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Abstract
Almost stochastic dominance has been receiving a great amount of attention in the financial and economic literatures.
In this paper, we characterize the properties of almost first-order stochastic dominance (AFSD) via distorted
expectations and investigate the conditions under which AFSD is preserved under a distortion transform. The main
results are also applied to establish stochastic comparisons of order statistics and receiver operating characteristic
curves via AFSD.

1. Introduction

Since the pioneering contribution of Hanoch and Levy [14], stochastic dominance (SD) theory has
become an important tool for comparing risks, which provides a systematic and efficient standard
paradigm for analyzing people’s decision-making behavior under uncertainty. SD theory is consistent
with expected utility theory, but it does not require a specific utility function. It uses the whole probability
distribution rather than some common numerical characteristics such as mean and standard derivation.
SD theory has been well-developed, and there are hundreds of papers on SD and its applications (see,
e.g., [13,28]). The most popular notions of SD in practical applications are the first-order stochastic
dominance (FSD) and the second-order stochastic dominance (SSD). They both possess some simple
and tractable properties such as equivalent criteria based on integral conditions and probability transfer
[19,24].

Although SD theory is attractive, some related literatures have shown that its practical application
scope is very limited [1]. The dominance relation between risky prospects 𝐹 and 𝐺 fails to hold even in
the situation that the vast majority of investors would prefer 𝐹 over𝐺 (𝐹 is almost entirely below𝐺). To
provide a standard for comparing this kind of risks and reveal a preference for “most” decision makers,
Leshno and Levy [17] extended the SD theory to almost stochastic dominance (ASD) by eliminating
pathological preferences. Bali et al. [3] illustrated that ASD can unambiguously explain some decision-
making behaviors of investors, such as a higher stock to bond ratio for the long-term investment. Up to
now, ASD has played an important role in a number of fields, especially in insurance and finance, and
drawn many important applications [10,18,21,31].

In recent literatures, some papers connected distorted distributions with stochastic comparisons (see,
e.g., [5,16,24,30]). A function 𝐻 from [0, 1] to [0, 1] is called a distortion function if 𝐻 is increasing,
and satisfies 𝐻 (0) = 0 and 𝐻 (1) = 1. Let 𝑋 be a random variable on an atomless probability space
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(Ω,ℱ, 𝑃), with cumulative distribution function (cdf) 𝐹. The distorted distribution function of 𝐹
is defined by 𝐻 ◦ 𝐹, which can be regarded as the cdf of some random variable 𝑋𝐻 if 𝐻 is right
continuous. Generally, the distorted function 𝐻 is interpreted as a subjective weight of the original cdf
𝐹, and reflects the risk attitude of decision makers [35]. Intuitively, a concave 𝐻 attaches more weight
to smaller expenses, conforming to the idea of risk aversion. Yaari [35] firstly applied the distorted
distribution function in dual theory of choice under risk, and some researchers proved that some SD
rules via expected utility theory can be characterized through the distortion transform [20,24]. For more
applications of distortions in insurance and actuarial science, see, for example, Wang [32] and Denuit
et al. [5].

In this paper, we devote to further develop of ASD theory and its applications in the fields of reliability
theory and biostatistics. Throughout, a distortion function 𝐻 is always assumed to be right continuous.
The risk of 𝑋 is valued as its distorted expectation E𝐻 (𝑋), defined by

E𝐻 (𝑋) =
∫ ∞

−∞
𝑥 d𝐻 ◦ 𝐹 (𝑥) =

∫ 1

0
𝐹−1(𝑢) d𝐻 (𝑢), (1.1)

where 𝐹−1(𝑢) = inf{𝑥 : 𝐹 (𝑥) ≥ 𝑢} for 𝑢 ∈ [0, 1]. Let ℒ = {𝑋 : 𝑋 is a random variable on (Ω,ℱ, 𝑃)}.
Some researchers have investigated the equivalent characterizations of classical SD rules based on
distortion expectation. For any random variable 𝑋𝑖 ∈ ℒ, 𝑖 = 1, 2, Levy and Wiener [20] proved that 𝑋1
is greater than 𝑋2 in FSD, if and only if, for all distortion functions 𝐻,

E𝐻 (𝑋1) ≥ E𝐻 (𝑋2). (1.2)

Levy and Wiener [20] also proposed that 𝑋1 is greater than 𝑋2 in SSD if and only if (1.2) holds for all
convex distortion functions 𝐻. Wang and Young [34] showed that 𝑋1 is greater than 𝑋2 in increasing
convex order if and only if (1.2) holds for all concave distortion functions 𝐻. These results are very
meaningful since many good risk measures can be expressed as the expectations of the distorted
distributions. Although FSD, SSD and increasing convex order can all be characterized via distorted
expectations, it is not true in general for ASD because SD rules are defined by integrated distributions,
whereas distorted expectations are related to integrated quantiles [23]. We will explore the equivalent
characterizations of AFSD rules based on distorted expectations, and find that, for any 0 < 𝜀 < 1/2, 𝑋1
is greater than 𝑋2 in 𝜀-AFSD is equivalent to the condition (1.2) for all distortion functions 𝐻 in a certain
class of distortion functions. Furthermore, we use this main result to derive some other properties of
AFSD under distortion transform.

The paper is organized as follows. In Section 2, we recall the definition of AFSD and illustrate
that AFSD does not possess invariance under increasing concave or convex transforms. The main
characterization result of AFSD via distorted expectation is given in Section 3.1. The other properties
of AFSD under distortion transform are listed in Section 3.2. The main results in Section 3 are applied
to establish stochastic comparisons of order statistics and ROC curves via AFSD in Section 4.

2. Almost stochastic dominance and distorted expectation

2.1. Almost stochastic dominance

We begin by introducing some notations. Let 𝑋𝑖 denote the random asset with cdf 𝐹𝑖 , 𝑖 = 1, 2, and let
𝒰 be the set of all differentiable utility functions on R. For 0 < 𝜀 < 1/2, define

𝒰𝜀
1 =

{
𝑈 | 𝑈 ∈ 𝒰,𝑈 ′(𝑥) ≤ inf

𝑥∈R
{𝑈 ′(𝑥)}

[
1
𝜀
− 1

]
, for all 𝑥 ∈ R

}
.

Throughout, denote 𝑥+ = max{𝑥, 0} for any 𝑥 ∈ R, and define ‖𝜑‖ =
∫ ∞
−∞ |𝜑(𝑥) | d𝑥 for any function

𝜑 : R→ R. We recall the definition of AFSD.
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Table 1. The distribution of 𝑋1.

The values of 𝑋1 0 1 2

Probabilities 1/16 3/16 3/4

Table 2. The distribution of 𝑋2.

The values of 𝑋2 1 2

Probabilities 9/16 7/16

Definition 2.1 [17]. We say that 𝑋2 is dominated by 𝑋1 in 𝜀-AFSD, denoted by 𝑋1 ≥𝜀-AFSD 𝑋2 or
𝐹1 ≥𝜀-AFSD 𝐹2, if and only if

(i) E[𝑈 (𝑋1)] ≥ E[𝑈 (𝑋2)] for all𝑈 ∈ 𝒰𝜀
1 , or

(ii) ‖(𝐹1 − 𝐹2)+‖ ≤ 𝜀 ‖ 𝐹1 − 𝐹2 ‖.

FSD can be regarded as 𝜀-AFSD with 𝜀 = 0. Levy and Wiener [20] studied FSD and SSD through
distorted expectations and investigated the classes of distortion functions that preserve FSD and SSD.
In this paper, we will mainly study the properties of AFSD under distortion transforms. It should be
mentioned that AFSD does not possess invariance under increasing convex or concave transforms. Let
us see the following two examples.

Example 2.1. Assume that 𝑋1 and 𝑋2 are two random variables with respective probability mass
functions 𝐹1 and 𝐹2 described by Tables 1 and 2.

Hence,

𝐹1(𝑥) − 𝐹2(𝑥) =
⎧⎪⎪⎨⎪⎪⎩

1/16, 0 ≤ 𝑥 < 1,
−5/16, 1 ≤ 𝑥 < 2,
0, 𝑥 ≥ 2.

Thus, 𝑋1 dominates 𝑋2 in terms of 𝜀-AFSD, if and only if,

𝜀 ≥ ‖(𝐹1 − 𝐹2)+‖
‖𝐹1 − 𝐹2‖

=
1
6
,

that is, 1/6 ≤ 𝜀 < 1/2. Choose the distortion function 𝐻 (𝑢) = √
𝑢, which is increasing and concave on

[0, 1]. Then,

𝐻 ◦ 𝐹1 (𝑥) − 𝐻 ◦ 𝐹2 (𝑥) =
⎧⎪⎪⎨⎪⎪⎩

1/4, 0 ≤ 𝑥 < 1,
−1/4, 1 ≤ 𝑥 < 2,
0, 𝑥 ≥ 2.

Hence, ‖(𝐻 ◦𝐹1−𝐻 ◦𝐹2)+‖ = 1/4 and ‖𝐻 ◦𝐹1−𝐻 ◦𝐹2‖ = 1/2. Thus, for any 0 < 𝜀 < 1/2, it holds that

𝜀 <
‖(𝐻 ◦ 𝐹1 − 𝐻 ◦ 𝐹2)+‖
‖𝐻 ◦ 𝐹1 − 𝐻 ◦ 𝐹2‖

=
1
2
.

That is, 𝑋𝐻
1 does not dominate 𝑋𝐻

2 in 𝜀-AFSD.

Example 2.2. Assume that 𝑋1 and 𝑋2 are two random variables with respective probability mass
functions 𝐹1 and 𝐹2 described by Tables 3 and 4.
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Table 3. The distribution of 𝑋1.

The values of 𝑋1 1 2

Probabilities 3/4 1/4

Table 4. The distribution of 𝑋2.

The values of 𝑋2 0 1 2

Probabilities 1/2 1/6 1/3

Then,

𝐹1 (𝑥) − 𝐹2 (𝑥) =
⎧⎪⎪⎨⎪⎪⎩
−1/2, 0 ≤ 𝑥 < 1,
1/12, 1 ≤ 𝑥 < 2,
0, 𝑥 ≥ 2.

Hence, ‖(𝐹1 − 𝐹2)+‖ = 1/12 and ‖𝐹1 − 𝐹2‖ = 7/12. Thus, 𝑋2 is dominated by 𝑋1 in 𝜀-AFSD, if and
only if,

𝜀 ≥ ‖(𝐹1 − 𝐹2)+‖
‖𝐹1 − 𝐹2‖

=
1
7
,

that is, 1/7 ≤ 𝜀 < 1/2. Let 𝐻 (𝑢) = 𝑢2, which is increasing and convex on [0, 1]. Then,

𝐻 ◦ 𝐹1 (𝑥) − 𝐻 ◦ 𝐹2 (𝑥) =
⎧⎪⎪⎨⎪⎪⎩
−1/4, 0 ≤ 𝑥 < 1,
17/144, 1 ≤ 𝑥 < 2,
0, 𝑥 ≥ 2.

Hence, ‖(𝐻 ◦ 𝐹1 − 𝐻◦2)+‖ = 17/144 and ‖𝐻 ◦ 𝐹1 − 𝐻 ◦ 𝐹2‖ = 53/144. Then, for 𝜀 = 16/53,

𝜀 <
‖(𝐻 ◦ 𝐹1 − 𝐻 ◦ 𝐹2)+‖
‖𝐻 ◦ 𝐹1 − 𝐻 ◦ 𝐹2‖

=
17
53
.

That is, 𝑋𝐻
1 does not dominate 𝑋𝐻

2 in 16/53-AFSD.

2.2. Distorted expectation

Distorted expectation is very important in the statistical, financial and economic literatures. Suppose
that 𝑋 is a random variable with cdf 𝐹 (𝑥) and 𝐻 is a right continuous distortion function that leads to
a distorted probability measure 𝐻 ◦ 𝐹. It can be shown that the Choquet integral of a random variable
𝑋 , with respect to a distortion function 𝐻, is equivalent to the expectation of the variable 𝑋 under the
distorted distribution 𝐻 ◦ 𝐹:

𝐸𝐻 (𝑋) =
∫ ∞

−∞
𝑥 d𝐻 ◦ 𝐹 (𝑥)

= −
∫ 0

−∞
𝐻 ◦ 𝐹 (𝑥) d𝑥 +

∫ ∞

0
(1 − 𝐻 ◦ 𝐹 (𝑥)) d𝑥.

In finance and insurance, the Choquet integral with the distortion function has been proposed to
measure risks [33]. For any nonnegative random variable 𝑋 such as loss, depending on the chosen
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distortion function, different distorted risk measures are obtained. When 𝐻 (𝑢) = 1− (1−𝑢)𝑛, 𝑢 ∈ [0, 1],
for a positive integer 𝑛, we obtain

E𝐻 (𝑋) =
∫ ∞

0
[1 − 𝐹 (𝑥)]𝑛 d𝑥,

which is the generalized Gini index introduced by Donaldson and Weymark [6]. When

𝐻1(𝑢) =
{

0, if 0 ≤ 𝑢 < 𝛼
1, if 𝛼 ≤ 𝑢 ≤ 1 ,

for any 0 ≤ 𝛼 ≤ 1, we obtain

E𝐻1 (𝑋) =
∫ ∞

0
[1 − 𝐻 ◦ 𝐹 (𝑥)] d𝑥 = 𝐹−1(𝛼)

which is the expression of the popular risk measure VaR𝛼 (Value-at-Risk at confidence level 𝛼). Let
𝐻 (𝑢) = 1−𝐻 (1−𝑢), 𝑢 ∈ [0, 1], denote the dual distortion function of 𝐻. In insurance, E𝐻 (𝑋) has been
proposed to measure the risk and compute risk premiums of 𝑋 , see Wang [32,33] and Denuit et al. [5].

Let ℋ be the class of all distortion functions. For 𝐻 ∈ ℋ, define

𝐻 ′
+ (1) = lim

𝑢→1−
𝐻 (𝑢) − 1
𝑢 − 1

and

𝐻 ′
+ (𝑢) = lim

�𝑢→0+
𝐻 (𝑢 + �𝑢) − 𝐻 (𝑢)

�𝑢 , 𝑢 ∈ [0, 1).

For 0 < 𝜀 < 1/2, set

ℋ𝜀
1 =

{
𝐻 | 𝐻 ∈ ℋ, 𝐻 ′

+ (𝑢) ≤ inf
𝑢∈[0,1]

{𝐻 ′
+ (𝑢)}

[
1
𝜀
− 1

]
, for all 𝑢 ∈ [0, 1]

}
. (2.1)

It is clear that 𝐻1 ∈ ℋ𝜀
1 , and some piece-wise linear distortion functions without differentiability

provided by Balbás et al. [2] are also included in ℋ𝜀
1 , for example:

𝐻2(𝑢) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
3
𝑢, if 0 ≤ 𝑢 < 1

3
4
3
𝑢 − 1

3
, if

1
3
≤ 𝑢 ≤ 1

.

For any 𝐻 ∈ ℋ𝜀
1 , the distorted expectation 𝐸𝐻 (·) as risk measure, has some good properties such as law

invariance, translation invariance, positive homogeneity and monotonicity. However, subadditivity does
not necessarily satisfied because the distortion function 𝐻 ∈ ℋ𝜀

1 is not convex. The famous Kusuoka
representation shows that under an atomless probability space, any law invariant coherent risk measure
is a supremum of distorted expectations with convex distortions [8], Section 4.6] and one necessarily
has a distorted expectation under additional assumption of being comonotone additive. In addition,
subadditivity is not necessarily satisfied. The reader can see the next example.

Example 2.3. Suppose that identically distributed Bernoulli random variables 𝑋1 and 𝑋2 with the
discrete joint distribution given in Table 5.
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Table 5. Joint distribution of 𝑋1 and 𝑋2.

The values of (𝑋1, 𝑋2) (0, 0) (0, 1) (1, 0) (1, 1)

Probabilities 1
2

1
8

1
8

1
4

Assume that distortion function 𝐻 is as follows:

𝐻 (𝑢) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑢 + 3

8
)2 − 9

64
, if 0 ≤ 𝑢 < 5

8
,

3
8
𝑢 + 5

8
, if

5
8
≤ 𝑢 ≤ 1.

Clearly, 𝐻 ∈ ℋ𝜀
1 where 0 < 𝜀 ≤ 3

19 . The distorted expectation are

E𝐻 (𝑋1 + 𝑋2) = 15
32
,

and

E𝐻 (𝑋1) = E𝐻 (𝑋2) = 9
64
.

Thus, we obtain
E𝐻 (𝑋1 + 𝑋2) > E𝐻 (𝑋1) + E𝐻 (𝑋2).

It is well known that the distorted risk measure with convex distortions preserves some popular
stochastic dominance. In this paper, we will investigate the isotonicity of the distorted expectation with
distortion function 𝐻 ∈ ℋ𝜀

1 under some stochastic dominances to develop the dual theory of choice
under risk.

3. Main results

In this section, we characterize AFSD via distorted expectation, and then investigate the properties of
AFSD under distortion transforms.

3.1. Characterization of AFSD via distorted expectations

In this subsection, we first show that the distorted expectation is isotonic under AFSD by using the
following Lemma 3.1.

Lemma 3.1. For any 0 < 𝜀 < 1/2, 𝑋1 ≥𝜀-AFSD 𝑋2 if and only if∫ 1

0
[𝐹−1

2 (𝑢) − 𝐹−1
1 (𝑢)]+ d𝑢 ≤ 𝜀

∫ 1

0
|𝐹−1

1 (𝑢) − 𝐹−1
2 (𝑢) | d𝑢. (3.1)

Proof. Note that

‖𝐹1 − 𝐹2‖ =
∫ 1

0
|𝐹−1

1 (𝑢) − 𝐹−1
2 (𝑢) | d𝑢

and

‖(𝐹1 − 𝐹2)+‖ =
∫ 1

0
[𝐹−1

2 (𝑢) − 𝐹−1
1 (𝑢)]+ d𝑢.

The desired result now follows directly. �
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Theorem 3.2. For 0 < 𝜀 < 1/2, the following two statements are equivalent:

(i) 𝑋1 ≥𝜀-AFSD 𝑋2;
(ii) E𝐻 [𝑋1] ≥ E𝐻 [𝑋2] for all 𝐻 ∈ ℋ𝜀

1 .

Proof. (i) ⇒ (ii): From Lemma 3.1, we have, for any 0 < 𝜀 < 1/2, 𝑋1 ≥𝜀-AFSD 𝑋2 if and only if∫ 1

0
[𝐹−1

2 (𝑢) − 𝐹−1
1 (𝑢)]+ d𝑢 ≤ 𝜀

1 − 𝜀
∫ 1

0
[𝐹−1

1 (𝑢) − 𝐹−1
2 (𝑢)]+ d𝑢. (3.2)

Thus, for any 𝐻 ∈ ℋ𝜀
1 ,

E𝐻 (𝑋1) − E𝐻 (𝑋2)

=
∫ 1

0
𝐹−1

1 (𝑢) d𝐻 (𝑢) −
∫ 1

0
𝐹−1

2 (𝑢) d𝐻 (𝑢)

=
∫ 1

0
[𝐹−1

1 (𝑢) − 𝐹−1
2 (𝑢)]+ d𝐻 (𝑢) −

∫ 1

0
[𝐹−1

2 (𝑢) − 𝐹−1
1 (𝑢)]+ d𝐻 (𝑢)

=
∫ 1

0
[𝐹−1

1 (𝑢) − 𝐹−1
2 (𝑢)]+𝐻 ′

+ (𝑢) d𝑢 −
∫ 1

0
[𝐹−1

2 (𝑢) − 𝐹−1
1 (𝑢)]+𝐻 ′

+ (𝑢) d𝑢

≥
∫ 1

0
[𝐹−1

1 (𝑢) − 𝐹−1
2 (𝑢)]+𝐻 ′

+ (𝑢) d𝑢 − inf
𝑢∈[0,1]

{𝐻 ′
+ (𝑢)}

1 − 𝜀
𝜀

∫ 1

0
(𝐹−1

2 (𝑢) − 𝐹−1
1 (𝑢))+ d𝑢

≥ inf
𝑢∈[0,1]

{𝐻 ′
+ (𝑢)}

{∫ 1

0
[𝐹−1

1 (𝑢) − 𝐹−1
2 (𝑢)]+ d𝑢 − 1 − 𝜀

𝜀

∫ 1

0
[𝐹−1

2 (𝑢) − 𝐹−1
1 (𝑢)]+ d𝑢

}
≥ 0.

That is, E𝐻 (𝑋1) ≥ E𝐻 (𝑋2).
(ii) ⇒ (i): Define a distortion function 𝐻 with right derivative

𝐻 ′
+ (𝑢) =

{ (1 − 𝜀)/𝜀, for 𝐹−1
2 (𝑢) > 𝐹−1

1 (𝑢),
1, for 𝐹−1

2 (𝑢) ≤ 𝐹−1
1 (𝑢).

It is easy to verify that 𝐻 ∈ ℋ𝜀
1 . Thus,

E𝐻 (𝑋1) − E𝐻 (𝑋2) =
∫ 1

0
[𝐹−1

1 (𝑢) − 𝐹−1
2 (𝑢)]+𝐻 ′

+ (𝑢) d𝑢 −
∫ 1

0
[𝐹−1

2 (𝑢) − 𝐹−1
1 (𝑢)]+𝐻 ′

+ (𝑢) d𝑢

=
∫ 1

0
[𝐹−1

1 (𝑢) − 𝐹−1
2 (𝑢)]+ d𝑢 − 1 − 𝜀

𝜀

∫ 1

0
[𝐹−1

2 (𝑢) − 𝐹−1
1 (𝑢)]+ d𝑢.

Hence, for all 𝐻 ∈ ℋ𝜀
1 , E𝐻 (𝑋1) ≥ E𝐻 (𝑋2) implies (3.2). That is, 𝑋1 ≥𝜀-AFSD 𝑋2. This completes the

proof of the theorem. �

3.2. Properties under distortion transform

Levy and Wiener [20] studied the closure of SD under a distortion transform on the space of distribution
functions. They found that all distortion functions preserve FSD, whereas only concave distortion
functions preserve SSD. In this subsection, we will prove that under the proper conditions, the 𝜀-AFSD
is also preserved under a distortion transform.

Proposition 3.3. For any 0 < 𝜀, 𝜀1 < 1/2 such that 0 < 𝜀/𝜀1 < 1/2, we have

𝑋1 ≥𝜀-AFSD 𝑋2 =⇒ 𝑋𝐻
1 ≥(𝜀/𝜀1)-AFSD 𝑋𝐻

2 , for all 𝐻 ∈ ℋ𝜀1
1 .
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Proof. From Theorem 3.2, it follows that 𝑋𝐻
1 ≥(𝜀/𝜀1)-AFSD 𝑋

𝐻
2 if and only if Eℎ [𝑋𝐻

1 ] ≥ Eℎ [𝑋𝐻
2 ] for

all ℎ ∈ ℋ
𝜀/𝜀1

1 , that is,
∫ 1

0
𝐹−1

1 (𝐻−1(𝑢)) dℎ(𝑢) ≥
∫ 1

0
𝐹−1

2 (𝐻−1(𝑢)) dℎ(𝑢) (3.3)

holds. Set 𝐻−1(𝑢) = 𝑣, then (3.3) reduces to∫ 1

0
𝐹−1

1 (𝑣) dℎ ◦ 𝐻 (𝑣) ≥
∫ 1

0
𝐹−1

2 (𝑣) dℎ ◦ 𝐻 (𝑣). (3.4)

Hence, to prove that (3.4) holds for all ℎ ∈ ℋ
𝜀/𝜀1

1 , it suffices to verify ℎ ◦ 𝐻 ∈ ℋ𝜀
1 . Since ℎ ∈ ℋ

𝜀/𝜀1
1

and 𝐻 ∈ ℋ𝜀1
1 , for 𝑣 ∈ [0, 1], we have

(ℎ ◦ 𝐻)′+(𝑣) = ℎ′+ (𝐻 (𝑣)) · 𝐻 ′
+ (𝑣)

≤ inf{ℎ′+ (𝐻 (𝑣))}
[ 𝜀1

𝜀
− 1

]
· inf{𝐻 ′

+ (𝑣)}
[

1
𝜀1

− 1
]

≤ inf{ℎ′+ (𝐻 (𝑣)) · 𝐻 ′
+ (𝑣)} ·

(𝜀1 − 𝜀)(1 − 𝜀1)
𝜀𝜀1

≤ inf{(ℎ ◦ 𝐻)′+(𝑣)} ·
𝜀1 − 𝜀
𝜀𝜀1

≤ inf{(ℎ ◦ 𝐻)′+(𝑣)} ·
1 − 𝜀
𝜀
.

This implies that ℎ ◦ 𝐻 ∈ ℋ𝜀
1 . This completes the proof. �

Corollary 3.4. Let 𝜀1, 𝜀2 ∈ (0, 1/2) such that 0 < 𝜀1/𝜀2 < 1/2. If 𝐻1, 𝐻2 be two distortion functions
with 𝐻2 ◦ 𝐻−1

1 ∈ ℋ
𝜀1/𝜀2

1 , then

𝑋𝐻1
1 ≥𝜀1-AFSD 𝑋

𝐻1
2 =⇒ 𝑋𝐻2

1 ≥𝜀2-AFSD 𝑋
𝐻2
2 .

Proof. Since 𝑋𝐻1
1 ≥𝜀1-AFSD 𝑋𝐻1

2 and 𝐻2 ◦ 𝐻−1
1 ∈ ℋ

𝜀1/𝜀2
1 , we have

𝑋
(𝐻2◦𝐻−1

1 )◦𝐻1
1 ≥𝜀2-AFSD 𝑋

(𝐻2◦𝐻−1
1 )◦𝐻1

2

by Proposition 3.3, that is, 𝑋𝐻2
1 ≥𝜀2-AFSD 𝑋

𝐻2
2 . This completes the proof. �

Proposition 3.5. For any 0 < 𝜀 < 1/2, if the distortion functions 𝐻1 and 𝐻2 satisfy 𝐻1(𝑢) ≤ 𝐻2(𝑢) for
any 𝑢 ∈ [0, 1], then

𝑋𝐻1
1 ≥𝜀-AFSD 𝑋

𝐻1
2 =⇒ 𝑋𝐻1

1 ≥𝜀-AFSD 𝑋
𝐻2
2 .

Proof. Since 𝑋𝐻1
1 ≥𝜀-AFSD 𝑋

𝐻1
2 , it follows from Theorem 3.2 that

∫ 1

0
𝐹−1

1 (𝐻−1
1 (𝑢)) d𝐻 (𝑢) ≥

∫ 1

0
𝐹−1

2 (𝐻−1
1 (𝑢)) d𝐻 (𝑢) (3.5)

for any 𝐻 ∈ ℋ𝜀
1 . Since 𝐻1(𝑢) ≤ 𝐻2(𝑢) for any 𝑢 ∈ [0, 1], we have 𝐻1 ◦ 𝐹2(𝑥) ≤ 𝐻2 ◦ 𝐹2(𝑥) for any

𝑥 ∈ R, and hence, 𝐹−1
2 ◦ 𝐻−1

1 (𝑢) ≥ 𝐹−1
2 ◦ 𝐻−1

2 (𝑢) for 𝑢 ∈ [0, 1]. Therefore, for any 𝐻 ∈ ℋ𝜀
1 ,

∫ 1

0
𝐹−1

2 ◦ 𝐻−1
1 (𝑢) d𝐻 (𝑢) ≥

∫ 1

0
𝐹−1

2 ◦ 𝐻−1
2 (𝑢) d𝐻 (𝑢). (3.6)
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Combining (3.5) with (3.6), we have∫ 1

0
𝐹−1

1 ◦ 𝐻−1
1 (𝑢) d𝐻 (𝑢) ≥

∫ 1

0
𝐹−1

2 ◦ 𝐻−1
2 (𝑢) d𝐻 (𝑢)

for any 𝐻 ∈ ℋ𝜀
1 , that is, 𝑋𝐻1

1 ≥𝜀-AFSD 𝑋
𝐻2
2 . This completes the proof. �

Proposition 3.6. For two cdfs 𝐹1 and 𝐹2, if 𝐹1 singly crosses 𝐹2 from below, and 𝐻 is a concave
distortion function, then for 0 < 𝜀 < 1/2,

𝐹1 ≥𝜀-AFSD 𝐹2 =⇒ 𝐻 ◦ 𝐹1 ≥𝜀-AFSD 𝐻 ◦ 𝐹2.

Proof. By Lemma 3.1, 𝐹1 ≥𝜀-AFSD 𝐹2 if and only if∫ 1

0

{
[𝐹−1

2 (𝑢) − 𝐹−1
1 (𝑢)]+− 𝜀

1 − 𝜀 [𝐹
−1
1 (𝑢) − 𝐹−1

2 (𝑢)]+
}

d𝑢 ≤ 0.

To prove 𝐻 ◦ 𝐹1 ≥𝜀-AFSD 𝐻 ◦ 𝐹2, it is sufficient to prove∫ 1

0

{
[𝐹−1

2 ◦ 𝐻−1(𝑢) − 𝐹−1
1 ◦ 𝐻−1(𝑢)]+− 𝜀

1 − 𝜀 [𝐹
−1
1 ◦ 𝐻−1(𝑢) − 𝐹−1

2 ◦ 𝐻−1(𝑢)]+
}

d𝑢 ≤ 0

or, equivalently, ∫ 1

0

{
[𝐹−1

2 (𝑣) − 𝐹−1
1 (𝑣)]+− 𝜀

1 − 𝜀 [𝐹
−1
1 (𝑣) − 𝐹−1

2 (𝑣)]+
}

d𝐻 (𝑣) ≤ 0

by setting 𝑣 = 𝐻−1(𝑢). Define

Δ1(𝑣) :=
∫ 𝑣

0

{
[𝐹−1

2 (𝑢) − 𝐹−1
1 (𝑢)]+− 𝜀

1 − 𝜀 [𝐹
−1
1 (𝑢) − 𝐹−1

2 (𝑢)]+
}

d𝑢, 𝑣 ∈ [0, 1] .

Since 𝐹1 singly crosses 𝐹2 from below, it follows that Δ1(𝑣) ≤ Δ1(1) ≤ 0 for all 𝑣 ∈ [0, 1]. Since 𝐻 is
concave, we have ∫ 1

0

{
[𝐹−1

2 (𝑣) − 𝐹−1
1 (𝑣)]+− 𝜀

1 − 𝜀 [𝐹
−1
1 (𝑣) − 𝐹−1

2 (𝑣)]+
}

d𝐻 (𝑣)

=
∫ 1

0
𝐻 ′

+ (𝑣) dΔ1(𝑣)

= 𝐻 ′
+ (1)Δ1(1) −

∫ 1

0
Δ1(𝑣) d𝐻 ′

+ (𝑣) ≤ 0.

This completes the proof. �

Proposition 3.7. Let 𝐹1 and 𝐹2 be two cdfs with a common support (𝑎, 𝑏), where −∞ ≤ 𝑎 < 𝑏 ≤ +∞.
If 𝐹1 singly crosses 𝐹2 from below, and 𝐻 is an increasing and convex function such that 𝐹1 ◦ 𝐻 and
𝐹2 ◦ 𝐻 are also two cdfs, then for 0 < 𝜀 < 1/2,

𝐹1 ≥𝜀-AFSD 𝐹2 =⇒ 𝐹1 ◦ 𝐻 ≥𝜀-AFSD 𝐹2 ◦ 𝐻.

Proof. By Definition 2.1, 𝐹1 ≥𝜀-AFSD 𝐹2 if and only if∫ 𝑏

𝑎

[𝐹1 (𝑥) − 𝐹2 (𝑥)]+ d𝑥 ≤ 𝜀

1 − 𝜀
∫ 𝑏

𝑎

[𝐹2 (𝑥) − 𝐹1(𝑥)]+ d𝑥.
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To prove 𝐹1 ◦ 𝐻 ≥𝜀-AFSD 𝐹2 ◦ 𝐻, it suffices to prove∫ ∞

−∞
[𝐹1 ◦ 𝐻 (𝑥) − 𝐹2 ◦ 𝐻 (𝑥)]+ d𝑥 ≤ 𝜀

1 − 𝜀
∫ ∞

−∞
[𝐹2 ◦ 𝐻 (𝑥) − 𝐹1 ◦ 𝐻 (𝑥)]+ d𝑥

or, equivalently,∫ 𝑏

𝑎

[𝐹1 (𝑥) − 𝐹2(𝑥)]+ d𝐻−1(𝑥) ≤ 𝜀

1 − 𝜀
∫ 𝑏

𝑎

[𝐹2 (𝑥) − 𝐹1(𝑥)]+ d𝐻−1(𝑥).

Define

Δ2(𝑦) :=
∫ 𝑦

𝑎

{
[𝐹1 (𝑥) − 𝐹2(𝑥)]+− 𝜀

1 − 𝜀 [𝐹2(𝑥) − 𝐹1(𝑥)]+
}

d𝑥, 𝑦 ∈ [𝑎, 𝑏] .

Since 𝐹1 singly crosses 𝐹2 from below, it follows that Δ2(𝑦) ≤ Δ2(𝑏) ≤ 0 for all 𝑦 ∈ [𝑎, 𝑏]. Define
𝜂(𝑦) = 𝐻−1(𝑦) for 𝑦 ∈ [𝑎, 𝑏], and let 𝜂′+ (𝑦) denote the right derivative of 𝜂 at 𝑦. Therefore,∫ 𝑏

𝑎

{
[𝐹1(𝑥) − 𝐹2(𝑥)]+− 𝜀

1 − 𝜀 [𝐹2 (𝑥) − 𝐹1(𝑥)]+
}

d𝐻−1(𝑥)

=
∫ 𝑏

𝑎

𝜂′+ (𝑥) dΔ2(𝑥)

= 𝜂′+ (𝑏)Δ2(𝑏) −
∫ 𝑏

𝑎

Δ2(𝑥) d𝜂′+ (𝑥) ≤ 0,

where 𝜂′+ (𝑏) = lim𝑦→𝑏− 𝜂′+ (𝑦), and the last inequality follows from the convexity of 𝐻. This completes
the proof. �

4. Applications

In this section, we will apply our results to establish stochastic comparisons of order statistics and ROC
curves with respect to AFSD.

4.1. Stochastic comparisons of order statistics

Order statistics are widely used in reliability, data analysis, risk management, auction theory, statistical
inference, and many other applied areas. Let 𝑋1, . . . , 𝑋𝑛 be a random sample of size 𝑛 from a distribution
𝐹. Denote by 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ · · · ≤ 𝑋𝑛:𝑛 its order statistics. If 𝑋1, . . . , 𝑋𝑛 are independent, it is well
known that the cdf of 𝑋𝑘:𝑛 is given by 𝐹𝐵 ◦ 𝐹, where 𝐹𝐵 is the beta distribution with parameters 𝑘 and
𝑛 − 𝑘 + 1.

Order statistics have a close connection with the lifetimes of 𝑘-out-of-𝑛 systems. In reliability theory,
a 𝑘-out-of-𝑛 system is the system consisting of 𝑛 components and normally operating if and only if
at least 𝑘 of the 𝑛 components work. Considering a 𝑘-out-of-𝑛 system with all components having a
common cdf 𝐹, then, its lifetime 𝑇𝑘:𝑛 is the same as 𝑋(𝑛−𝑘+1):𝑛.

A significant body of literature exists on stochastic comparisons of order statistics in the past two
decades. One may refer to Shaked and Shanthikumar [30] and references therein. In the following, we
deal with the problem of comparing the lifetimes of 𝑘-out-of-𝑛 systems with respect to AFSD. First, we
recall some popular ageing notions.

Definition 4.1 [16]. Let 𝑋 be a random variable with cdf 𝐹. Then, 𝑋 or 𝐹 is said to be

• Convex if 𝐹 is convex on its support, denoted by 𝐹 ∈ ℱC;
• Logit-convex if log

(
𝐹/𝐹̄) is convex on the support of 𝐹, denoted by 𝐹 ∈ ℱCL;
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• Odds-convex if 𝐹/𝐹̄ is convex on the support of 𝐹, denoted by 𝐹 ∈ ℱCO;
• IFR (increasing failure rate) if 𝐹̄ (𝑥) is log-concave, denoted by 𝐹 ∈ ℱIFR.

If 𝑋 has a probability density function 𝑓 , then 𝐹 ∈ ℱC if and only if 𝑓 is increasing. Define
𝜆(𝑥) = 𝑓 (𝑥)/𝐹̄ (𝑥) on {𝑥 : 𝐹 (𝑥) < 1}, which is called the failure rate function of 𝐹. Then, 𝐹 ∈ ℱIFR
if and only if 𝜆(𝑥) is increasing on {𝑥 : 𝐹 (𝑥) < 1}. ℱIFR is an important class in reliability theory and
contains many relevant models. It is clear that ℱC ⊂ ℱIFR.

The ageing distribution set ℱCL contains distributions with unbounded support, which has been
studied by Zimmer et al. [36], Sankaran and Jayakumar [29] and Navarro et al. [27]. 𝐹 ∈ ℱCL if and
only if the log-odds rate 𝜆(𝑥)/𝐹 (𝑥) is increasing. Therefore, ℱCL ⊂ ℱIFR.

The ageing distribution set ℱ𝐶𝑂 can be characterized as follows: 𝐹 ∈ ℱCO if and only if the ratio
between the failure rate and the survival function, 𝜆(𝑥)/𝐹̄ (𝑥), is increasing [15]. Therefore, ℱCO is the
widest ageing distribution set and ℱIFR ⊂ ℱCO. Several examples of distributions belonging to ℱC,
ℱCL, ℱCO and ℱIFR can be found in Lando et al. [16].

To study ageing patterns of lifetimes of 𝑘-out-of-𝑛 systems, Lando et al. [16] compared different
order statistics with respect to SSD and derived sufficient dominance conditions by identifying the class
of component lifetimes. In this subsection, we will explore stochastic comparison of order statistics
via AFSD. The following lemma is due to Theorem 7 in Müller et al. [26] since (1 + 𝛾, 1 + 𝛾)-SD is
equivalent to 𝜀-AFSD with 𝜀 = 𝛾/(1 + 𝛾) (see [25], Definition 4.2]).

Lemma 4.1 [26]. Let 𝑋1 and 𝑋2 be random variables with E(𝑋1) = 𝜇1, E(𝑋2) = 𝜇2, Var(𝑋1) = 𝜎2
1 ,

Var(𝑋2) = 𝜎2
2 and 𝜇1 > 𝜇2. Define

𝑡 :=
𝜇1 − 𝜇2

𝜎2 + 𝜎1
,

and

𝜀∗ (𝑡) = 1
2 + 2𝑡 (𝑡 +

√
𝑡2 + 1)

.

Then 𝑋1 ≥𝜀-AFSD 𝑋2 for 𝜀∗ (𝑡) < 𝜀 < 1/2.

Let 𝐵𝑖,𝑛 ∼ beta(𝑖, 𝑛 − 𝑖 + 1). Denote

𝜇𝐵 (𝑖, 𝑛) := E[𝐵𝑖,𝑛] = 𝑖

𝑛 + 1
and 𝜎2

𝐵 (𝑖, 𝑛) := Var(𝐵𝑖,𝑛) = 𝑖(𝑛 − 𝑖 + 1)
(𝑛 + 1)2 (𝑛 + 2) .

For the sake of simplification, denote

𝑡1 =
𝜇𝐵 (𝑖, 𝑛) − 𝜇𝐵 ( 𝑗 , 𝑚)
𝜎𝐵 (𝑖, 𝑛) + 𝜎𝐵 ( 𝑗 , 𝑚)

.

It is known that if 𝑗 ≥ 𝑖 and 𝑛 − 𝑚 ≥ 𝑖 − 𝑗 , then 𝑋 𝑗:𝑚 ≥FSD 𝑋𝑖:𝑛 (see, e.g., [4]).
The next two propositions give the conditions under which 𝑋 𝑗:𝑚 and 𝑋𝑖:𝑛 can be ordered by 𝜀-AFSD

when the condition 𝑗 ≥ 𝑖 is violated and 𝐹 belongs to any one of ℱC, ℱCO, ℱIFR and ℱCL.

Proposition 4.2. For any 𝐹 ∈ ℱC, if 𝑛−𝑚 > 𝑖− 𝑗 > 0 and 𝑖/(𝑛+1) > 𝑗/(𝑚+1), then 𝑋𝑖:𝑛 ≥𝜀-AFSD 𝑋 𝑗:𝑚
for 𝜀∗ (𝑡1) ≤ 𝜀 < 1/2.

Proof. Let 𝐵𝑖,𝑛 ∼ 𝑏𝑒𝑡𝑎(𝑖, 𝑛−𝑖+1) and 𝐵 𝑗 ,𝑚 ∼ 𝑏𝑒𝑡𝑎( 𝑗 , 𝑚− 𝑗+1). Since 𝑛−𝑚 > 𝑖− 𝑗 > 0, the cdf 𝐹𝐵𝑖,𝑛
of

𝐵𝑖,𝑛 singly crosses the cdf 𝐹𝐵 𝑗,𝑚
of 𝐵 𝑗 ,𝑚 from below by Lemma A.1. Since 𝑖/(𝑛+1) > 𝑗/(𝑚+1), we have

𝜇𝐵 (𝑖, 𝑛) := E[𝐵𝑖,𝑛] > E[𝐵 𝑗 ,𝑚] =: 𝜇𝐵 ( 𝑗 , 𝑚). Therefore, from Lemma 4.1, we have 𝐵𝑖,𝑛 ≥𝜀-AFSD 𝐵 𝑗 ,𝑚

for 𝜀∗ (𝑡1) ≤ 𝜀 < 1/2.
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On the other hand, the cdf of 𝑋𝑖:𝑛 can be formulated as 𝐹𝐵𝑖,𝑛
◦ 𝐹. Since 𝐹 is convex, it follows from

Proposition 3.7 that 𝐹𝐵𝑖,𝑛
◦ 𝐹 ≥𝜀-AFSD 𝐹𝐵 𝑗,𝑚

◦ 𝐹. That is, 𝑋𝑖:𝑛 ≥𝜀-AFSD 𝑋 𝑗:𝑚. This completes the proof
of this proposition. �

Define

𝑡ℓ =
𝜇ℎℓ (𝑖, 𝑛) − 𝜇ℎℓ ( 𝑗 , 𝑚)
𝜎ℎℓ (𝑖, 𝑛) + 𝜎ℎℓ ( 𝑗 , 𝑚)

, ℓ = 2, 3, 4,

where 𝜇ℎℓ (·, ·) and 𝜎ℎℓ (·, ·) are defined in Lemmas A.2 and A.3.

Proposition 4.3. Assume that 𝑛 − 𝑚 > 𝑖 − 𝑗 > 0, and define 𝜓(𝑥) = Γ′(𝑥)/Γ(𝑥) for 𝑥 > 0.

(1) For any 𝐹 ∈ ℱCO, if 𝑖/(𝑛 − 𝑖) > 𝑗/(𝑚 − 𝑗), then

𝑋𝑖:𝑛 ≥𝜀-AFSD 𝑋 𝑗:𝑚 for 𝜀∗(𝑡2) ≤ 𝜀 < 1
2 ;

(2) For any 𝐹 ∈ ℱCL, if 𝜓(𝑖) − 𝜓(𝑛 − 𝑖 + 1) > 𝜓( 𝑗) − 𝜓(𝑚 − 𝑗 + 1), then

𝑋𝑖:𝑛 ≥𝜀-AFSD 𝑋 𝑗:𝑚 for 𝜀∗(𝑡3) ≤ 𝜀 < 1
2 ;

(3) For any 𝐹 ∈ ℱIFR, if 𝜓(𝑛 + 1) − 𝜓(𝑛 − 𝑖 + 1) > 𝜓(𝑚 + 1) − 𝜓(𝑚 − 𝑗 + 1), then

𝑋𝑖:𝑛 ≥𝜀-AFSD 𝑋 𝑗:𝑚 for 𝜀∗ (𝑡4) ≤ 𝜀 < 1
2 .

Proof. (1) Since ℎ2(𝑝) = 𝑝/(1− 𝑝) for 𝑝 ∈ (0, 1), its inverse function ℎ−1
2 (𝑥) = 𝑥/(1 + 𝑥) is increasing

in 𝑥 ∈ R+. Note that 𝐹𝐵𝑖,𝑛
◦ ℎ−1

2 is the cdf of random variable ℎ2(𝐵𝑖,𝑛). From Lemmas A.2 and 4.1, it
follows that, under the condition 𝑖/(𝑛 − 𝑖) > 𝑗/(𝑚 − 𝑗),

𝐹𝐵𝑖,𝑛
◦ ℎ−1

2 ≥𝜀-AFSD 𝐹𝐵 𝑗,𝑚
◦ ℎ−1

2 for 𝜀∗ (𝑡2) ≤ 𝜀 < 1
2 .

By Lemma A.1, the condition 𝑛 − 𝑚 > 𝑖 − 𝑗 > 0 implies that 𝐹𝐵𝑖,𝑛
singly crosses 𝐹𝐵 𝑗,𝑚

from below.
Hence, 𝐹𝐵𝑖,𝑛

◦ ℎ−1
2 singly crosses 𝐹𝐵 𝑗,𝑚

◦ ℎ−1
2 from below. On the other hand, since 𝐹 ∈ ℱCO, we have

ℎ2 ◦ 𝐹 is convex. Therefore, from Proposition 3.7, we have

𝐹𝐵𝑖,𝑛
◦ ℎ−1

2 ◦ ℎ2 ◦ 𝐹 ≥𝜀-AFSD 𝐹𝐵 𝑗,𝑚
◦ ℎ−1

2 ◦ ℎ2 ◦ 𝐹,

for 𝜀∗ (𝑡2) ≤ 𝜀 < 1/2. That is, 𝑋𝑖:𝑛 ≥𝜀-AFSD 𝑋 𝑗:𝑚 for 𝜀∗ (𝑡2) ≤ 𝜀 < 1/2.
(2) and (3) The proof is similar to part (1) by applying Lemmas A.1, A.3 and 4.1. This completes the

proof of the proposition. �

4.2. Stochastic comparison of ROC curves

The Receiver Operating Characteristic (ROC) curve is one of the most common statistical tools to assess
classifier performance [22]. It is generated by plotting the fraction of true positive rate (TPR) against
false positive rate (FPR) at various operating points as the decision threshold or misclassification cost
[7]. Let us consider a binary classification tool by assigning a real-valued score to classify items into
two categories: good or bad. Let random variables 𝑋𝐵 and 𝑋𝐺 represent the respective scores of the bad
population with cdf 𝐹𝐵 and good population with cdf 𝐹𝐺 . Then, ROC curve can be defined as

ROC𝑋 (𝑢) = 𝐹𝐵 ◦ 𝐹−1
𝐺 (𝑢) for 𝑢 ∈ (0, 1).

However, the selection of the best classifier is quite challenging when ROC curves intersect. The Area
Under the Curve (AUC) is one of the most common measures to evaluate the classifier performance, but it
has well-understood weakness when comparing ROC curves which cross. Gigliarano et al. [9] proposed
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a novel approach of ROC comparison and investigated the relationships between ROC orderings and
integer-degree stochastic dominance in a theoretical framework. In this subsection, we will focus on
extending the methodological approach to AFSD.

Proposition 4.4. Let 𝐹1, 𝐹2 and 𝐺 be three cdfs such that 𝐹1 ◦ 𝐺−1 and 𝐹2 ◦ 𝐺−1 are also cdfs. If 𝐹1
singly crosses 𝐹2 from below, and 𝐺 is concave, then for any 0 < 𝜀 < 1/2,

𝐹1 ≥𝜀-AFSD 𝐹2 =⇒ 𝐹1 ◦ 𝐺−1 ≥𝜀-AFSD 𝐹2 ◦ 𝐺−1.

Proof. The desired result follows from Proposition 3.7 by observing that 𝐺−1 is increasing and convex.
�

Proposition 4.5. Let 𝐺1, 𝐺2 and 𝐹 be three cdfs such that 𝐹 ◦ 𝐺−1
1 and 𝐹 ◦ 𝐺−1

2 are also cdfs. If 𝐺2
singly crosses 𝐺1 from below, and 𝐹 is concave, then for any 0 < 𝜀 < 1/2,

𝐺2 ≥𝜀-AFSD 𝐺1 =⇒ 𝐹 ◦ 𝐺−1
1 ≥𝜀-AFSD 𝐹 ◦ 𝐺−1

2 .

Proof. Without loss of generality, let the single crossing point of 𝐺1 and 𝐺2 be 𝑥0. Define

𝜑1(𝑡) =
∫ 𝑡

−∞

{
[𝐺2(𝑥) − 𝐺1(𝑥)]+ − 𝜀

1 − 𝜀 [𝐺1(𝑥) − 𝐺2(𝑥)]+
}

d𝑥

for 𝑡 ∈ R. Then 𝜑1(𝑡) is decreasing on (−∞, 𝑥0] and increasing on (𝑥0,∞). Since 𝐺2 ≥𝜀-AFSD 𝐺1, we
get 𝜑1(𝑡) ≤ 0 for any 𝑡 ∈ R. It is clear that

∫ 1

0

{
[𝐹 ◦ 𝐺−1

1 (𝑢) − 𝐹 ◦ 𝐺−1
2 (𝑢)]+ − 𝜀

1 − 𝜀 [𝐹 ◦ 𝐺−1
2 (𝑢) − 𝐹 ◦ 𝐺−1

1 (𝑢)]+
}

d𝑢

=
∫ 1

𝐺1 (𝑥0)
[𝐹 ◦ 𝐺−1

1 (𝑢) − 𝐹 ◦ 𝐺−1
2 (𝑢)] d𝑢 − 𝜀

1 − 𝜀
∫ 𝐺1 (𝑥0)

0
[𝐹 ◦ 𝐺−1

2 (𝑢) − 𝐹 ◦ 𝐺−1
1 (𝑢)] d𝑢

=
∫ ∞

𝑥0

𝐹 (𝑥) d[𝐺1 (𝑥) − 𝐺2(𝑥)] − 𝜀

1 − 𝜀
∫ 𝑥0

−∞
𝐹 (𝑥) d[𝐺2(𝑥) − 𝐺1(𝑥)]

=
∫ ∞

𝑥0

[𝐺2(𝑥) − 𝐺1(𝑥)] d𝐹 (𝑥) − 𝜀

1 − 𝜀
∫ 𝑥0

−∞
[𝐺1(𝑥) − 𝐺2(𝑥)] d𝐹 (𝑥)

=
∫ ∞

−∞

{
[𝐺2(𝑥) − 𝐺1(𝑥)]+− 𝜀

1 − 𝜀 [𝐺1(𝑥) − 𝐺2(𝑥)]+
}

d𝐹 (𝑥)

=
∫ ∞

−∞
𝐹 ′
+ (𝑥) d𝜑1(𝑥)

= 𝜑1(+∞)𝐹 ′
+ (+∞) −

∫ ∞

−∞
𝜑1(𝑥) d𝐹 ′(𝑥) ≤ 0,

where the last inequality follows from the decreasing property of 𝐹 ′
+. Therefore, 𝐹◦𝐺−1

1 ≥𝜀-AFSD 𝐹◦𝐺−1
2

for any 0 < 𝜀 < 1/2. �

Proposition 4.6. Let 𝐺𝑖 and 𝐹𝑖 be cdfs such that 𝐹𝑖 ◦𝐺−1
𝑗 is also a cdf for any 𝑖, 𝑗 ∈ {1, 2}. If 𝐺2 singly

crosses 𝐺1 from below, 𝐹1 singly crosses 𝐹2 form below, and 𝐹2 and 𝐺1 are both concave (or 𝐹1 and
𝐺2 are both concave), then for any 0 < 𝜀 < 1/2,

𝐺2 ≥𝜀-AFSD 𝐺1, 𝐹1 ≥𝜀-AFSD 𝐹2 =⇒ 𝐹1 ◦ 𝐺−1
1 ≥𝜀-AFSD 𝐹2 ◦ 𝐺−1

2 .
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Proof. It suffices to prove that

(1 − 𝜀)
∫ 1

0
[𝐹1 ◦ 𝐺−1

1 (𝑢) − 𝐹2 ◦ 𝐺−1
2 (𝑢)]+ d𝑢 − 𝜀

∫ 1

0
[𝐹2 ◦ 𝐺−1

2 (𝑢) − 𝐹1 ◦ 𝐺−1
1 (𝑢)]+ d𝑢

= (1 − 2𝜀)
∫ 1

0
[𝐹1 ◦ 𝐺−1

1 (𝑢) − 𝐹2 ◦ 𝐺−1
2 (𝑢)]+ d𝑢 − 𝜀

∫ 1

0
[𝐹2 ◦ 𝐺−1

2 (𝑢) − 𝐹1 ◦ 𝐺−1
1 (𝑢)] d𝑢

=: 𝐼1 − 𝐼2 ≤ 0.

Since

𝐼1 = (1 − 2𝜀)
∫ 1

0
[𝐹1 ◦ 𝐺−1

1 (𝑢) − 𝐹2 ◦ 𝐺−1
1 (𝑢) + 𝐹2 ◦ 𝐺−1

1 (𝑢) − 𝐹2 ◦ 𝐺−1
2 (𝑢)]+ d𝑢

≤ (1 − 2𝜀)
∫ 1

0
[𝐹1 ◦ 𝐺−1

1 (𝑢) − 𝐹2 ◦ 𝐺−1
1 (𝑢)]+ d𝑢 + (1 − 2𝜀)

∫ 1

0
[𝐹2 ◦ 𝐺−1

1 (𝑢) − 𝐹2 ◦ 𝐺−1
2 (𝑢)]+ d𝑢,

we have

𝐼1 − 𝐼2 ≤ (1 − 2𝜀)
∫ 1

0
[𝐹1 ◦ 𝐺−1

1 (𝑢) − 𝐹2 ◦ 𝐺−1
1 (𝑢)]+ d𝑢 − 𝜀

∫ 1

0
[𝐹2 ◦ 𝐺−1

1 (𝑢) − 𝐹1 ◦ 𝐺−1
1 (𝑢)] d𝑢

+ (1 − 2𝜀)
∫ 1

0
[𝐹2 ◦ 𝐺−1

1 (𝑢) − 𝐹2 ◦ 𝐺−1
2 (𝑢)]+ d𝑢 − 𝜀

∫ 1

0
[𝐹2 ◦ 𝐺−1

2 (𝑢) − 𝐹2 ◦ 𝐺−1
1 (𝑢)]

= (1 − 𝜀)
∫ 1

0
[𝐹1 ◦ 𝐺−1

1 (𝑢) − 𝐹2 ◦ 𝐺−1
1 (𝑢)] + d𝑢 − 𝜀

∫ 1

0
[𝐹2 ◦ 𝐺−1

1 (𝑢) − 𝐹1 ◦ 𝐺−1
1 (𝑢)]+ d𝑢

+ (1 − 𝜀)
∫ 1

0
[𝐹2 ◦ 𝐺−1

1 (𝑢) − 𝐹2 ◦ 𝐺−1
2 (𝑢)]+ d𝑢 − 𝜀

∫ 1

0
[𝐹2 ◦ 𝐺−1

2 (𝑢) − 𝐹2 ◦ 𝐺−1
1 (𝑢)]+ d𝑢

≤ 0,

where the last inequality follows from Propositions 4.4 and 4.5. This completes the proof. �

We will end this section by presenting two examples to illustrate the applications of Proposition 4.6.

Example 4.1. Assume that 𝑋 ∼ P(𝑎, 𝑏), the Pareto distribution with parameters 𝑎 > 0 and 𝑏 > 0, and
with the cdf given by

𝐹 (𝑥; 𝑎, 𝑏) = 1 −
(
𝑏

𝑥

)𝑎
, 𝑥 > 𝑏.

Since 𝐹 ′(𝑥; 𝑎, 𝑏) = 𝑎𝑏𝑎𝑥−𝑎−1 > 0 and 𝐹 ′′(𝑥; 𝑎, 𝑏) = −𝑎(𝑎+1)𝑏𝑎𝑥−𝑎−2 < 0, 𝐹 (𝑥) is a concave function.
Furthermore, assume that 𝑋1 ∼ 𝐹 (·; 𝑎1, 𝑏1) and 𝑋2 ∼ 𝐹 (·; 𝑎2, 𝑏2). Denote 𝐹𝑖 = 𝐹 (·; 𝑎𝑖 , 𝑏𝑖) for 𝑖 = 1, 2.
We claim that if

𝑏1 > 𝑏2 > 0, 𝑎1 > 𝑎2 > 1 and
𝑎2𝑏2

1 − 𝑎2
>
𝑎1𝑏1

1 − 𝑎1
, (4.1)

then 𝑋1 ≥𝜀-AFSD 𝑋2 for 𝜀(𝑎1, 𝑎2, 𝑏1, 𝑏2) < 𝜀 < 1/2, where 𝜀(𝑎1, 𝑎2, 𝑏1, 𝑏2) is to be determined later.
Now, we assume that (4.1) holds. First, for 𝑎1 > 𝑎2 > 0, it can be checked that 𝐹1 singly crosses

𝐹2 from below with crossing point 𝑥0 := (𝑏𝑎1
1 /𝑏𝑎2

2 ) 1
𝑎1−𝑎2 . Next, note that, for any 0 < 𝜀 < 1/2,

𝑋1 ≥𝜀-AFSD 𝑋2 if and only if∫ +∞

−∞
[𝐹1 (𝑥; 𝑎1, 𝑏1) − 𝐹2 (𝑥; 𝑎2, 𝑏2)]+ d𝑥 ≤ 𝜀

1 − 𝜀
∫ +∞

−∞
[𝐹2 (𝑥; 𝑎2, 𝑏2) − 𝐹1 (𝑥; 𝑎1, 𝑏1)]+ d𝑥
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Figure 1. The ROC curves for the 1st and 2nd measurements.

or, equivalently,∫ +∞

𝑥0

[𝐹1(𝑥; 𝑎1, 𝑏1) − 𝐹2(𝑥; 𝑎2, 𝑏2)] d𝑥 ≤ 𝜀

1 − 𝜀
∫ 𝑥0

−∞
[𝐹2 (𝑥; 𝑎2, 𝑏2) − 𝐹1 (𝑥; 𝑎1, 𝑏1)] d𝑥. (4.2)

Define

𝐴(𝑎1, 𝑎2, 𝑏1, 𝑏2) :=
∫ +∞

𝑥0

[𝐹1 (𝑥; 𝑎1, 𝑏1) − 𝐹2 (𝑥; 𝑎2, 𝑏2)] d𝑥,

𝐵(𝑎1, 𝑎2, 𝑏1, 𝑏2) :=
∫ 𝑥0

−∞
[𝐹2(𝑥; 𝑎2, 𝑏2) − 𝐹1(𝑥; 𝑎1, 𝑏1)] d𝑥.

It can be checked that

𝐴(𝑎1, 𝑎2, 𝑏1, 𝑏2) =
𝑏𝑎1

1
1 − 𝑎1

𝑥1−𝑎1
0 − 𝑏𝑎2

2
1 − 𝑎2

𝑥1−𝑎2
0 ,

and

𝐵(𝑎1, 𝑎2, 𝑏1, 𝑏2) = 𝐴(𝑎1, 𝑎2, 𝑏1, 𝑏2) + 𝑏1 − 𝑏2 + 𝑏2

1 − 𝑎2
− 𝑏1

1 − 𝑎1

= 𝐴(𝑎1, 𝑎2, 𝑏1, 𝑏2) + 𝑎2𝑏2

1 − 𝑎2
− 𝑎1𝑏1

1 − 𝑎1
.

Define

𝜀(𝑎1, 𝑎2, 𝑏1, 𝑏2) = 𝐴(𝑎1, 𝑎2, 𝑏1, 𝑏2)
𝐴(𝑎1, 𝑎2, 𝑏1, 𝑏2) + 𝐵(𝑎1, 𝑎2, 𝑏1, 𝑏2)

.

Then, 0 < 𝜀(𝑎1, 𝑎2, 𝑏1, 𝑏2) < 1/2 in view of (4.1). So, (4.2) holds if 𝜀(𝑎1, 𝑎2, 𝑏1, 𝑏2) < 𝜀 < 1/2. This
proves 𝑋1 ≥𝜀-AFSD 𝑋2.
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Example 4.2. Suppose that we have measurements from two diagnostic tests. Let 𝑋𝑖 denote the mea-
surement from test 𝑖 for diseased subject, and let 𝑌𝑖 denote the corresponding measurement on the
healthy subject, 𝑖 = 1, 2. Assume that 𝑋1 ∼ P(8, 3.5), 𝑋2 ∼ P(7, 3),𝑌1 ∼ P(4.5, 2.5) and𝑌2 ∼ P(5, 3).
We plot the ROC curves of the two measurements in Figure 1. The two curves intersect with many
crossing points. AUC of the 1st measurement is 0.5652 and the 2nd is 0.5655, which are almost the
same. Therefore, we can not compare the accuracy of these two diagnostic tests through the classic ROC
comparison method. But, we can use AFSD rules to rank the two ROC curves.

To see it, denote 𝑋𝑖 ∼ 𝐹𝑖 and 𝑌𝑖 ∼ 𝐺𝑖 , and let 𝜀∗ < 𝜀 < 1/2, where

𝜀∗ = max{𝜀(8, 7, 3.5, 3), 𝜀(5, 4.5, 3, 2.5)}.

From Example 4.1, we have 𝑋1 ≥𝜀-AFSD 𝑋2 and 𝑌2 ≥𝜀-AFSD 𝑌1, and cdfs 𝐹𝑖 and 𝐺𝑖 are both concave. By
Proposition 4.6, we get 𝐹1 ·𝐺−1

1 ≥𝜀-AFSD 𝐹2 ◦𝐺−1
2 , which also implies that the AUC of 1st measurement

is smaller than the AUC of 2nd measurement.
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Appendix

Lemma A.1. Let 𝐵1 ∼ 𝑏𝑒𝑡𝑎(𝛼1, 𝛽1) and 𝐵2 ∼ 𝑏𝑒𝑡𝑎(𝛼2, 𝛽2) with 𝛼𝑖 > 0 and 𝛽𝑖 > 0 for 𝑖 = 1, 2. If
𝛼1 > 𝛼2 and 𝛽1 > 𝛽2, then 𝐹𝐵1 singly crosses 𝐹𝐵2 from below.

Proof. Let 𝑓𝐵1 and 𝑓𝐵2 be the respective probability density functions of 𝐵1 and 𝐵2, and let 𝐹𝐵1 and
𝐹𝐵2 be the respective cdfs of 𝐵1 and 𝐵2. Then

ℓ(𝑥) :=
𝑓𝐵1 (𝑥)
𝑓𝐵2 (𝑥)

=
𝐵(𝛼2, 𝛽2)
𝐵(𝛼1, 𝛽1)

𝑥𝛼1−𝛼2 (1 − 𝑥)𝛽1−𝛽2 , 𝑥 ∈ (0, 1).

Taking the derivative of ℓ(𝑥), we have

ℓ′(𝑥) = 𝐵(𝛼2, 𝛽2)
𝐵(𝛼1, 𝛽1)

𝑥𝛼1−𝛼2−1(1 − 𝑥)𝛽1−𝛽2−1 [(𝛼2 − 𝛼1 + 𝛽2 − 𝛽1)𝑥 + 𝛼1 − 𝛼2] .

Denote the number of sign changes of the function 𝑎(𝑥) in R by 𝑆−(𝑎). Then, if 𝛼1 > 𝛼2 and 𝛽1 > 𝛽2,
we have 𝑆−(ℓ′(𝑥)) = 1 and the sign sequence is +, −. This implies that ℓ(𝑥) is first increasing and then
decreasing with ℓ(0) = ℓ(1) = 0. It is clear that 𝑆−( 𝑓𝐵1 − 𝑓𝐵2) = 𝑆−(ℓ − 1) = 2 and the sign sequence
is −, +,−. Therefore, 𝑆−(𝐹𝐵1 − 𝐹𝐵2 ) = 1 and the sign sequence is −, +. This completes the proof of the
lemma. �

Lemma A.2. Let 𝐵𝑖,𝑛 ∼ 𝑏𝑒𝑡𝑎(𝑖, 𝑛 − 𝑖 + 1), where 1 ≤ 𝑖 ≤ 𝑛. Then,

𝜇ℎ2 (𝑖, 𝑛) := E[ℎ2 (𝐵𝑖,𝑛)] = 𝑖

𝑛 − 𝑖 and 𝜎2
ℎ2
(𝑖, 𝑛) := Var(ℎ(𝐵𝑖,𝑛)) = −4𝑖2 + 3𝑛𝑖 + 2𝑛 − 2𝑖

(𝑛 − 𝑖 + 1)(𝑛 − 𝑖)2 ,

where ℎ2 (𝑝) = 𝑝/(1 − 𝑝).
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Proof. Note that

E[ℎ2(𝐵𝑖,𝑛)] =
∫ 1

0

𝑦

1 − 𝑦 · 𝑦
𝑖−1(1 − 𝑦)𝑛−𝑖
𝐵(𝑖, 𝑛 − 𝑖 + 1) d𝑦

=
𝐵(𝑖 + 1, 𝑛 − 𝑖)
𝐵(𝑖, 𝑛 − 𝑖 + 1) =

𝑖

𝑛 − 𝑖

and

E[ℎ2
2 (𝐵𝑖,𝑛)] =

∫ 1

0

(
𝑦

1 − 𝑦

)2
𝑦𝑖−1 (1 − 𝑦)𝑛−𝑖
𝐵(𝑖, 𝑛 − 𝑖 + 1) d𝑦

=
1

𝐵(𝑖, 𝑛 − 𝑖 + 1)
∫ 1

0
𝑦𝑖+1 (1 − 𝑦)𝑛−𝑖−1 d𝑦

=
𝐵(𝑖 + 2, 𝑛 − 𝑖 − 1)
𝐵(𝑖, 𝑛 − 𝑖 + 1) =

(𝑖 + 1)(𝑖 + 2)
(𝑛 − 𝑖 + 1)(𝑛 − 𝑖) .

Therefore,

Var
(
ℎ2(𝐵𝑖,𝑛)

)
= E[ℎ2

2 (𝐵𝑖,𝑛)] − [E(ℎ2 (𝐵𝑖,𝑛))]2 =
−4𝑖2 + 3𝑛𝑖 + 2𝑛 − 2𝑖
(𝑛 − 𝑖 + 1)(𝑛 − 𝑖)2 .

This completes the proof. �

Lemma A.3. Let 𝐵𝑖,𝑛 ∼ 𝑏𝑒𝑡𝑎(𝑖, 𝑛 − 𝑖 + 1), 1 ≤ 𝑖 ≤ 𝑛, and define 𝜓(𝑥) = Γ′(𝑥)/Γ(𝑥) for 𝑥 > 0.

(1) If ℎ3(𝑝) = log[𝑝/(1 − 𝑝)], then 𝜇ℎ3 (𝑖, 𝑛) := E[ℎ3 (𝐵𝑖,𝑛)] = 𝜓(𝑖) − 𝜓(𝑛 − 𝑖 + 1) and

𝜎2
ℎ3
(𝑖, 𝑛) := Var(ℎ3 (𝐵𝑖,𝑛)) = 𝜓 ′(𝑖) + 𝜓 ′(𝑛 − 𝑖 + 1);

(2) If ℎ4(𝑝) := − log(1 − 𝑝), then 𝜇ℎ4 (𝑖, 𝑛) := E[ℎ4 (𝐵𝑖,𝑛)] = 𝜓(𝑛 + 1) − 𝜓(𝑛 − 𝑖 + 1) and

𝜎2
ℎ4
(𝑖, 𝑛) := Var(ℎ4(𝐵𝑖,𝑛)) = 𝜓 ′(𝑛 − 𝑖 + 1) − 𝜓 ′(𝑛 + 1).

Proof. (1) Note that the moment generating function of ℎ3(𝐵𝑖,𝑛) is

𝑀 (𝜔) = E[𝑒𝜔ℎ3◦𝐵𝑖,𝑛 ]

=
∫ 1

0

( 𝑡

1 − 𝑡
)𝜔 𝑡𝑖−1(1 − 𝑡)𝑛−𝑖

𝐵(𝑖, 𝑛 − 𝑖 + 1) d𝑡

=
𝐵(𝑖 + 𝜔, 𝑛 − 𝑖 + 1 − 𝜔)

𝐵(𝑖, 𝑛 − 𝑖 + 1) =
Γ(𝑖 + 𝜔)Γ(𝑛 − 𝑖 + 1 − 𝜔)

Γ(𝑖)Γ(𝑛 − 𝑖 + 1) .

Then,

E[ℎ3 (𝐵𝑖,𝑛)] = 𝑀 ′(0) = Γ′(𝑖)Γ(𝑛 − 𝑖 + 1) − Γ(𝑖)Γ′(𝑛 − 𝑖 + 1)
Γ(𝑖)Γ(𝑛 − 𝑖 + 1) = 𝜓(𝑖) − 𝜓(𝑛 − 𝑖 + 1)

and

E[ℎ2
3 (𝐵𝑖,𝑛)] = 𝑀 ′′(0) = Γ′′(𝑖)Γ(𝑛 − 𝑖 + 1) − 2Γ′(𝑖)Γ′(𝑛 − 𝑖 + 1) + Γ(𝑖)Γ′′(𝑛 − 𝑖 + 1)

Γ(𝑖)Γ(𝑛 − 𝑖 + 1) .
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Therefore,

Var(ℎ3 (𝐵𝑖,𝑛)) = E[ℎ2
3 (𝐵𝑖,𝑛)] − [E(ℎ3 (𝐵𝑖,𝑛))]2

=
Γ′′(𝑖)Γ(𝑛 − 𝑖 + 1) − 2Γ′(𝑖)Γ′(𝑛 − 𝑖 + 1) + Γ(𝑖)Γ′′(𝑛 − 𝑖 + 1)

Γ(𝑖)Γ(𝑛 − 𝑖 + 1)

− (Γ′(𝑖)Γ(𝑛 − 𝑖 + 1) − Γ(𝑖)Γ′(𝑛 − 𝑖 + 1))2

Γ2(𝑖)Γ2(𝑛 − 𝑖 + 1)

=
Γ′′(𝑖)Γ(𝑖) − Γ′2(𝑖)

Γ2(𝑖) + Γ′′(𝑛 − 𝑖 + 1)Γ(𝑛 − 𝑖 + 1) − Γ′2(𝑛 − 𝑖 + 1)
Γ2(𝑛 − 𝑖 + 1)

= 𝜓 ′(𝑖) + 𝜓 ′(𝑛 − 𝑖 + 1).

(2) The proof is similar to part (1), and hence is omitted. This completes the proof. �
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