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1. Introduction. In a previous note [3], Mennicke and I showed that the relations

(8, 7 | 2, 3): AS = B1 = (AB)2 = (A~1B)3=E

define a group of order 10752. As we remarked, the results of §§ 2, 3 of that note are not
restricted in their application to this group; they apply to the group

[3,7]+: B1 = (AB)2 = (A-1B)3 =E

and to any factor group of this group which in turn has Klein's simple group of order 168,
defined by

(4, 7 | 2, 3): A* = B1 = (AB)2 = {A~lB)3 =E,

as a factor group. In this note I use these results to establish alternative " weaker " definitions
for Klein's group and for two groups discussed by Sinkov [4], namely (8, 7 | 2, 3) defined
above and a factor group of this group of order 1344. These latter groups are eloquently
discussed by Coxeter [1].

A mechanical technique for proving relations between generating elements of a group
is discussed in an appendix. This was developed to prove certain relations stated in § 2 of
this note, but it is of independent value and is described with reference to a simpler example
in the appendix. It enables one to state without proof relations which can be proved thereby,
since the details of proof can be supplied mechanically by following the precise rules given.

2. The kernel of the homomorphism between [3 ,7] + and (4, 7 | 2, 3). We showed in
[3, § 2] that the seven elements

a = A*, c = B~lA*B, e = B~2A*B2, g =B~3A*B3,

b = B~*A*B\ d = B'5A*B5, f = B~6A*B6,

generate a normal subgroup of [3, 7 ] + of index 168 whose quotient group is Klein's group
(4, 7 | 2, 3). (In fact the subgroup is generated by any six of these elements, but it is con-
venient to keep all seven for reasons of symmetry.) It follows that any product of A's and
B's which reduces to E in Klein's group is expressible as a product of these elements "J" a,... .
The mechanical technique described in the appendix was devised to facilitate the derivation of
these expressions.

By this means we find that

A~1aA=a, A-1bA = a~ig-lf-\ A~xcA=f,

A~1dA = b-\ A-xeA = d-lj~\ A~'fA =a-1c~1, A~1gA = e-\

t Throughout this note, sequences of dots designate the results of cyclic permutation of a, b, c, d, e, f, g.
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as stated in [3]. Since conjugation by B effects only a cyclic permutation of a, ..., these
expressions enable us to express any conjugate of an element of the subgroup by an element
of the whole group in terms of the generators of the subgroup, which shows again that the
subgroup is normal. In the same way we find that

(A2BA)3 = afdb,
(A2B2)* = afge,
(A3B4)3=ae-lb.

The products chosen are all those of the form AmB" with m ^ 4 which have twice the period in
(8, 7 | 2, 3) that they have in Klein's group, except for certain conjugates, namely

AB2~A2BS~A, A3B6~A2, A3B5 ~ A2B2.

Reference to the hyperbolic tessellation {3, 7} (e.g. [3], figure 1) shows that these products
are simple translations.

We also recall from [3] the relations

abcdefg = (A'B3)1 = E,
afdbgec = (A'B)1 =£ ,

which follow since (A^B3)'1 and A*B are conjugates of B2.

3. Klein's simple group of order 168. In this and the next section I give alternative
definitions of Klein's group and of two groups discussed by Sinkov [4]. These groups are
discussed as factor groups of

[3, 7 ] + : B1 = (AB)2 = (A~lB)3 = E,

and these relations are assumed hereafter without further reference in addition to those stated
explicitly. In this section Klein's group is shown to be determined when the relation A* = E
is replaced by certain " weaker " relations 3.1, 3.2, 3.3 and 3.4.

3.1 A* commutes with B, i.e. a = b = . . . . We have

a = A~laA = A~lgA = e~1 =a~\
so that a2 = E.
Also abcdefg = a1 = E.
Thus a = E.

3.2 (A2B*)3 commutes with B, i.e. afdb =fdbg
Since afdbgec = E,
this implies afd =fdb = . . . ,
so that b=g = ...
and a = E,
by 3.1.

3.3 (A2B2)* commutes with A and B, i.e. afge commutes with A and B. Since afge com-
mutes with B, we have
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afge = bgaf = ... ,

and, since afge commutes with af, we have

afge =geaf,

so that bg =ge= ... .
In particular af = ec,
whence A ~ xafA = A ~ 1ecA,

i.e. c-1=d~\
and again a = E
by 3.1.

3.4. (A3B*)3 commutes with A and B, i.e. ae~1b commutes with A and B. Since ae~xb
commutes with B, we have

ae-lb = bf-lc,
so that A~lae-lbA = A~xbf'xcA,
i.e. afda- V ! / " " J =a~ xg-lf- lcaf

since each expression equals ae~lb which commutes with caf. We thus have

afd = caf = ... ,

and so a = E,
by 3.2.

It follows at once that the corresponding " stronger " relations

yield Klein's group (the first of these was given by Sinkov [4]). It may be remarked that if
the group [3, 7]+ is defined in terms of generators R, S, satisfying

R2 = S1 = (RS)3 = E,

then A, A2B*,A2B2 are conjugates of RS-^S, RS~2RS2, RS~3RS3 respectively, so that
Klein's group is determined when the period of any commutator of R with a power of S is
prescribed, or when this power of a commutator is set to commute with R and S.

It is also remarkable that if we replace (A2B2)* by (A2B2)3 in 3.3 or (A3B*)3 by (A3BA)2

in 3.4 we obtain larger groups, namely LF(2, 13) of order 1092 and LF(2, 23) of order 504
respectively.

4. Two groups discussed by Sinkov. Sinkov[4] proved that the relations A8 = (A2B4)6 = £
yield a factor group of [3, 7]+ of order 10752. Mennicke and I [3] showed that the relation
(A2B4)6 = E can be omitted, being implied by AB = E. I now show that this can be weakened
further.
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4.1. A& commutes with B. This implies that

so that a* = ... - E,
and that a2 = a~2 = b~2 = A~1b~2A = (fga)2 = ...

and a2 = a~2 =f~2 = A~lf~2A = (ca)2 = ... .

The common square of a and its conjugates is thus of period 2 and commutes with every ele-
ment of the group, so that the group is of order at most twice that given by a2 = E. Further,
every relation implied by a2 — E will be valid either as it stands or with an extra multiplier
a2 on one side.

We have a2 = abcabc
= a2. aba' 1c~ xbc, since a2 = (ca)2,
= a2 . abacbc
= abab . bcbc
= (ab)2 . (be)2,

so that (ab)2 = a2(bc)-2 = (cd)2 = a2(de)~2 = ef2

whence (ab)2 = ... and (ab)* = ... = a2.

Now a2 = E implies (ab)2 = E, so that when a2 commutes with B we have

either (ab)2 = £ or (ab)2 = a2.

In the presence of (ab)* = a2, each of these implies the other, and so

a2 = (ab)2 = E,

and we have the group (8, 7 | 2, 3).

4.2 Sinkov also showed that the sets of relations

Ae = AABA*B2A*B4 = E,

A* = A*B*A*B2A*B = E

yield factor groups (distinct but isomorphic) of (8, 7 | 2, 3) of order 1344. I now show that
these relations can be weakened by the omission of the relation A* = E. In each case, since
A* and A~* are no longer equal by definition, the remaining relation generalizes to several
alternatives, of the forms

= E, A^B*A^B2A^B = E

respectively. Actually each of these relations can be further weakened to read that the product
commutes with A and B, and this is all that is assumed below. I give the proofs for two com-
binations of signs. Proofs for the other cases can be readily constructed; most are as easy
as 4.22, the case 4.21 being conspicuously more difficult and given in full for that reason.
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4.21. A~*BA*B2A*B* commutes with A andB, i.e. a~xfb commutes with A and B. First
we have

a-1fb = c-iad=f-1dg,
so that A~1c~1adA = A~1f~1dgA,
i.e. f-^ab'1 =cab-ie~l

= e~1cab~1,

since each expression equals a~ lfb which commutes with e~l; thus

and so
We n o w have

so tha t
i.e.

i.e.
Again,

so that
i.e.
giving
i.e.
since c~ W = E, i.e.
so that
by B conjugation. Thus

i.e.
i.e.
since c~lad = E, i.e.

Combining this with a~xfb = E,

a~lfb= ... =E.
g~xea = E,

A~lg-leaA = E,
ed~if-ia = E,

ae =fd.
e-'cf=E,

A~1e-icfA=E,
fdfa-'c-^E,
aefa-lc~l = E,
a-1d~1ef=E,

ef = da,
be = ae

be =fd,
bed'1/'1 = £ ,

baf-x = E,
af-lb = E.

we get

and a2 = £,

by 4.1. We have thus proved both of Sinkov's relations, in the forms

a
2 = a-lfb = E,

so that the group is that of order 1344 shown by him to be determined by these relations.

4.22. AABAAB2AA'B* commutes with A and B, i.e. afb commutes with A and B. We have

afb = ecj"= A~leefA = rf-W1 = A-ld~la-lc-1A =ba~1f-1 =a~xf-xb,

since afb commutes with b. We thus have
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a 2 = f ~ 2 = . . . ,
and a2 - E

by 4.1. It follows at once that afb = E; for example, since a = a'1, we may use the first
part of 4.21, proving that a' lfb = E, and again we have a group of order 1344.

With similar proofs in the other cases, we find that if any one of the products

i.e. a±1f±lb±1,

or A±^B*A±*B1A±AB, i.e. a±lg±lc*\

commutes with both A and B, then both that product and A8 reduce to E, and we have one
of the groups of order 1344 shown by Sinkov to be determined by these relations. In each
case the subgroup {a, ... } consists of the 8 elements E, a, b, c, d, e,f, g.

It may be shown, by the method of the appendix or otherwise, that (A2B'2AB2)3 = abf~].
This yields the alternative forms (A2B~2AB2Y = E or (A2B'2AB2)3 commutes with A and B
for these definitions.

5. Groups satisfying (A2B*)6 = £. The relation (A2B*)6 = E does not imply A8 = E,
as it is consistent with the relation A1 = E in the group (7, 7 | 2, 3) of order 1092; indeed it
does not appear to imply that either the order of the group or the period of A is finite. It
is of interest, however, to develop certain consequences of this relation, by means of which
it is found to be incompatible with the period of A being 12 or 16.

We have (A2B*)3 = afdb
^b-'d-'f-'a-1

=fdba~\

since afdbgec = E implies that (fdb)'1 is a conjugate of {A2BA)i. Similarly

so that fdba-l = d~ lf~ la~ xb
and (jdf^cr^bab-1.
Now (A2B*)6 = E,

so that (afdb)2=E, (gec)~2 =E, (dbg)~2=E,

A-1(dbg)~2A = E> (cd)~2 = E, and (ba)-2 = E;

hence (fd)2 = a-
l(ba)-lb = a~2b~2,

so that

(fd)2b2a2 = E, (af)2d2c2 = E, A-'{af)2d2c2A = E, and c~2b-2f2 = E.

We thus have
f2 = b2c2, g2 = c2d2, ...,

and so a2f2 = a2b2c2 = e2c2 = e2f2g2

i.e. a2f2 = b2g2 = ... = a2b2c2 = b2c2d2 = ... .
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These same conclusions also follow from the weaker assumption that (A2B4)6 commutes
with A and B; the proof is similar. We now show that these relations are incompatible with
A 1 2 = E and with A 1 6 = E.

5.1. A 1 2 = E, i.e. a3 = E. This implies a2 = a~\ b2 = b~1,..., so that e2 = a2b2

yields e~l = a~lb~l, i.e. e = ba. But ba is a conjugate of (A2B4)3 and so of period 2, while e
is a conjugate of a and so of period 3. The relations are therefore incompatible and we have
Klein's group with A4 = (A2B4)3 = E.

5.2. A16 = E, i.e. a4 = E. This implies that a2 = a"2, i 2 = 6"2, ... , so that e2 = o2i2

yields e"2 = a~2b~2, i.e. e2 = 62a2. Thus a2 commutes with b2, similarly b2 with c2, etc.
From

a262c2 = b2c2d2

we thus get b2a2c2 = b2d2c2,
so that a2 = </2,
and so a2 = £,
by 4.1. This group therefore reduces to (8, 7 | 2, 3) with AB = E.

By slight modifications of these proofs, we can show that corresponding incompatibilities
obtain between the weaker relations that (A2B4)6 commutes with A and B and that either A12

or Ai6 commutes with B.

APPENDIX

In this appendix the method of Todd and Coxeter [5, 2] for establishing the order of a
finite group by enumeration of cosets is applied to proving relations between the elements of
a group. Todd and Coxeter choose a suitable subgroup of the group, which they define to
be coset 1, and then define other cosets 2, 3, ... and deduce relations between cosets until
finally they obtain a closed set of cosets each of which is transformed into itself or another
when multiplied by a generator of the group. (I follow [2] rather than [5] in regarding right
multiplication as standard.) The results can be listed in a multiplication table showing the
effect on each coset of each generator of the group, and also, for convenience in working, the
effect of the inverse of each generator which is not involutory. With such a table one can easily
find the effect on coset 1 of multiplication by a general element of the group expressed as a
product of generators. If the resulting coset is coset 1 itself, it follows that the element chosen
is an element of the subgroup (perhaps the identity element) and is therefore expressible as a
product of the generators of the subgroup. Unfortunately the coset multiplication table
does not of itself offer any means of finding such an expression. However, in the special case
where the coset enumeration is straightforward and does not involve the definition and sub-
sequent elimination of redundant cosets, it is possible to retrace the steps made in constructing
the multiplication table in such a way as to derive an expression for the element as a product
of the generators of the subgroup. The procedure is described in the following simple worked
example.
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The octahedral group is defined by the relations
A* = E, (a)
B3 = E, (ft)

(AB)2 = E, (y)

and we shall enumerate the six cosets of the subgroup {A} in this group, keeping a systematic
record of the order in which relations between cosets are obtained. First define 1/4 = 1 (this
defines coset 1 to be the subgroup {A}), IB = 2, IB~1 = 3. Relation (y) now yields

2A = 3 (1)

and (/?) yields 2B = 3. (2)

Now define 2A ~' = 4, 3A = 5. (a) now yields

5/1 = 4 (3)

and (y) yields 5B =4 . (4)

Finally define AB = 6. Then (/?) yields

6B = 5 (5)

and (y) yields 6/4 = 6. (6)

The enumeration is now complete and we have the multiplication table given below. A
subscript figure denotes that the entry is one made by deduction and corresponds to the
reference number given above; entries without subscripts correspond to definitions of cosets.

A A'1 B B-1

1 1 1 2 3
2 3 t 4 32 1
3 5 2 t 1 22

4 2 53 6 54

5 43 3 44 65

6 66 66 55 4

We are now in a position to carry out the reductions. Consider for example the element
(B~ lAB~')"lA(B~lAB~')• First we write this in full with coset numbers beneath the spaces
and subscripts beneath appropriate letters, thus:

B A-1 B A B'1 A B~l .
1 2 4 6 6 6 4 2 1

This denotes that IB = 2, 2A'1 =4, etc., and that 6/4 = 6 was the sixth deduced relation
between cosets, the other relations between pairs of cosets being definitions. Since the final
coset is coset 1, we infer that this element is an element of the subgroup, i.e. a power of A,
and we shall find what power. Deduction (6) was made from relation (y): (AB)2 = E; we
replace A by B~lA~lB~l and, after cancelling an adjacent pair BB~l, we obtain
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B A-1 A-1 B-1 B-1 A B-1 .
1 2 4 3 5 5 6 4 2 1

Here we have two pairs of cosets corresponding to deduced relations between cosets; we
replace the later in order of deduction, namely 5 5 " ' = 6 deduced from (/?): B3 = E, and
obtain

B A'1 A'1 B A B~l .
1 2 4 3 5 4 4 2 1

Continuing similarly, always replacing the generator corresponding to the latest deduced
relation between cosets, we find successively

B A-1 A-1 A-1 B-1 B'1 ,
1 2 4 3 5 3 2 2 1

B A B~l B~l ,
1 2 t 3 2 2 1

B A B ,
1 2 , 3 1

A-1 .
1 1

The reduction is now complete, and we have shown that ( 5 " 1 AB~i)~iA{B~XAB~') = A'1.
If desired, the final reduction can be exhibited without reference to the method of derivation
in the form

(B-1 AB-1)-1A(B~'AB~l) =BA~lBAB-1AB'1 = BA~l A~x B~x B~x AB~X

= BA-1A~XBAB-1 =BA-lA-1A-iB~lB-1

= BAB~lB-1 = \

where each expression has been derived from that preceding it by a substitution according to
one of the defining relations of the group, and this can be readily checked by inspection.

This method does not, then, give reductions not otherwise obtainable, as the sequence
above could easily have been found by trial. What it does offer is a strictly determinate tech-
nique for finding reductions by following mechanically the rule of always substituting for
the generator corresponding to the latest deduced relation between cosets in the original order
of deduction. Since this generator is replaced by others corresponding to definitions or earlier
deductions, every substitution makes positive progress towards eliminating deduced relations
between cosets, and after a clearly bounded number of substitutions we are left with a
sequence of generators relating pairs of cosets according to the original definitions specifying
coset 1, i.e. a product of generators of the chosen subgroup.

Since the order of reduction is strictly determinate, the only variations being because the
order of enumeration of cosets is not unique, it is possible to suppress the details entirely, as
I have done several times in §2 of this note. A reader wishing to verify these reductions may
do so either by enumerating the 168 cosets of the subgroup {B~"AABn; n = 0, 1, ... , 6} in
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[3, 7] + , or, more simply, by enumerating the 24 cosets of {A4, B) in [3, 7 ] + , and following
the method of this appendix. It is sufficient to work with the latter subgroup as the elements
of the former are precisely those of the latter having indices of B whose sum is zero modulo 7,
and the expression of such elements of {A*, B} as elements of {B~"A*Bn} is immediate. It
is of no consequence to the enumeration method of Todd and Coxeter, or to this development
of it, that neither the group nor the subgroup is here of finite order. All that is needed is the
finite index, given by the number of cosets. Even this may be unnecessary to the present
development if, in an incomplete enumeration of cosets, one can define and deduce sufficient
to exhibit that 1X = 1 for the chosen element X of the group.

Some of the reductions quoted in § 2 of this note are long and far from straightforward,
involving intermediate products of much greater length than either the initial or final product
(and they would have been extremely difficult to find by trial). Indeed the reductions are
commonly neither short nor elegant, and one can sometimes simplify them substantially by
using other relations deducible from the given defining relations. This is of little importance,
however, since the reductions are reproducible by simply following the procedure given here,
and they can therefore be suppressed when the results are found.
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