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Abstract

The valuation of perpetual timer options under the Hull–White stochastic volatility
model is discussed here. By exploring the connection between the Hull–White model
and the Bessel process and using time-change techniques, the triple joint distribution
for the instantaneous volatility, the cumulative reciprocal volatility and the cumulative
realized variance is obtained. An explicit analytical solution for the price of perpetual
timer call options is derived as a Black–Scholes–Merton-type formula.
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1. Introduction

A timer option is an exotic option with random expiration date which depends on the
realized volatility of the underlying asset. In particular, a timer option is exercised
at the first time when the accumulated variance of the underlying asset reaches a
predetermined level. This type of product offers better control of volatility risk with
higher flexibility for investors. Timer options were first studied by Bick [2] many
years ago, but were not traded on the market until April 2007 by Société Générale
Corporate and Investment Banking [5]. Since then there have been renewed interests
in timer options. Li [11] studied in detail the Monte Carlo simulation of the price
of timer options. Bernard and Cui [1] simplified the pricing problem into a one-
dimensional problem by using the time-change technique. They proposed a fast and
accurate almost-exact simulation technique coupled with a powerful control variate
for the Hull–White and Heston stochastic volatility models [7, 8]. Liang et al. [14]
derived a multi-dimensional numerical integration expression using the path-integral
technique developed from quantum field theory.
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However, the Monte Carlo simulations are very time consuming, while the multi-
dimensional numerical integration method is complicated since it involves complex
Fourier inversion. As a result, it is advantageous to develop analytical or semi-
analytical methods for the evaluation of timer options. Carr and Lee [4] investigated
the pricing and hedging of variance options when realized variance reaches a fixed
level and derived a semi-analytical formula for the option price when the asset
process was a continuous semi-martingale. Saunders [20] obtained an asymptotic
approximation of the price of timer options under fast mean-reverting stochastic
volatility. Although the approximation is in closed form, it requires an extremely
large mean-reversion coefficient to obtain satisfactory numerical accuracy. Based on
Saunders’s work, Li and Mercurio [13] developed an asymptotic expansion technique
around small volatility of variance and obtained closed-form approximation formulas
for the Heston model and the (3/2) model, when the mean-reverting coefficient is zero.
Li [12] characterized the joint distribution of the stopping time of the realized variance
and corresponding variance, and obtained a Black–Scholes–Merton-type formula for
pricing timer options by exploring the connection between the Heston model and the
Bessel process with drift.

In this paper, we present an explicit Black–Scholes–Merton-type formula for
the price of perpetual timer options under the stochastic volatility model of Hull–
White, using properties of Bessel processes. We start with dynamic hedging
of timer options under the Hull–White stochastic volatility model. The price is
represented as a risk-neutral expectation by the Feynman–Kac formula (see the book
by Karatzas and Shreve [10]). By conditioning with respect to quantities related
to the volatility process, the conditional Black–Scholes formula is derived. Using
time-change techniques, by exploring the connection between the Bessel process
and the stochastic volatility, the triple joint distribution is expressed in terms of
modified Bessel functions. Thus, the conditional Black–Scholes formula is made
further explicit, which results in a closed-form Black–Scholes–Merton-type formula
for pricing perpetual timer options under the stochastic volatility model of Hull–White.

The organization of the rest of this paper is as follows. In Section 2, we first
introduce the Hull–White volatility model and some basic notations; then we derive the
governing partial differential equation for pricing perpetual timer options. In Section 3,
we obtain a closed-form solution of the price of the perpetual timer call option under
the stochastic volatility model of Hull–White. Section 4 provides some concluding
remarks.

2. Timer option under Hull–White model

Consider a derivative asset with a price that depends on the underlying asset price,
S t, with return rate µ and its instantaneous variance vt. Under the Hull–White model,
S t and vt are assumed to satisfy the following stochastic differential equations:

dS t = µS t dt +
√

vtS t dZt
1, S 0 > 0,

dvt = kvt dt + σvt dZt
2, v0 > 0, (2.1)
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where k and σ are two positive parameters and (Z1
t ,Z

2
t ) are standard Brownian motions

with correlation coefficient ρ. Let

Zt
3 =

1√
1 − ρ2

Zt
1 −

ρ√
1 − ρ2

Zt
2.

It is easy to verify that Z3
t is independent of Z2

t and the price process of the underlying
asset can be rewritten as

dS t = µS t dt +
√

vtS t

(
ρ dZt

2 +

√
1 − ρ2 dZt

3
)
, S 0 > 0. (2.2)

A timer option is characterized by its random expiry date, which is linked to the
accumulated variance of S t. An investor sets a target variance budget, B. Then the
first time that the realized variance reaches the pre-determined variance budget B is
the stopping time or the random maturity time, denoted by τB. In the continuous-time
framework,

τB = inf
{
t > 0

∣∣∣∣∣ ∫ t

0
vs ds = B

}
.

The payoff of a timer call is H(S τB∧T ) = max(S τB∧T − K, 0), where K is the strike
price and T is the maturity. When T →∞, it corresponds to a perpetual timer option.

We define the accumulated variance at the valuation date t by

It =

∫ t

0
vs ds, (2.3)

which is often referred to as a business clock or a stochastic variance clock. If It

exceeds the variance budget B, the option would expire; otherwise, the price of the
timer option will be calculated at time t, 0 < t < τB.

We are now ready to derive the governing partial differential equation for the price
of a perpetual timer option. There are two sources of randomness denoted by Z2

t and
Z3

t , respectively, in equations (2.1) and (2.2). The hedging can be done by using two
timer options with different fixed maturities, T and T ′. The self-financing portfolio Πt

contains a timer option C(t), a quantity −∆1 of the auxiliary option G(t) and a quantity
−∆2 of the underlying asset S t at time t.

Proposition 2.1. Let Πt = C(t) − ∆1G(t) − ∆2S t be the portfolio illustrated above.
Assume that the pricing functions C(t, s, v, I) ∈ C1,2,2,1 and G(t, s, v, I) ∈ C1,2,2,1. Then,
under the arbitrage-free principle,

Ct + 1
2 vs2Css + vCI + 1

2σ
2v2Cvv + ρσv3/2sCvs + r(sCs −C) + [kv − σ∆]Cv = 0,

where ∆1 = Cv/Gv, ∆2 = Cs − ∆1Gs and ∆ is related to the market price of volatility
risk.

Note that the subscripts in C and G indicate their corresponding partial derivatives.
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Proof. Applying the Itô–Doeblin formula [9] to Πt,

dΠt = Ct dt + Cv dvt + Cs dS t + vCI dt + 1
2 [Cvv dvt dvt + Css dS t dS t + 2Csv dS t dvt]

−∆1
(
Gt dt + Gv dvt + vGI dt + Gs dS t + 1

2Gvv dvt dvt + Csv dS t dvt

+ 1
2Css dS t dS t

)
− ∆2 dS t,

where vt, S t and It satisfy equations (2.1), (2.2) and (2.3), respectively. Using these
equations, we obtain the coefficient of dZt

2 in dΠt as

σvCv + ρ
√

vsCs − ∆1σvGv − ∆1ρ
√

vsGs − ∆2ρ
√

vs

and the coefficient of dZt
3 as√

1 − ρ2
√

vsCs − ∆1

√
1 − ρ2

√
vsGs − ∆2

√
1 − ρ2

√
vs.

In order to make the portfolio instantaneously risk-free in the sense that the
randomness introduced by Brownian motions Zt

2, Zt
3 vanishes, assuming that Cv and

Gv are nonzero, we choose

∆1 =
Cv

Gv
, ∆2 = Cs − ∆1Gs.

Applying the arbitrage-free principle, dΠt = rΠt dt,

Ct + kvCv + rsCs + 1
2 vs2Css + vCI + 1

2σ
2v2Cvv + ρσv3/2sCvs − rC

= ∆1Gt + ∆1kvGv + ∆1vGI + ∆1rsGs + ∆1
1
2 vs2Gss + ∆1

1
2σ

2v2Gvv

+ ∆1ρσv3/2sGvs − r∆1G.

Alternatively,

1
Cv

(Ct + vCI + rsCs + 1
2 vs2Css + 1

2σ
2v2Cvv + ρσv3/2sCvs − rC)

=
1

Gv

(
Gt + vGI + rsGs + 1

2 vs2Gss + 1
2σ

2v2Gvv + ρσv3/2sGvs − rG
)
. (2.4)

Equation (2.4) holds if and only if both sides of the equation equal some function ψ
independent of the expiry dates. Using the results of Fouque et al. [6, Ch. 2.4],

ψ = −

[
kv − σv

(
ρ
µ − r
√

v
+ φ(t, s, v, I)

√
1 − ρ2

)]
,

such that

Ct + kvCv + rsCs + 1
2 vs2Css + vCI + 1

2σ
2v2Cvv + ρσv3/2sCvs − rC = σ∆Cv,

where ∆ = ρ(µ − r)
√

v + vφ(t, s, v, I)
√

1 − ρ2 and φ(t, s, v, I) is the market price of the
volatility risk. �
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In this study, the market is assumed to be complete by trading auxiliary volatility
derivatives, which are priced in a risk-neutral probability measure Q with ∆ = 0.

Now let xt = ln(S t/S 0). Using the Itô–Doeblin formula,

dxt =

(
r −

vt

2

)
dt +

√
vt

(
ρ dZt

2 +

√
1 − ρ2 dZt

3
)
, x0 = 0. (2.5)

Corollary 2.2. Assume that C(It, xt, vt) ∈ C1,2,2; then the function C, as the price of a
perpetual timer call option, satisfies the following partial differential equation:

vCI +
1
2

vCxx + ρσv3/2Cxv +
1
2
σ2v2Cvv +

(
r −

v
2

)
Cx − rC + kvCv = 0, (2.6)

with the boundary condition

C(B, xτB , vτB) = h(xτB) = (S 0exτB − K)+ (2.7)

in the region 0 ≤ It ≤ B, x > 0 and v > 0.

Remark 2.3. Unlike pricing perpetual American options where a degenerate elliptic
equation is obtained, the partial differential equation (PDE) for the price of perpetual
timer options is still a Black–Scholes–Merton-type parabolic equation [16] with the
new time clock being the variance clock It which satisfies equation (2.3), rather than
the natural time clock t,

CI +

( r
v
−

1
2

)
Cx +

1
2

Cxx + ρσ
√

vCxv +
1
2
σ2vCvv + kCv −

r
v

C = 0.

Theorem 2.4. The price of a perpetual timer call satisfying equation (2.6) with
variance budget B and payoff function h(xτB) as defined in equation (2.7) is given
by

C(ξ, x, v) = EQ
[
e−r(τB−τξ)h(xτB)|xt = x, vt = v, It = ξ

]
,

where It, xt and vt satisfy the equations (2.3), (2.5) and (2.1), respectively.

Proof. Let C(It, xt, vt) be the solution of PDE (2.6). Recall that τIt = t. Applying the
Itô–Doeblin formula to e−rτIt C(It, xt, vt),

de−rτIt C(It, xt, vt)

= e−rτIt
[
−rC dt + CI dIt + Cx dx + Cv dv + 1

2 (Cxx dx dx + Cvv dv dv) + Cxv dx dv
]

= e−rτIt

[
vCI +

1
2

vCxx + ρσv3/2Cxv +
1
2
σ2v2Cvv +

(
r −

v
2

)
Cx − rC + kvCv

]
dt

+ e−rτIt
√

vCx

(√
1 − ρ2 dZ3

t + ρ dZ2
t

)
+ e−rτIt Cvσv dZ2

= e−rτIt
√

vCx

(√
1 − ρ2 dZ3

t + ρ dZ2
t

)
+ e−rτIt Cvσv dZ2

t .

Integrating the above equation from τξ to τB,

e−rτBC(B, xτB , vτB) − e−rτIt C(It, xt, vt)

=

∫ τB

τξ

e−rτIs
√

vCx

(√
1 − ρ2 dZ3

s + ρ dZ2
s

)
+

∫ τB

τξ

e−rτIs Cvσv dZ2
s .
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Taking the conditional expectation with respect to xt = x, vt = v, It = ξ, and using
the boundary condition (2.7),

C(ξ, x, v) = EQ
[
e−r(τB−τξ)C(B, xτB , vτB)|xt = x, vt = v, It = ξ

]
and this completes the proof. �

3. The solution of perpetual timer options

Recall that the variance clock It is defined by equation (2.3). By the inverse function
theorem,

dI−1(t)
dt

=
1

v(I−1(t))
,

so that

τB = I−1(B) =

∫ B

0

1
v(I−1(s))

ds.

For simplicity, v(I−1(t)) and x(I−1(t)) are denoted as Vt and Xt, respectively. By the
Dubins–Dambis–Schwarz theorem [10, p. 174],

√
I−1(t)Z2

I−1(t) and
√

I−1(t)Z3
I−1(t) are

standard Brownian motions, denoted by W2
t and W3

t , respectively. Thus, the stochastic
differential equations on Vt and Xt, t ∈ [0, B], may be rewritten as

dXt =

( r
Vt
−

1
2

)
dt +

(
ρ dWt

2 +

√
1 − ρ2 dWt

3
)
, (3.1)

dVt = k dt + σ
√

Vt dWt
2. (3.2)

Define
zt =

2
σ

√
Vt, yt = Xt − ρzt.

The equations (3.1) and (3.2) are transformed to

dyt =

[ r
b(z)
−

1
2
− ρ a(z)

]
dt +

√
1 − ρ2dWt

3,

dzt = a(z) dt + dWt
2, (3.3)

respectively, where
1

b(z)
=

4
σ2

1
z2 , a(z) =

( 2k
σ2 −

1
2

)1
z
.

Definition 3.1 [15, 19]. For any δ ≥ 2, the δ-dimensional Bessel process BES δ is a
diffusion process z(t) which is the unique strong solution to the following stochastic
differential equation (SDE):

dzt =
δ − 1
2zt

dt + dW2
t , z0 =

2
σ

√
v0 > 0,

where W2
t is a standard Brownian motion.
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412 J. Zhang, X. Lu and Y. Han [7]

For δ ≥ 2, BES δ processes will never reach 0 for t > 0. For a detailed analysis of
the properties of Bessel processes, we refer to the work of Shiga and Watanabe [21],
Pitman and Yor [18] and Yor [22].

Note that z(t) defined in equation (3.3) is a Bessel process for any δ = 4k/σ2 ≥ 2.
Hence, Xt has a solution for t ∈ [0, B]:

XB = X0 + rτB −
B
2

+ ρzB − ρz0 −

∫ B

0

ρ

zt

( 2k
σ2 −

1
2

)
dt +

∫ B

0

√
1 − ρ2 dW3

t . (3.4)

Theorem 3.2. Assume that

φt =

∫ t

0

1
zs

ds <∞ and
∫ t

0

1
z2

s
ds <∞.

We have the following conditional Black–Scholes–Merton-type pricing formula [17]:

C0 = EQ
[
e−rτB max(S 0eXB − K, 0)

]
= EQ

[
S 0ed0(zB,φB,τB)−rτB+rBN(d2(zB, φB, τB)) − Ke−rτB N(d1(zB, φB, τB))

]
,

where N(·) is the cumulative distribution for the standard normal random variable,
and

d0(zB, φB, τB) = r(τB − B) + ρ(zB − z0) − ρ
( 2k
σ2 −

1
2

)
φB −

ρ2

2
B,

d1(zB, φB, τB) =
log(S 0/K) + rB + d0(zB, φB, τB) − (1 − ρ2)B/2√

(1 − ρ2)B
,

d2(zB, φB, τB) = d1(zB, φB, τB) +

√
(1 − ρ2)B.

Furthermore, let pzB,φB,τB(z, h, g) be the joint density on (zB, φB, τB). Then

C0 =

∫
R3

B

[
S 0ed0(z,h,g)−rg+rBN(d2(z, h, g)) − Ke−rgN(d1(z, h, g))

]
pzB,φB,τB(z, h, g) dz dh dg,

where

pzB,φB,τB(z, h, g; B) =
2eθB

π

∫ ∞

0
cos(λB)Re(P̃(z, h, g; θ + iλ)) dλ,

P̃(z, h, g;α) =
α
√

2αzν+1

8zν0 sinh(h
√
α/2)

exp
(
−
ν2gσ2

8
− (z0 + z)

√
2α coth

(
h
√
α

2

))
igσ2/32

×

( 2
√

2αz0z
sinh(h

√
α/2)

)
, with α = θ + iλ

and

iy(β) =
βeπ

2/4y

π
√

yπ

∫ ∞

0
exp

(
−β cosh u −

u2

4y

)
sinh u sin

(
πu
2y

)
du.
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Proof. By Theorem 2.4, the price of the timer call option under the risk-neutral
measure should be

C0 = EQ
[
e−rτB max(S 0eXB − K, 0)

]
= EQ

[
EQ

[
e−rτB max(S 0eXB − K, 0)|zB, τB, φB

]]
.

With equation (3.4),

XB = rB −
1 − ρ2

2
B + rτB −

B
2
− rB +

1 − ρ2

2
B + ρzB − ρz0

−

∫ B

0

ρ

zt

( 2k
σ2 −

1
2

)
dt +

∫ B

0

√
1 − ρ2 dW3

t

=

(
r −

1 − ρ2

2

)
B +

∫ B

0

√
1 − ρ2 dW3

t + r(τB − B) −
ρ2

2
B

+ ρ(zB − z0) −
∫ B

0

ρ

zt

( 2k
σ2 −

1
2

)
dt

=

(
r −

1 − ρ2

2

)
B +

∫ B

0

√
1 − ρ2 dW3

t + d0,

where

d0 = rτB − rB + ρ(zB − z0) −
∫ B

0

ρ

zt

( 2k
σ2 −

1
2

)
dt −

ρ2

2
B.

Let Y = −W3
B/
√

B; then

C0 = EQ
[
EQ

[
e−rτB

(
S 0 exp

{(
r −

1 − ρ2

2

)
B −

√
(1 − ρ2)BY + d0

}
− K

)+
∣∣∣∣∣zB, τB, φB

]]
=

∫
R3

B

1
√

2π

∫ ∞

−∞

e−rτB

(
S 0 exp

{(
r −

1 − ρ2

2

)
B −

√
(1 − ρ2)By + d0

}
− K

)+

× e−y2/2dy dHzB,φB,τB(z, h, g),

where HzB,φB,τB(z, h, g) is the joint distribution function of (zB, φB, τB), and the joint
density function is denoted by pzB,φB,τB(z, h, g).

Let

d1 =
log(S 0/K) + rB + d0(zB, φB, τB) − (1 − ρ2)B/2√

(1 − ρ2)B
and

d2 = d1 +

√
(1 − ρ2)B.
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Then the inner integral in C0 becomes

Ĉ =
1
√

2π

∫ +∞

−∞

e−rτB

(
S 0 exp

{(
r −

1 − ρ2

2

)
B +

√
(1 − ρ2)By + d0

}
− K

)+

e−y2/2dy

=
1
√

2π

∫ d1

−∞

e−rτB

(
S 0 exp

{(
r −

1 − ρ2

2

)
B +

√
(1 − ρ2)By + d0

}
− K

)
e−y2/2dy

=
S 0
√

2π

∫ d1

−∞

exp
{(

r −
1 − ρ2

2

)
B +

√
(1 − ρ2)By + d0

}
e−y2/2dy

−
1
√

2π

∫ d1

−∞

Ke−rτBe−y2/2dy

=
S 0
√

2π
ed0−rτB+rB

∫ d1

−∞

e−(1/2)
(
y+
√

(1−ρ2)B
)2

dy − Ke−rτB N(d1)

= S 0ed0−rτB+rBN(d2) − Ke−rτB N(d1),

which is the Black–Scholes–Merton formula. Hence, by properties of conditional
expectation,

C0 = EQ
[
S 0ed0(zB,φB,τB)−rτB+rBN(d2(zB, φB, τB)) − Ke−rτB N(d1(zB, φB, τB))

]
.

In order to establish an explicit expression of the joint density function
pzB,φB,τB(z, h, g), the following lemma is needed.

Lemma 3.3 [3]. For a Bessel process zt with z0 > 0, index ν = δ/2 − 1 and ν ≥ 0,
suppose that T is any positive real number independent of zt and T ∼ Exp(α) with
intensity α; then the following is true:

P
(∫ T

0

ds
z2

s
∈ dg,

∫ T

0

ds
zs
∈ dh, zT ∈ dz

)
=

α
√

2αzν+1

8zν0 sinh
(
h
√
α/2

) exp
(
−
ν2g
2
−

(z0 + z)
√

2α cosh
(
h
√
α/2

)
sinh

(
h
√
α/2

) )
ig/8

×

( 2
√

2αz0z
sinh

(
h
√
α/2

) ) dg dh dz.

Note that

P
(∫ T

0

ds
z2

s
∈ dg,

∫ T

0

ds
zs
∈ dh, zT ∈ dz

)
= α

∫ ∞

0
e−αtP

(∫ t

0

ds
z2

s
∈ dg,

∫ t

0

ds
zs
∈ dh, zt ∈ dz

)
dt.

By Lemma 3.3 and the Laplace inverse transform, we derive that

P
(∫ B

0

ds
z2

s
∈ dg,

∫ B

0

ds
zs
∈ dh, zB ∈ dz

)
=

2eθB

π

∫ +∞

0
cos(λB)Re(P(z, h, g; θ + iλ)) dλ,
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where α = θ + iλ, θ > 0 and

P(z, h, g;α)

=
α
√

2αzν+1

8zν0 sinh
(
h
√
α/2

) exp
(
−
ν2g
2
− (z0 + z)

√
2α coth

(
h
√
α

2

))
ig/8

( 2
√

2αz0z
sinh

(
h
√
α/2

) ).
Hence, we obtain the expression of the triple joint density function on (zB, φB, τB)

as

pzB,φB,τB(z, h, g; B) =
2eθB

π

∫ +∞

0
cos(λB)Re

(
P̃(z, h, g; θ + iλ)

)
dλ,

where

P̃(z, h, g;α) =
α
√

2αzν+1

8zν0 sinh
(
h
√
α/2

)
× exp

(
−
ν2gσ2

8
− (z0 + z)

√
2α coth

(
h
√
α

2

))
igσ2/32

( 2
√

2αz0z
sinh

(
h
√
α/2

) ).
This completes the proof of Theorem 3.2. �

4. Conclusion

In this paper, a thorough investigation is carried out on the analytical tractability
of the price of perpetual timer options under the Hull–White stochastic volatility
model. An explicit formula for the triple joint transition density for the instantaneous
volatility, the cumulative reciprocal volatility and the cumulative realized variance is
derived. Thus, a closed-form Black–Scholes–Merton-type formula is obtained for
pricing perpetual timer options under the Hull–White stochastic volatility model. Most
of the existing analytical formula for the joint density functions and characteristic
functions are in terms of the joint density of the instantaneous variance and the
continuous realized variance (quadratic variation). Our result fills the gap in the
literature by providing a complete description of the triple joint distribution under
the Hull–White stochastic volatility model. The techniques used in this paper could
be extended to derive pricing formula for barrier timer options under the Hull–White
model.
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