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Abstract

Background. The default mode network (DMN) dysfunction has emerged as a consistent
biological correlate of multiple psychiatric disorders. Specifically, there is evidence of alterations
in DMN cohesiveness in schizophrenia, mood and anxiety disorders. The aim of this study was
to synthesize at a fine spatial resolution the intra-network functional connectivity of theDMN in
adults diagnosed with schizophrenia, mood and anxiety disorders, capitalizing on powerful
meta-analytic tools provided by activation likelihood estimation.
Methods. Results from 70 whole-brain resting-state functional magnetic resonance imaging
articles published during the last 15 years were included comprising observations from 2,789
patients and 3,002 healthy controls.
Results. Specific regional changes in DMN cohesiveness located in the anteromedial and
posteromedial cortex emerged as shared and trans-diagnostic brain phenotypes. Disease-specific
dysconnectivity was also identified. Unmedicated patients showed more DMN functional
alterations, highlighting the importance of interventions targeting the functional integration
of the DMN.
Conclusion. This study highlights functional alteration in the major hubs of the DMN,
suggesting common abnormalities in self-referential mental activity across psychiatric disorders.

Introduction

The default mode network (DMN) refers to a set of brain regions that are more active in
conditions unconstrained by explicit task instructions [1, 2], commonly termed “resting-state”
conditions. TheDMNgained prominence in cognitive neuroscience through the seminal work of
Raichle and colleagues, who coined the term “default mode” [3], and that of Greicius et al. [4],
who established the presence of this network during resting-state functional magnetic resonance
imaging (rsfMRI). The DMN has been shown to be reproducible [5–8] and has relatively low
inter- and intra-subject variability [7–9] across different acquisition and analysis protocols [5,
10]. Brain regions reliably identified as part of the DMN include the medial prefrontal cortex
(MPFC)/anterior cingulate cortex (ACC), the precuneus/posterior cingulate cortex (PCu/PCC),
the angular gyrus, and regions of the medial and lateral temporal cortex [3,11–14]. Among these
regions, the MPFC and the posteromedial cortex (PMC), which includes the PCu and PCC, are
often considered core components of the network, showing widespread patterns of connectivity
and activity across a range of internally directed tasks/processes [13,15,16].

TheDMNhas been associated with wide array of cognitive functions including self-referential
mental activity [11,17,18] (particularly self-monitoring and autobiographical thoughts [19],
stimulus-independent thought [1,13,20], and predictive planning [17,19]). Available evidence
suggests that different DMN regions may contribute preferentially to the varied functions
attributed to the DMN. Notably, the MPFC has been linked to the processing of visceromotor
reactions elicited by self-referential information [21,22], while the PMC has been implicated in
the monitoring of the external and internal environment and in self-related mental representa-
tions during spontaneous cognition [13,23,24].

Although DMN dysfunction has emerged as a consistent biological correlate of multiple
neuropsychiatric disorders [11,25–27], the focus of this paper is on the role of the DMN in
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psychiatric disorders. Specifically, better understanding of the intra-
network functional connectivity (i.e., cohesiveness) of the DMNmay
shed light on the pathophysiology of psychiatric disorders and reveal
targets for improving brain network synchrony with therapeutic
potential. A number of key studies have recently synthesized the
available evidence on DMN cohesiveness in the major psychiatric
disorders. A review of the relevant literature in schizophrenia not only
highlighted significant interstudy variation, but also identified
increased functional connectivity between the ventral MPFC and
other DMN regions as the most common finding [28]; these results
were considered relevant to the self-referential nature of psychotic
symptoms and the poor insight that are common features of this
disorder [28]. Inmajor depressive disorder (MDD), ameta-analysis of
25 studies provided evidence of increased functional connectivity
between the MPFC and medial temporal DMN regions centered on
the hippocampus, which is thought to underpin affective self-
referential cognitions that are typical of MDD [29]. This regional
pattern of hyperconnectivitymay be nestedwithin amorewidespread
reduction in DMN cohesiveness as indicated by a large-scale study
involving rsfMRI data from 1,300 depressed patients and 1,128
healthy individuals [30]. In obsessive–compulsive disorder (OCD),
meta-analysis of 18 studies identified the ventral MPFC and the ACC
as the two DMN regions with abnormal functional connectivity with
the rest of the network regions [31]; this pattern of dysconnectivity
has been linked to patients’ difficulties in switching away from self-
generated obsessive thoughts and compulsive actions. In post-
traumatic stress disorder (PTSD), a meta-analysis of 14 studies
showeddecreased connectivitywithin theDMNof the PCC, posterior
hippocampus, and ventral MPFC [32], which could be associated
with patients’ preoccupation with autobiographical information. On
the other hand, a meta-analysis of 20 studies on patients with anxiety
disorders [33] and a review of 23 studies in bipolar disorder (BD) [34]
did not produce evidence for alternations in the intra-network func-
tional connectivity of theDMN.Finally, ameta-analysis of 242 rsfMRI
studies covering schizophrenia, MDD, BD, OCD, PTSD, anxiety
disorders, and childhood neurodevelopmental disorders identified
hypoconnectivity of the MPFC as a common transdiagnostic feature
of intra-network DMN dysconnectivity [26].

The aim of this study was to examine the intra-network con-
nectivity of the DMN specifically in adults diagnosed with schizo-
phrenia, mood or anxiety disorders. The focus on schizophrenia,
mood and anxiety disorders was predicated on their overlapping
clinical features, frequent serial or concurrent comorbidity [35],
and highly correlated profiles of task-related abnormalities in brain
functional activation [36,37]. Accordingly, we capitalized on pow-
erful meta-analytic tools provided by activation likelihood estima-
tion (ALE) [38–41] to analyze data from whole-brain resting-state
connectivity studies published during the last 15 years that exam-
ined the functional cohesiveness of the DMN in these disorders.
Based on the available evidence, our working hypotheses were that
(a) alterations in DMN cohesiveness in adults across the major
psychiatric disorders would implicate the major hubs of the net-
work centered in the anteriomedial cortex and PMC and (b) our
analyses would uncover novel information about disease-specific
dysconnectivity in the regional pattern of the DMN.

Method

Literature search and article eligibility

We applied the Preferred Reporting Items for Systematic Reviews
and Meta-analyses criteria (http://www.prisma-statement.org/)

(Figure S1) to identify rsfMRI whole-brain studies published
between January 1, 2005 and January 31, 2019 that reported sig-
nificant differences in DMN intra-network connectivity between
healthy adults and adult patients diagnosed with schizophrenia,
MDD, BD, anxiety disorders, OCD, or PTSD (in the range 18–65
years old). In addition, we required that (a) in each study the spatial
composition of the DMNwas defined according to Raichle et al. [3]
and Buckner et al. [11]; (b) the DMNwas extracted by independent
component analysis (ICA) or by using a DMN region as a seed;
(c) the temporal correlations between the time-series of distinct
DMN brain regions were computed in a time-locked fashion over
the entire resting-state scan thus yielding static, nonshifted func-
tional connectivity measures; and (d) studies used a whole-brain
analysis approach. Studies using other functional measures such as
dynamic functional connectivity, amplitude of low-frequency fluc-
tuation, regional homogeneity, graph-theory, or effective connec-
tivity were not included (further details on search strategy and
article eligibility in eMethods).

Coding and database construction

From each selected study, we extracted coordinates of significant
case–control differences in the functional connectivity among
DMN regions as we were interested in DMN functional cohesive-
ness. When necessary, the coordinates of the primary studies were
converted from theMontreal Neurological Institute space to Talair-
ach space using the icbm_other2tal transformation. These coordi-
nates were coded by clinical diagnosis and by the direction of
change; hyperconnectivity was defined as increased positive func-
tional connectivity in the patient group relative to the healthy
control group, and hypoconnectivity was defined as decreased
positive functional connectivity in the patient group relative to
the healthy control group. Additionally, coordinates of case–con-
trol differences were coded according to the strength of the mag-
netic field of the scanner, the analytical method used to compute
interregional correlations (ICA or seed-based analyses), and
according to whether participants were instructed to keep their
eyes open or closed during data acquisition. Separately for patient
and control groups, we coded sample size, age, and sex (percentage
male). In patients only, (a) medication status in each study was
coded as the percentage of patients’ sample receiving any psycho-
tropic medication and (b) ratings of psychopathology from the
different clinical instruments used in the primary studies were
coded as “minimal,” “mild,” “moderate,” and “severe” to enable
analyses across clinical populations. Further details of the database
construction are provided in the Supplementary eMethods.

Activation likelihood estimation

We used ALE [38–41] implemented in MATLAB, to test whether
the whole-brain coordinates of case–control differences across
studies converged into discrete clusters with a nonrandom spatial
distribution. Per best practice standards [38–41], clusters of aber-
rant connectivity were identified using a cluster-level familywise-
error-corrected threshold of p < 0.05 (cluster-forming threshold at
voxel-level p < 0.001). Subsequently, for each cluster of significant
DMN dysconnectivity, we extracted the per-voxel probability of
case–control differences from the modeled functional connectivity
maps.We then calculated the contribution of age, sex, symptomatic
severity, acquisition (eyes closed/open), analyses parameters
(ICA/seed-based), and location of the seed (Pcu/PCC, ACC/MPFC,
lateral parietal gyrus, lateral temporal gyrus, and medial temporal
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cortex) using nonparametric Kruskal–Wallis tests and Spearman
correlations as appropriate.

To identify clusters of transdiagnostic changes, we performed an
ALE analysis on the pooled coordinates of aberrant DMN intra-
network connectivity, regardless of the direction of change, across
all diagnoses. This global analysis on transdiagnostic aberrant brain
connectivity has the advantage that it provides an optimal summary
of neuroimaging findings across all disorders [42]. Additional
diagnosis-specific analyses were conducted (a) using the coordi-
nates of case–control differences in DMN connectivity from studies
that included only unmedicated patients and (b) using the coordi-
nates of case–control differences in DMN hypo- and hyperconnec-
tivity in each diagnostic category separately.

Ancillary analyses

In order to ensure that the disorder contribution to the transdiag-
nostic clusters was not driven by the overrepresentation of MDD
and schizophrenia in literature (see Table 1 and Table S1), we
further applied a normalization procedure to the % contribution
extracted for the disorders. Specifically, a normalization score was
calculated for each disorder by dividing the % contribution of the
disorder to the transdiagnostic cluster with the percentage of
included studies related to this disorder. Values higher than 1 indi-
cate an overrepresentation of this disorder.

Results

Studies and coordinates

In total, 70 articles were selected, comprising observations from
2,789 patients and 3,002 healthy individuals (Table 1). Full citations
and details of the selected articles are provided in Table S1. There
were no case–control differences in age (p = 0.05) or sex (p =0.65).
However, there was a significant effect of diagnosis (χ2 = 17.8; p =
1.4� 10�4). Diagnosis-specific ALE analyses were only performed
for schizophrenia (number of studies: 31) and MDD (number of
studies: 22); the data for all other disorders were insufficient as the
minimum number of studies for robust results is currently consid-
ered to be 17 [40].

Activation likelihood estimation

DMN regions showing aberrant connectivity across all diagnoses
Coordinates of aberrant connectivitywithin theDMNclustered in the
left perigenualmedial prefrontal cortex (pgMPFC) (peak coordinates:
x =�2, y =56, and z =�2; 295 voxels) and in the PCu (peak

coordinates: x=0, y=�58, z=32; 254 voxels) (Figure 1). Coordinates
from studies on schizophrenia contributed the most in both regions
(pgMPFC: 42%, PCu: 42%), followed byMDD (pgMPFC: 20%, PCu:
34%). The other disorders showed limited contribution to either
cluster (<20%). The contribution of coordinates reflecting hypo- or
hyper-connectivity was relatively similar for each cluster (pgMPFC:
53 vs. 47%, PCu: 67 vs. 33%). No significant effects were found for the
moderator variables examined: age, sex, symptom severity, acquisi-
tion, and analyses parameters (all uncorrected p >0.05).

Importantly, the relative high contribution of schizophrenia and
MDD to these two clusters was not related to the overrepresenta-
tion of the studies on MDD and schizophrenia included in the
analyses. The normalization scores of the % contribution for both
disorders and clusters ranged between 0.65 and 1.05.

When we restricted the ALE analysis to coordinates from studies
from patients who were unmedicated at the time of the scanning
(schizophrenia: n =7; MDD: n =15; BD: n =3; OCD: n =3; PTSD:
n =4; social anxiety disorder: n =1), we identified three clusters
located in the pgMPFC (x =0, y =60, z =�4, k =182 voxels), the
dmPFC (x =�12, y =54, 28, k =122 voxels), and the angular gyrus
(x =42, y =�64, z =44, k =93 voxels) (Figure S2). The pgMPFC
cluster included mostly contribution from PTSD (47%), followed by
schizophrenia (31%) that mostly reflected hypoconnectivity (63%).
The dmPFC cluster included mainly contributions from MDD
(47%) followed by schizophrenia (30%) reflecting hyperconnectivity
(99.6%). The cluster in the right angular gyrus included mainly
contributions from studies on MDD (77%) with equal contribution
of hypo- and hyperconnectivity (55 vs. 45%). No significant mod-
erator effects were found for age, sex, symptom severity, acquisition,
and analyses parameters (all uncorrected p >0.05).

DMN regions showing aberrant connectivity in schizophrenia
Results emerging from the schizophrenia group alone reinforced
the role of PCu in schizophrenia where hypoconnectivity was
further confirmed in a cluster which overlapped with the corre-
sponding cluster in the transdiagnostic analysis (peak coordinates:
x =�2, y =�56, z =32; 79 voxels) (Figure 2). No significant
moderator effects were found for age, sex, symptom severity, acqui-
sition, and analyses parameters (all uncorrected p > 0.05).

DMN regions showing aberrant connectivity in MDD
Within the MDD group, an additional cluster of hyperconnectivity
emerged in the left dmPFC (peak coordinates: x =�8, y =56, z = 30;
99 voxels) (Figure 2). No significant moderator effects were found
for age, sex, symptom severity, acquisition, and analyses parameters
(all uncorrected p > 0.05).

Table 1. Samples included in the database.

Diagnostic coding Studies

Patients Healthy individuals

Sample (N) Age Male sex (%) Medicated (%) Sample (N) Age Male sex (%)

Schizophrenia 31 1,486 32.54 (7.03) 65 (14) 72 (40) 1,814 31.94 (6.47) 58 (14)

Major depressive disorder 22 779 33.30 (8.68) 36 (10) 23 (38) 688 32.73 (8.76) 41 (10)

Bipolar disorder 4 191 33.04 (7.41) 47 (9) 49 (49) 202 34.93 (6.35) 47 (9)

Obsessive compulsive disorder 5 121 27.40 (2.64) 55 (10) 16 (24) 116 26.67 (3.19) 49 (12)

Post-traumatic stress disorder 7 192 35.04 (7.29) 65 (32) 11 (17) 163 33.59 (8.11) 69 (27)

Social anxiety disorder 1 20 22.90 (3.99) 70 (0) 0 (0) 19 21.89 (3.77) 74 (0)

Values age, percentage (%) of male, and percentage (%) of medicated are shown as mean (standard deviation); age in years.
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Discussion

We conducted a large-scale meta-analysis on the intra-network
DMN functional connectivity comprising data from 70 rsfMRI
studies derived from 2,789 patients with schizophrenia, mood
and anxiety disorders and 3,002 healthy controls. We specifically
focused on theDMNbecause this network has been shown to be the
most reliable network among the major resting-state networks [5–
8]. Case–control difference in this network functional connectivity
may be therefore less sensitive to the high variability in acquisition
and analysis protocols across studies [43]. In accordance with our
hypothesis, the results implicated the major hubs of the DMN
located in the anteromedial cortex and PMC and suggest that
abnormalities in self-referential mental activity are common across
these major psychiatric disorders. The posteromedial cluster

corresponded to the PCu and showed evidence of dysconnectivity
within the DMN across all diagnoses, as well as specific hypocon-
nectivity for schizophrenia. The pattern observed in the anterome-
dial cortex was more complex; the pgMPFC appeared to show
abnormal intra-network connectivity across diagnoses while the
dmPFC showed hyperconnectivity whichwas specific toMDD. The
results of this study highlight the importance of the anteromedial
cortex and of the PMC, for psychiatric disorders, and reinforce their
known function as hub regions of the DMN [11,13,15,44,45] and
the brain more generally [46–48].

It is well known that MPFC is functionally diverse [48–51]. In
describing the MPFC subregions implicated here, we follow the
functional parcellation proposed by de la Vega and colleagues [49],
which largely overlaps with the multimodal parcellation put for-
ward by Glasser et al. [51]. De la Vega et al. [52] mapped mental
operations to MPFC subregions following functional parcellation
based on patterns of connectivity derived from a meta-analysis of
approximately 10,000 studies available in the Neurosynth neuro-
imaging database. Their findings confirmed prior reports linking
the anteriorMPFC to affective and social processes and value-based
decision-making, but the degree of engagement by these processes
differed in MPFC subregions. Social cognition (comprising social
perception, self-referential thought, and mentalizing) was maxi-
mally associated with the dmPFC, followed by the pgMPFC and
then the ventromedial prefrontal cortex.

The PMC has been associated with multiple mental processes
[13,23,24]. In addressing the question of the relative functional
specificity of the PCu, we draw on the work of Bzdok et al. [53]
who capitalized on the large functional imaging database provided
by the BrainMap platform to define functional profile of the PCu.
They found that the PCu, as well as most PMC regions, was
significantly associated with mental operations relating to social
cognition, theory of mind, and episodic memory (including auto-
biographic memory). Notably, mental operations relating to cog-
nitive control, including attentional engagement, inhibition,
reasoning, and orienting responses, were distinctly associated with
the PCu [53]. This finding confirms prior observations that

Figure 1. Transdiagnostic clusters of aberrant connectivity in the default mode network. Abbreviations: ANX, social anxiety disorder; BD, bipolar disorder; MDD, major depressive
disorder; OCD, obsessive compulsive disorder; Pcu, precuneus; pgMPFC, perigenual medial prefrontal cortex; PTSD, post-traumatic stress disorder; SCZ, schizophrenia.

Figure 2. Disease-specific clusters of aberrant connectivity in the default mode net-
work. Abbreviations: MDD, major depressive disorder; SCZ, schizophrenia.
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attenuation of PCu activity during the transition from rest to task
enables the engagement of sustained mechanism related to atten-
tion and working memory that are required for successful task
performance [1].

The dysconnectivity profiles identified are likely to influence the
functional integration of the PCu and MPFC subregions with
networks outside the DMN as predicted by their high level of
functional and anatomical connectivity across the brain
[15,44,54]. In the context, DMN cohesiveness, the preferential
functional profiles of the regions identified in the current meta-
analysis points to disrupted integration between affective
processing/value-based decision making, social cognition, and cog-
nitive control. The differential regional dysconnectivity observed
goes a long way toward reconciling conflicting results from prior
studies particularly those on schizophrenia [28] and MDD [29,30],
which also contributed the majority of the data analyzed here. Of
note, the analyses conducted separately in each disorder also
highlighted the importance of the dmPFC hyperconnectivity for
MDD. This region is considered a nexus of clinical significance for
patients with MDD [55], especially those with elevated levels of
rumination [56]. Relatedly, increased dMPFC connectivity with
other prefrontal regions has been shown to be associated with
higher levels of negative self-referential cognition [57] while
increased dMPFC connectivity with the PCC post-
electroconvulsive therapy may be conducive to improved clinical
response [58].

Abnormalities in affect [59], valuation [60], self-referential
[27,61], and social cognition [62–64] and cognitive control
[65,66] represent domain-general dimensions that have been con-
sistently implicated in all the disorders considered here. We
acknowledge that psychiatric disorders also show marked varia-
tions in their clinical presentation both between diagnoses and
between individuals with the same diagnosis. The current results
suggest that mapping DMN regional dysconnectivity is also
domain-general and likely to underpin variable within-domain
deficits in different individuals and diagnoses. This issue should
be explored further in large single samples studies where both
clinical, cognitive and connectivity measures can be examined
simultaneously.

This study has several strengths and limitations. The number of
articles selected in this meta-analysis was lower than that in prior
meta-analyses on individual disorders [29–34] because we consid-
ered only rsfMRI studies in adults and among those only studies
focusing on the intra-network cohesiveness of the DMN. The
restriction on adult individuals was predicated by age-related
impact on functional connectivity that could have biased results
[67,68]. We included studies that used both ICA and seed-based
analyses to compute connectivity and found that the results were
robust to this methodological variation. The concern with using
seed-based analyses only is that the interstudy variability in the
exact localization of the seed may influence the pattern of connec-
tivity; however, there is evidence that this is not the case [32]. The
number of studies in BD, PTSD, OCD, and anxiety disorders
describing significant case–control differences in the DMN was
very small, and hence we were unable to undertake diagnosis-
specific analyses for these disorders. This is a general limitation
of the ALE method, which does not account for negative results.
Furthermore, the use of different acquisition protocols and statis-
tical thresholds in the included studies could influence measure-
ment reliability [43]. In this regard, any meta-analysis is prone to
publication bias, as we cannot control for statistical methodologies
used in the original studies for thresholding the results. However,

this is an issue that is out of the scope of this study. Further effort to
optimize analytic strategies for reliability should be done across
clinical studies [43]. Nevertheless, we found that the transdiagnos-
tic results were not influenced by the larger number of studies in
schizophrenia and MDD and were in line with previous transdiag-
nostic studies [26,69]. The cross-sectional nature of the studies
included does not allow us to comment on the evolution of these
patterns of connectivity and their associationwith disease stage.We
addressed the issue of medication by undertaking a sub-analysis on
coordinates derived from studies with unmedicated patients. The
majority of these studies involved patients with MDD, and the
results obtained appear more pertinent to this disorder. Our find-
ings suggest that medication may have an effect on DMN connec-
tivity that may be most consistently observed in the angular gyrus
which is in line with previous reports on the “normalizing” effect of
antidepressant medication on hyperconnectivity of this region
[70]. It is also in line with the study by Schilbach et al. [69] that
described that medicated patients with MDD and SCZ showed
hypoconnectivity in the lateral parietal cortex of the DMN.

Overall, this meta-analysis identified regional changes in DMN
cohesiveness in the anterior and posterior hubs of the DMN as
shared and specific brain phenotypes of psychiatric disorders.
These brain phenotypes have the potential to serve as targets for
interventions aiming to improve the functional integration of the
DMN across diverse psychiatric populations. The clusters found in
this meta-analysis are freely available (see SupplementaryMaterial)
and can then be used as a priori regions of interest for future studies.
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