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Abstract

We investigate the discrepancy between the distributions of the random variable log L(σ, f × f , X) and
that of log L(σ + it, f × f ), that is,

Dσ(T) := sup
R
|PT (log L(σ + it, f × f ) ∈ R) − P(log L(σ, f × f , X) ∈ R)|,

where the supremum is taken over rectangles R with sides parallel to the coordinate axes. For fixed T > 3
and 2/3 < σ0 < σ < 1, we prove that

Dσ(T) � 1
(log T)σ

.
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1. Introduction

Let X(p) be independent random variables uniformly distributed on the unit circle,
where p runs over the prime numbers. The random Euler product of the Riemann
zeta-function is defined by ζ(σ, X) =

∏
p(1 − (X(p)/pσ))−1. The behaviour of p−it is

almost like the independent random variables X(p), which indicates that ζ(σ, X) should
be a good model for the Riemann zeta-function.

Bohr and Jessen [1] suggested that log ζ(σ + it) converges in distribution to
log ζ(σ, X) for σ > 1/2. In 1994, Harman and Matsumoto [4] studied the discrepancy
between the distribution of the Riemann zeta-function and that of its random model.
For fixed σ with 1/2 < σ ≤ 1 and any ε > 0, they proved that the discrepancy

Dσ,ζ(T) := sup
R
|PT (log ζ(σ + it) ∈ R) − P(log ζ(σ, X) ∈ R)|,
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where the supremum is taken over rectangles R with sides parallel to the coordinate
axes, satisfies the bound Dσ,ζ(T) � 1/(log T)(4σ−2)/(21+8σ)−ε. Here, PT ( f (t) ∈ R) :=
T−1meas{T ≤ t ≤ 2T : f (t) ∈ R}. Lamzouri et al. [8] improved the result by showing
that Dσ,ζ(T) � 1/(log T)σ.

Dong et al. [3] analysed the discrepancy between the distribution of values of
Dirichlet L-functions and the distribution of values of random models for Dirichlet
L-functions in the q-aspect. Lee [9] investigated the upper bound on the discrepancy
between the joint distribution of L-functions on the lineσ = 1/2 + 1/G(T), t ∈ [T , 2T],
and that of their random models, where log log T ≤ G(T) ≤ (log T)/(log log T)2.

Let f be a primitive holomorphic cusp form of weight k for SL2(Z). The normalised
Fourier expansion at the cusp ∞ is f (z) =

∑
n≥1 λ f (n)n(k−1)/2e2πinz, where λ f (n) ∈ R,

n = 1, 2, . . . , are normalised eigenvalues of Hecke operators T(n) with λ f (1) = 1, that
is, T(n) f = λ f (n) f .

According to Deligne [2], for all prime numbers p, there are complex numbers α f (p)
and β f (p), satisfying ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

|α f (p)| = α f (p)β f (p) = 1,

λ f (pν) =
∑

0≤j≤ν
α f (p)ν−jβ f (p) j (ν ≥ 1). (1.1)

The function λ f (n) is multiplicative. Moreover, λ f (p) is real and satisfies Deligne’s
inequality |λ f (n)| ≤ d(n) for n ≥ 1, where d(n) is the divisor function. In particular,
|λ f (p)| ≤ 2. For Re s > 1, the L-function attached to f is defined by

L(s, f ) =
∑
n≥1

λ f (n)
ns =

∏
p

(
1 −
α f (p)

ps

)−1(
1 −
β f (p)

ps

)−1
.

For Re s > 1, the Rankin–Selberg L-function associated to f is defined by

L(s, f × f ) :=
∏

p

(
1 −
α f (p)2

ps

)−1(
1 −
β f (p)2

ps

)−1(
1 − 1

ps

)−2
= ζ(2s)

∞∑
n=1

λ f (n)2

ns .

According to [6], for Res > 1,

log L(s, f × f ) =
∞∑

n=2

Λ f× f (n)
ns log n

,

where

Λ f× f (n) :=

⎧⎪⎪⎨⎪⎪⎩|α f (p)ν + β f (p)ν|2 log p for n = pν,
0 otherwise.

For automorphic L-functions, from [10],∑
p≤x

λ4
f (p) ∼ C f

x
log x

. (1.2)
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[3] Rankin–Selberg L-functions 3

Recently, Xiao and Zhai [12] studied the discrepancy between the distributions of
log L(σ + it, f ) and its corresponding random variable log L(σ, f , X). In this article,
we investigate the discrepancy between the distribution of the random variable
log L(σ, f × f , X) and that of log L(σ + it, f × f ). Define the Euler product

L(σ, f × f , X) =
∏

p

(
1 −
α f (p)2X(p)

pσ

)−1(
1 −
β f (p)2X(p)

pσ

)−1(
1 − X(p)

pσ

)−2
,

which converges almost surely for σ > 1
2 . Consider

Dσ(T) := sup
R
|PT (log L(σ + it, f × f ) ∈ R) − P(log L(σ, f × f , X) ∈ R)|,

where the supremum is taken over rectangles R with sides parallel to the coordinate
axes. We prove the following theorem.

THEOREM 1.1. Let T > 3 and 2/3 < σ0 < σ < 1, where T and σ0 are fixed. Then,

Dσ(T) � 1
(log T)σ

,

where the implied constant depends on f and σ.

The proof follows the method in [8]. The range of σ depends on the zero density
theorem of L(s, f × f ) and L(s, sym2 f ) by noticing that L(s, f × f ) = ζ(s)L(s, sym2 f ).
Unfortunately, the zero density of L(s, sym2 f ) can only be obtained nontrivially when
2/3 < σ ≤ 1 (see [5]).

2. Preliminaries

This section gathers several preliminary results. Since several proofs are essentially
the same as those in [8], we omit their details. For any prime number p and integer
ν > 0, we define b f (pν) = |α f (p)ν + β f (p)ν|2. Thanks to (1.1),

|b f (pν)| ≤ 4.

From probability theory, if the characteristic functions of two real-valued random
variables are close, then the corresponding probability distributions are also close. The
key to proving Theorem 1.1 is to demonstrate that the joint distribution characteristic
function of Re log L(σ + it) and Im log L(σ + it) can be well estimated. For u, v ∈ R,
we define

Φσ,T (u, v) :=
1
T

∫ 2T

T
exp(iu Re log L(σ + it, f × f ) + iv Im log L(σ + it, f × f )) dt

(2.1)

and

Φrand
σ (u, v) := E(exp(iu Re log L(σ, f × f , X) + iv Im log L(σ, f × f , X))). (2.2)
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LEMMA 2.1 [7, Lemma 4.3]. Let y > 2 and |t| ≥ y + 3 be real numbers. Let 1
2 < σ0 <

σ ≤ 1 and suppose that the rectangle {s : σ0 < Re(s) ≤ 1, |Im(s) − t| ≤ y + 2} does not
contain zeros of L(s, f × f ). Then,

log L(s, f × f ) =
∑
pν≤y

b f (pν)
νpν(σ+it) + O

( log |t|
(σ1 − σ0)2 yσ1−σ

)
,

where σ1 = min(σ0 + 1/log y, (σ + σ0)/2).

LEMMA 2.2. Define N(σ0, T) as the number of zeros ρ f = β f + iγ f of L(s, f × f ) with
σ0 ≤ β f ≤ 1 and |γ f | ≤ T. Then,

N(σ0, T) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
T5(1−σ0)/(3−2σ0)+ε for 1/2 < σ0 < 23/32,
T26(1−σ0)/(11−4σ0)+ε for 23/32 ≤ σ0 < 3/4,
T2(1−σ0)/σ0+ε for 3/4 ≤ σ0 < 1.

PROOF. Here, L(s, f × f ) can be written as L(s, f × f ) = ζ(s)L(s, sym2 f ). The result is
easily obtained from the zero density of the Riemann zeta-function [13] and symmetric
square L-functions [5]. �

LEMMA 2.3. Let 2/3 < σ < 1 and 3 ≤ Y ≤ T/2. Then, for all t ∈ [T , 2T],

log L(s, f × f ) =
∑
pν≤Y

b f (pν)
νpν(σ+it) + O f (Y−(σ−2/3)/2 log3 T)

except for a setD(T) with meas(D(T)) � f T (10/3−5/2σ)/(7/3−σ)+εY.

PROOF. Take σ0 =
1
2 ( 2

3 + σ) in Lemma 2.1. The result follows easily from
Lemma 2.2. �

The details of the next three results can be found in [12].

LEMMA 2.4. Let 2/3 < σ < 1, 128 ≤ y ≤ z and {b(p)} be any real sequence with
|b(p)| ≤ 4. For any positive integer k ≤ log T/20 log z,

1
T

∫ 2T

T

∣∣∣∣∣ ∑
y≤p≤z

b(p)
pσ+it

∣∣∣∣∣2k
dt � k!

( ∑
y≤p≤z

(b(p))2

p2σ

)k
+ T−1/3.

Moreover,

E

(∣∣∣∣∣ ∑
y≤p≤z

b(p)X(p)
pσ

∣∣∣∣∣2k)
� k!

( ∑
y≤p≤z

(b(p))2

p2σ

)k
.

PROPOSITION 2.5. Let 2/3 < σ < 1 and Y = (log T)A for a fixed A ≥ 1. There exist
a1 = a1(σ, A) > 0 and a′1 = a′1(σ, A) > 0 such that

PT

(∣∣∣∣∣ ∑
pν≤Y

b f (pν)
νpν(σ+it)

∣∣∣∣∣ ≥ (log T)1−σ

log log T

)
� exp

(
− a1

log T
log log T

)
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and

P

(∣∣∣∣∣ ∑
pν≤Y

b f (pν)X(p)ν

νpνσ

∣∣∣∣∣ ≥ (log T)1−σ

log log T

)
� exp

(
− a′1

log T
log log T

)
.

LEMMA 2.6. Let Y be a large positive real number and |z| ≤ Yσ−1/2. Then,

E(|L(σ, f × f , X)|z) = E
(

exp
(
z Re
( ∑

pν≤Y

b f (pν)X(p)ν

νpνσ

)))

+ O
(
E(|L(σ, f × f , X)|Re(z)))

|z|
Yσ−1/2

)
.

Moreover, if u, v are real numbers such that |u| + |v| ≤ Yσ−1/2, then

Φrand
σ (u, v) = E

(
exp
(
iu Re

( ∑
pν≤Y

b f (pν)X(p)ν

νpνσ

)
+ iv Im

( ∑
pν≤Y

b f (pν)X(p)ν

νpνσ

)))

+ O
( |u| + |v|

Yσ−1/2

)
.

LEMMA 2.7. Let 2/3 < σ < 1 and Y = (log T)A for a fixed A ≥ 1. For any positive
integer k ≤ log T/(20A log log z), there exist a2(σ) > 0 and a′2(σ) > 0 such that

1
T

∫ 2T

T

∣∣∣∣∣ ∑
pν≤Y

b f (pν)
νpν(σ+it)

∣∣∣∣∣2k
dt �

(a2(σ)k1−σ

(log k)σ

)2k

and

E

(∣∣∣∣∣ ∑
pν≤Y

b f (pν)X(p)ν

νpνσ

∣∣∣∣∣2k)
�
(a′2(σ)k1−σ

(log k)σ

)2k
.

Here the implied constants are absolute.

PROOF. By using Lemma 2.4, the lemma follows easily from the method in
[8, Lemma 3.3]. �

LEMMA 2.8 [11, Lemma 6]. Let 2/3 < σ < 1 and Y = (log T)A for a fixed A ≥ 1. For
any positive integers u, v such that u + v ≤ log T/(6A log log T),

1
T

∫ 2T

T

( ∑
pν≤Y

b f (pν)
νpν(σ+it)

)u( ∑
pν≤Y

b f (pν)
νpν(σ−it)

)v
dt

= E

(( ∑
pν≤Y

b f (pν)X(p)ν

νpνσ

)u( ∑
pν≤Y

b f (pν)X(p)ν

νpνσ

)v)
+ O
(Yu+v

√
T

)
,

with an absolute implied constant.
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PROPOSITION 2.9. Let 2/3 < σ < 1 and Y = (log T)A for a fixed A ≥ 1. For all
complex numbers z1, z2, there exist positive constants a3 = a3(σ, A) > 0 and
a4 = a4(σ, A) > 0 with |z1|, |z2| ≤ a3(log T)σ such that

1
T

∫
A(T)

exp
(
z1

∑
pν≤Y

b f (pν)
νpν(σ+it) + z2

∑
pν≤Y

b f (pν)
νpν(σ−it)

)
dt

= E

(
exp
(
z1

∑
pν≤Y

b f (pν)X(p)ν

νpνσ
+ z2

∑
pν≤Y

b f (pν)X(p)ν

νpνσ

))
+ O
(

exp
(
− a4

log T
log log T

))
,

with an absolute implied constant. Here,A(T) is the set of those t ∈ [T , 2T] such that

∣∣∣∣∣ ∑
pν≤Y

b f (pν)
νpν(σ+it)

∣∣∣∣∣ ≤ (log T)1−σ

log log T
.

PROOF. The proof is the same as that of [8, Proposition 2.3] by using Lemma 2.7,
Proposition 2.5 and Lemma 2.8. �

PROPOSITION 2.10. Let 2/3 < σ0 < σ < 1 and A ≥ 1 be fixed. There exists a constant
a5 = a5(σ, A) such that for |u|, |v| ≤ a5(log T)σ,

Φσ,T (u, v) = Φrand
σ (u, v) + O

( 1
(log T)A

)
,

with the implied constant depending on σ0 only.

PROOF. Follow the general idea of the proof of [8, Theorem 2.1]. Let B = B(A) be a
large enough constant. Let Y = (log T)B/(σ−2/3). By Lemma 2.3,

log L(s, f × f ) =
∑
pν≤Y

b f (pν)
νpν(σ+it) + O

( 1
(log T)B/2−3

)

for all t ∈ [T , 2T], except for a setD(T) of measure T1−d(σ) for some constant d(σ) > 0.
Define C(T) = {t ∈ [T , 2T], t � D(T)}. Then,

Φσ,T (u, v)

=
1
T

∫
C(T)

exp(iu Re log L(σ + it, f × f ) + iv Im log L(σ + it, f × f )) dt + O(T−d(σ))

=
1
T

∫
C(T)

exp
(
iu Re

∑
pν≤Y

b f (pν)
νpν(σ+it) + iv Im

∑
pν≤Y

b f (pν)
νpν(σ+it)

)
dt + O

( 1
(log T)B/2−4

)

=
1
T

∫ 2T

T
exp
(
iu Re

∑
pν≤Y

b f (pν)
νpν(σ+it) + iv Im

∑
pν≤Y

b f (pν)
νpν(σ+it)

)
dt + O

( 1
(log T)B/2−4

)
.
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Let A(T) be defined as in Proposition 2.9 and take z1 = i(u − iv)/2 and
z2 = i(u + iv)/2 in Proposition 2.9. From Proposition 2.5 and Lemma 2.6, the integral
above is

=
1
T

∫
A(T)

exp
(
iu Re

∑
pν≤Y

b f (pν)
νpν(σ+it) + iv Im

∑
pν≤Y

b f (pν)
νpν(σ+it)

)
dt + O

( 1
(log T)B

)

= E

(
exp
(
iu Re

∑
pν≤Y

b f (pν)X(p)ν

νpν(σ+it) + iv Im
∑
pν≤Y

b f (pν)X(p)ν

νpν(σ+it)

))
+ O
( 1
(log T)B

)

= Φrand
σ (u, v) + O

( 1
(log T)B−1

)
. �

LEMMA 2.11 [8, Lemma 7.2]. Let λ > 0 be a real number. Let χ(y) = 1 if y > 1 and 0
otherwise. For any c > 0,

χ(y) ≤ 1
2πi

∫
(c)

ys eλs − 1
λs

ds
s

for y > 0.

We cite the following smooth approximation [8] for the indicator function.

LEMMA 2.12. Let R = {z = x + iy ∈ C : m1 < x < m2, n1 < y < n2} for real numbers
m1, m2, n1, n2. Let K > 0 be a real number. For any z = x + iy ∈ C, we denote the
indicator function of R by

1R(z) = WK,R(z)+O
(sin2(πK(x − m1))

(πK(x − m1))2 +
sin2(πK(x − m2))

(πK(x − m2))2

+
sin2(πK(y − n1))

(πK(y − n1))2 +
sin2(πK(y − n2))

(πK(y − n2))2

)
,

where

WK,R(z) =
1
2

Re
∫ K

0

∫ K

0
G
( u
K

)
G
( v
K

)
(e2πi(ux−vy) fm1,m2 (u) fn1,n2 (v)

− e2πi(ux+vy) fm1,m2 (u) fn1,n2 (v))
du
u

dv
v

.

Here,

G(u) =
2u
π
+ 2(1 − u)u cot(πu) for u ∈ [0, 1],

and

fα,β(u) =
e−2πiαu − e−2πiβu

2
for α, β ∈ R.

LEMMA 2.13. Let 2/3 < σ < 1. Let u be a large positive real number. There exist
constants a6 = a6( f ,σ) and a′6 = a′6( f ,σ) such that

E(exp(iu Re log L(σ, f × f , X))) � exp
(
− a6

u2/σ−2

log u

)
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and

E(exp(iu Im log L(σ, f × f , X))) � exp
(
− a′6

u2/σ−2

log u

)
.

PROOF. Follow the general idea of the proof of [8, Lemma 6.3]. We denote the Bessel
function of order 0 by J0(s) for all s ∈ R. Note that for any prime p, E(eisReX(p)) =
E(eisImX(p)) = J0(s). Since log(1 + t) = t + O(t2) for |t| < 1,

|E(exp(iu Re log L(σ, f × f , X)))|

=

∣∣∣∣∣E
(

exp
(
iu Re log

(∏
p

(
1 −
α f (p)2X(p)

pσ

)−1(
1 −
β f (p)2X(p)

pσ

)−1(
1 − X(p)

pσ

)−2)))∣∣∣∣∣
≤
∏

p>u2/σ

E

(
exp
( iuλ2

f (p)

pσ
ReX(p) + O

( u
p2σ

)))
= exp(O(u2/σ−3))

∏
p>u2/σ

∣∣∣∣∣J0

(uλ2
f (p)

pσ

)∣∣∣∣∣.
For |s| < 1, we have J0(s) = 1 − (s/2)2 + O(s4). By using (1.2), for some constant
a6 = a6( f ,σ), c > 0, the product above is

= exp
{
− u2

4

∑
p>u2/σ

(λ4
f (p)

p2σ + O
( u2

p4σ

))}
≤ exp

(
− a6

u2/σ−2

log u

)
.

The second inequality can be derived similarly. �

3. Proof of the main theorem

Let R be a rectangle with sides parallel to the coordinate axes. Define ΨT (R) =
P(log L(σ + it, f × f ) ∈ R) and Ψ(R) = P(log L(σ, f × f , X) ∈ R). Let

R̃ = R ∩ [−(log T)3, (log T)3] × [−(log T)3, (log T)3].

According to Lemma 2.3 and Proposition 2.5, for some constant a7 > 0,

ΨT (R) = ΨT (R̃) + O
(

exp
(
− a7

log T
log log T

))
.

Similarly to [12], by using Lemmas 2.6 and 2.11, we can obtain the relationship
between Ψ(R) and Ψ(R̃): for some constant a′7 > 0,

Ψ(R) = Ψ(R̃) + O
(

exp
(
− a′7

log T
log log T

))
.

Let S be the set of rectangles R ⊂ [−(log T)3, (log T)3] × [−(log T)3, (log T)3] with
sides parallel to the coordinate axes. Then,

Dσ(T) = sup
R⊂S
|ΨT (R) − Ψ(R)| + O

(
exp
(
− a7

log T
log log T

))
.
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In light of Lemma 2.12, choose K = a8(log T)σ, for some a8 > 0, and |m1|, |m2|, |n1|,
|n2| ≤ (log T)3. Then it follows that

ΨT (R) =
1
T

∫ 2T

T
WK,R(log L(σ + it, f × f )) dt + E1 (3.1)

and, in addition,

E1 � IT (K, m1) + IT (K, m2) + JT (K, n1) + JT (K, n2),

where

IT (K, m) =
1
T

∫ 2T

T

sin2(πK(Re log L(σ + it, f × f ) − m))
(πK(Re log L(σ + it, f × f ) − m))2 dt (3.2)

and

JT (K, n) =
1
T

∫ 2T

T

sin2(πK(Im log L(σ + it, f × f ) − n))
(πK(Im log L(σ + it, f × f ) − n))2 dt.

First, we treat the main term of (3.1):

1
T

∫ 2T

T
WK,R(log L(σ + it, f × f )) dt =

1
2

Re
∫ K

0

∫ K

0
G
( u
K

)
G
( v
K

)

× (Φσ,T (2πu,−2πv) fm1,m2 (u) fn1,n2 (v) − Φσ,T (2πu, 2πv) fm1,m2 (u) fn1,n2 (v))
du
u

dv
v

,

where Φσ,T is defined by (2.1). Since 0 ≤ G(u) ≤ 2/π and | fα,β(u)| ≤ πu|β − α|, by
Proposition 2.10,

1
T

∫ 2T

T
WK,R(log L(σ + it, f × f )) dt = E(WK,R(log L(σ, f × f , X))) + O

( 1
(log T)2

)
.

Moreover,

Ψ(R) = E(WK,R(log L(σ, f × f , X)) dt) + E2.

Here,

E2 � Irand(K, m1) + Irand(K, m2) + Jrand(K, n1) + Jrand(K, n2),

where

Irand(K, m) = E
(sin2(πK(Re log L(σ, f × f , X) − m))

(πK(Re log L(σ, f × f , X) − m))2

)
,

and

Jrand(K, n) = E
(sin2(πK(Im log L(σ, f × f , X) − n))

(πK(Im log L(σ, f × f , X) − n))2

)
.

Hence,

ΨT (R) = Ψ(R) + E3, (3.3)
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where

E3 = E1 + E2 + O
( 1
(log T)2

)
.

Notice that

sin2(πKx)
(πKx)2 =

2(1 − cos(2πKx))
K2(2πx)2 =

2
K2

∫ K

0
(K − v) cos(2πxv) dv. (3.4)

To bound E1, we use (3.4) to rewrite (3.2):

IT (K, m) = Re
( 1
T

∫ 2T

T

2
K2

∫ K

0
(K − v) exp(2πiv(Re log L(σ + it, f × f ) − m)) dv dt

)

= Re
2

K2

∫ K

0
(K − v)e−2πivmΦσ,T (2πv, 0) dv.

From Proposition 2.10,

IT (K, m) = Re
2

K2

∫ K

0
(K − v)e−2πivmΦrand

σ (2πv, 0) dv + O
( 1
(log T)9

)
,

uniformly for all m ∈ R. Lemma 2.13 implies that

IT (K, m) � 1
K

.

The bound JT (K, n) � 1/K can be obtained using the same method. Therefore,

E1 �
1
K

. (3.5)

Then, using (2.2), (3.4) and Lemma 2.13,

Irand(K, m) = E
( 2
K2

∫ K

0
(K − v) cos(2πv[Re log L(σ, f × f , X) − m])

)
dv

= Re
2

K2

∫ K

0
(K − v)e−2πivmΦrand

σ (2πv, 0) dv � 1
K

,

uniformly for all m ∈ R. Similarly, we can obtain Jrand(K, n) � 1/K, uniformly for all
n ∈ R. Thus,

E2 �
1
K

. (3.6)

Combining the estimates with (3.3), (3.5) and (3.6),

Dσ(T) � 1
(log T)σ

,

which completes the proof.
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