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Abs t r ac t . The current observational and theoretical status of the double-mode variables 
is reviewed. Focusing mostly on the RR Lyrae stars, we address the question of the obser­
vational evidence of modal stability. The problem of stationarity is a crucial issue in the 
modelling of these stars. 

We mention past efforts in hydrodynamical and analytical modelling together with 
a detailed discussion of some very recent results. It is suggested that stochastic forcing 
due to turbulent convection may play a crucial role in exciting some marginally stable 
modes in the limiting pulsation. The latest hydrodynamical results first demonstrate that 
purely radiative models are able to show permanent double-mode behavior in the relevant 
period regime of RRd stars. The reason for the previous lack of double-mode behavior is 
attributed to the large dissipation, i.e. artificial viscosity, generally used in the codes to 
ensure numerical stability and to obtain amplitudes comparable to the observed ones. 

We think that better models should include some physical dissipation, most probably 
turbulent convection, and a more accurate numerical treatment of the radiative hydrody­
namics. 

1. Introduct ion 

Double-mode variables represent perhaps the 'cleanest' example of multi-
mode stellar pulsation. Their light- (or velocity-) variations are described 
usually within the observational errors as a result of a Fourier-sum of two 
non-commensurable frequency components and their linear combinations. 
The two principal components are identified with some low-order, usually 
the fundamental and first overtone radial modes of pulsation. Simple linear 
pulsational models allowed already some 20 years ago to estimate the masses 
of the double-mode variables directly from their observed frequencies of pul­
sation. The development and perfection of this method and its application 
to multimode variables is called stellar seismology nowadays. The power of 
this method led to the initiative of revising the older stellar opacities and 
providing not only a better modelling of the atomic physics but also resolv­
ing the long-standing mass-discrepancy problems between the evolution and 
pulsation theories. 

Based on the reasonable assumption of radial stellar pulsation, we can 
try to model finite amplitude double-mode pulsation. It is the basic nonlin­
ear nature of double-mode pulsation and its modelling which are our main 
concerns in this review. 

Numerical modelling of double-mode pulsation is important for three 
main reasons: (1) double-mode variables are hoped to be modelled by 1 - D 
hydrodynamical codes, unlike the majority of the multimode pulsators which 
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are non-radially pulsating stars; (ii) modelling means fine tuning the physics 
and the numerical methods we use in solving the physical problem, and 
perhaps also narrowing down further the model parameters; (iii) successful 
numerical modelling is the only way to reach an understanding of the un­
derlying physics of double-mode stellar pulsation and to build to a simple 
model of it. 

As it is well known, so far, the hydrodynamical models have failed to give 
permanent double-mode behavior in the observed ranges of periods. One of 
the main purposes of this paper is to summarize the results of some very 
recent tests which show that purely radiative RR Lyrae models do exhibit 
sustained double-mode pulsation in the right period range if the artificial 
viscosity is reduced enough. 

The outline of this paper is the following. After a brief review of the 
current observational status of the double-mode variables in Section 2, we 
mention the effect of the new opacities on the period ratio masses in Section 
3. Some possible phenomenological models with the implication of the dy­
namical effects of noise are discussed in Section 4. The past hydrodynamical 
simulations together with the very recent ones are reviewed in Section 5. Fi­
nally, in Section 6 we summarize our conclusions and highlight the important 
questions. 

2. Observations 

Since the primary purpose of this review is to deal with the theoretical 
aspects of double-mode pulsation, here we merely mention the main obser­
vational features which are important for the nonlinear modelling. 

2.1. CLASSICAL CEPHEIDS 

The observational properties of the beat Cepheids have been reviewed re­
cently by Balona (1985) and Szabados (1988). It is remarkable that about 
30% of the observed galactic Cepheids are double-mode in the period range 
of 2-4 days, whereas no definite identification of this type of variables has 
yet been made in any extragalactic objects (see however Andreasen 1988). 
There is no preferred range in mode amplitude ratios, although most of the 
beat Cepheids have large fundamental than first overtone amplitudes. There 
is no convincing evidence for amplitude change on a long-time scale (Balona 
1985). Even more, some stars show remarkably stable light variation on a 
50-70 years time base (Jerzykiewicz 1988). 

2.2. DWARF CEPHEIDS 

The large-amplitude pulsators situated in the lower portion of the Cepheid 
instability strip close to the main sequence constitute an inhomogeneous 
group of stars, often called dwarf Cepheids. Some of them are very similar 
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to the 6 Scuti stars, but there are a few with distinctly Pop II characteristics. 
For a recent observational review of mostly the single-mode Pop II dwarf 
Cepheids we refer to Nemec and Mateo (1990). and for a more general review 
to Fitch (1980). The two principal components of the pulsation are generally 
assumed to be the radial fundamental and first overtone modes. The impor­
tant question of amplitude stability has not yet been seriously addressed for 
these variables. There are, for example irregularities which are not explained 
yet (e.g. Fernley et a!. 1987). It is possible, that some higher order overtones 
are somehow excited with low amplitudes which cause the seemingly irreg­
ular behavior. The exciting new analysis of AI Vel by Walraven, Walraven 
and Balona (1992) seems to support this view. They identify altogether four 
(or possible five) modes of pulsation. The newly discovered modes have very 
small (<10%) amplitudes compared to the principal ones. There are also 
some fluctuations in the amplitudes of these modes. The discovery of these 
modes is very significant, especially if some of them will be proved to be 
radial modes. 

2.3. RR LYRAESTARS 

Until 1983, the field star AQ Leo and the M3 variables V67 and V87 were the 
only known double-mode RR Lyrae (RRd) stars (Jerzykiewicz and Wenzel 
1977; Goranskij 1981). The discovery of a large number of RRd stars in the 
globular cluster M15 by Cox, Hodson and Clancy (1983) initiated a number 
of subsequent investigations in other clusters and galaxies. According to 
the periods, the RRd stars form two distinct groups, following largely the 
overall metal abundance of the cluster. The low-metal (Oosterhoff II) RRd 
stars have P0 = 0.55 ± 0.02 day, P1/PQ = 0.746 ± 0.001, whereas those in 
the high-metal (Oosterhoff I) clusters have P0 = 0.48 ± 0.005 day, P i / P 0 = 
0.7444±0.0004. There are altogether 16 Oo I and 24 Oo II RRd stars securely 
identified and some more suspected. A distinct property of all the RRd stars 
is that their first overtone amplitudes are a few times larger than those of 
the fundamental. The only exception is variable V68 in M3, where the two 
amplitudes are about the same (Nemec and Clement 1989). There have 
been no significant long-term amplitude changes reported in any RRd star 
(Kovacs, Shlosman and Buchler 1986; Nemec and Clement 1989; Jurcsik and 
Barlai 1990). AQ Leo, the only RRd star observed photoelectrically, showed 
remarkable stability (AA < 0.005 mag.) during three years of observation 
(Jerzykiewicz and Wenzel 1977). 

One great mystery about the RRd stars is their occurrence and frequency. 
Many careful analyses have been made during the past several years based 
mostly on old photographic materials. The searches have largely been unsuc­
cessful (see Clement and Walker 1991 and references therein). The complete 
absence of RRd stars in the cluster u Cen which has 155 known RR Lyrae 
stars, or the only 2 RRd stars found among the 180 RR Lyrae stars of M3, in-
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dicate that double-mode variability is not all common among the RR Lyrae 
stars and may actually be a very delicate phenomenon, which depends on 
some, so far unknown fine details of stellar structure and evolution. 

For a more detailed review of the observational aspects of the RRd stars 
we refer to Szeidl (1988). 

3. Period Ratio Masses 

The very powerful method of mass determination with the aid of the ob­
served periods of double-mode variables (e.g. Petersen 1973) has triggered a 
lot of discussions and arguments on the discrepancies between the pulsation 
and evolution theories (c/. Cox 1987). Among the many, sometimes exotic 
proposals to resolve this discrepancy, Simon's (1982) hypothesis on the pos­
sible underestimation of heavy element opacities has proved to be the most 
fruitful one. Due mainly to this idea, a substantial effort for updating the 
equations of state and opacities for stellar conditions has led to the first 
results in the last year (Iglesias and Rogers 1991; Rogers and Iglesias 1992). 
Now it seems that all major discrepancies between the evolution and pul­
sation theories have been eliminated. However, a stronger sensitivity to the 
heavy element abundance leaves us with fairly large uncertainties in some 
cases. 

Moskalik, Buchler and Marom (1991) studied the beat and bump Cepheids 
with the new opacities of Iglesias and Rogers (see also Zalewski 1992). 
Moskalik et al. conclude that for beat Cepheids the period ratio masses 
are between 4 - 7M©, in essential agreement with the standard evolution 
theories. For bump Cepheids, the derived masses are still somewhat low, 
but only if we take some moderate heavy element abundance (Z = 0.02) 
and a standard evolutionary mass - luminosity (M - L) relation. We think 
that the errors both in Z and in the evolutionary M — L relations are high 
enough to render the remaining small discrepancy insignificant. 

As for the RRd stars, the new opacities completely ruined our previous 
picture about these stars. Even for the low Z Oo II variables the new opac­
ities predict a mass of ss 0.77Af©, which is ss 0.1M© higher than the old 
value. Because of their higher Z, Oo I variables tend to have the same mass 
as the Oo II stars (Kovacs, Buchler and Marom 1991; see also Cox 1991). 
In addition to the very strong Z dependence of the derived mass, there is a 
substantial sensitivity even to the detailed mixture of the heavy elements. In 
a recent paper Kovacs et al. (1992) discuss this mixture dependence within 
the framework of the latest observational and theoretical results regarding 
the chemical compositions of Pop II stars (for a review, see Wheeler, Sneden 
and Truran 1989). They conclude that present inaccuracies in the observed 
chemical compositions and the lack of direct measurements on RRd stars, 
prevent us from estimating their masses on the basis of their periods more 
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accurately than ±0.1 A/©. For this reason, period ratio masses are not very 
useful at the present moment for making a more thorough comparison with 
the evolution studies. More accurate direct chemical composition measure­
ments are indispensable to make further progress here. 

4. Phenomenological Models 

The basic nonlinear behavior of a pulsating star is described by a set of 
ordinary differential equations which refer to the dynamical evolution of the 
amplitudes of the normal modes (c/. Buchler 1985). However, except for 
second order adiabatic coupling, the nonlinear parameters entering in the 
amplitude equations are very difficult to compute ab initio from the stellar 
models. Some information can be obtained through a comparison with the 
nonlinear hydrodynamical models, but in general the nonlinear coupling 
coefficients are regarded as 'almost' free parameters. Therefore, most of the 
studies on the amplitude equations can be considered as phenomenological. 
It is important however, that in some cases one can derive strict and general 
results without invoking the specific value of the coupling coefficients. 

In the following we summarize the basic conclusions obtained from the 
amplitude equations relevant for the double-mode problem. First we review 
the cases when the system does not contain any stochastic forcing. The effect 
of the additive noise on the non-resonant pulsation is to be discussed in the 
second part of this section. 

4.1. DOUBLY-PERIODIC SOLUTIONS IN NOISELESS SYSTEMS 

(1) NON-RESONANT SYSTEM 

Two modes coupled in a non- resonant way may settle down on a single-
or double-mode state. The two possibilities are mutually exclusive in the 
sense that for a given set of parameters either one or two single-mode states 
or only one double-mode state can physically exist. More specifically, if we 
assume (supported by hydrodynamical results) that the nonlinear coupling 
coefficients are constants and negative across the instability strip, we can 
classify the solutions in two distinct groups, depending solely on the nonlin­
ear coupling. Crossing the instability strip from the blue to the red, we have 
the following set of states. 

Case (1): first overtone only - either first overtone or fundamental - fun­
damental only 

Case (2): first overtone only - double-mode only - fundamental only 
One of the major practical conclusion we can draw from these results 

is that non-resonant double-mode behavior is unique, there is no hystere­
sis which includes this state. For further discussion of the non-resonant 
mode coupling we refer to Dziembowski and Kovacs (1984) and Buchler 
and Kovacs (1986). 
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(2) RESONANT SYSTEM 

We consider only the lowest order of resonances. Depending on the number 
of modes involved in the resonance there are two types of interaction. 

(2A) T W O - M O D E : 2U;0 « u,-j 

The importance of the 2:1 resonance in stellar pulsation was first noticed 
by Simon and Schmidt (1976). In the case of classical Cepheids this type of 
resonance between the fundamental and second overtone modes gives rise 
to the specific progression of Fourier parameters (i.e. Hertzsprung progres­
sion, see Buchler, Moskalik and Kovacs 1990). The possibility that the same 
type of resonance may also affect the stability of the single-mode state, 
thereby leading to double-mode pulsation, was recognized by Dziembowski 
and Kovacs (1984). 

The basic mechanism is the amplitude decreasing effect of the resonance. 
For example, if there is a resonance between the fundamental and a high 
overtone, the amplitude of the fundamental limit cycle decreases and reaches 
a minimum at or near the center of resonance. As a result of it, the stability 
of this limit cycle decreases, and may allow other, linearly unstable modes 
(most importantly the first overtone) to grow in the limit cycle. The decrease 
of the stability of the resonant limit cycle is a general consequence of the 
resonance and can be seen both in the analytical considerations and in the 
numerical results (Kovacs and Buchler 1988). If the fundamental limit cycle 
becomes unstable and the resonant first overtone limit cycle is also unstable, 
there is a three-mode (but because of phase lock, doubly-periodic) state 
which is the only stable state of the system. In the general case of non-
adiabatic coupling the situation in principle could be more complicated, but 
numerical results support the simple picture we described. 

( 2 B ) THREE-MODE: W0 + <*>I as UJ 

Simon (1979) suggested that this type of resonance may play a role in the 
double-mode pulsations of Cepheids and dwarf Cepheids. Subsequent hydro-
dynamical and analytical studies, however, did not support this hypothesis 
(Simon, Cox and Hodson 1980; Dziembowski and Kovacs 1984). The follow­
ing rigorous analytical results obtain. 

Assuming that the fundamental and first overtone modes are linearly 
excited, while the resonant high overtone is damped and that there is reso­
nant adiabatic coupling only, then, the three-mode resonance is never able 
to establish stable pulsation with constant amplitudes. When nonresonant 
coupling is also included, one of the single-mode states remains always stable 
while a stable three-mode state may occasionally exist simultaneously with 
the single-mode state for some very restricted range of parameters. 

The general case (including non-resonant and non-adiabatic couplings) 
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was discussed by Kovacs and Kollath (1988). Here we can observe the whole 
spectrum of nonlinear behavior of a dynamical system. Since there are no 
direct computations regarding the non-adiaba-tic effects in the resonant cou­
pling and there are no hydrodynamical simulations which indicate the im­
portance of three-mode resonance, we think that the role of this resonance 
remains hypothetical. 

For completeness, we remark that the three-mode resonance may play 
an important role in the case of low-amplitude pulsators (6 Scuti, Ap stars, 
white dwarfs). In 6 Scuti stars, the low frequency modes correspond to higher 
overtone <?-modes which interact with the low-order p- or g-modes. This 
parametric excitation was investigated by Dziembowski and Krolikowska 
(1985), Dziembowski, Krolikowska and Kosovitchev (1988) and by Moskalik 
(1985). 

4.2. NOISE GENERATED MULTIMODE STATES 

There is no physical system which is free of random perturbations. This 
is particularly true for stars, where turbulent convection may exert a sub­
stantial effect not only on the static (i.e. average) structure, but on the 
pulsation too. There are two types of convective dynamical effects: (1) The 
part of the stochastic interaction which has non-vanishing ensemble aver­
age changes the dynamics in a deterministic way. The classical treatment of 
pulsation-convection interaction with the mixing length theory deals with 
this problem (e.g. Stellingwerf 1984); (2) The stochastic forcing which has 
zero ensemble average establishes a sustained perturbation of the system. 
One of the results of this is an excitation (usually at very small amplitudes) 
of all the normal modes of the system. This is what is claimed to happen in 
the case of the solar 5-min oscillations (Goldreich and Keeley 1977). 

In this subsection we would like to elaborate further on the effects of 
stochastic mode excitation in the context of multimode nonlinear pulsation. 
Naturally, we are interested in systems which are close to some bifurcation, 
therefore, they are easy to influence even by a small amount of noise. We 
show, that for a sufficiently large number of stochastically excited modes the 
non-resonant interaction among these and the principal modes may lead to a 
genuine multimode state even if the noiseless system is unstable in that state. 
The fluctuation of the amplitudes of the principal modes can be arbitrary 
small depending on the number of modes included in the interaction. 

Let us first consider the case when we omit all the modes except for the 
tow principal ones. Assuming additive noise in the original system and short 
noise correlation time, one can derive the following amplitude equations 
(Buchler, Goupil and Kovacs 1992) 

^ = K0AO + QooA3
0 + QoiAo-4? + \j- + % ( 0 ' ( 1 ) 
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^ = *i-4i + QnAl + QwAUl + ~ + Viit)- (2) 

Here 770(0? ^i(0 a r e t n e fluctuating non-parametric noise components which 
are easily related to the ones appearing in the original system. So, Si are 
the spectral densities of ??o(£), ^li(t) at frequency zero. Some useful infor­
mation can be obtained regarding the average values and the stability of 
the amplitudes by studying the system (l)-(2) with i]o(t) = i]\(t) = 0, but 
keeping the intensity terms. It follows immediately that we only have double-
mode solutions because of the 5,7-4,- terms. These are, however, no genuine 
double-mode solutions, because as one can show by an analysis of the am­
plitude fluctuations, one of the two modes remains of precursor-type, i.e. its 
average amplitude and the fluctuation around it will be of the same size. 
For high enough noise the two double-mode solutions (associated with the 
noiseless single-mode states) can merge together and form a unique noisy 
double-mode state with one single maximum in the probability distribution 
function (see Buchler 1992). 

To illustrate the behavior of the stochastic double-mode solution, we inte­
grate Eqs. (l)-(2) for a parameter set which corresponds to a 'first overtone 
only' case in the noiseless system. The empirical probability distribution 
functions are shown in Fig. 1. Because of the large dispersion, it is clearly 
seen that the low-amplitude mode is a noise generated one. The smaller the 
absolute value of the switching rate of this mode is, the larger is the excited 
amplitude at a constant noise level. It is important to remark that though 
the amplitude has a large scatter, the variation of the signal is smooth on a 
time scale of some fraction of the dynamical evolution (i.e. 1/K, where R is 
the switching rate). 

Regarding the observed double-mode variables, the model discussed above 
is not acceptable, because of the large amplitude fluctuations of the precur­
sor mode. It is clear, however, that the mechanism could be quite efficient to 
excite some other modes which are just marginally damped in the limit cycle 
or in the double-mode state. We conjecture that the observed irregularities 
in <5 Scuti stars, dwarf Cepheids and maybe in other stars too, could quite 
possibly be attributed to noise excited higher order modes. We emphasize 
the fact that the amplitudes of these modes could be much larger than the 
ones maybe obtained by a solar analogy (Christensen-Dalsgaard and Frand-
sen 1983). The reason for this is that we deal with linearly excited modes 
which could be only very mildly damped in the limit cycle. The discovery 
of a few very low-amplitude modes in AI Vel (Walraven et al. 1992) is very 
important and deserves further attention from the theory of the stochastic 
mode excitation. 

Let us now examine the case of multimode non-resonant interaction in the 
presence of noise. Our aim is to find situations in which the system bifurcates 
to a truly double-mode state in which the principal modes have very little 
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0.0 0.2 0.4 0.6 0.8 

A M P L I T U D E [arbitrary units] 

1.0 

Fig. 1. Empirical probability distribution functions of the amplitudes after integrat­
ing Eqs. (l)-(2). The parameters are: K0 = 0.01, «i = 0.06, Qoo = -10 , Qoi = - 1 5 , 
Qio = Q n = -50 , So = Si = 10 - 6 . 

scatter. The details of this non-trivial problem are given by Buchler and 
Kovacs (1992). Here we just mention the highlights of the solution. 

Without jeopardizing generality, we assume that there are three modes 
only, that the first two are linearly excited and that the parameters corre­
spond to a 'first overtone only' situation. Also, to obtain some analytically 
tractable expression, the noise is omitted in the first two modes (So = Si = 
0). The switching rates in the respective fundamental and first overtone limit 
cycles are 

«i = «i + QIOAQ + Q12A 2 , n A2 
201 

K0 = KQ + QmA\-\-QQ2All, 

(3) 

(4) 

where A2j is the amplitude of the noise excited third mode in the presence 
of the limit cycle j . The equilibrium solutions are given by 

Kj + QjjAJ + Qj2A\- = 0, 

0, i = 0,1. 

(5) 

(6) 

Because Qij < 0 for all (i,j), it follows from Eq. (5) that the amplitudes 
of the principal modes decrease in the presence of this type of noise. Then, 
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according to Eq. (3) and (4), the limit cycles may become less stable if the 
stabilizing effect of the Qj2-Ah terms does not overwhelm the opposite trend 
caused by the decrease of the limit cycle amplitudes. It is an important and 
interesting fact that one can readily find some parameters for which one of 
the switching rates decreases, while the other one increases (it is easy to show 
that the two switching rates cannot increase simultaneously). It means that 
this type of interaction cannot cause double-mode solution if the noiseless 
system is in the 'ether-or region' (R0 < 0, «i < 0). It is also clear that 
the coupling with the principal modes in Eq. (6) is very important, since 
otherwise only the effective linear growth rates are decreased, which does 
not alter the stability of the system. 

Once a proper set of parameters is found with «o > 0, R\ > 0, we can 
tune the noise and let the system bifurcate (in this specific case for example) 
from the first overtone (low noise, AQ = 0, A\ ^ 0, Aj\ ^ 0) through double-
mode (medium noise, AQ ^ 0, Ai ^ 0, Aj ^ 0) to fundamental (high noise, 
AQ ± 0, Ax = 0, Aj0 # 0). 

In the case of many high-order modes we can redistribute the total high-
order mode energy necessary to destabilize the quasi single-mode states 
among many modes. Then, since the individual mode energies become lower 
and their fluctuations are almost independent one can expect a lower disper­
sion for the principal modes. Some more detailed considerations do indeed 
show that this is the case. The r.m.s. scatter of the amplitudes of the prin­
cipal modes changes as 1/y/N, where N is the total number of the high 
overtone modes. 

To illustrate the existence of the true double-mode solution and the de­
crease of the amplitude dispersion as the number of the modes increase, we 
perform a similar numerical simulation as we have already done in the two-
mode case. The results are shown in Fig. 2. The noiseless system corresponds 
to a 'first overtone only' case and the nonlinear parameters to an 'either-or' 
case (i.e. no double-mode solution is possible for the noiseless system). 

The difference between this and the precursor-type double-mode system 
is clearly shown (compare with Fig. 1). The simulations with a large number 
of modes exhibit the decrease of the amplitude dispersion in a quantitative 
agreement with the theoretical 1/y/W dependence. 

An application of the above idea to hydrodynamical models is fairly 
straightforward. The coupling coefficients can be extracted from the limit 
cycle analysis and the result can be used directly to evaluate the analyt­
ical stability conditions. A large number of tests made with standard RR 
Lyrae models indicate that the required conditions up to the 6-th order ra­
dial modes are not satisfied (at least not with 'standard' artificial viscosity). 
We think that the mechanism of noise generated 'smooth' multimode states 
should be further studied by exploring the effects of resonances. In any case 
as a partially ad hoc idea we cannot exclude that the nonradial modes, which 
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A M P L I T U D E [ a r b i t r a r y u n i t s ] 

Fig. 2. Empirical probability distribution functions of the amplitudes of the principal 
modes in the case of multimode non-resonant interaction. The total number of modes are 
shown at the curves. The parameters are: no = 0.01, M = 0.06, Qoo = —10, Qoi = —15, 
Q10 = <2n = -50 , KJ = -0.12, Q0j = Qji = -50 , Qu = Q3o = -500, for j>2 and all 

. c. _ c. _ in-* c. c. _ other Qij are zero. The intensities are: So 
for the 3 and 10 mode case, respectively. 

Si = 10~4Sj, S: = 2 x 1 0 _ i and 2.5 x 10" 

are most probably affected by turbulent convection, have proper couplings 
with the relevant radial modes. Then, a permanent double-mode state may 
exist, similarly as we have just described. 

5. Hydrodynamical Modelling 

Quite a few attempts have been made for numerical modelling of double-
mode stars. After the early works (Stobie 1969; King et al. 1973), Stellingwerf 
(1975) was the first who, with the aid of the relaxation technique, performed 
the first systematic study in the limit cycle stability of the RR Lyrae stars. 
He found some cold models which study in the limit cycle stability of the 
RR Lyrae stars. He found some cold models which exhibited double-mode 
behavior. It is not only that those models have not much common with 
the observed double-mode stars, but also, subsequent simulations by Cox, 
Hodson and Davey (1976) could not confirm their double-mode nature. This 
is not very surprising in retrospect, since nonlinear behavior is very sensitive 
to some details of the model, which were certainly not identical in the two 
works. 

Simon, Cox and Hodson (1980) tried to test the effect of three-mode 

https://doi.org/10.1017/S0252921100014329 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100014329


292 G. KOVACS 

resonance in supporting beat Cepheid pulsation. It turned out (in agreement 
with the subsequent analytical studies, as we have already mentioned) that 
this resonance is not likely to be important in double-mode pulsation. 

The discovery of a large number of RRd stars further stimulated the 
search for double-mode pulsation models. Cox (1982) and Hodson and Cox 
(1982) made a moderate survey of RR Lyrae pulsation. They were unable 
to construct any RRd models. Re-investigating the problem, Kovacs and 
Buchler (1988) performed a more extensive survey. They indeed found, in 
agreement with the analytical prediction of Dziembowski and Kovacs (1984), 
that models which are in the proximity of the 2:1 resonance between the 
fundamental and the third overtone, exhibit less stable fundamental limit 
cycles compared to the ones outside of this resonance. This is a general 
property and is independent of the numerical details of the model. For some 
specific parameters, the resonance is able to destabilize the limit cycle and. if 
the first overtone (non-resonant) limit cycle is also unstable, lead to a double-
mode model. The destabilizing effect of the 2:1 resonance has manifested 
itself in other types of models too, in particular, in Cepheid models (Buchler, 
Moskalik and Kovacs 1990). Except for the fact that these models are the 
first, well established simulations showing permanent double-mode behavior, 
they are not relevant from practical point of view, because their periods are 
very different from the observed ones. 

Convection, of course, may play an important role in the limit cycle prop­
erties of the models. Unfortunately, there has been no systematic and accu­
rate work done in this area, except maybe for that of Ostlie (1990). He found 
that some of this RR Lyrae models indicate simultaneously unstable limit 
cycles. This observation was, however, not conclusive because the analysis 
was made on the perturbed, not perfectly settled limit cycles, and there was 
no subsequent direct time-integration performed to prove that the model 
really settles down on a double-mode state. Until the numerical problems 
are solved and more systematic studies are made on convective models, the 
role of convection in double-mode pulsation remains open. 

Turning back to the purely radiative models, we would like to examine the 
effect of the artificial viscosity on the stability of the limit cycles. According 
to Stellingwerf (1975), the viscous pressure is given by 

Pv(i)=CQPg(i)[(u(i - 1) - u(i))/c(i) - a}2, 

if {u(i - 1) - u(i))/c(i) > a > 0 

=0, otherwise. (7) 

Here c(i) = Jpg(i)v(i); pg{i), v(i), u(i) are the gas pressure, the specific 
volume and the velocity of the i-th mass shell. It is well known that the 
artificial viscosity has an important role in determining the limit cycle prop­
erties. Since there is not much of a restriction on the viscosity parameters 
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(CQ,CX), one cannot justify to fix them to any particular value. One possible 
methodology is that we are interested in the behavior of the pure radiative 
model and therefore, we should avoid 'unphysical' dissipation as much as 
possible. The problems which arise here are that: (1) amplitudes might be­
come too high, (2) numerical instabilities might get amplified. To handle 
these problems, previous nonlinear works employed a numerical viscosity, 
which seemed to be a fair trade between numerical stability, size of ampli­
tudes and avoiding very large dissipation. Here we would like to relax the 
restriction regarding the size of the amplitudes, while maintaining numerical 
stability. The main goal of this test is to indicate some type of behavior of 
the models which could be observed in the simulations with future less dis-
sipative and more accurate codes. A very detailed discussion of our tests is 
given in Kovacs and Buchler (1992). Additional tests regarding the artificial 
viscosity are presented in Kovacs (1990). 

To illustrate the dramatic effect of decreasing the viscous dissipation we 
compute a sequence of RR Lyrae models with two different artificial viscos­
ity parameters. The sequence has the following parameters: M = O.75M0, 
L = 4010, X = 0.7, Z = 0.0001, Teff = 6000-6400. We use the opacities 
published by Rogers and Iglesias (1992). Unless stated otherwise, all of our 
models contain 60 mass shells. The results are shown in Fig. 3. 

The following important observations can be made: (1) The switching rate 
from the fundamental limit cycle toward the first overtone (fji) is strongly 
affected by the artificial viscosity. For the less dissipative (CQ, a) — (4,0.07) 
models fix has a non-monotonic behavior and a very large positive value 
in an extended region. (2) The stability of the first overtone limit cycle is 
not much affected; the switching rate toward the fundamental (r?0) does not 
change appreciably. (3) There is a region in which both switching rates are 
simultaneously positive. (4) The amplitudes of both limit cycles increase 
considerably for the less dissipative models. 

We see that a completely different behavior is obtained for lower artificial 
dissipation. The 'standard' viscosity parameters (CQ,a) = (4,0.01) would 
predict a transition from an 'either - or' region (Teff > 6250) to a 'fundamen­
tal only' one (Teff < 6250), whereas for lower viscosity we get a 'double-mode 
only' regime (Teg = 6250-6080) sandwiched between the two different singe-
mode regimes. This behavior survives for many other ( C Q , Q ) combinations, 
when the resulting viscous dissipation is small enough. It is also comfort­
ing to know that the periods and period ratios in the double-mode region 
overlap with those of the Oo II RRd variables, namely: Pa = 0.51-0.56 day, 
Pi/Po — 0.746-0.747 for our double-mode models. 

The puzzling question regarding the behavior of r\x is that it has a non­
monotonic variation and that it has a much larger value than that of the 
corresponding linear growth rate. None of these properties are easily ex­
plained within the framework of non-resonant pulsation (see e.g. Buchler, 
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6400 6300 6200 6100 6000 6300 6200 6100 6000 

Teff Teff 

Fig. 3. Variation of the switching rates (e.g. Stellingwerf 1975) and velocity amplitudes 
(in [kms-1]) along a model sequence with M = Q.15MQ, L = 40X0, Z = 0.0001. Numbers 
at the lines denote the various values of the artificial viscosity parameters: (1): CQ = 4, 
a = 0.07; (2) CQ = 4,a = 0.01. 

Moskalik and Kovacs 1991). Therefore, we look for some type of resonance 
which leaves the system intact, except for the stability of the fundamental 
limit cycle. There are two different resonances in the proximity of the hump 
of T)1, viz. 3a;o « LJ\ -f u>2 and %j\ « u/'o + u^, where wo,wi and U2 are the fun­
damental, first and second overtone frequencies, respectively. The resonance 
centers are at reff « 6300 and Tefr « 6100 for the first and second resonance, 
respectively. Other more 'standard' resonances (two- and three-modes) are 
much 'weaker' in a numerological sense. 

Which of these two resonances might cause the variation of 7ja? It is easy 
to see that the amplitude equation for A\ is modified by the second resonance 
through a term which is proportional to AQA\A2, consequently, the stability 
of the fundamental limit cycle will not be affected by this resonance, since 
A0A1A2 is a higher order term, and therefore is negligible in the computation 

of Wi-
On the other hand, the first resonance 3tv-o ~ u\ + u-̂  contributes to 

the amplitude equations for .4j and .42 by terms proportional to AQA2 and 
AQA\, respectively. Therefore, this resonance will affect the stability of the 
fundamental limit cycle. As we see. the perturbations with the first and 
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Fig. 4. Amplitude evolution of the radius variation of the Po = 0.529 day, M = O.JOMQ, 
L = 40LQ, Tcif = 6200 K, Z = 0.0001 model with CQ = 4, a = 0.07. The amplitudes are 
given in arbitrary units. 

second overtones are combined, a property which is also clearly observable 
in the Floquet analysis of the numerical models. The limit cycle amplitudes 
are not affected by this resonance in agreement with the data plotted in Fig. 
3. 

We now turn to the direct time integrations of the models. Each model 
is started from the static solution perturbed with a velocity distribution 
containing a mixture of first overtone (10%) and fundamental (90%) eigen-
modes. The modal content of the radius or light variation is monitored by 
time-dependent Fourier analysis. One typical amplitude evolution is shown 
in Fig. 4. The double-mode state is independent of the initial conditions as 
is indicated by some supplementary tests. 

It is interesting to note the periodic oscillations of the amplitudes, which 
is not an artifact of data analysis, but an inherent property of most of 
the models. This behavior is again an indication of the resonance discussed 
above. 

Comparing with the observations one notes that the models have inverted 
amplitude ratios. The question is how we can reverse it? At the moment our 
guess is that some fine tuning of the dissipation together with a better spatial 
resolution might cause the desired effect. 

In Fig. 5 we show the integrations of a model with M = 0.75MS, 
L — 35i©, reff = 5900K, Z = 0.0001. In both cases the single-mode states 
are unstable, and therefore, the final states are surely double-mode states. 
We see that in the more dissipative case (lower panel), despite of the long 
integration, the system has still not reached equilibrium, but that the ampli­
tude ratio is reversed. Except for the imperfectly matched periods (Po = 0-56 
day, Pi/Po = 0.744) the more dissipative model reproduces all directly ob­
servable main features of all Oo II RRd star. (Although our values for L and 
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Fig. 5. Amplitude evolution of the radius variation of the Po — 0.561 day, M = O.75A/0, 
L = 3OLQ, Teff = 5900 K, Z = 0.0001 model with CQ = 1, a = 0.004 (upper panel) and 
CQ = 1, a = 0.0 (lower panel). The amplitudes are given in arbitrary units. 

reff are certainly lower for this model than the 'standard' one, we consider 
this discrepancy of a secondary importance. These non-direct observables 
contain large uncertainties, therefore, they enter with lower weights in a 
comparison with the observations.) 

To illustrate the persistence of the double-mode behavior in the case of 
higher spatial resolution, we integrate a 90 zone model. The parameters are: 
M = O.75Af0, L = 401©, Teff = 6200 K, Z = 0.0; i.e. except for Z, this is 
the same model as shown in Fig. 4. The artificial viscosity parameters are 
also different, namely (Cg,a) = (2,0.006) in contrast to (4,0.07) used in the 
simulation shown in Fig. 4. We note that in the present form of the artificial 
viscosity, its effect on the behavior of the model depends on the number of 
zones. The same viscosity parameters for a finer zoned model cause larger 
amplitudes and possibly more violent behavior than for the coarse zoned 
model. The amplitude evolution shown in Fig. 6 proves that the double-mode 
behavior is maintained for higher zoned models too, without destroying the 
numerical stability and even improving the amplitude ratio. 

We conclude this section by emphasizing that the latest simulations with 
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Fig. 6. Amplitude evolution of the light variation of a 90 zone Pa = 0.529 day, 
M = O.75.1/0, L = 4OI 0 , Ttf! = 6200 K, Z = 0.0 model with CQ = 2, a = 0.006. 
The amplitudes are given in arbitrary units. 

a less dissipative purely radiative code strongly indicate that permanent 
double-mode behavior is possible at least for RRd models. These simula­
tions are by no means devoted to modelling the detailed nature of double-
mode variables, but rather are meant to stimulate further investigations with 
other, more accurate and less dissipative codes. 

6. Conclusions (and Questions) 

Understanding double-mode variables is one of the main objectives of the 
theory of nonlinear stellar pulsations. The simple and indisputable obser­
vational constraints (periods and amplitudes) put clear criteria on the ac­
ceptance of different models. The reasonable assumption of purely radial 
pulsation gives us the hope to model this simplest type of multimode pulsa­
tion with 1-D hydrodynamical codes. The achievement of this goal is still in 
the more distant future for the vast majority of multimode pulsators which 
are oscillating in non-radial modes. 

Though the observations are fairly extensive in some cases, there are 
many unanswered questions, that could fairly simply be answered by em­
ploying more accurate (but still standard) observational techniques. More 
specifically, some of the questions to be addressed are as follows. 
(1) Stability of the light variation. Especially for globular cluster RRd stars 

the accuracy of the photographic observations do not allow us to make 
any strict statement about this problem. If there were sizable fluctu­
ations in the amplitudes, the theoretical interpretation of the double-
mode variables could be quite different from the one we have for a 
pulsation of constant amplitude. 

(2) Are there any other modes besides the two principal ones excited in 
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double-mode variables? The beautiful new analysis of AI Vel by Wal-
raven et al. (1992) shows that other modes at much lower amplitudes 
may well be excited. We think it is needless to emphasize the theoretical 
importance of the discovery of these low-amplitude modes. If some of 
them are radial modes then simple linear theory puts very strict restric­
tions on the parameters of the model. Excitation of these modes should 
tell us also something about the mechanism of double- (now multi-) 
mode pulsation. 

(3) Statistics of the double-mode stars. What is the relation between cluster 
properties and the presence (or absence) of RRd stars? Why do we have 
only one RRd star in our galaxy? How many dwarf and beat Cepheids 
are in extragalactic objects? 

(4) Is there any relation between some basic physical properties (like chem­
ical composition, rotational velocity) and double-mode pulsation? 

From the theoretical side, there is certainly a lot more to do in finding 
the cause of double-mode behavior and construct physically sound models. 
There are, however, two encouraging developments which may lead to some 
progress in the very near future. 
(a) Turbulent convection may drive some modes which are marginally stable 

in some limiting state (either single- or double-mode). This leads to the 
possibility of observing a few additional modes (including radial ones) 
besides the large-amplitude principal modes. The dwarf Cepheid AI Vel 
could be just the first example for this type of mode excitation. 

(b) Decreased artificial viscosity dissipation leads to double-mode pulsa­
tions in current purely radiative RR Lyrae models. The periods of the 
nonlinear models now fit the observed values with reasonable stellar pa­
rameters, but the amplitude ratio depends sensitively on the specific 
choice of the artificial viscosity parameters. 

It is clear, there is now an even more urgent need to develop less dissi-
pative, more accurate nonlinear codes. A progress has recently been made 
in this field (Dorfi and Feuchtinger 1991; Cox, Deupree and Gehmeyr 1991; 
Gehmeyr 1991) and there are certainly more results to be expected in the 
near future (Buchler and Marom 1992). In addition, because of the excessive 
amplitudes, there is not doubt that the unphysical artificial viscosity should 
be replaced by (or supplemented with) some physical mechanism, such as 
turbulent viscous dissipation. Though the correct treatment of turbulent 
convection in 1- D will obviously remain a problem for many years, some 
approximate parametrized model might be enough to cure the problem of 
the amplitudes. 
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