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An Explicit Polynomial Expression for a
q-Analogue of the 9- j Symbols

Mizan Rahman

Abstract. Using standard transformation and summation formulas for basic hypergeometric series we

obtain an explicit polynomial form of the q-analogue of the 9- j symbols, introduced by the author in

a recent publication. We also consider a limiting case in which the 9- j symbol factors into two Hahn

polynomials. The same factorization occurs in another limit case of the corresponding q-analogue.

1 Introduction

The orthonormality relation for Rn(x), the Racah polynomial, is

(1.1)

N
∑

x=0

ρ(x)
√

hmhnRm(x)Rn(x) = δm,n,

where

(1.2)

Rn(x) ≡ Rn(x; a, b, d, N)

= 4F3

[

−n, n + a + d − 1,−x, x + a + b − 1
a,−N, N + a + b + d − 1

; 1

]

,

(1.3)

ρ(x) =
2x + a + b − 1

a + b − 1

(a + b − 1, a, N + a + b + d − 1,−N)x

x!(b, 1 − d − N, N + a + b)x

,

and

hn =
(b, d)N

(a + b, a + d)N

2n + a + d − 1

a + d − 1

(a + d − 1, a, N + a + b + d − 1,−N)n

n!(d, 1 − b − N, N + a + d)n

.(1.4)

The 4F3 series in (1.2) is a balanced, terminating, hypergeometric series, see for ex-
ample [7,9,10], and the notations for the shifted factorials used in (1.3) and (1.4) are
as introduced in [10].
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The orthonormality relation (1.1) is, of course, the same as

∑

x

(2x + 1)
√

(2m + 1)(2n + 1)

{

a b x

c d m

} {

a b x

c d n

}

= δm,n,

which is the orthonormality relation for the 6- j symbols, also called the Racah coef-
ficients [18], defined by

{

a b x

c d m

}

:= ∆(abx)∆(cdx)∆(bcm)∆(adm)

×
∑

z

(−1)z(z + 1)!

(z − a − b − x)!(z − c − d − x)!(z − b − c − m)!(z − a − d − m)!

× ((a + b + c + d − z)!(b + d + m + x − z)!(a + c + m + x − z)!))
−1 ,

(1.5)

with the “triangle function”

∆(abc) :=

{

(a + b − c)!(a − b + c)!(−a + b + c)!

(a + b + c + 1)!

}1/2

.

These symbols are familiar in the theory of angular momentum in Quantum Me-
chanics; see, for example, [8]. The physicists probably did not bother to ask, nor
would it matter to them much, whether these objects can also be seen as polyno-
mials in a single variable. Jim Wilson [23], a graduate student at the University of
Wisconsin in the late 70’s, working towards a doctorate degree under the supervision
of Richard Askey, did make the important observation that it is indeed so by rela-
belling the parameters and variables in an appropriate way so that the 6- j symbols
can be written as a polynomial, hitherto unknown in mathematical literature, and
that the series in (1.5) is the same as the hypergeometric series in (1.2). Wilson’s
seminal work on these and other related orthogonal polynomials comprise the bulk
of his 1978 thesis [23], as well as the subsequent papers [5, 24]. This work eventu-
ally led to the discovery of the Askey–Wilson polynomials (see [6, 10, 13]), which has
since become the most attractive and active area of research in the field of Orthogonal
Polynomials and Special Functions.

It is quite natural, therefore, that the mathematician’s curiosity would then be
directed to the next level of objects in Angular Momentum literature known as 9- j

symbols, and defined by







a b x

c d y

m n e







=

∑

j

(2 j + 1)

{

a c m

n e j

} {

b d n

c j y

}

×
{

x y e

j a b

}

,

(1.6)
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j running through the set of half-integers, such that the sum of any two entries minus
the third in every row and column is a non-negative integer; see [8, 15]. They were
introduced into the physics literature by Eugene Wigner, and are called Wigner 9- j

symbols. From the special functions point of view, an important property of these
objects is the orthonormality:

∑

x

∑

y

(2x + 1)(2y + 1)(2m + 1)(2n + 1)

×







a b x

c d y

m n e













a b x

c d y

m ′ n ′ e







= δm,n ′δn,n ′ ,

(1.7)

where the range of double summation is again the sets of half-integers. The obvious
question is: is this a polynomial orthonormality in 2 variables? As far as we know
the first among a number of curious investigators was Sergei Suslov [21,22], who was
able to show that the expression defined in (1.6) are indeed polynomials in certain
combinations of the parameters. But he did not succeed in giving an explicit expres-
sion for the polynomials, nor did he indicate what the degrees of these polynomials
are. It was generally believed, perhaps guided by the experience of some orthogonal
polynomial systems in 2 variables, that the 9- j symbols would turn out to be express-
ible as double hypergeometric series. Alisauskas and Jucys [3] were probably the first
who obtained a triple sum expression for the 9- j symbols. Rosengren [20] (see also
[1,2]) found a different proof for the triple sum formula. These, plus Zhedanov’s [25]
results on the 9- j symbols of escillator algebras, and the more recent work by Hoare
and the author [11], seem to indicate that the search for a double sum representation
of the 9- j symbols may not be fruitful.

Following the lead of Wilson [23], as well as our own experience in [11, 19], we
shall first replace a + b − x, c + d − y, a + c − m, b + d − n by x, y, m, n, respectively,
set a + b + c + d − e = N, all non-negative integers, such that

0 ≤ x + y ≤ N, 0 ≤ m + n ≤ N.

For notational simplicity in the main results, we make a further replacement of
the parameters a, b, c, d by −a/2, −b/2, −c/2, and −d/2, respectively, and, just as
we did in [19], we shall introduce the function

Fm,n(x, y)

=
[

(2x + a + b − 1)(2y + c + d − 1)(2m + a + c − 1)(2n + b + d − 1)
]1/2

×















−a/2 −b/2 − a+b+2x
2

−c/2 −d/2 − c+d+2y
2

− a+c+2m
2

− b+d+2n
2

, −N − a+b+c+d
2














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as a normalized version of the 9- j symbols. Using (1.6), (1.5), and (1.2) we find that

Fm,n(x, y) =Am,n(x, y)
∑

ℓ

2ℓ + 2y + b + c + d − 1

2y + b + c + d − 1

(2y + b + c + d − 1)ℓ

ℓ!

× (N + y + a + b + c + d − 1, b, c + y − n, y − N)ℓ

(1 + y − N − a, c + d + 2y, b + d + y + n, b + c + d + N + y)ℓ
(−1)ℓ

× Rℓ(x; b, 2y + c + d, a, N − y)

× Ry−n+ℓ(m; c, 2n + b + d, a, N − n)

× Rℓ(n; b, 2y + c + d, 2 − 2n − b − d, n − y − 1),

(1.8)

where

Am,n(x, y) =
N!(a)N−y(b + c + d)2y(−y)n

(a + b + c + d − 1)N+n(b + c + d)N+y(c + d)2y(b + d)y+n(−N)n

×
{

2x + a + b − 1

a + b − 1

(a + b − 1, b, a + b + c + d + N + y − 1, y − N)x

x!(a, 1 − N − y − c − d, a + b + N − y)x

× (a + b + c + d − 1, c + d)N+y(c, d)y

(N − y)!(a + b)N−y

2y + c + d − 1

c + d − 1

(c + d − 1)y

y!

× 2m + a + c − 1

a + c − 1

(a + c − 1, c, a + b + c + d + N + n − 1, n − N)m

m!(a, 1 − N − n − b − d, a + c + N − n)m

× (a + b + c + d − 1, b + d)N+n

(N − n)!(a + c)N−n

2n + b + d − 1

b + d − 1

(b + d − 1, b)n

n!(d)n

}1/2

.

(1.9)

In (1.8) and (1.9) the parameters a, b, c, d are allowed to have complex values, and
hence, Fm,n(x, y) can be regarded not just as another form of the 9- j symbol but as
an analytic continuation thereof. When n ≥ y + 1, one has to consider the product
(−y)nRℓ(. . . , n − y − 1), rather than Rℓ(. . . , n − y − 1) alone.

The orthonormality relation (1.7) for the 9- j symbols can be rewritten as

∑

0≤x,y≤N
x+y≤N

Fm,n(x, y)Fm ′,n ′(x, y) = δm,m ′δn,n ′ ,

The symmetry properties of the 9- j symbols (see, for example, [8]) ensures us
that the dual orthonormality

∑

0≤m,n≤N
m+n≤N

Fm,n(x, y)Fm,n(x ′, y ′) = δx,x ′δy,y ′

is also true. So the functions Fm,n(x ′, y ′) are self-dual just as the Rn(x)’s are in x and
n; see [5].
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The interesting application of Fm,n(x, y) that we found in [11] was in solving a
long-standing problem of finding the eigenvalues and eigenfunctions of the transi-
tion probability kernel of a 2-dimensional version of a “cumulative Bernoulli pro-
cess”, introduced in [12], that can be written as an Appell function:

Kn(x, y|ξ, η) =(1 − α1)x(1 − α2)yβ−ξ
1 β−η

2 b2(ξ, η, N; β1, β2)

× F3

(

− x,−y,−ξ,−η,−N;
α1

β1(α1 − 1)
,

α2

β2(α2 − 1)

)

,

(1.10)

where

b2(ξ, η, N; β1, β2) =

(

N

ξ, η

)

βξ
1β

η
2 (1 − β1 − β2)N−ξ−η

is the trinomial distribution, 0 < α1, α2, β1, β2 < 1, 0 < 1 − β1 − β2 < 1, and

F3(a, a ′, b, b ′, γ; x, y) =

∞
∑

m=0

∞
∑

n=0

(a, b)m(a ′, b ′)n

m!n!(γ)m+n

xm yn;

see [9]. For the sake of completeness we shall just mention here that the eigenfunc-
tions of (1.10) were found to be the 2-variable Krawtchouk polynomials

Pm,n(x, y) =

∑

i

∑

j

∑

k

∑

ℓ

(−m)i+ j(−n)k+ℓ(−x)i+k(−y) j+ℓ

i! j!k!ℓ!(−N)i+ j+k+ℓ

× t iu jvkwℓ,

(1.11)

where

t =
(p1 + p2)(p1 + p3)

p1(p1 + p2 + p3 + p4)
, u =

(p1 + p3)(p4 + p3)

p3(p1 + p2 + p3 + p4)
,

v =
(p1 + p2)(p2 + p4)

p2(p1 + p2 + p3 + p4)
, w =

(p2 + p4)(p3 + p4)

p4(p1 + p2 + p3 + p4)
,

and the p’s are the parameters connected with a, b, c, d in (1.8) as:

(1.12) a = p1ζ, b = p2ζ, c = p3ζ, d = p4ζ, ζ → ∞.

The remarkable thing is that the functions Fm,n(x, y) in the above limit, turn out to
be

{

b2(x, y, N; η1, η2) b2(m, n, N; η̄1, η̄2) (1 − η1 − η2)−N
} 1/2

Pm,n(x, y),

where

η1 =
p1 p2(p1 + p2 + p3 + p4)

(p1 + p2)(p1 + p3)(p2 + p4)
, η2 =

p3 p4(p1 + p2 + p3 + p4)

(p1 + p3)(p4 + p2)(p4 + p3)
,
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η̄1, η̄2 being the same as η1, η2 with p2 and p3 interchanged. To see how t, u, v, w

(i.e., the p’s) are related to α1, α2, β1, β2, see [11]. It has recently been pointed
out to the author by M. Noumi that a multidimensional version of the 2-variable
Krawtchouk polynomials (1.11) was found by Aomoto and Gelfand, see [4], and
later by Mizukawa [16], as an orthogonal system with respect to the multinomial
distribution.

In Section 2 of this paper we shall establish another limiting result:

lim
a→∞

Fm,n(x, y)

=

{

(1 − N − y − c − d, y − N)x

x!(b)x

(1 − N − n − b − d, n − N)m

m!(c)m

× N!(c, d)y

(c + d)N+y(N − y)!

2y + c + d − 1

c + d − 1

(c + d − 1)y

y!

× N!

(b + d)N+n(N − n)!

2n + b + d − 1

b + d − 1

(b + d − 1, b)n

n!(d)n

}1/2

× (c, x − N)m(b)x

(−N)m(1 − N − d)m+x

× 3F2

[

−m,−y, y + c + d − 1
c, x − N

; 1

]

3F2

[

−x,−n, n + b + d − 1
b, m − N

; 1

]

.

(1.13)

Similar factorization occurs when we take the limit d → ∞.
However, the main objective of this paper is to obtain a polynomial form of the

q-analogue of Fm,n(x, y) in (1.8) that we introduced in [19], namely,

Rτ
m,n(x, y|q) :=Rτ

m,n(x, y; a, b, c, d, N|q)

=Am,n(x, y|q)
∑

ℓ

1 − bcdq2ℓ+2y−1

1 − bcdq2y−1

(

bcdq2y−1, abcdqN+y−1
)

ℓ
(

q, q1+y−N/a
)

ℓ

× (b, cqy−n, qy−N )ℓ

(cdq2y , bdqy+n, bcdqN+y)ℓ

{

τ
(

d/bc
) 1/2

qn+1/a
}ℓ

×Wℓ(x; b, cdq2y , a, N − y|q)

×W y−n+ℓ(m; c, bdq2n, a, N − n|q)

×Wℓ(n; b, cdq2y , q2−2n/bd, n − y − 1|q),

(1.14)

where τ = ±1,

Wn(x; a, d, b, N|q) := 4φ3

[

q−n, adqn−1, q−x, abqx−1

a, abdqN−1, q−N ; q, q

]

are the q-Racah polynomials; see [5, 6, 10] (note a slight difference in the notation
for Wn’s compared to the standard one). For the definition of the q-shifted factorials
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used in (1.14) as elsewhere in this paper, as well as the basic hypergeometric series

4φ3 given in (1.10) and others that are going to be used later, see [10]. In (1.14) the
coefficients Am,n(x, y|q) are given by

Am,n(x, y|q) =
(q)N (a)N−y(bcd)2y(q−y)nqn(y−N)+(n

2)

(abcdq−1)N+n(bcd)N+y(cd)2y(bd)n+y(q−N )n

×
{

1 − abq2x−1

1 − abq−1

(abq−1, b, abcdqN+y−1, qy−N )x

(q, a, q1−N−y/cd, abqN−y)x

(q1−2y/bcd)x

× (abcdq−1, cd)N+y(c, d)y

(q, ab)N−y

1 − cdq2y−1

1 − cdq−1

(cdq−1)y

(q)y

(bc)N−y

× 1 − acq2m−1

1 − acq−1

(acq−1, c, abcdqN+n−1, qn−N )m

(q, a, q1−N−n/bd, acqN−n)m

(q1−2n/bcd)m

× (abcdq−1, bd)N+n

(q, ac)N−n

1 − bdq2n−1

1 − bdq−1

(bdq−1, b)n

(q, d)n

dn

}1/2

(1.15)

One can obtain the q → 1 limit, i.e., Fm,n(x, y), by replacing a, b, c, d with qa, qb,
qc, qd, respectively, then set τ = −1, and take the limit. However, as we remarked
in [19], the results are equally valid for τ = +1, although the q → 1 limit is going
to be different from Fm,n(x, y) as given in (1.8). We should like to point out that, as
in Fm,n(x, y) of (1.11), the parameters a, b, c, d in Rτ

m,n(x, y|q) can also be complex,
and therefore the numerical values ±1 of τ would automatically be implicit in the
square root function (bcd)1/2. However, for the sake of consistency of notation with
our previous work in [19], we prefer to retain the τ symbol, with the understanding
that only the principal value of (bcd)1/2 is being considered here.

The most important results that we proved in [17] are the orthonormality relation

∑∑

0≤x,y≤N
x+y≤N

Rτ
m,n(x, y|q)Rτ

m ′,n ′(x, y|q) = δm,m ′δn,n ′

and the dual

∑∑

0≤m,n≤N
m+n≤N

Rτ
m,n(x, y|q)Rτ

m,n(x ′, y ′|q) = δx,x ′δy,y ′ .

We also derived a polynomial expression for Rτ
m,n(x, y|q) in [19], but it is not the best

form, since there are two q-shifted factorials in the denominator that depend on n,
so it cannot be claimed that the series is a polynomial in both (x, y) and (m, n) (to
be more precise, polynomials in (q−x + abqx−1, q−y + cdqy−1) and (q−m + acqm−1,
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q−n + bdqn−1)). We shall prove in Section 3 that

Rm,n(x, y|q) =(abcdq−1)2N (−τ )N−yq(y
2)+(n

2)−(N
2)

×
{

1 − abq2x−1

1 − abq−1

(abq−1, a, q1−N−y/cd, qy−N )x

(q, b, abcdqN+y−1, abqN−y)x

(

bcdq2N−1
) x

× (q, d)N

(abcdq−1, cd)N+y(q, ab)N−y

1 − cdq2y−1

1 − cdq−1

(cdq−1, c)y

(q, d)y

dy−N

× 1 − acq2m−1

1 − acq−1

(acq−1, a, q1−N−n/bd, qn−N )m

(q, c, abcdqN+n−1, acqN−n)m

(bcdq2N−1)m

× (q, d)N

(abcdq−1, bd)N+n(q, ac)N−n

1 − bdq2n−1

1 − bdq−1

(bdq−1, b)n

(q, d)n

dn

}1/2

×
∑

i

∑

j

∑

k

∑

ℓ

(qy−N+k+ℓ, q1−N−y+k+ℓ/cd)i+ j(q−x, abqx−1)k+ℓ

(q)i(q) j(q)k(q)ℓ(q−N , q1−N/d)i+ j+k+ℓ

× (q−m, acqm−1) j+k(qn−N+ j+k, q1−N−n+ j+k/bd)i+ℓ

(q2−2N/abcd, q1−N/τ
√

bcd)i+ j+k+ℓ

× (q1−N/aτ
√

bcd)i(q j+k+ℓ+1−2N/bcd)k

(a) j+k(a)k+ℓ

( q1−N

aτ
√

bcd

) j+k+ℓ

× (−1)kqi+ j+k+ℓ− jk−kℓ−ℓ j−(k
2).

(1.16)

The first significant work on a q-analogue of the 9- j symbols seems to be by Kirillov
and Reshetikin [14], in 1988. In 1990, M. Nomura [17] found an analogue that has
a biorthogonality property between the q-9 j and q−1 - 9 j symbols. Alisauskas [2]
gave one for uq(2). However, the q-analogue given in [19] and the one above, is quite
different from any given before.

It is undoubtedly a formidable expression, but the polynomial character of the
series part in (1.16) is quite obvious. Equally importantly, the symmetry under
(x, y, c) ↔ (m, n, b) (which is one of the main properties of the 9- j symbols), is
also obvious. However, (1.16) is not always the most suitable form for taking limits,
for example, d → 0 or d → ∞. In Section 4 we shall derive an alternate form of
Rτ

m,n(x, y|q) that is the right one for taking the limit d → 0 or d → ∞. In Section 5
we shall prove that

lim
d→0

Rτ
m,n(x, y|q)(1.17)

=

{

1 − abq2x−1

1 − abq−1

(abq−1, b, qy−N )x

(q, a, abqN−y)x

(−qN−y/b)xq−(x
2)

× (c)y(bc)N−y

(q)y(q, ab)N−y

1 − acq2m−1

1 − acq−1

(acq−1, c, qn−N )m

(q, a, acqN−n)m

(−qN−n/c)mq−(m
2)
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× (b)n(bc)−n

(q)n(q, ac)N−n

}1/2

(a)N−y−n(−1)N−y−n (qy−N )n

(q−N )n

q(N−y+1
2 )−yn

×3 φ2

[

q−x, abqx−1, q−n

b, qy−N ; q, q

]

×3 φ2

[

q−m, acqm−1, q−y

c, qn−N ; q, q

]

.

The d → ∞ limit is essentially the same except for minor differences inside the
{ }1/2 part, and in the fact that the 3φ2 series are replaced by ones of type II in their
arguments, see [10].

In the Appendix we first list two of the most important transformation formulas
that are used in this paper, then derive a more convenient form of a product formula
for two balanced and terminating 4φ3 series, that the reader can readily refer to.

2 Proof of (1.13)

In this section we shall use the q → 1 cases of (A.1), (A.2), and (A.5). So, applying
the limit case of (A.1) on Rℓ(x) and Ry−n+ℓ(m) in (1.8) we find that

Rℓ(x; b, 2y + c + d, a, N − y)Ry−n+ℓ(m; c, 2n + b + d, a, N − n)

=
(a, 1 − N − y − c − d)x

(b, N + y + a + b + c + d − 1)x

(a, 1 − N − n − b − d)m

(c, N + n + a + b + c + d − 1)m

× RN−y−ℓ(x; a, 2 − 2N − a − b − c − d, b, N − y)

× RN−y−ℓ(m; a, 2 − 2N − a − b − c − d, c, N − n),

(2.1)

and, by the limit case of (A.5),

RN−y−ℓ(x; a, 2 − 2N − a − b − c − d, b, N − y)

× RN−y−ℓ(m; a, 2 − 2N − a − b − c − d, c, N − n)

=

∑

r

(y − N + ℓ, 1 − N − y − b − c − d − ℓ,−m, m + a + c − 1)r

r!(a, n − N, 1 − N − n − b − d)r

×
∑

s

(−r, 1 − 2N − b − c − d + r,−x, x + a + b − 1)s

s!(a, y − N, 1 − N − y − c − d)s

× 4F3

[

−s, N − n + 1 − r, 1 − a − r, N + n + b + d − r

m + 1 − r, 2 − m − a − c − r, 2N + b + c + d − r − s
; 1

]

.

(2.2)

Substituting (2.1) and (2.2) into (1.8) we find that the summation part can be
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written as

Gm,n(x, y) :=
∑

r

(y − N, 1 − N − y − b − c − d,−m, m + a + c − 1)r

r!(a, n − N, 1 − N − n − b − d)r

×
∑

s

(−r, 1 − 2N − b − c − d + r,−x, x + a + b − 1)s

s!(a, y − N, 1 − N − y − c − d)s

× 4F3

[

−s, N − n + 1 − r, 1 − a − r, N + n + b + d − r

m + 1 − r, 2 − m − a − c − r, 2N + b + c + d − r − s
; 1

]

Hr,

where

Hr =

∑

k

(−n, 1 − d − n, N + y + a + b + c + d − 1, y − N + r)k

k!(y − n + 1, 1 + y − N − a, b + c + d + N + y − r, c + d + 2y)k

× (b + c + d + 2y)2k

(b + d + y + n)k
6F5

[

b + c + d + 2y + 2k − 1, y + k + b+c+d+1
2

,

y + k + b+c+d−1
2

, 1 − N − a + k,

N + y + a + b + c + d + k − 1, b + k, c + y − n + k, y − N + r + k

c + d + 2y + k, b + d + y + n + k, b + c + d + N + y + k − r
;−1

]

(2.3)

However, by [10, (3.2.12)], 6F5 is a multiple of

3F2

[

y − N + r + k, y + n + d, N + y + a + b + c + d + k − 1
c + d + 2y + k, b + d + y + n + k

; 1

]

=
(a + b + r + k)N−y−r−k

(c + d + 2y + k)N−y−r−k

(−1)N−y−r−k

× 3F2

[

y − N + r + k, N + y + a + b + c + d + k − 1, b + k

b + d + y + n + k, a + b + r + k
; 1

]

,

by [10, (3.1.1)]. Substituting this reduction of the 6F5[−1] series into (2.3) we obtain

Hr =
(b + c + d + 2y, a + b)N−y

(c + d + 2y, a)N−y

(a, 1 − N − y − c − d)r

(a + b, 1 − N − y − b − c − d)r

×
∑

k

(−n, 1 − d − n, N + y + a + b + c + d − 1, y − N + r)k

k!(y − n + 1, b + d + y + n, a + b + r)k

(−1)k

× 3F2

[

y − N + r + k, b + k, N + y + a + b + c + d + k − 1
b + d + y + n + k, a + b + r + k

; 1

]

.

Now,

lim
a→∞ 3F2

[

y − N + r + k, b + k, N + y + a + b + c + d + k − 1
b + d + y + n + k, a + b + r + k

; 1

]

= 2F1

[

y − N + r + k, b + k

b + d + y + n + k
; 1

]

=
(d + y + n)N−y−r−k

(b + d + y + n + k)N−y−r−k

, by [10, (1.2.11)].
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So

lim
a→∞

Hr =
(b + c + d + 2y, d + y + n)N−y

(c + d + 2y, b + d + y + n)N−y

(1 − N − y − c − d, 1 − N − n − b − d)r

(1 − N − y − b − c − d, 1 − N − n − d)r

× 3F2

[

−n, 1 − d − n, y − N + r

y − n + 1, 1 − N − n − d + r
; 1

]

(2.4)

Note that the 3F2 series in (2.4) is balanced, and by the Pfaff–Saalschütz summation
formula [10, (1.7.1)], see also [7], its sum is

(2.5)
(r − N, 1 − N − d + r)N−y−r

(1 − N − n − d + r, r + n − N)N−y−r

=

(−N)n(d + y)N−y

(−y)n(d + n + y)N−y

(n − N, 1 − N − n − d)r

(−N, 1 − N − d)r

.

Substituting (2.4) and (2.5) in (2.3) we find that

lim
a→∞

Gm,n(y) =
(−N)n(b + c + d + 2y, d + y)N−y

(−y)n(c + d + 2yb + d + y + n)N−y

×
∑

r

(y − N, 1 − N − y − c − d,−m)r

r!(−N, 1 − N − d)r

×
∑

s

(−r, 1 − 2N − b − c − d + r,−x)s

s!(y − N, 1 − N − y − c − d)s

× 3F2

[

−s, N − n + 1 − r, N + n + b + d − r

m + 1 − r, 2N + b + c + d − r − s
; 1

]

.

(2.6)

By [10, (3.2.8)]

3F2

[

−s, N − n + 1 − r, N + n + b + d − r

m + 1 − r, 2N + b + c + d − r − s
; 1

]

=

(1 − c − m)s

(1 − 2N − b − c − d + r)s
3F2

[

−s, m + n − N, m + 1 − N − n − b − d

m + 1 − r, c + m − s
; 1

]

.

Using this in (2.6) and simplifying, we get

lim
a→∞

Gm,n(x, y)

=
(−N)n(b + c + d + 2y, d + y)N−y

(−y)n(c + d + 2y, b + d + y + n)N−y

×
∑

i

∑

j

∑

k

(m + n − N, m + 1 − N − n − b − d)k(−x) j+k(1 − c − m) j

i! j!k!(y − N, 1 − N − y − c − d) j+k

× (−m)i+ j(y − N, 1 − N − y − c − d)i+ j+k

(−N, 1 − d − N)i+ j+k

(−1) j .

(2.7)
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The sum over i above is

3F2

[

j − m, j + k + y − N, j + k + 1 − N − y − c − d

j + k − N, j + k + 1 − d − N
; 1

]

=

(c)m− j

( j + k + 1 − d − N)m− j
3F2

[

j − m,−y, y + c + d − 1
j + k − N, c

; 1

]

,

by [10, (3.2.8)]. The triple sum in (2.7) becomes

(c)m

(1 − d − N)m

∑

i

∑

k

(m + n − N, 1 + m − N − n − b − d,−x)k

i!k!(1 − d − N + m)k(−N)i+k

× (−m,−y, y + c + d − 1)i

(c)i
2F1

[

k − x, i − m

i + k − N
; 1

]

=
(c, x − N)m(b)x

(−N)m(1 − d − N)m+x
3F2

[

−x,−n, n + b + d − 1
b, m − N

; 1

]

3F2

[

−m,−y, y + c + d − 1
c, x − N

; 1

]

,

which is obtained by summing the 2F1 series, then using [10, (3.2.8)] once again,
followed by some simplification. This completes the proof of (1.13).

3 Proof of (1.16)

By (A.1) and (A.5)

Wℓ(x; b, cdq2y , a, N − y|q) W y−n+ℓ(m; c, bdq2n, a, N − n|q)

=
(a, q1−N−y/cd)x

(b, abcdqN+y−1)x

(a, q1−N−n/bd)m

(c, abcdqN+n−1)m

(bcdqN+y−1)x(bcdqN+n−1)m

×
∑

r

(qy−N+ℓ, q1−N−y−ℓ/bcd, q−m, acqm−1)r

(q, qn−N , a, q1−N−n/bd)r

qr

×
∑

s

(q−r, q1−2N+r/bcd, q−x, abqx−1)s

(q, qy−N , a, q1−N−y/cd)s

qs

× 4φ3

[

q−s, q1−r/a, qN−n+1−r, bdqN+n−r

bcdq2N−r−s, qm+1−r, q2−m−r/ac
; q, q

]

.

(3.1)

Substituting (3.1) into (1.14) and (1.15) we find that

(3.2) Rτ
m,n(x, y|q) = Bm,n(x, y|q)Sτ

m,n(x, y|q),
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where

Bm,n(x, y|q) =
(q)N (a)N−y(bcd)2y(q−y)nqn(y−N)+(n

2)

(abcdq−1)N+n(bcd)N+y(cd)2y(bd)n+y(q−N )n

×
{

1 − abq2x−1

1 − abq−1

(abq−1, a, q1−N−y/cd, qy−N )x

(q, b, abcdqN+y−1, abqN−y)x

(bcdq2N−1)x

× (abcdq−1, cd)N+y(c, d)y

(q, ab)N−y

1 − cdq2y−1

1 − cdq−1

(cdq−1)y

(q)y

(bc)N−y

× 1 − acq2m−1

1 − acq−1

(acq−1, a, q1−N−n/bd, qn−N )m

(q, c, abcdqN+n−1, acqN−n)m

(bcdq2N−1)m

× (abcdq−1, bd)N+n

(q, ac)N−n

1 − bdq2n−1

1 − bdq−1

(bdq−1, b)n

(q, d)n

dn

}1/2

,

(3.3)

and

Sτ
m,n(x, y|q) =

∑

r

(q−m, acqm−1)rq
r

(q, qn−N , a, q1−N−n/bd)r

×
∑

s

(q−r, qr+1−2N/bcd, q−x, abqx−1)s

(q, qy−N , a, q1−N−y/cd)s

qs

× 4φ3

[

q−s, qN−n+1−r, bdqN+n−r, q1−r/a

bcdq2N−r−s, qm+1−r, q2−m−r/ac
; q, q

]

×
∑

k

(q−n, q1−n/d)kqk

(q, b, qy−n+1, cqy−n)k

Tr,s,k,

with

Tr,s,k =
(bcdq2y)2k(abcdqN+y−1, b, cqy−n, τqy

√
bcd, qy−N+r)k

(q1+y−N/a, cdq2y , bdqy+n, τ−1
√

bcdqy , bcdqN+y−r)k

× (qy−N , q1−N−y/bcd)r

[

−(d/bc)1/2qn−r/aτ
]k

q−(k
2)

× 8W7

(

bcdq2k+2y−1; bqk, cqy−n+k, abcdqN+y+k−1, τqy+k
√

bcd,

qk+r+y−N ; q, (d/bc)1/2qn+1−r−k/aτ
)

.

By using (A.2) and simplifying the coefficients we get

∑

k

(q−n, q1−n/d)kqk

(q, b, qy−n+1, cqy−n)k

Tr,s,k(3.4)

=
(qy−N , q1−N−y/bcd)r(bcdq2y , dqy+n, abdqN+y−1, τqy

√
bcd)N−y−r

(cdq2y , bdqy+n, q1+y−N/a, τ−1qy
√

bcd)N−y−r
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×
(

q1−N

aτ
√

bcd

)N−y−r
∑

k

(q−n, q1−n/d, qr+y−N )k

(q, qy−n+1, q1−N−n−r/d)k

qk

× 4φ3

[

qr+k+y−N , q1−N

aτ
√

bcd
, q1−N−n+r/bd, q1−N−y+r/cd

q1−N−n+r+k/d, q2+r−2N/abcd, q1−N+r/τ
√

bcd
; q, q

]

.

However, since

∑

k

(q−n, q1−n/d, qr+y−N )kqk

(q, qy−n+1, q1−N−n+r/d)k

(qr+k+y−N ) j

(q1−N−n+r+k/d) j

=
(qr+y−N ) j

(q1−N−n+r/d) j
3φ2

[

q−n, q1−n/d, q j+r+y−N

qy−n+1, q1−N−n+r+ j/d
; q, q

]

=
(q−N , q1−y−n/d)n

(q−y)n

(qr+y−N , qn−N )r+ j

(q−N )r+ j(q1−N−n+r/d)r+ j

,

by [10, II.12], the lhs of (3.4) becomes, on simplification,

(dqy , q−N )n

(dqN , q−y)n

q(N−y)n (bcdq2y , dqy+n, abcdqN+y−1)N−y

(cdq2y , bdqy+n, q1+y−N/a)N−y

(

q1−N

aτ
√

bcd

)N−y

× (qy−N , q1−N−y/cd, qn−N , q1−N−n/bd, a)r

(q−N , q1−N/d, q2−2N/abcd)r

(

q2−N

aτ
√

bcd

)r

× 5φ4

[

qr+y−N , q1−N−y+r/cd, qn−N+r, q1−N−n+r/bd, q1−N/aτ
√

bcd

qr−N , q1−N+r/d, q2−2N+r/abcd, q1−N+r/τ
√

bcd
; q, q

]

.

Therefore,

Sτ
m,n(x, y|q)

=
(d)N (q−N )n

(d)y(q−y)n

q(N−y)n (bcdq2y , abcdqN+y+1)N−y

(cdq2y , bdqy+n)N−y(a)N−y

(

− q1−N

τ
√

bcd

)N−y

q(N−y
2 )

×
∑

r

(q−m, acqm−1, qy−N , q1−N−y/cd)r

(q, q−N , q1−N/d, q2−2N/abcd)r

(

q1−N

aτ
√

bcd

)r

× 5φ4

[

qr+y−N , q1−N−y+r/cd, qr+n−N , q1−N−n+r/bd, q1−N/aτ
√

bcd

qr−N , qr+1−N/d, q2−2N+r/abcd, q1−N+r/τ
√

bcd
; q, q

]

×
∑

s

(q−r, qr+1−2N/bcd, q−x, abqx−1)s

(q, a, qy−N , q1−N−y/cd)s

qs

× 4φ3

[

q−s, qN−n+1−r, bdqN+n−r, q1−r/a

bcdq2N−r−s, qm+1−r, q2−m−r/ac
; q, q

]

.

(3.5)
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Substituting this into (3.2) and (3.3) followed by some straightforward simplification
leads to (1.16).

Note that (x, y) or (m, n) does not appear in any of the denominator factors in the
above sum. If we take τ = −1, take the q → 1 limit, then specialize the parameters by
using (1.12), we can easily derive (1.11) from above. The question is: can one derive a
q-analogue of the Krawtchouk polynomials in (1.11) from (3.5)? It does not seem to
be possible to take any sort of limit on the a, b, c, d to get this analogue. However, the
only obvious thing would be to replace a, d by −a and −d respectively, then consider
the parameters to be positive.

4 Alternate Form of Rτ
m,n(x, y|q)

As we mentioned earlier, the form of Rτ
m,n(x, y|q) in (1.16) is not suitable for taking

the limit d → 0 or d → ∞. So we need to proceed in a slightly different way. First
we use (A.1) to obtain

Wℓ(x; b, cdq2y , a, N − y|q) =
(q2−2N/abcd, q1+y−N/b)N−x−y

(cdq2y , q1+y−N/a)N−x−y

(

bcqN+y−1
)N−x−y

× (cdq2y , q1+y−N/a)ℓ

(b, abcdqN+y−1)ℓ

(

abqN−y−1
) ℓ

×WN−y−ℓ

(

N − x − y; q1+y−N/b, q1−N−y/cd, q1+y−N/a, N − y|q
)

.

Substituting this into (1.14), then using (A.5) and carrying out the subsequent
simplification we find a multiple series that has a part of the form

(bcdq2y)2k(cqy−n, τqy
√

bcd, qr+y−N )k

(bdqy+n, τ−1qy
√

bcd, bcdqN+y−r)k

[

−
( bd

c

) 1/2 qN+n−y−r−1

τ

]k

× q−(k
2) 6W5

[

bcdq2y+2k−1; cqy−n+k, τqy+k
√

bcd, qr+k+y−N ; q,
( bd

c

) 1/2 qN+n−r−k

τ

]

,

which, by virtue of [10, II.21], and simplification, gives

(bcdq2y , τ−1qn
√

bdc)N−y

(bdqy+n, τ−1qy
√

bcd)N−y

(cqy−n, τqy
√

bcd, qy+r−N )k

(τ (c/bd)1/2q1−N−n+y+r)k

× (q1−N−n/bd, τq1−N/
√

bcd)r

(q1−N−y/bcd, τ (c/bd)1/2q1−N−n+y)r

.

So the series over k in (1.14) becomes

(bcdq2y , τ−1qn
√

bdc)N−y

(bdqy+n, τ−1qy
√

bcd)N−y

(q1−N−n/bd, τq1−N/
√

bcd)r

(q1−N−y/bcd, τq1−N−n+y
√

c/bd)r

×
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× 4φ3

[

q−n, qr+y−N , q1−n/d, τqy
√

bcd

b, qy−n+1, τq1−N−n+y+r
√

c/bd
; q, q

]

=
(bcdq2y , τ−1qn

√

bd/c)N−y

(bdqy+n, τ−1qy
√

bcd)N−y

(q−N , d, τ
√

bcd)n

(q−y , b, τ−1qN−y
√

bd/c)n

(τ−1
√

b/cd qN−y)n

× (qn−N , q1−N−n/bd, τq1−N/
√

bcd)r

(q−N , q1−N−y/bcd, τq1−N+y
√

c/bd)r

× 4φ3

[

q−n, bdqn−1, q−y , τqy+r−N
√

cd/b

qr−N , d, τ
√

bcd
; q, q

]

,

which is obtained by applying (A.1) twice on the 4φ3 series on the lhs. Collecting all
contributing terms and series we find an alternate expression for Rτ

m,n(x, y|q):

Rτ
m,n(x, y|q) =

{

1 − abq2x−1

1 − abq−1

(abq−1, a, q1−N−y/cd, qy−N )x

(q, b, abcdqN+y−1, abqN−y)x

(bcdq2N−1)x

× (c, d)y(q)N (abcdq−1)2N

(abcdq−1, cd)N+y(q, ab)N−y

1 − cdq2y−1

1 − cdq−1

(cdq−1)y

(q)y

(c/b)N−y

× 1 − acq2m−1

1 − acq−1

(acq−1, a, q1−N−n/bd, qn−N )m

(q, c, abcdqN+n−1, acqN−n)m

(bcdq2N−1)m

× (q)N (abcdq−1)2N

(abcdq−1, bd)N+n(q, ac)N−n

1 − bdq2n−1

1 − bdq−1

(bdq−1, d)n

(q, q)n

(b/c)n

}1/2

× (b, τ−1
√

bd/c)N−y

(τ−1qy
√

bcd)N−y

(−q)N−y (τ
√

bcd)n

(τ−1
√

bd/c)n

τ−nq(n
2)

×
∑

r

(qx+y−N , q1−N−x+y/ab, qn−N , q1−N−n/bd, τq1−N/
√

bcd)r

(q, q−N , q1+y−N/b, q2−2N/abcd, τ
√

c/bdq1−N+y)r

qr

×
∑

s

(q−r, qr+1−2N/bcd, q−m, acqm−1)s

(q, qn−N , a, q1−N−n/bd)s

qs

× 4φ3

[

q−s, qN−y+1−r, bqN−y−r, abcdq2N−r−1

bcdq2N−r−s, qN+1−x−y−r, abqN+x−y−r ; q, q

]

× 4φ3

[

q−n, bdqn−1, q−y , τqy+r−N
√

cd/b

qr−N , d, τ
√

bcd
; q, q

]

.

(4.1)

Because of the term
(

τ
√

c/bdq1−N+y
)

r
in the denominator, the quadruple series

above is not clearly a polynomial in y, but it has the right form for the limits d → 0
or d → ∞.
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5 Limit of Rτ
m,n(x, y|q) as d → 0 or d → ∞

We need to consider only one of the limits, since the other is going to be almost the
same. From (4.1) it follows that

lim
d→0

Rτ
m,n(x, y|q) = Cm,n(x, y|q)

∑

r

(qx+y−N , q1−x−N+y/ab, qy+n−N )r

(q, qy−N , q1+y−N/b)r

(aqN−n−y)r

×
∑

s

(q−r, q−m, acqm−1)s

(q, a, qn−N )s

(q1−N+n+r/c)s

× 3φ2

[

q−s, qN−y+1−r, bqN−y−r

abqN+x−y−r, qN+1−x−y−r; q, q

]

,

(5.1)

with

Cm,n(x, y|q) =

{

1 − abq2x−1

1 − abq−1

(abq−1, a, qy−N )x

(q, b, abqN−y)x

(−bqN−y)xq(x
2)

× (q)N (c)y(c/b)N−y

(q, ab)N−y(q)y

1 − acq2m−1

1 − acq−1

(acq−1, a, qn−N )m

(q, c, acqN−n)m

(−cqN−n)mq(m
2)

× (q)N (b/c)n

(q, ac)N−n(q, q)n

}1/2
(b)N−y(qy−N )n

(q−N )n

(−q)N−yq(n
2)−yn,

(5.2)

since

lim
d→0

4φ3

[

q−n, bdqn−1, q−y , τqy+r−N
√

cd/b

qr−N , d, τ
√

bcd
; q, q

]

= 2φ1

[

q−n, q−y

qr−N ; q, q

]

=
(qy+r−N )n

(qr−N )n

q−yn, by [10, II.6].

By [10, (3.2.2) and (3.2.6)],

3φ2

[

q−s, qN−y+1−r, bqN−y−r

abqN+x−y−r, qN+1−x−y−r; q, q

]

=
(a, qN−y+1−r)s

(qN+1−x−y−r, abqN+x−y−r)s

(bqN−y−r)s

× 3φ2

[

q−s, q−x, abqx−1

a, qy−N+r−s ; q, q1+y−N+r/b

]

.

So the triple sum in (5.1) can be written as

(5.3)
∑

s

∑

t

(q−m, acqm−1, qy+n−N )s(q−s, q−x, abqx−1)t

(q, qn−N , q1+y−N/b)s(q, a, qy−N )t

(q1−y/c)s
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× (q1−N+y+s/b)t
3φ2

[

qs+y+n−N , qx+y−N q1−x−N+y/ab

qt+y−N , q1+y−N+s/b
; q, aqN−n−y+t

]

.

By [10, (2.2.7)] the 3φ2 series in (5.3) transforms to

(5.4)
(a)N−y−n−s

(q1+y−N+s/b)N−y−n−s
3φ2

[

qs+y+n−N , qt−x, abqt+x−1

qt+y−N , aqs+t ; q, q1−n/b

]

Substituting (5.4) in (5.3) gives

(a)N−y−n

(q1+y−N/b)N−y−n

∑

s

∑

s

∑

t

(qn+y−N )r+s(q−x, abqx−1)r+t (q−m, acqm−1)s

(q)r(q, qn−N )s(a)r+s+t (qy−N )r+t

× (q−s, aqN−y−n)t

(q, a)t

(q1−n/b)r(q1−y/c)s(q1−N+y+s/b)t

=
(a)N−y−n(b)n

(b)N−y

(−b)N−y−nq(N−y
2 )−(n

2)

×
∑

s

∑

j

(qn+y−N )s+ j(q−x, abqx−1) j(q−m, acqm−1)s

(q, qy−N ) j(a)s+ j(q, qn−N )s

× (q1−n/b) j(q1−y/c)s
3φ2





q−s, q− j , aqN−n−y

, qN+1−y−n−s− j
; q, q



 ,

(5.5)

which we obtain by setting r + t = j. Note that the 3φ2 series here is balanced and so,
by [10, II.12], has the sum

(aqs, qy+n−N ) j

(a, qn+y−N+s) j

,

which, on substitution, leads to the following product for (5.5)

(b)n(a)N−y−n

(b)N−y

(−b)N−y−nq(N−y
2 )−(n

2)

× 3φ2

[

q−x, abqx−1, qn+y−N

a, qy−N ; q, q1−n/b

]

3φ2

[

q−m, acqm−1, qn+y−N

a, qn−N ; q, q1−y/c

]

=
(b)n(c)m(b)x(a)N−y−n

(b)N−y(a)m(a)x

(−b)N−x−y−n(−c)−mq(N−y
2 )−(x

2)−(m
2)−(n

2)

× 3φ2

[

q−x, abqx−1, q−n

b, qy−N ; q, q

]

3φ2

[

q−m, acqm−1, q−y

c, qn−N ; q, q

]

by [10, (3.2.5)]. This, combined with (5.2), yields (1.17).
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6 Remarks

Unlike the q → 1 case dealt with in Section 2, there does not seem to be any factor-
ization possible in the limit a → ∞ or 0 in the q 6= 1 case. One can see why it is not
likely to be so by setting m = n = 0 in (4.1). The quadruple series collapses to

4φ3

[

qx+y−N , q1−N−x+y/ab, q1−N/bd, τq1−N/
√

bcd

q1+y−N/b, q2−2N/abcd, τ
√

c/bdq1−N+y ; q, q

]

This is balanced and terminating, but in the limit a → 0 or ∞ the resulting 3φ2 series
is no longer balanced and hence cannot be summed. In the q → 1, however, with
τ = −1, it becomes a 2F1 series with argument 1, and hence summable. Note that in
both d → 0 and d → ∞ cases, the above 4φ3 series becomes a summable 2φ1 series.

One may ask: how about the limits b and/or c → 0 or ∞? In either case the limit
of the weight function does not exist, so these limits are not permissible.

A Appendix

Two of the most important formulas in the theory of basic hypergeometric series that
are frequently used in this paper are Sears’ transformation formula

(A.1) 4φ3 =

[

q−n, a, b, c

d, e, f
; q, q

]

=
(e/a, f /a)n

(e, f )n

an
4φ3

[

q−n, a, d/b, d/c

d, aq1−n/e, aq1−n/ f
; q, q

]

,

de f qn−1
= abc, that transforms one terminating balanced 4φ3 series into another,

and the terminating form of Watson’s transformation formula

(A.2) 8W7

(

a; b, c, d, e, q−n; q, a2qn+2/bcde
)

=

(aq/aq/de)n

(aq/d, aq/e)n
4φ3

[

q−n, d, e, aq/bc

aq/b, aq/c, deq−n/a
; q, q

]

,

that connects a very-well-poised 8φ7 series to a balanced 4φ3 series. The W-notation
used in (A.2) for an 8φ7 series is in keeping with the one adopted in [10] for nota-
tional economy. See [10] for these notations and formulas. In the two formulas above
as well as the others throughout this paper we have used the abbreviated symbol (a)n

to mean the q-shifted factorial (a; q)n. The same symbol is also used for the ordinary
shifted factorials in Section 2 where we consider the q → 1 cases.

For the sake of quick reference we lift the following product formula for 2 balanced
and terminating 4φ3 series from [10, (8.2.5.)];

4φ3

[

q−n, aqn, b1, b2

b, b3, qab1b2/bb3
; q, q

]

4φ3

[

q−n, aqn, c1, c2

c, c3, qac1c2/cc3
; q, q

]

=(A.3)
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=

n
∑

k=0

(q−n, aqn, c1, c2, qab1/bb3, qab2/bb3)k

(q, c, c3, qa/bb3, qac1c2/cc3, qab1b2/bb3)k

qk

×
k

∑

j=0

1 − bb3q2 j−k−1/a

1 − bb3q−k−1/a

(bb3q−k−1/a, b1, b2, bq−k/a, b3q−k/a, q−k) j

(q, bb3q−k/ab1, bb3q−k/ab2, b3, b, bb3/a) j

(

bb3qk

b1b2

) j

× 5φ4

[

q− j , bb3q j−k−1/a, q1−k/c, q1−k/c3, cc3q−k/ac1c2

bq−k/a, b3q−k/a, q1−k/c1, q1−k/c2
; q, q

]

.

Unfortunately, the symmetry of the lhs in (b1, b2, b, b3) and (c1, c2, c, c3) is not
obvious in the rhs. Also, there is no known transformation formula between a gen-
eral balanced 5φ4 series and another single series. So (A.3) is not very useful. Note,
however, that the inner series in j on the rhs can be reversed and simplified as

k
∑

j=0

(q−k, q1−k/c, q1−k/c3, cc3q−k/ac1c2, b1, b2) j

(q, b, b3, bb3/a, q1−k/c1, q1−k/c2, bb3q−k/ab1, bb3q−k/ab2) j

× (bb3q−k/a)2 j

(

− bb3qk−1

b1b2

) j

q−( j
2)

× 8W7

(

bb3q2 j−k−1/a; b1q j , b2q j , bq j−k/a, b3q j−k/a, q j−k; q,
bb3qk− j

b1b2

)

.

(A.4)

By using (A.2) we find that this 8W7 series transforms to

(bb3q2 j−k/a, bb3q−k/ab1b2)k− j

(bb3q j−k/ab1, bb3q j−k/ab2)k− j

× 4φ3

[

q j−k, aqk, b1q j , b2q j

bq j , b3q j , ab1b2q j+1/bb3
; q, q

]

,

which, upon substitution in (A.4), leads to the following double sum

(qa/bb3, qab1b2/bb3)k

(qab1/bb3, qab2/bb3)k

×
∑

j

∑

ℓ

(q−k, b1, b2) j+ℓ(aqk) j(q1−k/c, q1−k/c3, cc3q−k/ac1c2)ℓ

(b, b3, qab1b2/bb3) j+ℓ(q) j(q, q1−k/c1, q1−k/c2)ℓ

× q j(aqk+1)ℓ

=
(qa/bb3, qab1b2/bb3)k

(qab1/bb3, qab2/bb3)k

∑

j

(q−k, aqk, b1, b2) j

(q, b, b3, qab1b2/bb3) j

q j

× 4φ3

[

q− j , q1−k/c, q1−k/c3, cc3q−k/ac1c2

q1−k/c1, q1−k/c2, q1−k− j/a
; q, q

]

.
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Hence we obtain a much more useful formula:

4φ3

[

q−n, aqn, b1, b2

b, b3, qab1b2/bb3
; q, q

]

4φ3

[

q−n, aqn, c1, c2

c, c3, qac1c2/cc3
; q, q

]

=

n
∑

k=0

(q−n, aqn, b1, b2)k

(q, b, b3, qab1b2/bb3)k

qk

×
k

∑

j=0

(q−k, aqk, c1, c2) j

(q, c, c3, qac1c2/cc3) j

q j

× 4φ3

[

q− j , q1−k/b, q1−k/b3, bb3q−k/ab1b2

q1−k/b1, q1−k/b2, q1−k− j/a
; q, q

]

.

(A.5)
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