal
free-surface speed of unity

B ≥ Bunity = 0.7246 § 3.3

Maximum-yield surface height Ymax = 1 − B § 3.4

Maximum stress |τ | ≤ 1 − y § 3.4

Criterion for multiple yielded regions B � α√
9 +

(
1 + π2

4

)
α2

§ 4.2.3

Number of rigid regions at high
frequency, α � 1

N =
⌊

1 − 1
π

log B
⌋

§§ 4.2.4 and 4.3.1

Maximum height of yielded region
at high frequency,
exp(−√

α/2) � B � 1

Ymax = −
√

2
α

log B § 4.3.1

Table 1. Key findings and formulas for the oscillatory motion of a layer of Bingham material.

emanation and collision of a single yield surface, while the collision of two yield surfaces
is described in Appendix E. A summary of the key findings of this study is given in table 1.

2. Theoretical model

We consider a finite layer of Bingham material – henceforth referred to simply as the
‘layer’ – occupying the region, 0 < y ≤ H, where y is the Cartesian coordinate normal
to the layer, with (i) the free surface of the layer at y = H, and (ii) a horizontal solid
plate located at y = 0 that moves with oscillatory velocity U0 cos ωt in the x-direction
(figure 1); ω is the angular oscillation frequency, and t is time. The ensuing motion of
the layer is incompressible with constant density ρ, and has unidirectional velocity u( y, t)
in the x-direction. To determine this motion, we evoke Cauchy’s momentum equation for
unidirectional flow,

ρ
∂u
∂t

= ∂τ

∂y
, (2.1)

959 A32-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

16
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.167
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U0 cos ωt

H

Flow

Flow

Flow

Flow

Plug

Plug

Plug

(a) (b) (c)

Figure 1. Schematic of the flow problem and example velocity profiles for (a) Newtonian fluid, (b) Bingham
material with low-frequency plate oscillations relative to the time scale for momentum diffusion, and
(c) Bingham material with higher-frequency oscillations.

where τ is the shear stress in the layer, which obeys Bingham’s constitutive law,
∂u
∂y

= 0, for |τ | ≤ τY , (2.2a)

τ = μ
∂u
∂y

+ τY sgn
(

∂u
∂y

)
, for |τ | > τY , (2.2b)

where τY and μ are the yield stress and shear viscosity of the material, respectively. The
boundary and initial conditions are

u(0, t) = U0 cos ωt, u( y, 0) = 0, τ (H, t) = 0, (2.3a–c)

with the rightmost equation enforcing zero shear stress at the free surface.
To non-dimensionalise the system, the y-coordinate is scaled with H, time with 1/ω,

and shear stress with ρHωU0, giving

ŷ = y
H

, t̂ = ωt, τ̂ = τ

ρHωU0
, û = u

U0
, (2.4a–d)

where the dimensionless variables are indicated with hatted symbols. This non-
dimensionalisation differs to that of Balmforth et al. (2009), in that the y-coordinate is
scaled with the layer height H here, producing different (but equivalent) forms of the
dimensionless groups. The scaling used here produces a dimensionless layer height of
unity, which facilitates comparison of the various flow regimes.

Omitting the hats for simplicity, the dimensionless system becomes
∂u
∂t

= ∂τ

∂y
, (2.5)

with the constitutive law

∂u
∂y

= 0, for |τ | ≤ B, (2.6a)

τ = 1
α

∂u
∂y

+ B sgn
(

∂u
∂y

)
, for |τ | > B, (2.6b)
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where the respective Bingham number and oscillatory Reynolds number (or Stokes
number) are

B = τY

ρHU0ω
, α = ρωH2

μ
. (2.7a,b)

The Bingham number B specifies the ratio of the yield stress to the inertial stress
generated in the layer, while the oscillatory Reynolds number α gives the time scale for
momentum diffusion relative to the imposed time scale of the oscillating plate. Because B
is independent of the shear viscosity of the material, the criterion for flow does not depend
on α and is simply B < 1 (see § 3.1).

The dimensionless boundary and initial conditions (2.3a–c) are

u(0, t) = cos t, u( y, 0) = 0, τ (1, t) = 0. (2.8a–c)

The boundary condition at y = 0 can be recast in terms of the shear stress using (2.5):

∂τ

∂y

∣∣∣∣
y=0

= ∂u
∂t

∣∣∣∣
y=0

= − sin t. (2.9)

The layer is partitioned into rigid and yielded regions (figure 1):

∂u
∂y

= 0, for |τ | ≤ B (rigid), (2.10a)

∂u
∂t

= 1
α

∂2u
∂y2 , for |τ | > B (yielded). (2.10b)

The initial transient occurring immediately after start up at t = 0 is ignored, and the
analysis focuses on the periodic dynamics of the layer. The time taken to reach this periodic
state is analysed in Appendix A.

2.1. General numerical results
The governing equation (2.5), constitutive law (2.6), and initial and boundary conditions
(2.8a–c), are solved numerically for the shear stress τ . A finite-difference numerical
method is used, the details of which are given in the appendices of Balmforth et al.
(2009) and Hinton et al. (2022); for simplicity, this will henceforth be referred to as the
‘arbitrary-B numerical solution’. The velocity field u is then computed via the momentum
equation (2.5). A wide range of parameter values, α and B, is studied, with simulations run
for sufficiently large times to ensure that the last two computed periods repeat, i.e. periodic
behaviour is reached. Results for this periodic motion are shown in figure 2, with the start
of the last two periods shifted to the origin (by subtracting an integer multiple of 2π). The
curved black lines in figure 2 indicate the yield surfaces – which delineate regions of rigid
and fluid-like behaviour – with the colours specifying the velocity field. Note that the layer
remains rigid everywhere when B ≥ 1; see § 3. Accordingly, this study focuses on B < 1
where the Bingham material can yield.

Small values of α correspond to fast momentum diffusion through the yielded material,
relative to the imposed oscillation time scale, i.e. vorticity diffuses quickly from the plate.
In this case, the velocity gradient is small in yielded regions and vanishes in rigid regions.
The fraction of the layer that is rigid is approximately proportional to the Bingham number.
For B � 1, almost the entire layer yields except in a thin region near its free surface; see
figure 2(g).
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A layer of yield-stress material on an oscillating plate
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(a) (b) (c)

(d) (e) ( f )

(g) (h) (i)

Figure 2. Velocity field (colour scales) and yield surfaces (black lines) of the periodic flow for nine pairs
(α, B) obtained using the arbitrary-B numerical solution. The yield surfaces separate rigid and yielded regions
as labelled in (d); similar labelling of the other panels is implied.

For large α, momentum diffusion is slow relative to the plate oscillation, and the shear
stress decays rapidly away from the plate; see figures 2(c, f ,i). Hence the yield surface is
generally closer to the plate at higher values of α. If B is not small (see e.g. figure 2c),
then the yielded region is very thin and the velocity at the free surface can be significant.
This is because the layer is almost entirely rigid, through which momentum is transferred
instantaneously. In the regime of large α and small B, multiple rigid regions can exist
simultaneously in the material; see figure 2(i). The velocity field decays rapidly within the
yielded region near the plate, and there is little momentum transfer to the free surface.

The detailed flow physics of these various regimes is explored in §§ 3 and 4.

3. Topology of the yield surfaces

In this section, we first determine the parameter values for which the layer yields at some
point during its periodic motion (§ 3.1). In cases where the material does yield, we derive
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four properties for the topology of the yield surfaces in § 3.2. This has implications for the
velocity at the free surface of the layer, which is discussed in § 3.3.

3.1. Criterion for flow
When the yield stress is large relative to the stress generated by the imposed plate
oscillation – corresponding to larger values of B – the material is rigid throughout the
layer. Consequently, the material velocity u is independent of y, and differentiating (2.5)
furnishes

∂2τR

∂y2 = 0, (3.1)

where the subscript R henceforth refers to the rigid region. The boundary conditions in
(2.8a–c) and (2.9) then give

τR = (1 − y) sin t. (3.2)

This direct calculation of the stress within the rigid region is enabled by the unidirectional
nature of the motion; the only non-zero component of the stress tensor is the shear stress.
Note that gravity acting perpendicular to the plate would not alter the shear stress or
velocity field within the layer. Because the material is rigid provided that |τ | ≤ B, as per
(2.6), it follows from (3.2) that the material cannot yield if B ≥ 1, i.e.

B < 1 (3.3)

is required for flow to occur. This simple criterion is due to use of an inertial scale for the
Bingham number in (2.7a,b), as mentioned above.

3.2. Key properties of the yield surfaces
Henceforth, we focus on the regime B < 1 in which at least some of the layer yields during
parts of the motion. This implies the existence of yield surfaces, whose general behaviour
is the focus of this section. Even when B < 1, there can still be times when the layer
is entirely rigid – which always gives the stress distribution in (3.2), being maximal at
the plate surface y = 0. As time evolves, these entirely rigid regions first yield when the
magnitude of the stress matches the Bingham number at the plate, which from (3.2) gives

|sin t| = B. (3.4)

These critical (yielding) times are defined by

ty = sin−1 B + nπ, (3.5)

where n ∈ Z. At t = ty, the velocity across the rigid layer follows from (2.8a–c) and (3.5):

uR = ±
√

1 − B2. (3.6)

After these critical times, the layer partitions into rigid and yielded regions that are
separated by yield surfaces; see the black lines in figure 2. Since the stress is continuous
across the layer and vanishes at its free surface, the layer is always rigid near its free
surface. We denote the yield surface that is closest to the free surface by y = Y1(t).
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Figure 3. Schematic illustration showing qualitative behaviour of the yield surfaces; not calculated using the
arbitrary-B numerical solution. (a) Case of at most one yield surface. (b) Case of two or more yield surfaces
co-existing, an example of which is indicated by the vertical red dashed line. On the boundary of the first yielded
region, the propagation direction of the yield surfaces is indicated by arrows, emanations by red circles, and
collisions by open red squares.

From (3.1), it follows that the stress in the rigid region adjacent to the free surface
(Y1 < y ≤ 1) is always given by

τR = B sgn
(

∂u
∂y

)(
1 − y

1 − Y1

)
. (3.7)

Acceleration of the yielded material at y = Y1(t) is derived by integrating the
momentum equation (2.5) over the uppermost rigid material (Sekimoto 1993; Balmforth
et al. 2009):

∂u
∂t

= ∂uR

∂t
= −

B sgn
(

∂u
∂y

)
1 − Y1

, at y = Y1(t). (3.8)

The velocity gradient ∂u/∂y is continuous throughout the layer since the stress and the
constitutive law (2.6) are continuous. Equation (2.10a) then establishes that the velocity
gradient of the yielded material at the yield surface vanishes, i.e.

∂u
∂y

= 0, at y = Y1(t). (3.9)

There can be multiple rigid and yielded regions (see e.g. figure 2h), and we label the
yield surfaces by y = Yi(t) for i = 1, 2, . . . , N, where Y1(t) > Y2(t) > . . . > YN(t). In
§ 4, we determine criteria for which there can be an arbitrarily larger number N of yield
surfaces. Each yield surface emanates from the plate when the material changes its state
from rigid to yielded, or vice versa; see figure 3. Consequently, the uppermost yield surface
Y1(t) is always the ‘oldest’. The yield surfaces can terminate either by colliding with the
plate or by colliding with each other; they cannot reach the free surface of the layer, as the
stress here must vanish. Plate collision is possible only for the lowest yield surface. On
each yield surface, the stress is constant and equal to either +B or −B.

Next, we describe and explain four key properties of the yield surfaces. The reader is
also referred to figure 2.
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3.2.1. Property 1
If the material ever yields, then there are exactly four intersections of yield surfaces with
the plate in any 2π time period.

In any 2π time period, the magnitude of the stress at the plate must exceed B (< 1)

at some time for the material to generate a yield surface (whose state of stress is ±B).
By symmetry, the stress at the plate must be algebraically lower than −B at some time,
and greater than +B at another time. Continuity of stress at the plate as time evolves
implies that it crosses +B twice and −B twice, which gives four intersections of the yield
surface with the plate. A consequence is that the stress at the yield surfaces intersecting
the plate follows a periodic sequence of values as a function of time, {+B, +B, −B, −B};
see figure 3.

3.2.2. Property 2
Any yield surface emanating from the plate, upon the material changing from a yielded to
a rigid state at that position, cannot collide with the plate.

In other words, when a yield surface emanates from the plate, there are two scenarios:
(a) the yield surface collides with the plate (e.g. figures 2a and 3a), or (b) a second yield
surface emanates from the plate, encapsulating a parcel of yielded material that moves
through the material (e.g. figures 2h and 3b). This parcel cannot collide with any other
parcel of yielded material and must vanish within the layer before reaching the free surface.
To arrive at this conclusion, we make the following observations.

(i) Yield surfaces can collide with each other only if they have the same state of
stress – otherwise, the stress would jump discontinuously within the layer, which
is unphysical.

(ii) Because the motion is periodic, with yield surfaces having the sequential stress states
defined in Property 1, it follows that the pairs of yield surfaces emanating from the
plate with identical stress states must collide, as illustrated in figure 3. Otherwise,
there would be a growing number of yield surfaces from one period to the next,
violating periodicity. Collision can occur in subsequent periods; see § 4.2;

(iii) The material between two yield surfaces, at any time, is entirely rigid if and only if
the stresses on those yield surfaces are of opposite sign, i.e. they have differing states
of stress. Otherwise, additional yield surfaces separating yielded and rigid regions
must exist between the two original yield surfaces. This is because the stress must
vary continuously from one yield surface to another, and in any rigid region, the
stress varies linearly with position; see (3.1).

(iv) For the same reason, a material between two yield surfaces is entirely yielded if and
only if the stresses on those yield surfaces are identical, i.e. they have the same sign.

(v) It then follows from (i)–(iv) that a yield surface emanating from the plate due
to a rigid-to-yielded transition of the material must collide with any second yield
surface (of identical stress state) that emanates due to a yielded-to-rigid transition;
see figure 3(b).

Consequently, the yield surface emanating from the plate due to a yielded-to-rigid
transition of the material cannot collide with the plate, establishing Property 2.

It follows that every rigid region must eventually incorporate the free surface; it cannot
terminate within the layer. Any rigid region cannot be terminated by collision of its two
bounding yield surfaces; see (i) above.
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A layer of yield-stress material on an oscillating plate

3.2.3. Property 3
Two or more yield surfaces co-exist at any time during the motion if and only if the layer
never becomes entirely rigid.

Suppose that two yield surfaces co-exist within the layer at some time. There must be
an (upper) rigid region adjacent to the free surface, whose stress distribution is

τR = ±B
1 − y

1 − Y1
, (3.10)

where y = Y1 is the position of the upper yield surface, below which yielded material must
reside (by definition). It then follows that the second (lower) yield surface at y = Y2 has
the same state of stress (see (iv) above) and resides next to the plate. That is, there is a
second rigid region adjacent to the plate, whose stress distribution is

τR = (Y2 − y) sin t ± B. (3.11)

Because these two yield surfaces have the same state of stress, they must eventually
collide within the layer; see (ii) above and figure 3(b). At collision, the material
acceleration ∂u/∂t must be continuous, hence ∂τ/∂y is continuous, via (2.5). It then
follows from (3.10) and (3.11) that the collision time t = tc (where Y1 = Y2) is given by

|sin tc| = B
1 − Y1

> B, (3.12)

because Y1 > 0 from Property 2. If no other yield surfaces exist at this collision time,
then the layer will be entirely rigid and the stress magnitude will exceed B in the region
0 < y < Y1(tc), i.e. a contradiction. Thus, a new yield surface must emanate from the plate
at or before the collision of the two yield surfaces; see figure 3(b).

In other words, when two yield surfaces co-exist, the layer is never entirely rigid; this
finding also applies to three or more co-existing yield surfaces. Conversely, for the layer to
never be entirely rigid over a 2π time period, there must be at least two yield surfaces at
some time. This is because a single yield surface would collide with the plate, leaving the
layer entirely rigid at some times.

An obvious consequence is that there is at most one yield surface if and only if the layer
becomes entirely rigid at some time in each 2π time period; see figure 3(a).

3.2.4. Property 4
If the Bingham number exceeds Bcritical = 0.5370, then there is at most one yield surface.

Suppose that the layer is entirely rigid and then yields at some time t = ty. A single yield
surface must emanate from the plate. From (3.8), acceleration of the rigid region adjacent
to the free surface then satisfies ∣∣∣∣∂uR

∂t

∣∣∣∣ = B
1 − Y1

≥ B, (3.13)

which gives ∂uR/∂t ≤ −B for u > 0, and ∂uR/∂t ≥ +B for u < 0. Since the entire layer
has velocity u = ±√

1 − B2 at t = ty (see (3.6)), it then follows that the yield surface
velocity satisfies

uR ≤
√

1 − B2 − B(t − ty) or uR ≥ −
√

1 − B2 + B(t − ty). (3.14)

These bounds are shown as a green dashed line in figures 4(a,b). If the yield surface
subsequently collides with the plate, then the rigid region will match the plate velocity at
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Figure 4. Free-surface velocity u = uR (solid coloured lines), and the plate velocity u = cos t (solid black
line) for (a) B = 0.6, and (b) B = 0.8, for two values of the oscillatory Reynolds number α. The straight green
dashed line gives the fastest (or slowest) possible motion of the rigid region, as per (3.14). (c,d) Corresponding
plots of the yield surface. The vertical dashed lines are at the yield times ty = sin−1 B and t = ty + π,
from (3.5).

that collision time t = tc, i.e. u = cos tc. From (3.14), it follows that the latest the collision
time can occur (i.e. an upper bound) is given by

cos tc =
√

1 − B2 − B(tc − ty). (3.15)

Subsequently, the entire layer becomes rigid and then yields again at t = ty + π, by
periodicity. If this second yield time occurs after the latest collision time, defined by (3.15),
then only one yield surface can arise. Substituting tc = ty + π into (3.15), we obtain the
condition

B ≥ Bcritical =
(

1 + π2

4

)−1/2

≈ 0.5370, (3.16)

which is sufficient to ensure that only one yield surface can exist, e.g. figures 2(a–c). This
sufficient condition is satisfied in figure 4. Collision with the plate is seen to always occur
prior to the second yield time, t = ty + π (shown as a vertical dashed line), as required.
Because (3.16) is derived using an upper bound for the collision time, it follows that only
one yield surface may occur for smaller values of B, e.g. figure 2(d).

3.3. Condition for a maximum free-surface speed of unity
The above findings have implications for the free-surface speed. If the layer is never
entirely rigid, then the free surface never moves in concert with the plate. Hence if there
are two or more yield surfaces – or equivalently, the layer is never entirely rigid (as per
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A layer of yield-stress material on an oscillating plate

Property 3) – then viscous effects damp the motion and the maximum free-surface speed
must be strictly less than unity.

However, existence of an entirely rigid layer is not sufficient to ensure that the maximum
magnitude of the free-surface speed is unity, because the layer may not be entirely rigid
when the plate speed is unity. Thus ensuring magnitude unity of the maximum free-surface
speed requires a condition stronger than (3.16), which we derive below.

We consider a single yield surface, otherwise the maximum free-surface speed cannot
be unity. The resulting single rigid region incorporates intrinsically the free surface. The
material yields at time ty = sin−1 B + nπ, as per (3.5). Subsequently, the velocity of the
single rigid region (and hence the free surface) is bounded by (3.14), shown as dashed
green lines in figure 4. For simplicity, we examine the dynamics of the layer starting from
t = 0 (i.e. n = 0 in (3.5)), while noting that the derived condition in (3.19) holds for all
periods of motion. For the free surface to attain velocity u = ±1, the yield surface must
collide with the plate before t = π. This is because the plate velocity is u = −1 at t = π.
If the collision occurs later, then the entirely rigid layer (and the plate) moves slower than
|u| = 1. The velocity of the yield surface at t = π is at most specified by (3.14), which, by
using the result for the yield time ty in (3.5), gives

uR|t=π ≤
√

1 − B2 − B(π − sin−1 B). (3.17)

For collision with the plate to occur prior to t = π, the rigid region velocity at t = π,
uR|t=π, which decreases linearly in time, would be algebraically less than −1. Hence (3.17)
establishes that the lowest value of B = Bunity for this collision to occur is given by√

1 − B2
unity − Bunity

(
π − sin−1 Bunity

)
= −1, (3.18)

which implies that the maximum free-surface speed is unity if

B ≥ Bunity = 0.7246. (3.19)

As expected, this condition is stricter (higher value of B) than ensuring that a single
yield surface exists; see (3.16). Similar to (3.16), the condition (3.19) is sufficient but not
necessary to ensure a maximum free-surface speed of unity. Results for B = 0.6 (< Bunity)

are given in figures 4(a,c) and exhibit only one yield surface. Even so, collision can occur
after t = π (as for α = 100) for which the maximum free-surface speed is less than unity.
In contrast, results for B = 0.8 (> Bunity) in figures 4(b,d) also display one yield surface,
which collides with the plate prior to t = π – so the maximum free-surface speed is unity
for all values of α.

3.4. Bounds for the stress, acceleration and uppermost yield surface
The magnitude of the plate acceleration is |sin t|, which is at most 1. Because additional
acceleration cannot be generated within the layer, the acceleration is everywhere bounded
by ∣∣∣∣∂u

∂t

∣∣∣∣ ≤ 1. (3.20)

In other words, the acceleration attains its maximum and minimum at the plate. It follows
from (2.5) that |∂τ/∂y| ≤ 1. Hence the stress in the layer satisfies

|τ | ≤ 1 − y. (3.21)
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The material in 1 − B < y < 1 is always rigid, hence yield surfaces cannot enter this
region. The uppermost yield surface touches y = 1 − B in the limit α → 0; see § 4.1.

4. Asymptotic behaviour of the yield surfaces and velocity field

In this section, we analyse the different periodic regimes that occur in each region of the
(α, B) parameter space for B < 1. We use asymptotic analysis to draw out the dominant
physical processes in each regime.

We work through the parameter space of figure 2 in an anticlockwise fashion. We begin
in § 4.1 with the low-frequency limit, α � 1. Our analysis proceeds to the case of low
yield stress for which there are two sub-regimes in §§ 4.2 and 4.3. Finally, in § 4.4, we
consider flows that occur at high oscillation frequencies, α � 1. Peripheral details are
relegated to appendices. Specifically, behaviour of a Newtonian layer (B = 0) is recalled
in Appendix B. The case of a layer that is predominantly rigid and yields at the plate for
just a short period of time during each oscillation cycle is discussed in Appendix C; this
occurs when B is just less than 1. The detailed asymptotic behaviours immediately after
emanation of a single yield surface, immediately prior to collision of a single yield surface
with the plate, and immediately prior to collision of two yield surfaces, are given in §§ D.1
and D.2, and Appendix E, respectively.

4.1. Low-frequency regime
In the low-frequency (quasi-steady) limit, α → 0, momentum diffusion across any yielded
region is instantaneous, hence the evolution of each yield surface is symmetric in time; see
figure 5. The velocity field u in any yielded region is governed by (2.10b), which in the
low-frequency limit becomes

∂2u
∂y2 = O(α), (4.1)

whilst in any rigid region, we have ∂u/∂y = 0. Hence, throughout the layer, the velocity is

u = cos t + O(α), (4.2)

i.e. the entire layer (both rigid and yielded regions) moves in concert with the oscillating
plate. The boundary condition at the uppermost yield surface (3.8) then gives the
leading-order evolution of its position:

Y1 = max
(

0, 1 − B
|sin t|

)
+ O(α). (4.3)

The maximum-yield surface height is

Ymax = 1 − B + O(α), (4.4)

which occurs at t = (n + 1/2)π + O(α). Equation (4.4) is the maximum height of the
uppermost yield surface for fixed B and any α; see § 3.4.

The asymptotic solution in (4.3) exhibits good agreement with the arbitrary-B numerical
solution for small α; see figure 5.
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Figure 5. Yield surfaces for α = 0.05 and three values of B. The arbitrary-B numerical solution (black line)

is compared to the asymptotic solution for small α, (4.3) (red dashed line).

4.2. Small yield stress: yield surface is asymptotically close to the free surface
For small Bingham numbers B � 1, provided that the Stokes number α is not too large, the
uppermost yield surface will periodically become close to the free surface, e.g. figures 2(g)
and 8. The condition on α under which this occurs is provided in (4.11). Because B is
small and virtually the entire layer yields, the leading-order velocity u in the small-B limit
is given by the Newtonian solution, i.e. u = uN( y, t) + O(B), where uN( y, t) is given in
(B1).

4.2.1. Dynamics of the uppermost yield surface
Discussion in the preceding paragraph motivates the following asymptotic expansion for
the uppermost yield surface:

Y1 = 1 − BỸ + o(B), u = uN + Bu1 + o(B). (4.5a,b)

The boundary condition at the yield surface (3.8) furnishes

Ỹ =
∣∣∣∣∂uN

∂t

∣∣∣
y=1

∣∣∣∣
−1

. (4.6)

Using the Newtonian solution in (B1), and the closed form of its acceleration at the free
surface (B3), then gives

Y1 = 1 − B
|sin(t − σ)|

√
cos

√
2α + cosh

√
2α

2
+ o(B), (4.7)

where σ is the phase shift in the yield surface maximum from the quasi-steady small-α
behaviour described in § 4.1; see also (4.10) below. It is given by

tan σ = tanh
√

α

2
tan

√
α

2
. (4.8)

Equations (4.5a,b) and (4.7) establish that the maximum-yield surface height Ymax is

Ymax = 1 − B

√
cos

√
2α + cosh

√
2α

2
+ o(B), (4.9)
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Figure 6. Maximum height of the uppermost yield surface for B = 0.05. The black crosses are the arbitrary-B
numerical solution, the red line is (4.9) for small and moderate α, and the blue line is (4.29a,b) for large α.
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Figure 7. Relationship between the phase shift σ of the uppermost yield surface and the oscillation frequency
α, according to (4.8).

which occurs at time

t = tmax =
(

n + 1
2

)
π + σ + o(1). (4.10)

The prediction for the maximum height of the yield surface (4.9) is compared to the
arbitrary-B numerical solution in figure 6.

Figure 7 shows that the phase shift σ is an increasing function of α; see (4.7)
and figure 8. Indeed, σ → 0 in the small-frequency limit (α → 0), where (4.3) is
recovered.

Figure 8 shows a comparison between (4.7) (red dashed lines) and the arbitrary-B
numerical solution (black lines). By construction, the asymptotic expansion is expected
to describe the behaviour accurately only at times when the yield surface is near the
free surface. It is evident from (4.7) and (4.9) that proximity of the yield surface
to the free surface requires small to moderate values of α, which is borne out in
figure 8(a–c).

The second term on the right-hand side of (4.7) grows with increasing α, i.e. the yield
surface moves away from the free surface. It then follows from that second term that the
yield surface will come close to the free surface if

B � exp
(

−
√

α

2

)
, (4.11)
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Figure 8. Yield surface for small Bingham number, B = 0.1. (a–c) Smaller frequency values. The arbitrary-B
numerical solution (black line) is compared to the asymptotic solution (4.7) (red dashed line). (d–f ) Larger
frequency values. The yield surface does not come close to the free surface, and (4.3) is not valid (its solution
is not shown). The red circles represent the times from (4.14) when yield surfaces are predicted to emanate
from the plate.
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Figure 9. Yield surfaces for B = 0.001 with (a) α = 25, (b) α = 100. Straight lines are the yield surfaces
according to (4.21). Red circles are the times in (4.14) when yield surfaces emanate from the plate. In (a), the
red dashed lines are (4.7).

in which case the asymptotic expansion in (4.7) remains valid. Equation (4.11) is the
required condition for the present low yield stress and low-to-moderate frequency regime.
For example, figure 9(a) shows numerical results for B = 0.001 and α = 25 where the
yield surface comes close to the free surface; these parameters satisfy (4.11), as required.

4.2.2. Shear stress at the plate
The leading-order velocity gradient at the plate in this small yield stress limit is obtained
by differentiating the Newtonian solution in (B1), given in closed form as (B5). The shear
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Figure 10. Relationship between the phase shift γ of the yield surface collision/emanation at the plate and
the oscillation frequency α, according to (4.13).

stress at the plate in the yielded region then follows from (2.6), giving

τ |y=0 = ±
(

B +
√

α sin2 √
2α + α sinh2 √

2α

cos
√

2α + cosh
√

2α
|sin(t − γ )|

)
+ o(B), (4.12)

where γ is the phase shift of the yield surface emanation or collision time from the
quasi-steady small-α behaviour described in § 4.1. It is given by

tan γ = sinh
√

2α − sin
√

2α

sinh
√

2α + sin
√

2α
. (4.13)

Figure 10 shows that γ is a non-monotonic function of α that asymptotes to γ = π/4
as α → ∞; the maximum value γ ≈ 0.8133 (> π/4) occurs at α = 25π2/32 ≈ 7.7106.
Equation (4.12) shows that the magnitude of the stress at the plate surface equals the
yield stress when |sin(t − γ )| = 0, at which time, t = tc, a yield surface emanates from
or collides with the plate, where

tc = nπ + γ + o(1), (4.14)

with n ∈ Z. This asymptotic solution for tc in the small-B limit is shown in figures 8 and 9
by red circles. It displays good agreement with the arbitrary-B numerical solution for the
time at which a yield surface (associated with a yielded to rigid transition) emanates from
the plate. In the limit as B → 0, the time interval over which rigid material exists at the
plate is very small, and the time tc corresponds to emanation of two yield surfaces (almost
simultaneously) that bound the rigid material; see figure 9. When B is not so small, rigid
regions exist over longer periods at the plate surface, i.e. the two yield surfaces are further
separated in space and time.

We have introduced two phase shifts: (i) σ is the shift of the yield surface peak from the
small-α behaviour, which grows unboundedly with α (see figure 7); and (ii) γ is the phase
shift of the emanation time from the plate and is bounded (see figure 10). Combination of
these two shifts suggests that yielded parcels of material can exist for increasingly longer
times at larger α, provided that B is sufficiently small (e.g. figure 9b).

4.2.3. Existence of two or more yield surfaces
The analysis in §§ 4.2.1–4.2.2 can be deployed to predict when two or more yield surfaces
can occur. An entirely rigid layer yields at times

t = sin−1 B + nπ, (4.15)
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Figure 11. Phase diagram showing the number of yield surfaces as a function of the oscillation frequency α

and Bingham number B, calculated using the arbitrary-B numerical solution (black line) and the approximation
in (4.19) (red dot-dashed line).

as per (3.5). The collision/emanation time in (4.14) must occur whilst the layer is entirely
rigid. Otherwise, a second yield surface would emanate, and by Property 3 (§ 3.2.3), the
layer would never be entirely rigid, leading to a contradiction. Hence from (4.14) and
(4.15), the following conditions arise (for small B):

at most one yield surface exists if and only if sin−1 B > γ ; (4.16a)

two or more yield surfaces exist if and only if sin−1 B < γ. (4.16b)

The latter condition becomes

B <
sinh

√
2α − sin

√
2α√

2 sinh2 √
2α + 2 sin2 √

2α
. (4.17)

Equation (4.17) is relevant to small α because this analysis requires B � 1; see figures
8(a,b). For α � 1, this gives the required necessary and sufficient condition for existence
of two or more yield surfaces:

B <
α

3
+ o(α). (4.18)

For larger values of α, the condition in (3.16) becomes necessary and sufficient
for distinguishing the existence of a single yield surface from multiple yield surfaces;
see § 4.4. We can combine (3.16) and (4.18) to obtain the following uniformly valid
approximate formula that delineates the existence of one or multiple yield surfaces:

B ≈ α√
9 +

(
1 + π2

4

)
α2

. (4.19)

Figure 11 shows that (4.19) provides an approximate yet accurate solution to the
problem.

4.2.4. High oscillation frequency
For high oscillation frequency, i.e. α � 1, where the yield surface comes close to the free
surface, i.e. B � exp(−√

α/2) � 1 as per (4.11), the analysis above applies with large
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phase shift, σ ≈ √
α/2, as per (4.8). The high oscillation frequency, relative to momentum

diffusion, ensures that the free-surface velocity is small. Away from the free surface, the
velocity field in the yielded material is given by that of a semi-infinite layer of Newtonian
fluid, (B7). Therefore, the shear stress in this layer is

τ = ±B + 1√
α

sin
(

t − y
√

α

2
− π

4

)
exp

(
−y

√
α

2

)
+ o

(√
1
α

)
, (4.20)

where the first term on the right-hand side is of identical sign to the second term, by
definition. Consequently, the stress changes sign along yield surfaces defined by straight
lines in ( y, t) space:

Y(t) =
(

t − π

[
n + 1

4

])√
2
α

+ o
(√

1
α

)
, (4.21)

where n ∈ Z. In dimensional terms, the yield surface and disturbances propagate through
the layer with speed

√
2ωμ/ρ, as in the classical Stokes layer. Equation (4.21) is shown as

red lines in figure 9. Increasing the oscillation frequency α hinders momentum diffusion,
with the thin rigid regions taking longer to reach the free surface. In this high-frequency
limit, (4.21) gives an identical result to (4.14) for the time at which yield surfaces emanate
from the plate, i.e. γ → π/4 as α → ∞. The shift in the time for the yield surface to
attain its maximum is σ ≈ √

α/2 � 1.
It follows from (4.21) that three successive rigid regions co-exist in the layer when α >

2π2, and a total of N distinct rigid regions co-exist for

α > 2(N − 2)2π2. (4.22)

That is, the number of distinct rigid regions that co-exist is

N =
⌊

2 + 1
π

√
α

2

⌋
, (4.23)

for B � exp(−√
α/2) � 1. Hence in this regime, any number of yield surfaces can

co-exist simultaneously for sufficiently large oscillation frequency α. The maximum
free-surface speed in this regime follows from (B7):

max
∣∣u|y=1

∣∣ = exp
(

−
√

α

2

)
. (4.24)

4.3. Small yield stress: yield surface does not come close to the free surface
In the present subsection, we consider the regime of small B but with larger values of α

such that the uppermost yield surface does not come close to the free surface. We focus on
the regime

exp
(

−
√

α

2

)
� B � 1. (4.25)

Since α is large and B � 1, the velocity field between the plate and the uppermost yield
surface is well-approximated by that of a semi-infinite layer of Newtonian fluid, given by
(B7). Yielding is confined to this thin region near the oscillating plate. It is worth noting
that a very thick layer (i.e. large H) corresponds to B ∼ 1/

√
α � 1 (see (2.7a,b)), which

lies in the regime given by (4.25).
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4.3.1. Uppermost yield surface
The boundary condition at the uppermost yield surface in (3.8), then becomes∣∣∣∣∣sin

(
t − Ŷ1√

2

)∣∣∣∣∣ exp
(

− Ŷ1√
2

)
= B

1 − Ŷ1/
√

α
= B + O

(
1√
α

)
, (4.26)

where
Ŷ1 = √

α Y1. (4.27)

The implicit solution to (4.26) is

t = nπ + Ŷ1√
2

± sin−1

[
B exp

(
Ŷ1√

2

)]
+ O

(
1√
α

)
, (4.28)

where n ∈ Z, and the ± sign is chosen such that Ŷ1 is the uppermost yield surface.
Equation (4.28) is shown as the blue dot-dashed line in figure 12, where it is compared
to the arbitrary-B numerical solution; the grey dotted vertical lines indicate the transition
from one uppermost yield surface to another. The maximum height of the yield surface
and the time at which it is attained are given by

Ymax = −
√

2
α

log B + o
(

log B√
α

)
, tmax =

(
n + 1

2

)
π − log B + o(1). (4.29a,b)

Note that tmax depends only on B and not on α, consistent with the arbitrary-B numerical
solution in figures 8(d–f ). Equations (4.29a,b) are compared to the arbitrary-B numerical
solution in figure 6. The maximum-yield surface height, Ymax, is close to the plate provided
that exp(−√

α/2) � B < 1, as expected. The time tmax is also the termination time of the
uppermost yield surface. Hence if

log B < −2π, (4.30)

then at least three distinct rigid regions can co-exist. Any number N of distinct rigid regions
co-exist for

log B < −(N − 1)π (4.31)

provided that exp(−√
α/2) � B < 1. Consequently, we can combine (4.31) in the present

regime with (4.23), which holds when the yield surface is close to the free surface, to
obtain

N =
⌊

1 − log B
π

⌋
, (4.32)

which is valid provided that α � 1, independently of whether the yield surface comes
close to the free surface.

We have described the dynamics of the uppermost yield surface, Y1(t), and now proceed
to describe the next two yield surfaces (when they exist).

4.3.2. Second yield surface
The second yield surface, Y2(t), emanates from the plate when the material there becomes
rigid. Whilst the material at the plate is rigid, the velocity at y = Y2(t) is equal to the
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0
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π/2 π 3π/2 2π

Figure 12. Yield surfaces for B = 0.05 and α = 400 (black lines are the arbitrary-B numerical solution). The
blue dot-dashed line is (4.28). The prediction for the second yield surface (red dashed line) is given by (4.35),
and the third yield surface (green dotted line) is given by (4.39).

velocity of the plate. In this high-α limit, the velocity at this yield surface is also equal to
that of a semi-infinite Newtonian layer, which, using (B7), gives

cos t = cos
(

t −
√

α

2
Y2

)
exp

(
−Y2

√
α

2

)
+ O

(
1
α

)
. (4.33)

Taking the limit Y2 → 0 gives the emanation time of this second yield surface (see e.g.
figure 12) as

t2 =
(

n + 1
4

)
π + o(1). (4.34)

This is of the same form as (4.14) because these emanation times are controlled by the
semi-infinite Newtonian solution, as α → ∞. The solution to (4.33) is

t = nπ + tan−1

⎛
⎜⎜⎜⎜⎝

exp

(
Ŷ2√

2

)
− cos

(
Ŷ2√

2

)

sin

(
Ŷ2√

2

)
⎞
⎟⎟⎟⎟⎠ + o(1), (4.35)

where Ŷ2 = Y2
√

α. Equation (4.35) gives the position of the second yield surface, Y2(t),
and is shown as the red dashed line in figure 12.

4.3.3. Third yield surface
The shear stress in the rigid region between the second yield surface Y2(t) and the plate is

τ = (Y2 − y) sin t ± B. (4.36)

As time evolves, the shear stress at the plate surface y = 0 in this rigid region starts at
τ |y=0 = ±B, and subsequently decays to zero, before switching sign and approaching the
yield stress of opposite sign, i.e. τ |y=0 = ∓B. From (4.36), it then follows that a third yield
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surface emanates from the plate at time t = t3 satisfying

Y2(t3) = 2B
|sin t3| . (4.37)

Equation (4.33) shows that Y2 = O(1/
√

α), which together with (4.37) establishes that
the third yield surface cannot arise when

B � 1√
α

. (4.38)

Conversely, if B � 1/
√

α, then (4.37) implies that emanation of the third yield surface
occurs when Ŷ2 = Y2

√
α � 1. Small Ŷ2 occurs very shortly after the emanation of Y2

(see (4.34) and (4.35)), so t3 ≈ t2. That is, the rigid region between the second and third
yield surfaces is small.

Because the new yielded region associated with Y3(t) diffuses from the plate and is
unhindered by the free surface (due to high α), this yield surface follows a trajectory
identical to the particle paths of a semi-infinite Newtonian layer, i.e.

Y3(t) =
√

2
α

(t − t3). (4.39)

Equation (4.39) is shown as the green dotted line in figure 12. When Y2 and Y1 collide, Y3
becomes the new Y1, and its evolution changes qualitatively; this transition is manifested
in figure 12 as cusps in the arbitrary-B numerical solution.

When there are more than three yield surfaces, pairs of yield surfaces emanate at times
given by (4.34) and propagate from the plate with speed

√
2/α. This is analogous to the

behaviour in figure 9(b) for termination of the first and second yield surfaces, except that
these subsequent yield surfaces terminate near the plate.

4.4. Moderate-to-large yield stress: yield surface not close to the free surface
Next, we consider the high-frequency limit, α � 1, where the yield surface does not come
close to the free surface, i.e. Y � 1. This is imposed together with the condition that
the Bingham number B is of order 1, and B < 1. The boundary condition (3.8) at the
uppermost yield surface then becomes

∂uR

∂t
= ±B + o(1). (4.40)

Hence the inequality in (3.13) becomes an equality, and the condition for at most one yield
surface to exist, (3.16), becomes necessary and sufficient. That is, there is at most one
yield surface for B ≥ Bcritical = 0.5370, and there must be a time when there are two (or
more) yield surfaces for B < 0.5370 in this high-α limit. This feature is demonstrated in
figure 13(a).
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Figure 13. (a) Yield surfaces for α = 200 and four values of B (only one yield surface in the time evolution is
shown). (b) Yield surfaces for B = 0.4 and α = 50, 100, 200, 400, rescaled to demonstrate that Y ∼ 1/

√
α for

α � 1.

4.4.1. Only one yield surface exists (B > 0.5370)
The form of the governing equation for the yielded region, (2.10b), suggests the rescaling

ŷ = √
α y. (4.41)

Equation (2.10b) and its associated boundary conditions for the yielded region, which
make use of (4.40), then become

∂u
∂t

= ∂2u
∂ ŷ2 , (4.42)

with boundary conditions

∂u
∂t

∣∣∣∣
ŷ=Ŷ1

= ±B + o(1),
∂u
∂ ŷ

∣∣∣∣
ŷ=Ŷ1

= 0, (4.43a,b)

where Ŷ1 = √
α Y1, and

u|ŷ=0 = cos t. (4.44)

Equations (4.42)–(4.44) are independent of α, which is consistent with the arbitrary-B
numerical solution in figure 13(b). These equations constitute a Stefan problem with an
unknown free boundary Y1(t), which can be solved numerically for any value of B; see
Hinton et al. (2022).

The maximum free-surface velocity is um = ±1 when the Bingham number satisfies
B ≥ Bunity = 0.7246; see (3.19). For 0.5370 ≤ B < 0.7246, there is at most one yield
surface, and −1 < um < 1. In this case, the maximum free-surface speed occurs when
the yield surface collides with the plate; see § 3.3. The collision time satisfies (3.15), i.e.

cos tc =
√

1 − B2 − B(tc − sin−1 B). (4.45)

Hence the maximum (negative) free-surface velocity, um = cos tc, satisfies

um =
√

1 − B2 − B(cos−1 um − B sin−1 B) (4.46)

for 0.537 ≤ B < 0.7246.
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4.4.2. Two yield surfaces exist (B < 0.5370)
For B < 0.5370, (4.42)–(4.44) apply until a time when ∂u/∂ ŷ|ŷ=0 = 0, following which a
second yield surface emanates from the plate. Subsequently, the Stefan problem has two
free boundaries, and (4.44) is replaced by

u|ŷ=Ŷ2
= cos t,

∂u
∂ ŷ

∣∣∣∣
ŷ=Ŷ2

= 0, (4.47a,b)

where Ŷ2 is determined in an analogous fashion to Ŷ1.
The layer is never entirely rigid (cf. Property 3, § 3.2.3), and the velocity of the rigid

region (adjacent to the free surface) accelerates according to (4.40). Hence the maximum
free-surface velocity is (Balmforth et al. 2009)

um = ±Bπ

2
. (4.48)

5. Application to oscillatory rheometry

The theoretical results reported in this study can be used to measure the yield stress of
a viscoplastic material through a simple laboratory experiment using existing apparatus
(e.g. Norton, Spyropoulos & Cox 2010).

A layer of material of fixed height H with unknown yield stress is mobilised by
oscillating the plate on which it lies, in the plane of the plate. We consider the case
where periodic motion of the layer has been established (after any initial transients). The
relationship between the time series of the shearing force and the yield stress is illustrated
in figure 14. This shows the shear stress at the plate versus time, for several values of α and
B. The time variation of the shearing force required to move the plate in this oscillatory
fashion provides two key signatures associated with the yield stress.

(i) There is an abrupt change in the behaviour of the shear stress applied to the plate
– a discontinuity in its time derivative – associated with emanation and collision
of yield surfaces with the plate; cf. Hinton et al. (2022). Consequently, this abrupt
change occurs when the magnitude of the stress at the plate equals the yield stress,
see e.g. figure 14(e).

(ii) At high oscillation frequency (corresponding to α � 1), the applied shear stress
is dominated by contributions from the yield stress over viscous stresses. Hence
the maximum stress at the plate is given approximately by the yield stress; see
figure 14(c).

We assume that the material density ρ is known (via an independent measurement). We
then require the shearing force applied to the plate at a particular oscillation frequency ω,
and speed U0, to be measured. For example, this measurement could be achieved via the
current delivered to a mechanical actuator. Note that the shearing force applied to the plate
equals the product of the shear stress exerted by the yield-stress material and the plate area.

In the experiment, the (α, B) parameter space may be explored by varying ω and
U0, while keeping all other parameters constant (since α ∼ ω and B ∼ 1/(U0ω)). The
discontinuities in the slopes of the time series, which are prominent at large α, give the
yield stress; see figure 14. For large values of α (attained by increasing ω), this signature
of the yield stress in the shearing force is independent of the (possibly unknown) shear
viscosity μ for the Bingham material. Indeed, the dimensionless stress at the plate in the
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Figure 14. Shear stress at the plate, corresponding to figure 2. The horizontal dotted lines correspond to the
yield stress, τ = ±B.

high α regime is given by (see (4.20))

τ = ±B + 1√
α

sin(t − π/4) + o

(√
1
α

)
. (5.1)

Hence the method can be used for general viscoplastic materials because the role of the
plastic rheology can be made unimportant.

6. Conclusions

This study has exposited the dynamics of a layer of viscoplastic material atop a plate
executing sinusoidal in-plane oscillations. The periodic motion is governed by two
dimensionless groups: the oscillatory Reynolds number α, and the Bingham number B.
Yielding occurs for B < 1. Building upon the earlier work of Balmforth et al. (2009),
several new results have been reported (see also table 1).

(i) We have identified four key and general topological properties of the yield surfaces
in § 3.2.

(ii) These four properties apply to any viscoplastic constitutive model, including the
Herschel–Bulkley model.

(iii) Any rigid region always comes to incorporate the free surface of the layer (see
§ 3.2.2).
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(iv) The existence of multiple yield surfaces is equivalent to the layer never becoming
entirely rigid (see § 3.2.3).

(v) For B > 0.5370, there is at most a single yield surface (see § 3.2.4).
(vi) The yield stress of the layer is the primary property controlling the above-mentioned

qualitative behaviour; cf. Hinton et al. (2022).
(vii) The (α, B) parameter space has been dissected, identifying the dominant physical

mechanisms in each regime.
(viii) In general, a smaller proportion of the layer yields at larger values of α and B (see

e.g. figure 2).
(ix) For sufficiently small B and large α, any number of distinct rigid (or yielded) regions

can co-exist, and the dependency of the precise number of yield surfaces on the
parameters has been quantified (see (4.32)).

Finally, the theoretical findings of this study have been used to formulate an
experimental approach to measure the yield stress of a general viscoplastic material, using
conventional oscillatory rheometry apparatus (e.g. Norton et al. 2010).
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Appendix A. Time scale for the initial transient

In this appendix, we estimate the time taken for the layer to reach periodic motion, given
the initial condition in (2.3a–c), i.e. at time t = 0, the layer is stationary. This start-up
time, tstart, is proportional to the time for momentum to diffuse from the plate to the upper
edge of the yielded region (momentum diffusion across rigid regions is instantaneous). In
dimensional terms,

tstart ∼ ρH2
Y

μ
, (A1)

where HY is the maximum dimensional height of the yield surface during the periodic
motion. In dimensionless terms,

tstart ∼ αY2
max. (A2)

For a Newtonian fluid, Ymax = 1 and hence tstart ∼ α, as expected. In contrast, for a
yield-stress material, i.e. B > 0, the maximum height of the yield surface is Ymax < 1.
Equation (A2) then suggests that the time scale to reach periodic motion can be
reduced relative to that of a Newtonian fluid. It was shown in § 4 that Ymax ∼ α−1/2

in the high-frequency limit, α � 1, provided that the yield stress is not too small, i.e.
exp(−√

α/2) � B < 1, for which (A2) becomes

tstart ∼ 1. (A3)

Hence the time to reach periodic motion of a yield-stress material can indeed be much
shorter than that for a Newtonian fluid. This is because momentum is transferred quickly
by the predominantly rigid layer in this high-frequency limit.
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Moreover, the only parameter regime for which tstart greatly exceeds (A3) is when
0 < B � 1 and α � 1, i.e. vorticity is confined to the vicinity of the plate and the flow
is approximately Newtonian. We therefore conclude that the presence of a yield stress
accelerates convergence to periodic motion.

Appendix B. Newtonian solution

In this appendix, we recall the solution for a Newtonian fluid, i.e. B = 0. The
corresponding periodic velocity field, u ≡ uN , is (Liu 2008)

uN = cos t + 2
π

∞∑
n=0

sin
([

n + 1
2

]
πy

)
(

n + 1
2

)(
1 + π4

α2

[
n + 1

2

]4
) (

1
α

[
n + 1

2

]2
sin t − cos t

)
. (B1)

The analysis in § 4 requires the following temporal and spatial derivatives.
First, the free-surface acceleration is

∂uN

∂t

∣∣∣∣
y=1

= − sin t + 2
π

∞∑
n=0

(−1)n(
n + 1

2

)(
1 + π4

α2

[
n + 1

2

]4
) (

1
α

[
n + 1

2

]2
cos t + sin t

)
,

(B2)
which can be expressed in closed form as

∂uN

∂t

∣∣∣∣
y=1

= − sin(t − σ)

√
2

cos
√

2α + cosh
√

2α
, (B3)

where σ is defined in (4.8).
The velocity gradient of the layer at the plate surface is

∂uN

∂y

∣∣∣∣
y=0

= 2
∞∑

n=0

1

1 + K4
n

α2

[(
K2

n

α

)
sin t − cos t

]
+ o(1), (B4)

where Kn = (n + 1/2)π, and has the closed form

∂uN

∂y

∣∣∣∣
y=0

=
√

α sin2 √
2α + α sinh2 √

2α

cos
√

2α + cosh
√

2α
sin(t − γ ), (B5)

where γ is given by (4.13).
In the small-frequency limit, α � 1, (B1) becomes

uN = cos t + O(α), (B6)

while for high frequency, α � 1, the asymptotic solution is (Stokes 1851)

uN = cos
(

t −
√

α

2
y
)

exp
(

−
√

α

2
y
)

+ O
(

1
α

)
. (B7)
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Figure 15. (a) Velocity u( y, t) at t = 0, π/8, 2π/8, 3π/8, 4π/8, 5π/8, 6π/8, 7π/8 for α = 1 and B = 0.5.
(b) Location of the yield surface for α = 1 and B = 0.9, 0.7 and 0.5. The red dashed lines show the asymptotic
prediction (C14). (c) Difference between the velocity of the plate and the free surface for α = 1 and B = 0.5
and 0.7. The red dashed lines show the asymptotic prediction (C15).

Appendix C. Predominantly rigid regime

If the yield criterion is just exceeded, i.e. B = 1−, then the layer is rigid over most of the
oscillation period, except near time t = π(n + 1/2), where n ∈ Z, where the magnitude of
the shear stress is largest; see figures 2(a) and 15. There is only one yield surface in this
regime, at any given time t, i.e. Y(t) = Y1(t). To proceed, we define

δ = 1 − B, (C1)

where 0 < δ � 1. The onset of yielding is given by (3.4), which becomes

|sin t| = 1 − δ. (C2)

The solution to (C2) motivates the time rescaling

t =
(

n + 1
2

)
π + T, (C3)

involving the residual time T � 1. Substituting (C3) into (C2) and expanding the result
for small T gives the required time interval when yielding (flow) occurs:

|T| ≤
√

2δ

(
1 + δ

12
+ o(δ)

)
. (C4)

Substituting (C3) and (C4) into (2.9) gives the boundary condition

∂τ

∂y

∣∣∣∣
y=0

= (−1)n+1
(

1 − T2

2
+ o (δ)

)
, (C5)
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with τ |y=1 = 0, whereas the equation of motion in the layer is

∂2τ

∂y2 = 0, for Y ≤ y ≤ 1, (C6a)

∂2τ

∂y2 = α
∂τ

∂t
, for 0 ≤ y < Y. (C6b)

The leading-order solution (independent of T) to this system of equations is

τ = (−1)n(1 − y) + o(1). (C7)

Because the stress at the yield surface, y = Y , is |τ | = B = 1 − δ, it then follows from
(C7) that Y = O(δ).

We next examine the velocity field in the yielded region, i.e. 0 ≤ y < Y , and rescale the
y-coordinate to be order unity in that region, i.e. ŷ ≡ y/δ. Because T = O(

√
δ), we define

the rescaled time T̂ ≡ T/
√

δ, and expand the rescaled yield surface position Ŷ ≡ Y/δ and
the velocity field u in the small parameter

√
δ, i.e.

u =
∞∑

n=0

δn/2un, Ŷ =
∞∑

n=0

δn/2Ŷn, (C8a,b)

where un and Ŷn are functions of time that are to be determined. The equation of motion
for the velocity field in the yielded region, (C6b), becomes

αδ3/2 ∂u

∂T̂
= ∂2u

∂ ŷ2 , (C9)

with the plate velocity specifying the boundary condition at ŷ = 0:

u(0, T̂) = −δ1/2T̂ + δ3/2 T̂3

6
+ o(δ2). (C10)

The remaining boundary conditions at the position of the yield surface ŷ = Ŷ are derived
by expanding in small δ. Equations (3.9) and (3.8) then respectively give

∂

∂ ŷ

[
u + δ1/2Ŷ1

∂u
∂ ŷ

+ o(δ1/2)

]∣∣∣∣
ŷ=Ŷ0

= 0, (C11a)

δ−1/2 ∂

∂T̂

[
u + δ1/2Ŷ1

∂u
∂ ŷ

+ o(δ1/2)

]∣∣∣∣
ŷ=Ŷ0

= − sgn

(
∂u
∂ ŷ

∣∣∣∣
ŷ=Ŷ0

)[
1 + δ(Ŷ0 − 1) + δ3/2Ŷ1 + o(δ3/2)

]
, (C11b)

where the left-hand side is of order δ−1/2, and the right-hand side is of order unity. The
first four terms in the expansion for u, defined in (C8a,b), simply match the plate velocity
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A layer of yield-stress material on an oscillating plate

and automatically satisfy (C9)–(C11b):

u0 = 0, u1 = −T, u2 = 0, u3 = T3

6
. (C12a–d)

The fifth term deviates from the plate velocity and is found to be

u4 = α

2

(
2Ŷ0 − ŷ

)
ŷ, (C13)

where we have not yet used the third boundary condition, (C11b). Applying this condition
then furnishes the yield surface location as

Ŷ0 =
(

1 − T2

2

)
, (C14)

with Ŷ1 = αT Ŷ0. Note that (C14) is identical to (4.3) in the limit B → 1−, as expected.
The plate velocity, i.e. u|ŷ=0 = O(δ1/2), is small in the time interval within which

yielding occurs. Our small-δ (i.e. B → 1−) asymptotic solution for the yield surface,
(C14), shows good agreement with the arbitrary-B numerical solution; see figure 15(b).
The velocity of the rigid region differs from the plate velocity at O(δ2), with

uR − cos t = ±αδ2

2

(
1 − T2

2

)2

+ o(δ2), (C15)

which shows good agreement with the arbitrary-B numerical solution in figure 15(c).
The analysis in this appendix is not valid when the Stokes number is α � δ−1/2, because

the series expansion for Ŷ in (C8a,b) is non-asymptotic in that limit; namely, the second
term, δ1/2Ŷ1, is of similar magnitude to the first term, Ŷ0. The behaviour for larger α is
discussed in § 4.4.

Appendix D. Dynamics of a single yield surface during its emanation and collision

For the case where at most one yield surface exists, we examine the dynamics of the layer
immediately following emergence of this yield surface and just before its collision with
the plate.

D.1. Immediately following emergence of the yield surface
This yield surface emerges at time ty = sin−1 B + nπ, following which the yield surface
is close to the plate, and we write

t = ty + ε t̃, ( y, Y) = ε(ỹ, Ỹ), u = u0 + εu1 + ε2u2 + O(ε3), (D1a–c)

where ε � 1. The governing equation for this yielded region is

ε
∂u
∂ t̃

= 1
α

∂2u
∂ ỹ2 , (D2)

whose boundary conditions are

u|ỹ=0 = (−1)n
√

1 − B2 + (−1)n+1εBt̃ + (−1)n+1ε2
√

1 − B2 t̃2

2
+ O(ε3),

∂u
∂ ỹ

∣∣∣∣
ỹ=Ỹ

= 0,
∂u
∂ t̃

∣∣∣∣
ỹ=Ỹ

= (−1)n+1εB(1 + εỸ) + O(ε3).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(D3)
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Figure 16. Yield surface for α = 10 and B = 0.6 calculated using the arbitrary-B numerical solution (black
curve). The asymptotic solutions of Appendix D, for emanation and collision of the yield surface, are shown
as red curves. The collision time is tc = 3.09 (calculated using the arbitrary-B numerical solution), from which
we find ηY = 1.70.

The solution to (D1a–c)–(D3) takes the form

u0 = (−1)n
√

1 − B2, u1 = (−1)n+1Bt̃,

u2 = (−1)nBαỹ
(

Ỹ − ỹ
2

)
(−1)n+1

√
1 − B2 t̃2

2
,

Ỹ = 1
2α

⎛
⎝
√

1 + 4α
√

1 − B2

B
− 1

⎞
⎠ t̃.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D4)

Hence the yield surface position varies linearly with time, whilst the velocity difference
between the rigid material and the plate grows quadratically with time, immediately
following yielding. Equations (D4) are compared to the arbitrary-B numerical solution
in figure 16.

D.2. Just before collision of the yield surface with the plate
We next analyse the dynamics of the layer just before collision of the yield surface with
the plate at time t = tc. Expanding the material velocity at the plate position about this
collision time gives

u|y=0 = cos tc + (tc − t) sin tc + O((tc − t)2). (D5)

The resulting velocity of the yielded region is of a similar form, given by

u = cos tc + B(tc − t) f (η) + O((tc − t)2), (D6)

where the function f (η) is to be determined, and

η = y
√

α√
tc − t

. (D7)

Accordingly, the rescaled position of the yield surface is

ηY = Y1(t)
√

α√
tc − t

. (D8)
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A layer of yield-stress material on an oscillating plate

Substituting (D6) into (2.10b) gives

f ′′ − η

2
f ′ + f = 0, (D9)

with boundary conditions (2.8a), (3.9) and (3.8) providing

f (0) = 1
B

sin tc, f (ηY) = 1, f ′(ηY) = 0. (D10a–c)

Equation (D9) and the second and third boundary conditions in (D10a–c) give

f (η) = 1
4

e−(η2
Y/4)

{
2ηηY eη2/4 + (2 − η2)

(
2 eη2

Y/4 + √
π ηY

[
erfi

(η

2

)
− erfi

(ηY

2

)])}
,

(D11)
with the first boundary condition in (D10a–c) giving

√
π ηY

2
e−(η2

Y/4)erfi
(ηY

2

)
= 1 − 1

B
sin tc. (D12)

Equations (D5) and (D6) show that the velocity difference between the rigid region
above the yield surface and the plate decays linearly in time. Simultaneously, (D8)
establishes that the yield surface height Y1 decays in proportion to

√
tc − t, in contrast

to the behaviour immediately after yielding, which follows a linear time dependence, as
per (D4). This difference in time dependence of the yield surface position, at emanation
and collision, is associated with the unsteadiness of the motion, whose magnitude is
proportional to α.

The asymptotic theory for evolution of the yield surface just prior to collision, (D8), is
compared to the arbitrary-B numerical solution in figure 16. Evolution of the yield surface
at emanation and collision becomes symmetric in time for small α; see figure 2. This
symmetric time dependence is not captured by the present asymptotic theories because
(D8) becomes invalid as α → 0; this regime is discussed in more detail in § 4.1.

Appendix E. Collision of two yield surfaces away from the plate

The dynamics of two yield surfaces that collide at time t = tc, with collision height Yc > 0,
can be analysed using the asymptotic theory of Appendix D. This involves adjustment of
(D6) and (D7) for the velocity of the yielded region to

u = cos tc + B
1 − Yc

(tc − t) f (η), (E1)

where

η = ( y − Yc)
√

α√
tc − t

. (E2)

The governing equation for the similarity function f (η) and its boundary conditions for
the upper yield surface at η = ηY1 ≡ ( y − Y1)

√
α/(tc − t) remain unchanged, giving the

same general solution, (D11). There are two boundary conditions at the lower yield surface,
whose position is η = ηY2 ≡ ( y − Y2)

√
α/(tc − t), which arise from continuity of the

velocity and velocity gradient across the yield surface, i.e.

f (ηY2) = 1
B

(1 − Yc) sin tc, f ′(ηY2) = 0. (E3)

Substituting (D11) into (E3) gives two transcendental equations for ηY1 and ηY2 . Note
that the vertical height of the yielded region reduces in proportion to

√
tc − t, whilst the
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velocity difference between the upper rigid region and the plate decreases linearly in time,
as for a single yield surface in Appendix D.
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