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Abstract

Background. Tourette disorder (TD), hallmarks of which are motor and vocal tics, has been
related to functional abnormalities in large-scale brain networks. Using a fully data driven
approach in a prospective, case–control study, we tested the hypothesis that functional con-
nectivity of these networks carries a neural signature of TD. Our aim was to investigate (i)
the brain networks that distinguish adult patients with TD from controls, and (ii) the effects
of antipsychotic medication on these networks.
Methods. Using a multivariate analysis based on support vector machine (SVM), we devel-
oped a predictive model of resting state functional connectivity in 48 patients and 51 controls,
and identified brain networks that were most affected by disease and pharmacological treat-
ments. We also performed standard univariate analyses to identify differences in specific con-
nections across groups.
Results. SVM was able to identify TD with 67% accuracy ( p = 0.004), based on the connect-
ivity in widespread networks involving the striatum, fronto-parietal cortical areas and the
cerebellum. Medicated and unmedicated patients were discriminated with 69% accuracy
( p = 0.019), based on the connectivity among striatum, insular and cerebellar networks.
Univariate approaches revealed differences in functional connectivity within the striatum in
patients v. controls, and between the caudate and insular cortex in medicated v. unmedicated TD.
Conclusions. SVM was able to identify a neuronal network that distinguishes patients with
TD from control, as well as medicated and unmedicated patients with TD, holding a promise
to identify imaging-based biomarkers of TD for clinical use and evaluation of the effects of
treatment.

Introduction

Tourette disorder (TD) is a neurodevelopmental disorder characterized by motor and vocal
tics (American Psychological Association, 2013). It is often associated with psychiatric
comorbidities, of which obsessive–compulsive disorders (OCDs), attention-deficit hyperactiv-
ity disorders (ADHDs), intermittent explosive disorders (IEDs) and depression represent the
most common ones (Hirschtritt et al., 2015).

A dysfunction of cortico-striato-thalamo-cortical (CSTC) loops might account for this clin-
ical spectrum (Singer, 2005), as structural and functional abnormalities have been found in the
basal ganglia (Worbe et al., 2010, 2012), the sensory-motor areas (Fahim et al., 2010; Worbe
et al., 2010), the dorsolateral prefrontal cortex and more generally the frontal cortex
(Fredericksen et al., 2002; Kates et al., 2002), fronto-parietal networks (Atkinson-Clement
et al., 2020; Eddy, Cavanna, Rickards, & Hansen, 2016) and the cerebellum (Lerner et al.,
2007). Some of these abnormalities have been related to the disorder itself, but others have
been associated with comorbidities, as well as with compensatory strategies to reduce the
tics (Mazzone et al., 2010). Despite an extensive research, no reliable brain biomarker of
this disorder has been found, and the precise pathophysiological mechanisms of TD are
still poorly understood.

Multivariate approaches applied to neuroimaging, such as functional magnetic resonance
imaging (fMRI), represent a valuable method to address the complex aspects of TD, due to
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their ability to (i) detect subtle and distributed patterns of activity
throughout the brain in a fully data-driven manner, (ii) make pre-
dictions that have the potential to interrogate neurophysiological
mechanisms, and (iii) aid in diagnosis and treatment (Nielsen,
Barch, Petersen, Schlaggar, & Greene, 2019). Recent studies
have used multivariate approaches, in particular support vector
machine (SVM), to discriminate children with TD from age-
matched healthy controls (HCs) (Greene et al., 2016), as well as
young TD patients from older ones (Nielsen et al., 2020). They
have shown that functional brain abnormalities allow for the
identification of TD with ∼70% accuracy, and that delayed
brain maturation may explain the atypical functional connectivity
in adults with TD. However, they did not search a neural signa-
ture of the disorder in relation to pharmacological treatment.
This is relevant, as patients with TD are often treated with anti-
psychotics and, even if their effects on the symptoms are docu-
mented, their specific action on large-scale brain networks is
still unknown (Handley et al., 2013).

We employed a multivariate approach to predict patterns of
resting state functional connectivity (rs-FC) in TD which: (i)
inform on the neurophysiological mechanisms of adult TD, (ii)
address the differences between TD patients under antipsychotic
medication and unmedicated ones and (iii) correlate with symp-
toms’ severity. We applied SVM to identify differences in con-
nectivity patterns between TD patients and HCs, as well as
between patients with and without medication. We also imple-
mented a support vector regression (SVR) model that investigates
whether rs-FC carries information about symptoms’ severity. In
addition to SVM, we performed a standard univariate analysis
to evaluate specific differences in rs-FC across groups.

Our ultimate goal was to shed light on the altered brain func-
tions underpinning TD in adults, as well as their link to medica-
tion status, and to study the potential of SVM as a predictive tool
to support the diagnosis of TD.

Materials and methods

Participants and general procedure

We recruited 55 patients with TD and 55 sex- and age-matched
HCs. Seven patients and four HCs were not able to perform the
MRI (due to e.g. excessive movements) and were excluded from
the analysis. The final sample consisted of 48 patients with TD
(39 male, mean age: 30.5 ± 10.3 years) and 51 HCs (33 male,
mean age: 30.9 ± 10.4 years).

Patients were recruited through the National Tourette Disorder
reference center at the Pitié-Salpêtrière Hospital in Paris. Inclusion
criteria for patients were: a diagnosis of TD according to DSM-5
(American Psychological Association, 2013), capability to control
tics for at least 10min during the MRI acquisition. Exclusion cri-
teria for both HCs and patients with TD were: incompatibility
with MR acquisition (e.g. claustrophobia and metallic body
implants), history of alcohol or drug addiction (except for nicotine
and recreational cannabis use for less than once per week), history
of psychosis and learning disability. We also excluded HCs who
experienced childhood tics and any neurological disorders.

In patients, tic severity was assessed using the Yale Global Tic
Severity Scale (YGTSS50) (Leckman et al., 1989). The life-long
diagnosis of psychiatric comorbidities, such as OCDs, ADHDs
and IEDs, typically observed in TD (Hirschtritt et al., 2015),
was evaluated using patients’ medical records and psychiatric eva-
luations available at the inclusion in the study. Eighteen patients
with TD were under stable medication for at least 3 years at the
time of examination (Table 1).

Standard protocol approvals, registrations and patients
consent

The study was carried out in accordance with the latest version of
the Declaration of Helsinki and approved by the local Ethics

Table 1. Clinical and demographic data

HC (N = 51) TD (N = 48) Statistics

TD without
medication
(N = 18)

TD with
medication
(N = 18) Statistics

Sex (male/female) 33/18 38/10 χ(1) = 2.55, p = 0.110 14/4 13/5 χ(1) = 0.15, p = 0.700

Age (years, mean ± S.D.) 30.9 ± 10.4 30.5 ± 10.3 t(97) = 2.11, p = 0.833 30.7 ± 11.2 31.4 ± 9.5 t(34) = 0.21, p = 0.836

YGTSS50 – 16.5 ± 7.2 – 15.5 ± 8.0 17.11 ± 6.0 t(34) = 0.68, p = 0.498

IED [N (% of TD)] – 22 (45.8%) – 50% 38.9% χ(1) = 0.45, p = 0.502

ADHD [N (% of TD)] – 20 (41.7%) – 38.9% 27.8% χ(1) = 0.50, p = 0.480

OCD [N (% of TD)] – 10 (20.8%) – 11.1% 16.7% χ(1) = 0.23, p = 0.630

Overall medication [N (% of TD)]a – 18 (37.5%)

Aripiprazole, APZ [N (% of TD)] – 15 (31.2%)

Topiramate [N (% of TD)] – 2 (4.2%)

Fluoxetine [N (% of TD)] – 2 (4.2%)

Risperidone [N (% of TD)] – 2 (4.2%)

Others (pimozide, escitalopram,
haloperidol, mianserin – [N (% of
TD)])

– 4 (8.3%)

YGTSS, Yale global tic severity score; IED, intermittent explosive disorder; ADHD, attention deficit hyperactivity disorder; OCD, obsessive–compulsive disorder; HC, healthy control; TD,
Tourette disorder.
Comparison of clinical and demographic scores across groups.
aAll medications were prescribed for at least 3 years.
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Committee (approval number: CCP16163/C16-07). All partici-
pants gave written informed consent prior to the study. The study
was registered in ClinicalTials.gov (ID number: NCT02960698).

Clinical groups’ analysis

We performed two analyses investigating: (i) between-group dif-
ferences in 51 HCs and 48 patients with TD, and (ii)
between-TD patients’ subgroup differences in 18 patients with
medication and 18 patients without medication. For the latter,
as SVM achieves best performance when the two discriminated
groups contain the same number of samples (Wu & Chang,
2003), we analyzed data from all patients with TD under medica-
tion (n = 18) and a subset of 18 unmedicated patients that
matched the group of medicated TD for age, sex, symptom sever-
ity and comorbidities. This ensured balanced groups, and
excluded potential confounds due to between-group differences
other than in rs-FC.

Differences in age were assessed with independent-sample t
tests, whereas differences in the ratio between male and female par-
ticipants were assessed with χ2 tests. Moreover, for the between-TD
patients’ subgroup analysis, differences in the YGTSS50 were
assessed with independent-sample t tests, and differences in the
ratio of patients with and without IED, ADHD and OCD were
assessed with χ2 tests. The significance level was set at 0.05. Data
analysis was performed with SPSS 25 (IBM Statistics, USA).

Neuroimaging acquisition parameters and pre-processing

During the MR session, participants were asked to lie still with the
eyes open, while fixating a cross on a screen. Eye movements were
monitored with an eye-tracking device. Neuroimaging data were
acquired using a 3T Magnetom Prisma (Siemens, DE) with a
64-channel head coil. Resting state fMRI and structural images
were acquired in one session using the following parameters: (i)
echo-planar imaging sequences performed with a multi-slice,
multi-echo acquisition, repetition time (TR) = 1.9 s, echo time
(TE) = 17.2/36.62/56.04 ms, Ipat acceleration factor = 2, multi-
band = 2, isotropic voxel size = 3 mm, dimensions = 66 × 66 in
plane × 46 slices, 350 volumes, duration = 11 min; (ii) a
T1-weighted MP2RAGE sequence with TR = 5 s, inversion time
(TI) = 700/2500 ms, field of view (FOV) = 232 × 256 in plane ×
176 slices, 1 mm isotropic, Ipat acceleration factor = 3.

T1-weighted images were first background denoised (O’Brien
et al., 2014) using https://github.com/benoitberanger/mp2rage,
which is based on Marques. This step improved the quality of
the subsequent segmentation. Images were then pre-processed
(segmentation, normalization to Montreal Neurological Institute
– MNI – space) using the Computational Anatomy Toolbox
(http://www.neuro.uni-jena.de/cat/) extension for SPM12 (https://
www.fil.ion.ucl.ac.uk/spm/).

Functional data were pre-processed with AFNI using afni_-
proc.py script (https://afni.nimh.nih.gov/) according to standard
procedures (despiking, slice timing correction and realignment
to the volume with the minimum outlier fraction driven by the
first echo). A brain mask was computed on the realigned shortest
echo temporal mean using FSL BET (Jenkinson, Beckmann,
Behrens, Woolrich, & Smith, 2012). This step increased the
robustness against strong signal bias intensity. Afterward, the
TEDANA toolbox (Kundu et al., 2017) version 0.0.7 was used
to optimally combine the realigned echoes, to reduce the dimen-
sionality of the dataset by applying principal component analysis,

and to perform an independent component analysis (ICA)
decomposition which separated BOLD from non-BOLD compo-
nents, based on the TE dependence of the ICA components
(Kundu, Inati, Evans, Luh, & Bandettini, 2012). This step ensured
robust artifact removal of non-BOLD components, such as move-
ment, respiration or heartbeat. Previous research with resting state
fMRI has already confirmed the superiority of this method in
regressing out motion over standard denoising techniques
(Kundu et al., 2017). To further confirm this, framewise displace-
ment (FD) was computed according to standard methods (Power
et al., 2014), and compared between the groups. No motion arti-
facts affected the quality of the signal, the FD in TD (0.016 ±
0.007 mm) did not statistically differ from HC (0.136 ± 0.006
mm) [t(97) = 1.91, p = 0.059], and FD in patients with medication
(0.016 ± 0.009 mm) did not statistically differ from patients with-
out medication (0.016 ± 0.005 mm) [t(34) = 0.21, p = 0.830].
Finally, using SPM12, images were co-registered to the anatomical
scan, normalized to MNI space, then smoothed with a Gaussian
kernel with full width at half maximum of 5 × 5 × 5mm.

Brain images were parcellated into 116 functional regions,
based on the automatic anatomical labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002), and the region-averaged time ser-
ies were extracted. The first 10 time points were discarded to
ensure magnetization equilibrium. Motion parameters and the
average signal of white matter and cerebrospinal fluid obtained
during the segmentation, were regressed out. Time series were
finally band-pass filtered at 0.009 < f < 0.08 Hz, according to pre-
vious studies (Greene et al., 2016; Nielsen et al., 2020). We com-
puted pairwise Pearson correlation coefficients between all pairs
of brain regions as indicators of their functional connectivity,
and we obtained a symmetric correlation matrix of 116 × 116
coefficients for each participant, i.e. 6670 correlation coefficients.
Next, we converted the correlation coefficients to z-scores using
Fisher-Z transformation, in order to normalize them to a
Gaussian distribution (Wegrzyk et al., 2018).

Multivariate analysis for neuroimaging data

The 6670 correlation coefficients were used as features for linear
SVM models. We implemented three predictive models to: (i) dis-
tinguish HCs from patients with TD, (ii) distinguish patients with
and without medication and (iii) predict symptoms’ severity in
patients with TD. The first two models were initially optimized
with an automatic grid search algorithm based on Bayesian opti-
mization (Hastie, Tibshirani, & Friedman, 2009). The optimiza-
tion minimized the cross-validation loss (error) by iteratively
varying the C parameter and Kernel Scale. In line with previous
research (Nielsen et al., 2020; Wegrzyk et al., 2018), the best
values were found to be C = 1 and Kernel Scale = 1. The models
were then trained to learn a function that separates the two
groups, based on the differences in their rs-FC. The models
were trained on a known dataset of participants belonging to
the two groups, and mathematically assigned weights to each con-
nection, based on its contribution to the discrimination. Once the
models were built, they used these weights to predict the group
where a new and unknown participant belongs to. We applied
leave-one-subject-out-cross-validation (LOSOCV) to estimate
the generalization of the models. The statistical significance of
the classification accuracy was assessed using its null distribution
under permutation testing, where group labels were randomly
permuted 1000 times. We finally trained the SVMs with all
HCs and patients, and identified the most discriminative
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connections as the ones holding the highest weights (Wegrzyk
et al., 2018). This step was performed after evaluating that the
most discriminative connections obtained following training the
SVM with the entire dataset were consistent with the ones calcu-
lated by the single LOSOCV folds (online Supplementary Fig. S1).
We studied whether rs-FC contains information about symptom
severity by implementing a SVR model [C =∞, Kernel Scale = 1,
ϵ = 0.00001, according to previous research (Nielsen et al., 2020)
and optimized with Bayesian optimization, as described above] to
predict YGTSS50 (Greene et al., 2016), and estimated it with
LOSOCV. We studied the performance of the SVR model with
r2. The SVM and SVR were implemented with the Statistics
and Machine Learning Toolbox in Matlab R2018a (The
MathWorks, USA).

Univariate analysis for neuroimaging data

We performed a standard univariate analysis to study specific dif-
ferences in rs-FC across groups. We compared the 6670 correl-
ation coefficients between HCs and patients with TD, and
between patients with and without medication, respectively,
with multiple independent t tests. Moreover, in patients with
TD, we computed Pearson’s correlation coefficients between
each connection and the YGTSS50. All tests were corrected for
multiple comparisons with 1000 permutations. The significance
level was set to 0.05 after correction. Data analysis was implemen-
ted in Matlab R2018a.

Results

Subjects

No statistically significant differences were found in sex and age
between TD and HC. No statistically significant differences were
found in tic severity and in the occurrence of comorbidities
between medicated and unmedicated patients. Demographic
and clinical data are presented in Table 1.

Multivariate analysis of rs-FC between the groups

The performance of the first two classifiers is shown in Table 2.
The classifiers discriminated TD from HC ( p = 0.004), as well
as TD with and without medication ( p = 0.019), with accuracy,
specificity and sensitivity well above chance.

For the between-group classification analysis, the SVM identi-
fied the most discriminative connections, i.e. the connections
holding the highest weights, in fronto-cerebellar, fronto-parietal,
parieto-cerebellar and subcortico-subcortical networks (Fig. 1a
and online Supplementary Fig. S1A). In particular, Fig. 1a
shows that the classification accuracy was driven by the connect-
ivity between (i) the cerebellar lobule 7b and the superior parietal
gyrus, (ii) the orbito-frontal cortex (OFC) and the angular gyrus,

(iii) the putamen and the caudate, (iv) the caudate and the cere-
bellar lobule 10 and (v) the cerebellar vermis 9 and the OFC
(online Supplementary Table S1).

For the between-TD patients’ subgroup classification analysis,
the SVM identified the most discriminative connections in fronto-
cerebellar, cerebello-limbic, parieto-cerebellar and cerebello-
subcortical networks (Fig. 1b and online Supplementary Fig. S1B).
Figure 1b shows that the performance of the classifier was driven
by the connectivity (i) of the supplementary motor area (SMA)
with the cerebellar lobule 7b and the supramarginal gyrus, respect-
ively, (ii) within the cerebellar regions, namely between crus 2 and,
respectively, 4th, 5th, and 10th lobules, (iii) between the right caud-
ate and the right insula and (iv) between the cerebellum (vermis 9
and 9th lobule) and the OFC and the inferior frontal gyrus, respect-
ively (online Supplementary Table S2). These patterns were inde-
pendent of the number of top feature weights considered, as
shown in online Supplementary Fig. S2.

The analysis of the SVR showed that rs-FC was not able to pre-
dict symptom severity in patients with TD (r2 = 0.05, p = 0.114).

Univariate analysis of rs-FC

The univariate analysis showed increased functional connectivity,
in patients with TD compared to HCs (Fig. 2a), of the right caud-
ate with the right and left putamen, respectively [t(97) = 5.06,
pcorrected = 0.003 and t(97) = 5.29, pcorrected = 0.001], and of the
left caudate with the right and left putamen, respectively
[t(97) = 4.21, pcorrected = 0.050 and t(97) = 4.38, pcorrected = 0.037].

In the between-TD patients’ subgroup analysis, the connectiv-
ity between the right caudate and the right insula was lower in
medicated v. unmedicated patients [t(34) = 4.77, pcorrected =
0.050] (Fig. 2b).

No correlation between YGTSS50 and any of the connections
was found in patients with TD ( pcorrected > 0.05).

Discussion

Using rs-FC and a multivariate approach in a fully data-driven
manner, we were able to significantly discriminate adult patients
with TD from HCs, and patients with and without medication.
Compared to HCs, patients with TD showed abnormal rs-FC
among widespread brain areas, including striatum and cerebellum.
Functional connectivity of the SMA, the OFC, the insula and the
posterior parietal cortex, as well as the striatum and the cerebellum
discriminated the patients under conventional medication with
antipsychotics, such as aripiprazole (APZ), from the unmedicated
patients. The univariate analysis found significant differences in
connectivity between HCs and patients with TD within the stri-
atum, and between medicated and unmedicated patients with TD
in the connection between the caudate nucleus and the insula.

Table 2. Results of the multivariate analysis

Accuracy (%) Specificity (%) Sensitivity (%) p-value

Between-group classifier (TD v. HC) 67 65 69 0.004

Between-TD patients’ subgroup classifier (TD with v. without medication) 69 67 72 0.019

HC, healthy control; TD, Tourette disorder.
Predictive performance of the SVM classifiers. p values represent the significance of the results, compared to chance.
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Our study has some limitations. First, we chose the AAL atlas
based on existing literature on classification of rs-FC using a simi-
lar pipeline as in our study (Lee & Frangou, 2017; Richiardi et al.,
2012; Wegrzyk et al., 2018). The choice of the atlas was crucial for
our approach, as the brain parcellation might have a major impact
on the definition of the regions of interest, hence on the connect-
ivity patterns, and ultimately on the results. However, previous
research has compared the rs-FC classification performance
across different atlases (Wegrzyk et al., 2018), and found similar
accuracy of ∼70% when using, for instance, the AAL, the
Hammers (Hammers et al., 2003) and the Shirer (Shirer, Ryali,
Rykhlevskaia, Menon, & Greicius, 2012) atlases. Second, we com-
pared the medicated and non-medicated patients with TD in a
parallel design. It is possible that patients under medication
have substantial differences from the group of unmedicated
patients. Thus, to fully address the question of APZ effect on
brain networks, the same patients with TD should be assessed
before and after the beginning of pharmacological treatment.

Overall, our results strengthen previous knowledge of altered
brain networks in adult TD, and provide new evidence of specific
patterns of functional connectivity in TD patients with pharma-
cological treatment.

Differences in functional connectivity between TD and controls

The results indicated large-scale networks’ alteration in adult TD,
and specifically in the connectivity between cortical areas, the
cerebellum and the striatum. Other studies in patients with TD
have confirmed functional and structural abnormalities between
the striatum and sensory-motor cortices, OFC, parietal and tem-
poral regions, similar to our results (Martino, Ganos, & Worbe,
2018).

The connectivity within the striatum was among the most dis-
criminative features of our multivariate analysis. This structure, as
central part of the CSTC network (Singer, 2005; Worbe, Lehericy,
& Hartmann, 2015), has been suggested by various animal models

Fig. 1. SVM classifier with all HC and patients, most discriminative connections. Color code represents the absolute weights assigned to the connections. Node size
represents the mean weighted number of connections entering the node over the entire set of 6670 weights. Line thickness represents the absolute mean weight of
the connection over the entire set. For graphical purposes, the figure is truncated so that only the top 30 connections are displayed. (a) SVM for TD v. HC. (b) SVM
for medicated v. unmedicated TD. R, right; L, left; Ang, angular gyrus; Caud, nucleus caudate; Cereb(N ), Nth cerebellar lobule; Ins, insula; medSFG, medial segment
of the superior frontal gyrus; PCL, paracentral lobule; Put, putamen; REC, rectus gyrus; SMA, supplementary motor area; SMG, supramarginal gyrus; SPG, superior
parietal gyrus; supORB, superior segment of the orbital gyrus; Thal, thalamus; triangIFG, pars triangularis of the inferior frontal gyrus.

Psychological Medicine 2365

https://doi.org/10.1017/S0033291721004232 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291721004232


to account for the wide spectrum of TD symptoms (Bronfeld,
Yael, Belelovsky, & Bar-Gad, 2013; Worbe et al., 2013). Recent
computational models of pathophysiology of TD have also sug-
gested that tics and premonitory urges result from the abnormal
computation of the sensation and action within sensory-motor
regions of the striatum (Rae, Critchley, & Seth, 2019).

The connectivity of cerebello-cortical and cerebello-cerebellar
networks was also among the most discriminative features of
patients with TD compared to HCs. These results are in line
with data obtained from animal models of TD, suggesting that
tics result from the global neuronal rhythms abnormalities of
cerebro-basal ganglia-cerebellar networks, due to striatal disinhib-
ition (McCairn, Iriki, & Isoda, 2013). In particular, there is evi-
dence that a cerebellar-prefrontal network is implicated in
motor execution specific to Go events in Go-no-Go tasks
(Mostofsky et al., 2003), and our results showed an impairment
in such a network, which may lead to an alteration of unwanted
movement suppression and, in turn, to tic release. Numerous
studies have further confirmed abnormal structural and func-
tional connectivity of the cerebellum with cortical areas and
basal ganglia, namely the striatum (Ramkiran, Heidemeyer,
Gaebler, Shah, & Neuner, 2019; Sigurdsson, Jackson, Jolley,
Mitchell, & Jackson, 2020) in patients with TD.

Overall, our results point to the pivotal role of the striatum and
cerebellum in the pathophysiology of TD. They also suggest that
functional connectivity of the striatum, cerebello-cerebellar and

cerebello-cortical networks might be considered as potential
imaging biomarkers of this disorder. However, and similar to pre-
vious research (Greene et al., 2016), SVR was not able to predict
tic severity. This could result from the fact that only patients with
low-to-moderate tic severity were included in the study, to guar-
antee the quality of MRI acquisitions. Further studies combining
structural and functional connectivity are warranted to address
this question. For instance, a larger hippocampal volume in chil-
dren with TD predicted the persistence of tics in follow-up visits
after onset (Sigurdsson et al., 2020). Moreover, our sample did not
allow us to study the effects of comorbid disorders on rs-FC.
Future research with a large number of patients will allow for
the stratification of TD according to comorbidities, in order to
disentangle their contribution to networks dysfunction. One
potential limitation of this study is that we included only patients
with low-to-moderate tics that did not impact the quality of the
images. Also, even if the patients were not explicitly instructed
to suppress their tics, some of them might have still performed
this voluntary suppression, and this could have had an impact
on the results.

Differences in functional connectivity between medicated and
unmedicated TD

The most common drug used to treat TD in this study was APZ,
taken by 83% of medicated patients. This antipsychotic acts on

Fig. 2. Results of the univariate analysis. (a) Functional connectivity between TD and HC. (b) Functional connectivity between medicated and unmedicated TD. Bars
represent the mean values ± S.E. of the mean. * depicts significant differences at independent sample t tests.
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the dopaminergic and serotonergic function as a partial agonist of
the dopamine D2 receptor and 5-HT1A, and antagonism at
5-HT2A receptors (Jordan et al., 2004). It has shown a positive
effect on tics in TD (Bubl, Perlov, & Tebartz Van Elst, 2006;
Kastrup, Schlotter, Plewnia, & Bartels, 2005).

The empirical model of APZ action postulates that brain areas
with high density of neurons with dopamine D2 receptors (D2R)
might be more sensitive to this drug, and might, in turn, influence
the activity of other regions innervated by the D2R neurons
(Handley et al., 2013). Previous research has shown that, com-
pared to placebo, APZ intake in healthy volunteers modulates
activity in a network including the putamen, the insula, the caud-
ate and the cerebellum, as well as in the superior frontal gyrus, the
superior and inferior parietal lobes and the OFC (Handley et al.,
2013), all regions found discriminative of medicated compared to
unmediated patients in the current study. The univariate
approach pointed to differences in the connectivity between the
caudate and the insula in medicated compared to unmedicated
patients. The insula has been related to the ‘urge-for-action’
(Worbe et al., 2015), i.e. suppression of natural urges (such as
blinking), in healthy participants (Lerner et al., 2009), but also
to uncomfortable feeling associated with the premonitory urges
in TD (Jackson, Parkinson, Kim, Schüermann, & Eickhoff,
2011). In particular, a brain network encompassing the insular
cortex has been found active prior to tic onset, and concomitant
with the subjective experience of the premonitory urge
(Bohlhalter et al., 2006). Similarly, functional connectivity
(Tinaz, Malone, Hallett, & Horovitz, 2015) and cortical thickness
(Draper, Jackson, Morgan, & Jackson, 2016) of the insula have
been correlated with the urge to tic in TD. Altogether, these find-
ings support a key role of the insula in the perception of bodily
urges, linking the sensory and emotional character of premonitory
urges with their translation into tics (Cavanna, Black, Hallett, &
Voon, 2017; Conceição, Dias, Farinha, & Maia, 2017; Cox, Seri,
& Cavanna, 2018). In this study we have not monitored premoni-
tory urges in patients with TD, however, our results indicate that
antipsychotics might act on insular and striatal loops, and the tics
improvement might result from premonitory urges reduction.
This points to a potential effect of APZ on striatal, insular and
cerebellar networks, and the activity of these areas might be
used in future research to monitor the effects of medication.

One potential confound is the use of concomitant medications
other than APZ, which may have an impact on rs-FC. Due to our
sample size, we did not stratify according to medication type,
however, most of our patients was under APZ, and our findings
are in line with existing evidence of altered cortical and subcor-
tical activity in healthy participants after APZ (Handley et al.,
2013). It is, therefore, unlikely that the other drugs biased our
predictions.

Overall, these results suggest that antipsychotic medication
might affect the activity of areas within the CSTC loop implicated
in tic generation and volitional control (Ganos, Roessner, &
Münchau, 2013). Its benefic effects on these areas may, in turn,
spread to other regions functionally connected to the CSTC
loop, and improve other cognitive functions impaired in TD.

Advantages of multivariate approaches

The results of our study demonstrated that multivariate
approaches can be successfully used to predict adult TD based
on abnormal patterns of rs-FC. Recent studies have confirmed
the advantage of multivariate approaches, in particular SVM, in

investigating patterns of differential functional connectivity
between children and adults with TD (Nielsen et al., 2020), or
between children with TD and age-matched HCs (Greene et al.,
2016). Yet, these studies have applied a feature reduction, and
restricted the analysis to a smaller number of connections
(Greene et al., 2016). Indeed, this methodological choice improves
the classification accuracy and computational time, as the com-
plexity of the model is reduced, however, it introduces a priori
information on which regions carry the relevant information,
often achieved through univariate comparisons (Greene et al.,
2016), and might thus exclude other areas still relevant for the
understanding of TD. Moreover, the interpretability of the results
obtained after feature selection has been recently questioned
(Nielsen et al., 2019). We opted for no feature selection, as we
were interested in the connectivity at the whole-brain scale, and
our classifier showed similar performance to other studies in
TD (Greene et al., 2016; Nielsen et al., 2020).

Conclusions

Overall, our results showed the potential of multivariate classifica-
tion methods for clinical use, to help the diagnostic process and/
or to evaluate the effects of treatments. Also, the results of this
study hold a promise to identify an imaging-based biomarker of
TD and to monitor treatments. Future research on a larger sample
will allow for accurate models in relationship with co-morbidities
of TD, and will move the field closer toward imaging-based bio-
markers to guide clinical decisions (Wolfers, Buitelaar,
Beckmann, Franke, & Marquand, 2015).

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291721004232
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