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Bilinear Kloosterman sums in function
fields and the distribution of irreducible
polynomials
Christian Bagshaw
Abstract. Inspired by the work of Bourgain and Garaev (2013), we provide new bounds for certain
weighted bilinear Kloosterman sums in polynomial rings over a finite field. As an application, we
build upon and extend some results of Sawin and Shusterman (2022). These results include bounds
for exponential sums weighted by the Möbius function and a level of distribution for irreducible
polynomials beyond 1/2, with arbitrary composite modulus. Additionally, we can do better when
averaging over the modulus, to give an analogue of the Bombieri-Vinogradov Theorem with a level
of distribution even further beyond 1/2.

1 Introduction

1.1 Background

Motivated by a range of applications, in recent years, there has been notable effort
dedicated to studying certain bilinear forms of Kloosterman sums. One important
example are those of the form

∑
1≤x1<N1
(x1 ,m)=1

∑
1≤x2<N2
(x2 ,m)=1

αx1 βx2 em(ax1x2)(1.1)

for a, m ∈ Z and complex weighs α and β, where em(x) = exp(2πix/m) and where
x denotes the inverse of x modulo m. Perhaps the most well-known application of
bounds for (1.1) has been to estimate exponential sums over primes

∑
1≤x<N
(x ,m)=1

Λ(x)em(ax)(1.2)
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2 C. Bagshaw

as in [5, 13, 9, 15, 12, 18, 21], where Λ denotes the von Mangoldt function over Z

(although later, by abuse of notation, this will denote the von Mangoldt function
in a different setting). Bounds for (1.1) have also found applications to the Brun-
Titchmarsh theorem [14, 9, 10] and the distribution of fractional parts of fractions
with modular inverses [20]. Higher dimensional analogues were also considered in
[22, 28].

In their recent groundbreaking work [25], Sawin and Shusterman consider ana-
logues of (1.1) and (1.2) in polynomial rings over finite fields. They establish highly
nontrivial bounds and apply them to a number of cornerstone problems regarding
irreducible polynomials. First, they establish a level of distribution beyond 1/2 for
irreducible polynomials to square-free modulus (for details, see the discussion in
Section 2.2). We note that even under the assumption of the Generalized Riemann
Hypothesis, this is not known over the integers but is implied by the famous Elliot-
Halberstam conjecture. Furthermore, Sawin and Shusterman establish a strong and
explicit form of the twin prime conjecture in that setting.

Motivated by these applications, here we also consider (1.1) and (1.2) in function
fields but focus on working with arbitrary composite modulus. This includes improv-
ing some bounds from [25] on sums of the form (1.1) and (1.2). Additionally, we
extend their results regarding the level of distribution of irreducible polynomials, from
square-free to arbitrary modulus. Furthermore, we establish a function field version
of the Bombieri-Vinogradov Theorem with a level of distribution even further beyond
1/2.

1.2 General notation

We fix an odd prime power q = p� and let Fq denote the finite field of order q.
Let Fq[T] denote the ring of univariate polynomials with coefficients from Fq .
Throughout, F ∈ Fq[T] will always denote an arbitrary polynomial of degree r.

Next, we denote by Fq(T)∞ the field of Laurent series in 1/T over Fq . That is,

Fq(T)∞ = {
n
∑

i=−∞
a i T i ∶ n ∈ Z, a i ∈ Fq , an ≠ 0} .

We note that, of course, Fq[T] ⊆ Fq(T)∞. On Fq(T)∞, we have a nontrivial additive
character

e (
n
∑

i=−∞
a i T i) = exp(2πi

p
Tr(a−1)) ,

where Tr ∶ Fq → Fp is the absolute trace. Further, for any F ∈ Fq[T], we note that

eF(x) = e(x/F)

defines a nontrivial additive character ofFq[T]/⟨F(T)⟩. See [17] for additional details.
We will let M and P be the set of all monic and all monic irreducible polynomials,

respectively. For a positive integer n, we will let Mn be the set of monic polynomials
of degree n.
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Bilinear Kloosterman sums in function fields 3

We can also define an analogue of the Möbius function in Fq[T], as

μ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, x is not square-free
(−1)k , x = hPe1

1 ⋅ ⋅ ⋅ Pek
k for some positive integers e1 , ..., ek ,

some h ∈ Fq/{0} and some distinct Pi ∈ P.

Similarly, we can define the von Mangoldt function

Λ(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

deg P, x = hPk for some P ∈ P, positive integer k
and h ∈ Fq/{0},

0, otherwise.

Finally, given some x ∈ Fq[T], x will denote the inverse of x modulo F (unless it is
specified that the inverse should be taken to a different modulus). Also, ε will denote
some small constant (unless otherwise specified).

2 Results

2.1 Bilinear Kloosterman sums

Given positive integers m and n, sequences of complex weights

α = (αx1)deg x1<m , β = (βx2)deg x2<n with ∥α∥∞, ∥β∥∞ < qo(r) ,(2.1)

and a ∈ Fq[T], we define the bilinear Kloosterman sum

WF ,a(m, n;α,β) = ∑
deg x1<m
(x1 ,F)=1

∑
deg x2<n
(x2 ,F)=1

αx1 βx2 eF(ax1x2).

We will be interested in improving upon the trivial bound qm+n+εr . As mentioned
previously, bounds on sums of this form are used as tools to establish some of the
main results in [25]. Here, we take a different approach to bounding these sums which
can hold for arbitrary F, based on the ideas of Bourgain and Garaev [9], Garaev [15],
Fouvry and Shparlinski [13], Banks, Harcharras, and Shparlinski [6] and Irving [18].

More flexible bounds, given explicitly in terms of additive energies of modular
inversions, are stated in Section 4. These would imply function field analogues of most
of the bounds in [9]. But the following will be the most useful for our purposes.

Theorem 2.1 Let ε > 0, and let a, F ∈ Fq[T] be coprime with deg F = r. Then for any
positive integers n and m satisfying

n ≥ rε and m ≥ r(1/4 + ε)

and weights as in (2.1), we have

WF ,a(m, n;α,β) ≪ε qm+n−rδ

for some δ = δ(ε) > 0.
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4 C. Bagshaw

The proof of this result could be carried out in the integer setting and would give a
direct improvement on [10, Theorem 7]. Although, our approach is modeled heavily
after [10] and additionally incorporates ideas from [21].

2.2 Kloosterman sums with the Möbius function

As in [26, 25], we next consider sums of the form

∑
deg x<n
(x ,F)=1

μ(x)eF(ax)(2.2)

and seek improvement over the trivial bound qn , for n as small as possible in
comparison to r. We note that we are working with the Möbius function as opposed to
the Von Mangoldt function as in (1.2), but the similarity between Vaughan’s identity
[19, Propositions 13.4 and 13.5] for μ and Λ allows for both of these to be treated very
similarly.

Analogous results dealing with sums as in (2.2) over the integers always require
gcd(a, F) = 1. But because the analogue of the Generalized Riemann Hypothesis
(GRH) holds in Fq[T], we can drop this condition (with some additional analytic
effort).

A special case of [26, Theorem 1.13] is the following: let ε > 0 and suppose F is
irreducible. If

q > 4e2 (1 + 3
2p
)

p/ε

p2 ,(2.3)

then, for n > rε, we have

∑
deg x<n
(x ,F)=1

μ(x)eF(ax) ≪ε qn(1−δ)

for some δ = δ(ε) > 0. In summary, this implies that for any ε > 0, one obtains a power
savings over the trivial bound for any n > rε (for sufficiently large q in terms of p and
ε). This achievement of a power savings in arbitrarily small intervals far surpasses any
previous work in this area.

Here, we consider what can be said without these restrictions on q, and for arbitrary
composite modulus F. Using Theorem 2.1 together with classical ideas regarding
Vaughan’s identity, we show the following. This is analogous to [8, Theorem A.9],
which holds for prime modulus.

Theorem 2.2 Let ε > 0 and a, F ∈ Fq[T] with deg F = r. For any positive integer n
satisfying n > r(1/2 + ε),

∑
deg x<n
(x ,F)=1

μ(x)eF(ax) ≪ε qn(1−δ)

for some δ = δ(ε) > 0.

For a comparison with [26, Theorem 1.13], the most important point is that this
result holds for arbitrary modulus F as opposed to only irreducible modulus. But
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Bilinear Kloosterman sums in function fields 5

this also does not require the restriction on q as in (2.3). Thus, Theorem 2.2 gives an
improvement for irreducible modulus when q = p� and

p ∈ {3} and � < 8,
p ∈ {5, 7} and � < 6,
p ∈ {11, ..., 23} and � < 5,
p ∈ {29, ..., 587} and � < 4,
p ∈ {593, ...} and � < 3.

Another important avenue to pursue with regard to these sums is obtaining more
explicit (and larger) savings over the trivial bound. In [25], these are required for
applications. For square-free modulus F, [25, Theorem 1.8] demonstrates

∑
deg x<n
(x ,F)=1

μ(x)eF(ax) ≪ε q3r/16+25n/32+εn ,(2.4)

which is nontrivial when n > 6r/7.
This can be improved and again can be extended to arbitrary modulus. This is

analogous to the main result in [15] which holds for prime modulus, but we can do
better in Fq[T] and extend to arbitrary modulus. The proof also makes use of some
ideas of Fouvry and Shparlinski [13],

Theorem 2.3 Let a, F ∈ Fq[T] with deg F = r and let n denote a positive integer. Then
for any ε > 0,

∑
deg x<n
(x ,F)=1

μ(x)eF(ax) ≪ε q15n/16+εn + q2n/3+r/4+εn .

This is nontrivial when n > 3r/4, and gives a savings of qr/16 over the trivial bound
when n ≈ r. Also, this always improves on (2.4).

For applications, we will also make use of the following variant of a result of Irving
[18] which gives an improvement on average over the modulus.

Theorem 2.4 For any positive integers n and r and any ε > 0,

∑
deg F=r

max
a∈Fq[T]

∣ ∑
deg x<n
(x ,F)=1

μ(x)eF(ax)∣

≪ε qr+nε(q9n/10 + qr/6+13n/18 + q13n/8−5r/6).

This is again nontrivial when n > 3r/4, with a savings of qr/10 over the trivial bound
when n ≈ r.

2.3 Level of distribution of irreducible polynomials

The main application in [25] of the sums considered in the previous section is to
obtain a level of distribution beyond 1/2 for irreducible polynomials in aritheoremetic
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6 C. Bagshaw

progressions. In particular, that means nontrivial bounds for
�����������

∑
x∈Mn

x≡a (mod F)

Λ(x) − qn

ϕ(F)

�����������

when n > r/2. The start of [19, section 17.1] gives a good background on this problem
over Z, but in summary, it is a classical problem in number theory to show

∑
x∈Mn

x≡a (mod F)

Λ(x) ∼ qn

ϕ(F) uniformly for r ≤ nω(2.5)

for ω < 1 as large as possible. The strongest analogous results over Z only imply that
under the assumption of GRH, (2.5) holds for ω < 1/2, although it is conjectured that
this should hold for any ω < 1; again, see [19, section 17.1].

In Fq[T], Sawin and Shusterman [25, Theorem 1.9] move beyond this barrier of
1/2 for square-free modulus F by showing (for sufficiently large but fixed q in terms of
ω and p) that

(2.5) holds for any ω < 1/2 + 1/126 and square-free F .(2.6)

Sawin subsequently gives another ground-breaking improvement in [24, Theo-
rem 1.2] to achieve the conjectured value of ω for square-free modulus, by showing
(for sufficiently large but fixed q in terms of only ω) that

(2.5) holds for any ω < 1 and square-free F .(2.7)

Again, one may ask whether we can move past the barrier of ω < 1/2 for arbitrary
modulus. The methods used to show (2.7) are very specialized to square-free modulus,
and it is probably infeasible to make these work more generally. But, by inserting our
Theorem 2.3 into the proof of (2.6), we have the following.

Theorem 2.5 Fix ω < 1/2 + 1/62, and suppose

q > p2e2 ( 16 − ω
16 − 31ω

)
2

.

Then for any coprime a, F ∈ Fq[T] with deg F = r, and any positive integer n satisfying
r ≤ ωn, we have

∑
x∈Mn

x≡a (mod F)

Λ(x) − qn

ϕ(F) ≪ω qn−r(1+δ)

for some δ = δ(ω) > 0.

While this holds for arbitrary modulus F, we do note that for square-free modulus,
Sawin’s result [24, Theorem 1.2] always gives a more relaxed condition on q.

We can also use Theorem 2.4 to do better on average – that is, when considering
an analogue of the Bombieri-Vinogradov Theorem.
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Bilinear Kloosterman sums in function fields 7

Theorem 2.6 Fix ω < 1/2 + 1/38, and suppose

q > p2e2 ( 10 − ω
10 − 19ω

)
2

.

Then for any positive integers R and n satisfying R ≤ ωn, we have

∑
deg F<R

max
(a ,F)=1

�����������
∑

x∈Mn
x≡a (mod F)

Λ(x) − qn

ϕ(F)

�����������
≪ω qn−Rδ

for some δ = δ(ω) > 0.

We note that it may be possible to adapt the ideas from Sawin in [24] to either
directly improve upon Theorem 2.6 or to obtain a result similar to (2.7) for moduli
whose square-full part has low degree, which in turn could improve upon Theo-
rem 2.6.

3 Preliminaries

Throughout this section, F always denotes an arbitrary polynomial of degree r, and
ε > 0 is always some small positive constant.

As a general preliminary, we will repeatedly make use of the following from [11,
Lemma 1].

Lemma 3.1 The number of divisors of any x ∈ Fq[T] is Oε(qε deg x).

3.1 Sums involving the Möbius function

We will need a number of results regarding cancellations in sums of the Möbius
function. First, we recall the following elementary result from [23, Chapter 2, Ex 12].

Lemma 3.2 For any positive integer n,

∑
x∈Mn

μ(x) =
⎧⎪⎪⎨⎪⎪⎩

−q, n = 1,
0, n > 1.

The next result is found in [7, Theorem 2]. We observe that there is a mistake in
the statement of this result in [7], but it is correct as stated here (see the discussion in
Section 4.5 of [1]).

Lemma 3.3 Suppose

r ≥ 104 and log r
log log r

≥ log q.

Let χ denote a nonprincipal character modulo F. Then for any positive integer n,

∣ ∑
x∈Mn

μ(x)χ(x)∣ ≤ q
n
2 +

n log log r
log r +8q r

log2 r
logq e .

We will also make use of the following from [16].
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8 C. Bagshaw

Lemma 3.4 Let χ denote a nonprincipal character modulo F. Then for any positive
integer n,

∣ ∑
x∈Mn

μ(x)χ(x)∣ ≤ qn/2(n + r − 2
n

).

The previous two results can be combined and simplified for our purposes. This is
classical in the literature, but we include brief details for completeness.

Corollary 3.5 For any positive integer n ≥ r and any nonprincipal character χ modulo
F, we have

∑
deg x<n

μ(x)χ(x) ≪ε qn(1/2+ε) .

Proof Let S denote the sum in question. We split our sum into intervals depending
on the degree of x and write

S ≪
n−1
∑
i=0

�����������
∑

x∈Mn

μ(x)χ(x)
�����������
.

This implies there exists some integer t < n such that

S ≪ n
�����������
∑

x∈Mt

μ(x)χ(x)
�����������
.

First, if t < n/2, then the result follows trivially. So suppose n/2 ≤ t ≤ n. If r < log n,
then by Lemma 3.4,

S ≪ nqt/2(t + log n − 2
t

) ≪ε qn(1/2+ε) .

Finally, if r ≥ log n, then since t ≥ n/2 ≥ r/2, Lemma 3.3 implies

S ≪ nqt( 1
2+

log log r
log r +8q r

t log2 r
logq e) ≪ nqt( 1

2+
log log r

log r +16q 1
log2 r

logq e)

≪ε qn(1/2+ε) . ∎

This now implies the following, which is again well-known, but we include details
for completeness.

Corollary 3.6 Let a ∈ Fq[T] with gcd(a, F) = 1. Then for any positive integer n,

∑
deg x<n

x≡a (mod F)

μ(x) ≪ε qn(1/2+ε) .

Proof Of course, if n < r, then this is trivial, so we assume otherwise. Using the
orthogonality of multiplicative characters, we may write

∑
deg x<n

x≡a (mod F)

μ(x) = 1
ϕ(F) ∑

χ (mod F)
χ(a) ∑

deg x<n
μ(x)χ(x).
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Bilinear Kloosterman sums in function fields 9

The trivial character contributes only O(1) by Lemma 3.2. To bound the rest, we can
apply the triangle inequality and then Corollary 3.5 to reach the desired result. ∎

The following is a special case of [25, Theorem 4.5], which significantly improves
upon the previous result when r is close to n (with some restrictions on the size of q).

Lemma 3.7 Let ε > 0 and 0 < β < 1/2, and suppose

q > ( ε + 2
ε

pe)
2

1−2β

.

Then for any nonnegative integer n ≥ (1 + ε)r and any a ∈ Fq[T] coprime to F, we have

∑
x∈Mn

x≡a (mod F)

μ(x) ≪ε ,β q(n−r)(1−β/p) .

Finally, the next result is [25, Proposition 5.2]. Originally, this was only stated for
square-free F, but it is actually immediate that this holds for arbitrary F (brief details
are given).

Lemma 3.8 For any positive integer d,
d
∑
k=1

kq−k ∑
x∈Mk
(x ,F)=1

μ(x) = − qr

ϕ(F) + qo(r+d)−d .

Proof Assume that this holds for square-free modulus as in [25, Proposition 5.2].
Let rad(F) denote the product of the distinct, monic, irreducible factors of F and let
r0 = deg rad(F). Then

d
∑
k=1

kq−k ∑
x∈Mk
(x ,F)=1

μ(x) =
d
∑
k=1

kq−k ∑
x∈Mk

(x ,rad(F))=1

μ(x)

= − qr0

ϕ(rad(F)) + qo(r0+d)−d

= − qr

ϕ(F) + qo(r+d)−d ,

where the second line follows from our initial assumption. ∎

3.2 The Weil bound for Kloosterman sums

To effectively bound the bilinear Kloosterman sums introduced in Section 2.1, we will
need a few well-known estimates regarding complete and incomplete Kloosterman
sums. First, we need the following orthogonality relation (see [2, Corollary 4.2]).

Lemma 3.9 For any a ∈ Fq[T] with deg a < r and positive integer n,

∑
deg x<n

eF(ax) =
⎧⎪⎪⎨⎪⎪⎩

qn , deg a < r − n
0, otherwise.

The following is from [2, Lemma A.13].
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10 C. Bagshaw

Lemma 3.10 For any a, b ∈ Fq[T],
�����������
∑

deg x<r
(x ,F)=1

eF(ax + bx)
�����������
≪ε qr/2+deg(a ,b ,F)/2+rε .

Next, Lemma 3.9 and Lemma 3.10 imply the following.

Lemma 3.11 For any b ∈ Fq[T] and positive integer n ≤ r,
�����������
∑

deg x<n
(x ,F)=1

eF(bx)
�����������
≪ε qr/2+deg(b ,F)/2+εr .

Proof By applying Lemma 3.9 and then rearranging and applying Lemma 3.10,
�����������
∑

deg x<n
(x ,F)=1

eF(bx)
�����������
= qn−r

�����������
∑

deg x<r
(x ,F)=1

eF(bx) ∑
deg a<r−n

eF(ax)
�����������

≪ε qn−r ∑
deg a<r−n

qr/2+deg(a ,b ,F)/2+εr

≪ε qr/2+deg(b ,F)/2+εr . ∎

We will also make use of the following.

Lemma 3.12 Let b, u ∈ Fq[T] and suppose deg u = O(r). Then
�����������

∑
deg x<r
(x ,uF)=1

eF(bx)
�����������
≪ε qr/2+deg(b ,F)/2+εr .

Proof Without loss of generality, we may suppose that (u, F) = 1. We recall the
identity

∑
d ∣x

d monic

μ(d) =
⎧⎪⎪⎨⎪⎪⎩

1, deg x = 0,
0, otherwise.

Thus, a typical application of inclusion-exclusion implies

∑
deg x<r
(x ,uF)=1

eF(bx) = ∑
deg x<r
(x ,F)=1

eF(bx) ∑
d ∣(u ,x)
d monic

μ(d)

= ∑
d ∣u

d monic

μ(d) ∑
deg x<r
(x ,F)=1

d ∣x

eF(bx)

= ∑
d ∣u

d monic

μ(d) ∑
deg x<r−deg d
(x ,F)=1

eF(bdx).

Now applying the triangle inequality and Lemmas 3.1 and 3.11 concludes the proof. ∎
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3.3 Additive energy of modular inversions

We will repeatedly make use of bounds regarding the number of solutions to certain
equations with modular inverses. For positive integers n and k, we define IF ,a ,k(n) to
count the number of solutions to

x1 + ⋅ ⋅ ⋅ + xk ≡ a (mod F), deg x i < n,(3.1)

and
E inv

F ,k(n) = ∑
a (mod F)

IF ,a ,k(n)2 .

This can be considered a measure of the additive energy of the set

{x (mod F) ∶ deg x < n}.

First, we will make use of the following from [3].
Lemma 3.13 Let k be a fixed positive integer. Then for any positive integer n ≤ r,

E inv
F ,k(n) ≪ε ,k qkn+εn + qn(3k−1)−r+εn .

In particular, this implies

E inv
F ,k(n) ≪ε ,k

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

qkn+εn , n < r/(2k − 1),
qn(3k−1)−r+εn , r/(2k − 1) ≤ n ≤ r/k,
qn(2k−1)+max{0,n−r}, r/k < n

by using the trivial bound when r/k < n.
This can be improved upon when k = 2, and the following is a generalization of

[4, Theorem 2.5] to arbitrary modulus.
Lemma 3.14 For any positive integer n ≤ r,

E inv
F ,2(n) ≪ε q2n+εn + q7n/2−r/2+εn .

In particular, this implies

E inv
F ,2(n) ≪ε

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

q2n+εn , n < r/3,
q7n/2−r/2+εn , r/3 ≤ n ≤ r,
q4n−r , r < n

by using the trivial bound when r < n.
Proof Recall that we are counting the number of solutions to

x1 + x2 ≡ x3 + x4 (mod F), deg x i < n.(3.2)

This is trivially satisfied if x1 ≡ −x2 (mod F) and x3 ≡ −x4 (mod F). Thus, we can
write

E inv
F ,2(n) = E inv∗

F ,2 (n) + O(q2n),

where E inv∗
F ,2 (n) counts the number of solutions to (3.2) where each side is nonzero.

Next, we observe
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12 C. Bagshaw

E inv∗
F ,2 (n) = ∑

0≤deg a<r
IF ,a ,2(n)2 .

Using [2, Lemma 5.3], we have

IF ,a(n) ≪ε qεn(1 + q3n/2−r/2 + q2n+deg(a ,F)−r),

which implies

E inv∗
F ,2 (n) ≪ε qεn ∑

0≤deg a<r
IF ,a(n)(1 + q3n/2−r/2 + q2n+deg(a ,F)−r)

≪ε qεn(q2n + q7n/2−r/2) + q2n−r+εn ∑
0≤deg a<r

qdeg(a ,F)IF ,a(n).(3.3)

To deal with the sum in this expression, we write

∑
0≤deg a<r

q(a ,F)IF ,a(n) = ∑
d ∣F

d monic

qdeg d ∑
0≤deg a<r
(a ,F)=d

IF ,a(n).(3.4)

First, if x1 + x2 ≡ a (mod F) for some (x1 , x2), then of course, a is uniquely deter-
mined. Next, given some a in the inner sum on the right of (3.4), write a = a0d and
F = F0d where gcd(a, F) = d. Thus, if

x1 + x2 ≡ a0d (mod F0d),

then

x1 + x2 ≡ 0 (mod d),(3.5)

implying

∑
0≤deg a<r

q(a ,F)IF ,a(n)

≤ ∑
d ∣F

d monic

qdeg d #{(x1 , x2) ∶ deg x i < n, x1 + x2 ≡ 0 (mod d)}.

If deg d ≥ n, then there are no solutions to (3.5) with deg x i < n unless x1 = −x2, but
we have already eliminated this case. If deg d < n, then for any choice of x1, there are
at most qn−deg d possibilities for x2. Thus, by Equations (3.3) and (3.4) and Lemma 3.1,
we can conclude

E inv∗
F ,2 (n) ≪ε qεn(q2n + q7n/2−r/2) + q2n−r ∑

d ∣F
d monic
deg d<n

qdeg d(q2n−deg d)

≪ε qεn(q2n + q7n/2−r/2 + q4n−r), ,

as desired. ∎
Also, ideas from [13] show that these can be improved when averaging over the

modulus.
Lemma 3.15 Let n, r, and k be positive integers. Then

∑
deg F=r

E inv
F ,k(n) ≪ε ,k qr+n(k+ε) + qn(2k+ε) .
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Bilinear Kloosterman sums in function fields 13

Proof By clearing denominators, it suffices to count solutions to

k
∑
i=1

2k
∏
j=1
j≠i

x i −
2k
∑

i=k+1

2k
∏
j=1
j≠i

x i ≡ 0 (mod F), deg x i < n, deg F = r.

If the left-hand side of the expression is equal to 0, then [27, Lemma 2.6] implies
there are at most Oε ,k(qr+nk+nε) solutions. Otherwise, we must have that F divides the
left-hand side, yielding at most Oε(qnε) choices for F, implying at most Oε(q2kn+nε)
solutions in total. ∎

4 Bilinear Kloosterman sums

We can now present our results regarding bilinear Kloosterman sums. Before proving
Theorem 2.1, we will present a few more general results. The following can give a
power-savings over the trivial bound when used in conjunction with Lemma’s 3.13
and 3.14, although for flexibility, we do not substitute these bounds yet. We note that
the case k1 = k2 = 2 recovers [4, Theorem 2.5] when Lemma 3.14 is applied, although
this generalizes it to composite modulus.

Lemma 4.1 Let ε > 0. Let k1 and k2 denote positive integers and a, F ∈ Fq[T] with
gcd(a, F) = 1 and deg F = r. Then for any positive integers n and m and weights as in
(2.1), we have

WF ,a(m, n;α,β) ≪ε qm+n+εr(EF ,k1(m)EF ,k2(n)qr−2nk2−2mk1)
1

2k1 k2

.

Proof Let S = ∣WF(m, n;α,β)∣. Applying Hölders inequality yields

Sk2 ≪ε qεrk2/2 qm(k2−1) ∑
deg x1<m
(x1 ,F)=1

�����������
∑

deg x2<n
(x2 ,F)=1

βx2 eF(ax 1x2)
�����������

k2

.

Expanding the inner sum and rearranging then yields

Sk2 ≪ε qεrk2/2 qm(k2−1) ∑
deg x1<m
(x1 ,F)=1

�����������
∑

y1 , . . . , yk2
deg y i<n
(y i ,F)=1

βy1 ...βyk2
eF(ax 1(y1 + ... + yk2))

�����������

= qεrk2/2 qm(k2−1) ∑
deg x1<m
(x1 ,F)=1

γx1 ∑
y1 , . . . , yk2
deg y i<n
(y i ,F)=1

βy1 ...βyk2
eF(ax 1(y1 + ... + yk2))

≪ qεrk2 qm(k2−1) ∑
y1 , . . . , yk2
deg y i<n
(y i ,F)=1

�����������
∑

deg x1<m
(x1 ,F)=1

γx1 eF(ax 1(y1 + ... + yk2))
�����������
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for some ∣γx1 ∣ ≤ 1. By Applying Hölder’s inequality again, we have

Sk1 k2 ≪ε qεrk1 k2 qmk1(k2−1)+nk2(k1−1)

× ∑
y1 , . . . , yk2
deg y i<n
(y i ,F)=1

�����������
∑

deg x1<m
(x1 ,F)=1

γx1 eF(ax 1(y1 + ... + yk2))
�����������

k1

.

This can be rewritten as

Sk1 k2 ≪ε qεrk1 k2+mk1(k2−1)+nk2(k1−1)

∑
deg λ<r

IF ,λ ,k2(n)
�����������

∑
deg x1<m
(x1 ,F)=1

γx1 eF(ax 1 λ)
�����������

k1

.

Applying the Cauchy-Schwarz inequality now yields

S2k1 k2 ≪ε q2εrk1 k2 q2mk1(k2−1)+2nk2(k1−1)

× ∑
deg λ<r

IF ,λ ,k2(n)2 × ∑
deg λ<r

�����������
∑

deg x1<m
(x1 ,F)=1

γx1 eF(ax 1 λ)
�����������

2k1

≪ q2εrk1 k2 q2mk1(k2−1)+2nk2(k1−1) E inv
F ,k2

(n) qr E inv
F ,k1

(m),

and rearranging gives the desired result. ∎
Another useful way to state Lemma 4.1 is

WF ,a(m, n;α,β) ≪ε qm+n+εr

× (EF ,k1(m)qr/2−2mk1)
1

2k1 k2

(EF ,k2(n)qr/2−2nk2)
1

2k1 k2

.
(4.1)

A simpler result is the following, which is obtained using the argument of [15,
Lemma 2.4].

Lemma 4.2 Let k denote a positive integer and take other notation as in Lemma 4.1.
Then

WF ,a(m, n;α,β) ≪ε q(m(2k−1)+max{r ,m})/2k+εr E inv
F ,k(n)1/2k .

Proof Again, let S = ∣WF ,a(m, n;α,β)∣. Applying Hölders inequality and rearrang-
ing yields

S2k ≪ε qkεr qm(2k−1) ∑
deg x1<m
(x1 ,F)=1

�����������
∑

deg x2<n
(x2 ,F)=1

βx2 eF(ax1x2)
�����������

≪ε qkεr qm(2k−1)+max{0,m−r} ∑
deg x1<r

�����������
∑

deg x2<n
(x2 ,F)=1

βx2 eF(ax1x2)
�����������

2k

.

https://doi.org/10.4153/S0008414X24000956 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000956


Bilinear Kloosterman sums in function fields 15

Expanding and using orthogonality then implies

S2k ≪ε q2kεr qm(2k−1)+max{0,m−r}+r E inv
F ,k(n),(4.2)

as desired. ∎

In the case of k = 2, this becomes

WF ,a(m, n;α,β) ≪ε q(3m+max{r ,m})/4+εr E inv
F ,2(n)1/4 .(4.3)

which will be used most often.
We can again improve upon this by averaging over the modulus, using the exact

same ideas as in the proof of Lemma 4.2 above.

Lemma 4.3 With notation as in Lemma 4.2,

∑
deg F=r

max
(a ,F)=1

∣WF ,a(m, n;α,β)∣

≪ε q(m+r) 2k−1
2k +max{m ,r} 1

2k +εr ⎛
⎝ ∑

deg F=r
E inv

F ,k(n)
⎞
⎠

1/2k

.

Proof We can use Equation (4.2) and then Hölders inequality to see

∑
deg F=r

max
(a ,F)=1

∣WF ,a(m, n;α,β)∣

≪ε qεr qm 2k−1
2k +max{m ,r} 1

2k ∑
deg F=r

E inv
F ,k(n) 1

2k

≪ qεr qm 2k−1
2k +max{m ,r} 1

2k
⎛
⎝ ∑

deg F=r
E inv

F ,k(n)
⎞
⎠

1
2k

qr 2k−1
2k ,

and rearranging gives the desired result. ∎

4.1 Proof of Theorem 2.1

As before, we let S = ∣WF ,a(m, n;α,β)∣ and split the discussion into a few cases.
Without loss of generality, we may suppose that n ≤ m.

First, we assume that n ≤ r/3, and let k ≥ 2 denote the largest integer such that
n(k − 1) ≤ r/2. Note that k is bounded above in terms of ε since n is from below, and
nk > r/2. Thus, applying (4.1) with k1 = 2 and k2 = k, together with Lemma 3.13 gives

S ≪ε′ qm+n+ε′r(EF ,2(m)qr/2−4m)
1

4k

(qr/2−nk + qn(k−1)−r/2)
1

4k

≪ qm+n+ε′r(EF ,2(m)qr/2−4m)
1

4k

for some sufficiently small ε′. Since k is bounded from above, it now suffices to show
that for any m > r(1/4 + ε),

EF ,2(m)qr/2−4m < q−δ1 r
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for some δ1 > 0. If r(1/4 + ε) < m < r/3, then Lemma 3.14 yields

EF ,2(m)qr/2−4m ≪ε qr/2−2m+εm < q−rε ,

as desired. Similarly, applying Lemma 3.14 in the case r/3 ≤ m ≤ r and the case r ≤ m
gives the desired result when n ≤ r/3.

Next, we may assume m, n ≥ r/3. By Lemma 4.1 with k1 = k2 = 2, it suffices to show

EF ,k1(m)EF ,k2(n)qr−4n−4m < q−δ2 r

for some δ2 > 0. If r/3 ≤ n ≤ m ≤ r, then Lemma 3.14 gives

EF ,k1(m)EF ,k2(n)qr−4n−4m ≪ε q−m/2−n/2+εm ,

which is sufficient. Similarly, applying Lemma 3.14 in the cases r/2 ≤ n ≤ r and r ≤ m,
as well as r ≤ n ≤ m, yields the desired result.

5 Applications

Before proceeding, we will make a few reductions common to each of Theorems 2.2,
2.3, and 2.4. For a, F ∈ Fq[T] with deg F = r, we set

d = deg(a, F), F0 = F/(a, F), r0 = deg F0 , a0 = a/(a, F).(5.1)

Lemma 5.1

∑
deg x<n
(x ,F)=1

μ(x)eF(ax) ≪ε qr0+n(1/2+ε) .

Proof This is a direct application of Corollary 3.6 as

∑
deg x<n
(x ,F)=1

μ(x)eF(ax) = ∑
deg x<n
(x ,F)=1

μ(x)eF0(a0x)

= ∑
deg y<deg F0
(y ,F)=1

eF0(ay) ∑
deg x<n

x≡y (mod F0)

μ(x) ≪ε qr0+n(1/2+ε) .

∎

Lemma 5.2 For any positive integer U satisfying 2U < n,
�����������
∑

deg x<n
(x ,F)=1

μ(x)eF(ax)
�����������
≪ε S1 + S2 ,

where

S1 = qnε ∑
deg x≤u
(x ,F)=1

∣ ∑
deg y<n−u
(y ,F)=1

eF0(a0x y)∣, S2 = qnε ∑
deg x≤v
(x ,F)=1

∣ ∑
deg y<n−v
(y ,F)=1

βy eF0(a0x y)∣

for some integers u ≤ 2U and U < v ≤ n −U, and ∣βy ∣ ≪ε qnε .
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Proof This follows from a standard manipulation of Vaughan’s identity as in [15, 13, 9,
18], but we will include a few details for completeness. By applying Vaughan’s identity
in function fields [25, equation (A.1)], we have

∑
deg x<n
(x ,F)=1

μ(x)eF(ax) ≪ S1 + S2 ,

where
S1 = ∑

deg x<n
(x ,F)=1

∑
deg g≤k
deg h≤k

gh∣x

μ(g)μ(h)eF(ax),

S2 = ∑
deg x<n
(x ,F)=1

∑
deg g>k
deg h>k

gh∣x

μ(g)μ(h)eF(ax),

for any positive integer k < n. First to manipulate S1, we have

S1 ≤ ∑
deg g≤k
(g ,F)=1

∑
deg h≤k
(h ,F)=1

∣ ∑
deg y<n−deg g−deg h

(y ,F)=1

eF(aghy)∣.

For each pair (g , h), we only ever take into account the value gh. So by (3.1),

S1 ≤ qo(n) ∑
deg x≤2k
(x ,F)=1

∣ ∑
deg y<n−deg x
(y ,F)=1

eF(ax y)∣.

Thus, there exists some integer t1 ≤ 2k such that

S1 ≤ qo(n) ∑
deg x≤t1
(x ,F)=1

∣ ∑
deg y<n−t1
(y ,F)=1

eF(ax y)∣.

Next, we consider S2. We treat this sum similarly and obtain

S2 ≤ ∑
k<deg x<n−k
(x ,F)=1

∣ ∑
deg y<n−deg x
(y ,F)=1

βy eF(ax y)∣,

where

βy =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
k<deg z<deg y

z∣y

μ(z), k < deg y < n − deg x

0, deg y ≤ k,

which of course implies ∣βy ∣ ≤ qo(n) by (3.1). Now again, this implies that

S2 ≤ qo(n) ∑
deg x≤t2
(x ,F)=1

∣ ∑
deg y<n−t2
(y ,F)=1

βy eF(ax y)∣

for some integer t2 satisfying k < t2 < n − k.
Combining these estimates for S1 and S2 gives the desired result. ∎
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5.1 Proof of Theorem 2.2

Recall that we fix ε > 0 and suppose that r(1/2 + ε) < n < r. Additionally, recall r0 , F0,
and a0 from (5.1).

If r0 ≤ n(1/2 − 2ε), then Lemma 5.1 implies

∑
deg x<n
(x ,F)=1

μ(x)eF(ax) ≪ε qn(1−ε) ,

as desired. So we may now assume r0 > n(1/2 − 2ε).
By letting

U = (n − r/2 − rε/2)/2,

it suffices to bound the sums S1 and S2 in Lemma 5.2.
First, we bound S1 by applying Lemma 3.11 and Lemma 3.12. If n − u ≥ r0, then

Lemma 3.12 implies

S1 ≪ε qu+n−u−r0+r0/2+εr/2 = qn−r0/2+εr/2 .

If n − u ≤ r0, then by u ≤ 2U = n − r/2 − rε/2 and Lemma 3.11,

S1 ≪ε qu+r0/2+rε/3 ≤ qn−rε/2+nε/3 .

Either way, these provide sufficient power savings.
Finally to bound S2, we can directly apply Theorem 2.1 which completes the proof.

5.2 Proof of Theorem 2.3

This proof is quite similar to the proof of Theorem 2.2 and just requires slightly more
attention to detail to obtain more explicit bounds. This expands upon some ideas from
[15, 6]. Again, recall the notation a0 , r0, and F0 from (5.1). We may assume n > 3r/4
since otherwise, the result is trivial.

First, suppose that r0 < 7n/16. Then Lemma 5.1 implies
�����������
∑

deg x<n
(x ,F)=1

μ(x)eF(ax)
�����������
≪ε qn(15n/16+ε) ,

as desired, and thus, we may now assume r0 ≥ 7n/16.
By letting U = r0/3, we need to bound S1 and S2 as in Lemma 5.2. First, we deal

with S1 and split the argument up into cases depending on the sizes of u and n − u.
Case 1: u ≤ 2r0/3 and r0 ≤ n − u. Here, we apply Lemma 3.12 to the inner sum over

y to obtain

S1 ≪ε qn−u−r0+εn/2 ∑
deg x≤u
(x ,F)=1

∣ ∑
deg y<r0
(y ,F)=1

eF0(a0x y)∣

≪ε qn−r0/2+εn ≤ q25n/32+εn

since r0 ≥ 7n/16.
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Case 2: u ≤ r0/3 and r0/3 ≤ n − u ≤ r0. Using Equation (4.3) together with
Lemma 3.14 yields

S1 ≪ε q3(n−u)/4+r0/4+u/2+εn = q3n/4+r0/4−u/4+εn .

Also, separately applying Lemma 3.12 to S1 (to the inner sum over y) implies

S1 ≪ε qu+r0/2+εn .

By combining these two estimates, we have

S1 ≪ε q3n/5+3r0/10+εn ≤ q2n/3+r/4+εn

since n > 3r/4.
Case 3: r0/3 ≤ u ≤ /3 and r0/3 ≤ n − u ≤ r0. Here, we use Lemma 4.1 with k1 =

k2 = 2 together with Lemma 3.14, giving

S1 ≪ε qn+εn+ 1
8 (7u/2−r0/2+7(n−u)/2−r0/2+r0−4t1−4(n−u)) = q15n/16+εn .

For the remaining cases bounding S1, we may assume that n − u ≤ r0/3, which
implies u ≥ n − r0/3. Note that this also implies n ≤ r0 since u ≤ 2r0/3.

Case 4: n − r0/3 ≤ u ≤ 2n/3 and n − u ≤ r0/3. Here, by again applying Equa-
tion (4.3) with Lemma 3.14, we have

S1 ≪ε q3u/4+r0/4+(n−u)/2+εn ≤ q2n/3+r/4+εn .

Case 5: 2n/3 ≤ u ≤ 2r0/3 and n − u ≤ r0/3. Applying the Cauchy-Schwarz inequal-
ity directly to S1 shows

S2
1 ≪ε qu+εn ∑

y1 , y2
deg y i<n−u
(y i ,F)=1

∑
deg x<u
(x ,F)=1

eF(ax(y1 + y2)).

Isolating the case y1 = −y2 and then applying Lemma 3.11 to the sum over x implies

S2
1 ≪ε qn+u+εn + qu+r/2+εn T ,(5.2)

where

T = ∑
y1 , y2

deg y i<n−u
(y i ,F)=1

qdeg(F , y1+y2)/2 .

We can rearrange and write

T = ∑
d ∣F

d monic

qdeg d/2 ∑
0≤deg a<r
(a ,F)=d

IF ,a(n − u)

with IF ,a(n − u) as in (3.1). Now mimicking the argument after Equation (3.4)
identically shows

T ≤ ∑
d ∣F

d monic

qdeg d/2q2n−2u−deg d ≪ε q2n−2u+εn .
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Substituting back into (5.2) yields

S1 ≪ε qn/2+u/2+εn + qr/4+n−u/2+εn ≪ q2n/3+r/4+εn ,

where we have again used n > 3r/4.
Combining all 5 cases above yields a suitable bound for S1. We now focus on

bounding S2 and similarly consider a number of cases depending on the size of v and
n − v. Without loss of generality, we may assume that v ≤ n − v.

Case 1: r0/3 ≤ v ≤ r0 and r0/3 ≤ n − v ≤ r0. Here, we may apply bounds identically
to Case 3 above when bounding S1.

The last two cases both use Equation (4.3) with Lemma 3.14.
Case 2: r0/3 ≤ v ≤ r0 and r0 ≤ n − v. Here,

S2 ≪ε qn−v+7v/8−r0/8+εn ≤ q15n/16+εn

since r0 ≥ 7n/16.
Case 3: r0 ≤ v and r0 ≤ n − v. In this case,

S2 ≪ε qv+n−v−r0+εn ≤ qn−r0/4+εn ≤ q15n/16+εn

since r0 ≥ 7n/16.
Combining these cases yields a suitable bound for S2, which now completes the

proof.

5.3 Proof of Theorem 2.4

Again, this proof is similar to the other proofs previously in this section. Recall that
we are wanting to bound

S = ∑
deg F=r

max
a∈Fq[T]

∣ ∑
deg x<n
(x ,F)=1

μ(x)eF(ax)∣.

For each F, let aF denote the value of a for which the maximum on the inner sum is
achieved. Then we can say

S = ∑
deg d≤r
d monic

∑
deg F=r
(aF ,F)=d

∣ ∑
deg x<n
(x ,F)=1

μ(x)eF/d((aF/d)x)∣

≤ ∑
deg d≤r
d monic

∑
deg F=r−deg d

max
(a ,F)=1

∣ ∑
deg x<n
(x ,F)=1

μ(x)eF(ax)∣

=
r
∑
j=1

q j ∑
deg F=r− j

max
(a ,F)=1

∣ ∑
deg x<n
(x ,F)=1

μ(x)eF(ax)∣

≪ε qεn+ j ∑
deg F=r− j

max
(a ,F)=1

∣ ∑
deg x<n
(x ,F)=1

μ(x)eF(ax)∣(5.3)

for some integer 1 ≤ j ≤ r.
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First, suppose j > r − 2n/5. Then applying Lemma 5.1 to the inner-sum implies

qεn+ j ∑
deg F=r− j

max
a∈Fq[T]

∣ ∑
deg x<n
(x ,F)=1

μ(x)eF(ax)∣ ≪ε q j+r− j+r− j+n/2+nε

≪ qr+9n/10+nε ,

so we may assume that j ≤ r − 2n/5.
We let U = min{n/3, 5n/8 − r/4}. By Lemma 5.2 and Equation (5.3), the problem

reduceS to bounding

T1 = qεn+ j ∑
deg F=r− j

max
(a ,F)=1

S1 , T2 = qεn+ j ∑
deg F=r− j

max
(a ,F)=1

S2

with S1 and S2 as in Lemma 5.2. In Lemma 5.2, the condition on u is given as u ≤ 2U .
But since 2U ≤ n −U here, the case of U ≤ u ≤ 2U is covered when dealing with S2
(since all of our methods for bounding S2 also apply to S1). So when bounding S1, we
may assume u ≤ U .

First, we deal with T1. We may apply Lemma 3.11 to the inner sum over y. If n − u ≤
r − j, then

T1 ≪ε qnε+ j+r− j+u+(r− j)/2 ≪ q3r/2+u+nε ≪ q5n/8+5r/4+nε ,

or if n − u ≥ r − j, then

T1 ≪ε qnε+ j+r− j+u+n−u−(r− j)+(r− j)/2 ≪ qr+4n/5+nε ,

where we have used j ≤ r − 2n/5.
Next, we deal with T2. By Lemma 4.3 and Lemma 3.15, we have that for any positive

integer k,

T2 ≪ε qεn+ jq(v+r− j) 2k−1
2k +max{v ,r− j} 1

2k (q(r− j)/2k+n/2−v/2 + qn−v) .(5.4)

We consider two cases depending on the size of v and n − v. Since we have treated
the inner sum S2 in T2 as a bilinear Kloosterman sum with arbitrary weights, and the
ranges on v and n − v are equal, we may also interchange v and n − v. Thus, considering
the range 2n/5 ≤ v ≤ n −U is enough, since if v ≤ 2n/5, then n − v ≥ 3n/5, so we may
swap v and n − v to get back into the range 2n/5 ≤ v ≤ n −U .

Case 1: 2n/5 ≤ v ≤ n/2 and max{v , r − j} = r − j. Here, we use (5.4) with k = 2,

T2 ≪ε qr+nε(qn−v/4 + qn/2+r/4− j/4+v/4) ≪ε qr+nε(q9n/10 + qr/4+5n/8).

Case 2: 3n/5 ≤ v ≤ n −U and max{v , r − j} = r − j. Here, we use (5.4) with k = 3,

T2 ≪ε qr+nε(qr/6− j/6+n/2+v/3 + qn−v/6)
≪ qr+nε(qr/6+5n/6−U/3 + q9n/10)
≪ qr+nε(q13n/18+r/6 + q5n/8+r/4 + q9n/10),

where we have used U = min{n/3, 5n/8 − r/4}.
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Case 3: 2n/5 ≤ v ≤ n −U and max{v , r − j} = v. Here, we use (5.4) with k = 2,

T2 ≪ε qr+nε(qn/2+v/2 + qn−r/4+ j/4)
≪ qr+nε(q5n/6 + q11n/16+r/8 + q9n/10),

where we have used j ≤ r − 2n/5 and U = min{n/3, 5n/8 − r/4}.
Combining all of our estimates for T1 and T2 yields the desired result.

5.4 Proof of Theorem 2.5

This result follows from substituting Theorem 2.3 instead of [25, Theorem 1.8] into the
proof of [25, Theorem 1.9], but we sketch the details here. We let d = n − r, and thus,
the condition that nω ≥ r for some ω < 1/2 + 1/62 can be rewritten as

d ≥ r 1 − ω
ω

= r(1 − ω′)

for some ω′ < 1/16. We let θ > 0 (which will be taken to be sufficiently small as needed).
Also, we let

ε = 16
15
( 1

16
− ω′ − 2θ) .

By [25, equation (5.9)], it suffices to bound

S =
d+r
∑
k=1

k ∑
x∈Mk
(x ,F)=1

μ(x) ∑
y∈Mr+d−k

x y≡a (mod F)

1.

As in [25], if k ≤ d, we can apply Lemma 3.8 to contribute the main term.
We denote the remaining sum over k > d by S0 and note that

S0 ≤ rk
�����������
∑

x∈Mk0
(x ,F)=1

μ(x) ∑
y∈Mr+d−k0

x y≡a (mod F)

1
�����������

for some k satisfying d ≤ k ≤ d + r. If k ≤ r(1 + ε). Then using [25, equation (5.10)],
applying Theorem 2.3, and using k ≤ r(1 + ε) yields

S0 ≤ rkqd−k ∑
deg h<k−d

�����������
∑

x∈Mk
(x ,F)=1

μ(x)eF(ahx)
�����������

(5.5)

≪θ rkqθr(q15k/16 + q2k/3+r/4)
≪θ q15r/16+15rε/16+rθ .

We now use ε = (1/16 − ω′ − 2θ)16/15 and then r ≤ d + rω′ to conclude

S0 ≪θ qr−rω−rθ ≤ qd−rθ ,

which is sufficient. So we may now assume that k > r(1 + ε). We also let β > 0.
Rearranging S0, we arrive at [25, equation (5.13)],
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S0 ≤ rk ∑
y∈Mr+d−k0

∣ ∑
x∈Mk

x y≡a (mod F)

μ(x)∣.

Thus, we may apply Lemma 3.7 to yield

S0 ≪θ ,β rkqr+d−k q(k−r)(1−β/p) ≪β qd−rβ/pε ,

which again, is sufficient. This holds as long as

q > (pe ε + 2
ε
)

2
1−2β

= (pe (1 + 30
1 − 16δ′ − 32θ

))
2

1−2β

.

But since we fix p and q, we may choose θ and β sufficiently small so that we only
require

q > p2e2 (1 + 30
1 − 16ω′

)
2

.(5.6)

By substituting ω and rearranging, we obtain the desired result.

5.5 Proof of Theorem 2.6

This proof uses essentially the same ideas as the proof of Theorem 2.5, although it
is slightly more technical. We may assume that n = O(r), since for small r, this is
implied by other results (for example, by Theorem 2.5). We let d = n − R, and thus,
the condition that R ≤ nω for some ω < 1/2 + 1/38 can be rewritten as d ≥ R(1 − ω′)
for some ω′ < 1/10. We let θ > 0 (which will be taken to be sufficiently small as needed)
Also, we let

ε = 10
9
( 1

10
−w′ − 2θ) .

We rewrite the sum in question as

S =
R−1
∑
r=1

∑
deg F=r

max
(a ,F)=1

∣ ∑
x∈Mn

x≡a (mod F)

Λ(x) − qn

ϕ(F) ∣.

For each r in this sum, let dr = n − r. Expanding this identically as in [25, equation
(5.9)], we can say S ≪ S1 + S2 + S3, where

S1 =
R−1
∑
r=1

∑
deg F=r

∣ − qdr
dr

∑
k=1

kq−k ∑
x∈Mk
(x ,F)=1

μ(x) − qn

ϕ(F) ∣,

S2 =
R−1
∑
r=1

∑
deg F=r

max
(a ,F)=1

∑
dr<k<dr+r
k≤r(1+ε)

k∣ ∑
x∈Mk
(x ,F)=1

μ(x) ∑
y∈Mr+dr−k

x y≡a (mod F)

1∣,

S3 =
R−1
∑
r=1

∑
deg F=r

max
(a ,F)=1

∑
dr<k<dr+r
k>r(1+ε)

k∣ ∑
x∈Mk
(x ,F)=1

μ(x) ∑
y∈Mr+dr−k

x y≡a (mod F)

1∣,

and it suffices to show each S i ≪ω qn−Rδ for some δ > 0.

https://doi.org/10.4153/S0008414X24000956 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000956


24 C. Bagshaw

To bound the contribution from S1, we apply Lemma 3.8 directly to see

S1 =
R−1
∑
r=1

∑
deg F=r

∣qdr (− qr

ϕ(F) + qo(n)−dr) + qn

ϕ(F) ∣

≪θ qR+θn < qn−Rδ

for some δ > 0, since we can choose θ and δ sufficiently small and R < n.
Next, we consider S2. Identically as in Equation (5.5), we can use Lemma 3.9 to say

S2 ≪
R−1
∑
r=1

∑
dr<k<dr+r
k≤r(1+ε)

kqdr−k ∑
deg h<k−dr

∑
deg F=r

max
(a ,F)=1

�����������
∑

x∈Mk
(x ,F)=1

μ(x)eF(ahx)
�����������
.

Then applying Theorem 2.4 and using k ≤ r(1 + ε) and r ≤ R yields

S2 ≪θ

R−1
∑
r=1

∑
dr<k<dr+r
k≤r(1+ε)

k (q5r/4+5k/8 + qr+9k/10 + q7r/6+13k/18) qθr/2

≪θ qR+9R/10+9Rε/10+θR ,

where here, we have used kR ≪θ qRθ/2. Using ε = (1/10 − ω′ − 2θ)10/9 and R ≤ d +
Rω′ = n − R + Rω′ means

S2 ≪θ qn−Rθ ,

as desired.
Finally, to bound S3, we let β, β′ > 0 (which we will take to be sufficiently small

as needed), and we can apply Lemma 3.7. Note that working identically to Equation
(5.6), this will only hold for

q > p2e2 (1 + 18
1 − 10ω′

)
2

.

Regardless, regarranging S3 and then applying Lemma 3.7 means

S3 =
R−1
∑
r=1

∑
deg F=r

max
(a ,F)=1

∑
dr<k<dr+r
k>r(1+ε)

k ∑
y∈Mr+dr−k
(y ,F)=1

∣ ∑
x∈Mk

x≡ya (mod F)

μ(x)∣

≪β ,β′ ,θ

R−1
∑
r=1

∑
dr<k<dr+r
k>r(1+ε)

qn−β/p(k−r)+nβ′ ,

where we have used k ≪β′ qnβ′ . We now deal with two parts of this sum separately.
For r < R/3 (which means r < n/3), we make the substitution k > dr = n − r to give

R/3

∑
r=1

∑
dr<k<dr+r
k>r(1+ε)

qn−β/p(k−r)+nβ′ ≪β′
R/3

∑
r=1

qn−β/p(n−2r)+2nβ′

≪β′ qn−n(β/(3p)−3β′)

≪ qn−R(β/(3p)−3β′),

https://doi.org/10.4153/S0008414X24000956 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000956


Bilinear Kloosterman sums in function fields 25

which is admissable for β and β′ chosen suitably. Finally, for r ≥ R/3, we make the
substitutions k > r(1 + ε), ε = (1/10 − ω′ − 2θ)10/9 and dr = n − r to give

R−1
∑

r=R/3
∑

dr<k<dr+r
k>r(1+ε)

qn−β/p(k−r)+nβ′ ≪β′
R−1
∑

r=R/3
qn−rεβ/p+2nβ′

≪β′ qn−Rεβ/(3p)+3nβ′ ,

which is admissible, since we have assumed that n = O(r), and we may choose β, β′
suitably.

Combining our estimates for S1 , S2, and each part of S3 gives the result.
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