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Abstract. If X is a compact metric space and T a homeomorphism of X we say
(X, T) has almost minimal power joinings (AMPJ) if there is a dense Gs X* in X
such that for each finite set k, xe(X*)k and l:fc-»Z-{0}, the orbit closure
cl{«8>j6fcTl0))'x: ieZ} is a product of off-diagonals (POOD) on Xk. By an off-
diagonal on Xk, fc'c k we mean a set of the form (<g),-efc' T"O))A, A the diagonal
in Xk, m: fc'-»Z any function, and by a POOD on Xk we mean that fc is split into
subsets k', on each Xk we put an off-diagonal and then we take the product of these.

We show that examples of AMPJ exist and that this definition leads to a theory
completely analogous to Rudolph's theory of minimal self-joinings in ergodic theory.
In particular if (X, T) has AMPJ the automorphism group of T is {T"}, T has only
almost 1-1 factors (other than the trivial one) and the automorphism group and
factors of 0 i e f c T, k finite or countably infinite, can be very explicitly described. We
also discuss R-actions.

1. Introduction
The aim of this paper is to formulate a definition of minimal self-joinings in
topological dynamics which mimics as closely as possible the definition in ergodic
theory ([Ru] and [J, R]) and from which a theory precisely parallel to that in [Ru]
can be developed.

Let T for the moment denote a measure-preserving automorphism of a probability
space (X, F, fi). For a finite or countably infinite set k and 1: fc-»Z let T1 denote
the map <g)jefc T

m of Xk, that is (T^^i) = Tmx(i). A fc-joining of T is a measure
on Xk which is invariant under Tl (l(i) = l) and all of whose one-dimensional
marginals are fi. By an off-diagonal measure on Xk, fc'c fc, we mean a measure of
the form Tlfj,A, /tA diagonal measure on Xk. A product of off-diagonals (POOD)
on Xk is then a product of off-diagonal measures defined on Xk\ ..., Xk' where
k is the disjoint union of fc,,..., kr. POOD's are evidently k-joinings. According
to*[J, R] T has minimal self-joinings (MSJ) if for every finite k each ergodic fc-joining
of T is a POOD. This definition is almost equivalent to the original one in [Ru]
(see [J, R] for an explanation of the exact relationship). MSJ allows, among other
things, a complete description of the centralizer and factor algebras of T1. T is said
to have minimal power joinings (MPJ) if for every finite k and l:fc-»Z-[0] any
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212 A. delJunco

T'-invariant and ergodic measure on Xk with marginals n (that is, an ergodic
joining of {T1(1>: / e k}) is a POOD. (Note that now not all POOD's are invariant.)

Now let X denote a compact metric space and T a homeomorphism of X. Markley
[M] and Auslander and Markley [A, M] have developed a theory of topological
MSJ based on the premise that ergodic joinings correspond to minimal subsets of
Xk. Specifically, they call (X, T) graphic if every non-zero power of T is minimal
and every minimal subset of X x X is a graph {(JC, T"x: x e X}. Note that X x X,
the analogue of product measure, plays no role as it is not minimal. They obtain a
number of interesting results, for example if (Y, S) is minimal and not disjoint from
{X, Tm) then (X, Tm) is a factor of a proximal extension of (Y, S). This allows one
to conclude that Tm and T" are disjoint for m > n > 0. They also obtain a multiple
disjointness result for powers of graphic flows ('pairwise disjointness implies multi-
ple disjointness'). However their theory is by it's nature limited to minimal flows.
It is, for example, not known whether TxT and TxTxT are non-isomorphic for
T graphic, which is certainly true in the measure-theoretic setting (see [Ru]).

Here we work on the premise that ergodic joinings correspond to ergodic (topologi-
cally transitive) subsets of Xk - in other words we impose a strong restriction on
orbit closures in Xk. It should be noted that if one is only concerned with minimal
subsets of X* then it is enough to specify them for k = 2; one then gets the minimal
sets in Xk easily. This is not the case here: because X2 itself can be ergodic the
ergodic subsets of Xk cannot be easily derived from knowledge of ergodic subsets
of X2.

With our definition we are able to recover essentially all of the results of [Ru]
with the proviso that results on factors obtain only modulo almost 1-1 homomorph-
isms. In particular, for example, the automorphism group of (Xfc, T1) is generated
by the T} and the co-ordinate permutations on Xk. Moreover if (Y, S) is any factor
of (Xfc, T1), then (Xk, T1) is a group extension of an almost 1-1 extension of Y.

We define off-diagonals and POOD's just as in ergodic theory, that is an off-
diagonal on Xk is a set of the form T'A where A is the diagonal in Xk and 1: fc-»Z,
and a POOD is a product of such sets. The most natural definition of minimal power
joinings of the flow (X, T) for our purposes would be that for each finite fc and
l:/c-»Z — {0}, each T'-orbit closure in Xk is a POOD. Unfortunately, we have been
unable to find an example satisfying this condition. The natural candidates are the
POD flows of [F, K, S] and Chacon's example [J], [J, K] but these all have points
(x, y) G X2 whose Tx T-orbit closure consists of the orbit itself together with off-
diagonals (I x T")A. (Moreover it seems .unlikely that any symbolic flow would
have this property because such a flow has forward asymptotic points x and y so
the future limit set of (x, y) is A and the past limit set would have to be XxX) .
However this only happens when x and y both belong to a certain countable
exceptional set. This suggests the following definition which is in keeping with the
measure-theoretic spirit of throwing out null sets.

We write 0{x, T) for the orbit {Tx: i e Z} and <5{x, T) for the closure of the orbit.
We also write C+ao(x, T) for the set of limit points of {T"x: neZ+}. We will say
(X, T) has almost minimal power-joinings (AMPJ) if there is a dense T-invariant
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Gs X* in X such that for each finite set k, 1: k -» Z - {0} and x e (X*)*1 one has that
G(x, T1) is a POOD. (Of course if T is weak-mixing, T1 is ergodic so there is a
dense Gs set of points in X* having dense orbit, but our requirement is much
stronger).

Some remarks on this definition are in order. If two co-ordinates /' and j belong
to the same off-diagonal in a POOD A we say they are linked (by A). Clearly this
can only happen when l(i) = l(j) and x(i) = Tmx(j) for some m, in which case we
say that m is the link between i and / Thus if x e (X*)k and x(i) and x(j) are on
different orbits whenever I(i) = l(j) then G(x, Tl) = Xk. In fact this condition is
equivalent to AMPJ. To see this suppose x e {X*)k is arbitrary, split k into maximal
disjoint subsets Kt on each of which 1 is constant and any two co-ordinates of x
are on the same orbit and choose 5 <=• k intersecting each X, in a singleton. Denoting
by x the projection of x on X s and by 1 the restriction of 1 to 5 we have G(x, T1) = Xs.
It follows that G(x, Tl) is a POOD with off-diagonals sitting precisely on the XK>.

AMPJ is sufficient to characterise the centralizer of T1 (theorem 3.4), but for our
characterisation of factors we seem to need something stronger. We will say (X, T)
has strong almost minimal power joinings (SAMPJ) if it has AMPJ with 'good' set
X* and if in addition, setting X' = X-X* we have for all finite sets k and k',
JCG(X*)\ x'e(X')k', 1: fc-»Z-{0} and 1':it'-»Z-{0} that

G+oo((x, x'), T} x Tr) = €+x{x, T1) x <?+co(x', T1).

We hope that this rather ad hoc definition will prove to be a provisional one,
conditioned as it is by the results we want to obtain (i.e. the 'Rudolph theory' in
the topological setting) and what we are able to show about Chacon's example.

In § 2 we show how SAMPJ of Chacon's example can be quickly deduced from
known measure-theoretic properties. In § 3 we explore the consequences of AMPJ
along the lines of [Ru] and in § 4 we briefly consider R-actions and mention some
open problems.

2. Chacon's example
We briefly review the construction of Chacon's example (topological version). The
reader is referred to [J, K] for proofs. Let (X, T) be the subshift of {0,1}Z defined
by the substitution

0(0) = 0010, 0(1) = 1.

We set Bk = 6k(0) so Bo = 0 and Bk+l = BkBk\Bk. Thus X consists of all two-sided
infinite sequences x of 0's and l's such that each finite word in x is a word in Bk

for some k. X is clearly closed and shift-invariant. We now give a very explicit
description of X.

Sequences in X can be constructed by the following nesting procedure. Fix
f e {1, 2,3,}N. Now write down Bo, nest this as the f(l)th Bo in Bx, nest the Bx so
obtained as the £(2)th B, in a B2 and so on. This gives rise to an infinite sequence
which is well defined up to a shift. If it is a doubly infinite sequence (which is the
case unless £(i) = 1 eventually or £(i) = 3 eventually) it evidently belongs to X. The
unique (up to a shift) left infinite sequence corresponding to £(«) = 3 eventually will
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be denoted by B_oo and the right infinite one by B^,. B^XBX and B.^IB^ both
belong to X since BkBk and Bk\Bk both occur in Bk+l.

PROPOSITION 2.1. Every xe Xis up to a shift either a 2-sided infinite nesting ofk-blocks
or B_ooBao or B_oolBao.

Proof. See [J, K].

The following is an immediate consequence of proposition 2.1.

PROPOSITION 2.2. (X, T) is minimal and uniquely ergodic.

We denote by X' the set of points consisting of the two orbits of the form B^B^
and B-oolBoo and we write X* for X-X'.

THEOREM 2.3. (X, T) has SAMPJ.

Proof. First, suppose that xx, x2 e X with at most one of xl and x2 in X' and mj,
m2 G Z - {0} with Xi and x2 on different orbits if m, = m2. We claim that then (x,, x2)
is Tm' x T""2 right-generic for /A x /*, /x the unique invariant measure on X. If ŵ  # m2

this follows from unique ergodicity of T""1 and T"*2 (which follows from unique
ergodicity of T and measure-theoretic weak-mixing of T) and measure-theoretic
disjointness of Tm> and T""2 (which follows from measure-theoretic MPJ of
T [J, R,.S]). If m, = m2 = 1 this is the main result of [J, K]. For general m, = m2 = m,
suppose (x,, x2) is Tm x Tm-quasi-generic for a measure A, that is there exist n, > 0
such that

« / ) ( x , , x 2 ) = - " l /"(TmxT'"y(x1,x2)-»A(/)
M, j=o

for each / e C(X2). A is Tm x Tm-invariant and has marginals \x (since 7m is
uniquely ergodic) so by MPJ A is an average of POOD's. In particular A is Tx
T-invariant. Now

(AL,./)(x,, x2) = - " l ' A"(/o(Tx ry)(x, , x2)

1 m

-*- I
But

by [J, K] so A = /x x fj,. Thus /u, x /j. is the only measure for which (x,, x2) is Tm x
Tm-quasi-generic whence (x!, x2) is Tm x Tm-generic for /A X /A.

Now suppose x = (x xk)eXk with at most one co-ordinate in X' and
m: fc-»Z-{0} with m(i') # mO') whenever xf and x, are on the same orbit. Suppose
x is rm-quasi-generic for A. By our previous observation each 2-dimensional marginal
of A is fi x )JL. By MSJ A is an average X flfA, of POOD's. If Af denotes the marginal
of A, on some pair of co-ordinates then £ a,-A, = /x x^t soall A, are/u. x/x by ergodicity
of n Xfi. Thus any 2-dimensional marginal of A, is fi x/i, so each A, is fik, that is
A = fik. We have shown /j.k is the only measure for which x is quasi-generic, so in
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fact x is generic for /JA It follows that Xk = supp fj,k <=• 6+oo(x, Tm) so 6+0O(x, Tm) =
X\

To complete the proof of SAMPJ suppose now that x e (X*)k, x' e (X')k', 1: fc u
k' -* Z - 0. Divide fc into maximal subsets K, on each of which x, are all on the same
orbit and «, is constant. Choose a subset 5 of fcu fc' intersecting each Kj and fc' in
a singleton. By what we have shown

where x denotes the projection of (x, x') on Xs. It follows that 6(x, ®,efc r
10)) is

a POOD, with off-diagonals sitting precisely on the XK', establishing AMPJ.
Moreover since any two x(i), i'e fc', are, up to a shift, forward asymptotic, similar
reasoning shows that 6+oc((x, x'), Tl) splits as the product of its projections on Xk

and Xk'.
It should certainly be possible to prove theorem 2.3 directly. We were in fact able

to go fairly far in this direction, in particular to characterize the orbit closures when
1 is constant, which already is a lot of information. In particular, it gives full
information about the centralizer and factors of Tl and shows, for example, that
TxTxT and Tx T are not isomorphic, answering a question raised by Markley
[M]. However the arguments became involved and the full generality eluded us so
we opted to lean on [J, K] and [J, R, S]. •

3. Consequences of AMPJ
Let us say that (X, T) has almost minimal self-joinings (AMSJ) if it satisfies the
definition of AMPJ with 1=1. Translation by 1 on Z/ mZ evidently has AMSJ. More
generally if (X, T) has a single orbit which is a dense Gs (in this case we say (X, T)
is almost transitive) then (X, T) has AMSJ. This trivial case is the only one which
is not weakly mixing.

PROPOSITION 3.1. If(X, T) has AMSJ then it is either almost transitive or weak-mixing.

Proof. Suppose that (X, T) is not almost transitive. Since (X, T) is ergodic (this is
built into the definition of AMSJ) it is easy to see that it can have no isolated points.
It follows that each off-diagonal An = {(x, T"x): xeX} is a closed nowhere dense
set in X2. X*xX* is a dense Gs in X x X so X * x X * - t J n An is also a dense Gs.
But any point in this set has a dense Tx T-orbit, so (X, T) is weak-mixing. •

Henceforth we will work only with weak-mixing AMSJ.
If (/>: (X, T) -> (Y, S) is a factor map we say it is almost 1-1 if (x: <f>~l{4>{x)} = {x})

is dense in X. This set is always a GB (its complement is the Fa consisting of points
x such that for some n the diameter of <f>~l{<f>(x)} is greater than or equal t c l / n )
so if <f> is almost 1-1 it is a dense Gs.

PROPOSITION 3.2. If<t>:(X, T)-»(Y,S) is almost 1-1 and either (X, T) or (Y, S)
has AMSJ or AMPJ then so does the other.

Proof. Let X' = (x: ^"'{^(x)} = {x}), which is a dense Gs in X, and Y' = </>(X'). Y'
is also a dense G$ since Y—Y'= 0 ( X - X ' ) is an FCT. An easy compactness argument
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shows that <j>~l: Y'-*X' is a homeomorphism. If (Y, S) has AMSJ or AMPJ with
'good set' Y*, Y* n Y' is a dense Gs in Y, hence also in the relative topology on
Y'. Thus if we set X* = <f>~\ Y* n Y'), X* is a dense G« in X ' and hence in X. It
is then easy to check that X* provides a good set for (X, T). Similarly if (X, T)
has AMSJ with good set X*, <f>(X* n X') is a good set for (Y, S). •

The rest of the results in this section are simply a faithful translation of the results
of [Ru]. The proofs of the key results are, however, quite different. In [Ru] once
these key results are obtained the rest is computational. This is the case here also
with formally identical computations which we shall leave as an exercise for the
interested reader. We shall follow the notation of [Ru] quite closely.

For the rest of this section we fix a weak mixing (X, T) with AMPJ. If K and
K' are finite or countably infinite sets and a : k-> k' is 1-1 and onto we denote by
Sa the homeomorphism x->x°a-1 of Xk to Xk'. For m:k->Z we write U(a,m)
for SaT

m. Note that SaT
m = Tm°a~'Sa.

The maps we shall analyze in the sequel are the U( TT, 1) for TT : k -* k a permutation
and 1: fc-»Z. We impose the conditions that TT have finite cycles and the sum of 1
over each cycle be non-zero. The first condition is equivalent to the requirement
that Sw generate a group whose closure in the uniform topology is compact. We
call such a TT compact. The second condition amounts to requiring that U(ir, 1) be
weak-mixing. Indeed if k is finite and TT has a single cycle then U(TT, l) |k |= T£ I

where 2 = XJefcl(i). Thus U(TT, 1) is weak-mixing if and only if TSI is, which is
equivalent to 2 ^ 0 , since T itself is weak-mixing. In general a U{TT, 1) splits as a
product of t/(77j, l,)'s corresponding to the cycles of TT. Note also that weak-mixing
and ergodicity of U(TT, 1) are equivalent.

LEMMA 3.3. If ir-.k^k is compact, U(TT,\) is ergodic and xe(X*)k has no two
co-ordinates on the same T-orbit then O(x, U{TT, 1)) = Xk.

Proof. Let k^k be finite unions of orbits of TT SO that U{TT, 1) = Ut x Ut on Xk< x Xk~\
Let ai:X

k^Xk' denote the projection, E = €(x, U(TT, 1)) and Ei = <ri(E) =
C(a-i(x), Ui). Choosing m such that UT = TN for some N: £*-> Z - {0} we have
Ei^>6{xi, TN). But 6(x,, TN) = Xfcj since x, has no two co-ordinates on the same
orbit. Thus TT,(£) = Xk> for all i and, since E is closed, it follows that E = Xk. •

We shall work with a weak notion of isomorphism which is natural in the context
of our definition of AMPJ. We'll say (X, T) and (Y, S) are weakly isomorphic via
the map <j> if there are invariant dense Gs subsets E* and F* in X and Y and <j>
is a homeomorphism from E* to F* such that <j>Tx = Stpx for x e £*. For example,
if (X, T) and (Y, S) have a common almost 1-1 factor or a common almost 1-1
extension they are weakly isomorphic by the observations in the proof of proposition
3.2. Note that ergodicity and weak-mixing are invariants of weak isomorphism. One
consequence of the following theorem is that U(TT,\) and U{TT',\') are weakly
isomorphic if and only if they are isomorphic.

THEOREM 3.4. Suppose U(TT,\) and U(TT',\') are weak-mixing on Xk and Xk with
TT and TT' compact. If U(v, 1) and U(TT', I') are weakly isomorphic via 4> then there is
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an a : k -* k' 1-1 and onto and m: fc -»Z such that <j> and U(a, m) agree on the domain
ofcf>. In particular U(a, m) is a continuous isomorphism between U(TT, 1) and U(n', V).

Proof. Suppose $ : G -> G' homeomorphically where G and G' are invariant dense
Gs subsets of Xk and Xk. Let D c X ' (D'<=Xfc) denote those points having no
pair of co-ordinates on the same T-orbit. D and D' are dense Gs's in Xk and Xk.
Thus (X*)k n D'n C is a relative dense Gs in G' so its inverse image under <p is
a relative dense G8 in G, hence also a dense Gs in Xfc. It follows that we may
choose xe(X*)knDnG so that <f>(x)e (X*)k'n D 'n G'.

We set U=U{TT, 1), [/' = [/(«•', I') and £ = G((x, <f>(x)), U x [/')• Note that £ n
GxXk' = {(x, cf>(x)): x € G}. This follows from lemma 3.3 and the fact that <j> is an
isomorphism between U\G and U'\o-. Similarly, E nXkxG'-{(x, <j>(x)):xe G}.
It follows that (£, Ux U')is weakly isomorphic to (Xk, U) and hence weakly mixing.

Now let ki]k and k'^k' be finite unions of cycles of tr and v' respectively so
that we have U=UixUi on Xk'xXk~k> and C/'=[/;x[7; on Xk''xXk'~k''. Let
ffl:X

txXk'^X'ixXti denote the projection (x,-, x|) = cr^x, <p(x)) and
£< = tf((x,, *!), I/, x l/J) = <7,-(£). Choosing n such that (([/, x [/f)

n = TM,
M:fciuA:;^Z-{0}, we have £,; => Ff = ^((Xj, xj), TM), which is a POOD. Since
LCo (Ui x U'i)lFi = £,, one of the (U, x [/;)'£„ and hence F, itself, must have interior
in £,. But (£,, Ut x C/J) is a factor of (£, t /x [/') so it is weak-mixing, whence
(£,, 7M) is also weak-mixing and hence ergodic. Thus the TM-invariant subset Ft,
which has interior, must be all of £,.

We have shown that £, is a POOD and it must have full projections on Xk' and
Xk' since no two co-ordinates of x or of $(x) are on the same orbit. Thus tl
POOD £j links co-ordinate j e fc, with af(j) e k\ where a, is a bijection from a subset
of /c, to a subset of k\. Evidently ai+l is consistent with a, so the a{ define a bijection
a from a subset of k to a subset of A:'. Since £ is closed, £ = O, Trr'Tr.Cfi), whence
£ is a POOD linking je k with a (j). We claim that in fact a maps all of k to all
of fc'. Indeed if some co-ordinate i € k were left unlinked by £, choose x, x e G such
that x(i) # x(i") but x(j) = x(j') for ye fc-{/} (this is certainly possible when G is a
dense G8). Since En GxXk' = {(x, 0(x)): xe G} we have (x, 0(x))e £. But we
also have (x, </>(x)) e £, by our choice of i. We conclude <£(x) = <j>(x), contradicting
injectivity of <f>. Similarly no co-ordinate in k' could be unlinked.

Thus there is an m:/c-»Z such that £ ={(x, U(a, m)x): xeXk}. Since
EnGxXk = {(x, 0(x)): x £ G}, t/(a, m) and 0 agree on G. •

Remark. It is easy to show, just as in [Ru], that there is a U(a, m) conjugating
U(ir, I) and U(ir', V) if and only if a conjugates ir and 77' and 1 and l'°a have the
same sum over each cycle of tr. It follows, for example, that Tx T and TxTxT
are not isomorphic, answering, at least in the case where T has AMPJ, a question
raised in [M].

LEMMA 3.5. (a) If U(TT,1) is ergodic on Xk with -IT compact and xe(X*)k then
C((x, U{TT, 1)) is a union of POOD's. If on some -n-invariant subset k' of k, all
co-ordinates ofx are on different T-orbits then each of these POOD's projects onto all
ofXk'.
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(b) Assume (X, T) has SAMPJ and U(TT,\) is ergodic on Xk with IT compact.
Suppose xeXk, setk' = {ie k: x(i)eX'}, k* = k — k' and suppose that on some k <= k*
no two co-ordinates of x are on the same orbit. Then C+oo((x, U(n, 1)) => A x F where
A is a POOD on Xk* whose projection on Xk is all ofXk and Fis a non-empty subset
ofXk'.

Proof, (a) Let k^k be finite unions of cycles of 77. Let U denote U{Tr\k., l|fc(), a, the
projection onto Xk> and x, = at(x). Let N, e Z+ be such that if Mt = 7V,7V2 • • • N,
then Ur = Tm; m,: k,- ̂  Z - {0}. Now

n = 0

We set Xn = U"6{xu Tm') for 0< n< Nj and observe that the Xn are POOD's.
Similarly

o(x2tu2)= U t/;o(x2, T^)
n=0

N2-l N , - l

= U U U^UWiJcT-*).
n2=0 n,=O

We set Xnun2= Un
2^U"i€{x2, Tm>) and again the Xnutt2 are all POOD's. Moreover

since m2|fcl = N2ml, €{x2, T"^^) = G(xi, Tm>) (any links in these two POOD's must
be the same), that is, o-,Xnin2 = Xnx.

Continuing in this way we see that

o-iC(x,U(n,l)) = €(xi,Ui)= U *„„...,„,

where each Xni „. is a POOD and Xni „. projects onto Xn, „._,. It follows that

0(x,U(1T,l))= U Xni,n2,...,

where Xn, n2 is the unique POOD whose projection on each Xk{ is Xni nr

Finally if k' is as described then evidently the projection of Xnt „. on Xk n k | is
Xkr^k' for each 1, whence the projection of Xnurl2 on Xk is X k . This completes
the proof of (a).

(b) Let fcj, Ui, Nj, Mt and nij be as in the proof of part (a). Let o-j, o-\, af and
&i denote the projections on X\ Xk^k', Xk^k* and Xk^k respectively. As in (a)
we have

trfi^ix, U(ir, 1)) = ^ + 0 O ( x , t/(7r, l)M0

= €+x((Ti(x),Tm'),
and by SAMPJ this last orbit closure is of the form A, x Fit where Af is a POOD
on Xk*nk> and F; c xlc'"fc' is the orbit closure of o-;(x) under rm;, m; the restriction
of m, to k' n fc,. Moreover A* has no links within kntq. As in the proof of (a) there
is a POOD A on Xk"', with no links within k, such that of A = A,.

Turning to the Ft we have Oj(Fj+i)<= .F], since <7i(Ff+i) is C(o-i{x), TN<+m>).
Thus if we set Ft = P). o-|(Fj) we have Fj C F, and F) is non-empty by compactness.
Since o~'i+1(Fj) \ Fi+1 an easy compactness argument shows that o-',(Fj) =
o-'iO-i+i(Fj)\o-'i(Fi+l), that is F, = crJ(F,+1). Another easy compactness argument
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then shows that there is a closed set F<='Xfc such that a'i(F) = Fi. (This is the
analogue of the existence of a measure with prescribed finite dimensional marginals).
We have for each i

so we conclude Ax F c 0(x, U(TT, 1)). •

Suppose (Z, U) is a flow and G is a subgroup of the group of homeomorphisms
of Z which is compact in the topology of uniform convergence and UGU~X = G.
Then the G-orbit relation in Z x Z

Ra = {(z,gz):zeZ,geG]

is a closed, [/-invariant equivalence relation. Thus we can form the compact metric
space Z/G = Z/RG of G-orbits, U acts on Z/G and the projection (Z, U)-*
(Z/G, U) is a homomorphism.

We now want to analyze homomorphisms 4>: (Xk, U{TT, 1)) -* (Y, S). We say <f> is
essential if it depends on all the co-ordinates in Xk, that is it does not factor through
the projection Xk -* Xk for any fc'<= k. We denote by G(fc) the group consisting of
all U{ir, 1) on Xk (TT not necessarily compact).

THEOREM 3.6. Suppose (X, T) has SAMPJ. Suppose U= U(ir, 1) on Xk is ergodic,
77 compact and <f>:(Xk, U)-*(Y,S) is an essential factor map. Let G=G(<f>) =
{Ve G(fc): tj>V= $}. Then G is compact UGU'1 = G and <j> is the composition of the
projection Xk -» Xk/G and an almost 1-1 homomorphism from (Xk/G, U)-*(Y, S).
In particular (Xk/G, U) and (Y, S) are weakly isomorphic.

Remark. It follows that (X, T") has only almost 1-1 factors for n^O. Of course
Chacon's example is actually POD and hence has no non-trivial factors at all.

For fc= 1, then, theorem 3.6 does not provide the strongest possible information
about factors, because of the presence of an unspecified almost 1-1 homomorphism
in the description of <f>. Note, however, that for fc> 1, these arise unavoidably. TxT
always has almost 1-1 factors: for example consider the factor map which identifies
(x, x) with (x, Tx) for each xe X, or the factor map which identifies the diagonal
in X x X to a single point.

Proof. We identify (Xk)2 with Xk x Xk' = Xk^k' where k! is a disjoint copy of L Let

R = {(x,y)eXkxXk':cf>(x) = (t>(y)}

be the closed Ux U-invariant equivalence relation determined by $. Write x~y if
(x, y) 6 R. We evidently have R^Ra.

Let E denote the intersection of (X*)k with the set of points in Xk having no
two co-ordinates on the same T- orbit and note that £ is a dense Gs in Xk. Suppose
that (x,, x2) € R with x, e E. We claim that then x2 must be in (X*)k. To see this,
suppose that x2i(X*)k', so x(i)<=X' for iek"^k'. Set k* = k'-k". By lemma
3.5 (b), d+oc((xi,x2), UxU)cR contains a set AxF, A a POOD on Xkwk' with
no links within k (since we assumed Xj e E) and F a non-empty subset of Xk". First
we want to show that A leaves no co-ordinate in k unlinked. Indeed if A left i e k
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unlinked then for any xeXk there is a yeXk' with (x,y)eb.xF, and if x'&Xk

agrees with x except at i we also have (x',y)eAxF. Since A x f c R we have
<t>(x) = <j>{y) = <f>(x') so <f> does not depend on x(i), contradicting essentiality. Thus
A links each co-ordinate in k to at least one co-ordinate in k*.

This means there is a (potentially) one-to-many map a from k to k\ whose range
is contained in k* such that A links /e k with all co-ordinates in a(i). Moreover
a(i) na(j) = 0 for i ̂ j (if i and j are linked to a common co-ordinate in k* then
they are linked to each other). Recall now that k' is a copy of k so it makes sense
to iterate a. We leave it as an exercise to show that k", a(k"), a2(k"),... are pairwise
disjoint (it follows from the fact that k"orange a = 0) . In particular if S is any
finite subset of k, a"(k") n S = 0 for sufficiently large n. Now suppose that y0 and
y'o belong to Xk and agree except on k". Then because of the form of A x F we can
find yx and y[ such that {yo,y{) and (y'0,y[) belong to AxF and yx and y\ agree
except on a(k"). (To see this observe that the requirement (y0, yi) e Ax F specifies
the co-ordinates of yt on a(k) and the remaining co-ordinates of yx may be filled
in with an arbitrary choice from FxXk*~a(k\ Use the same choice for yx and y\).
Continuing in this way we obtain y0, yi, y2,... and y'o, y'u y'2>... such that yn and
y'n agree except on a"(k") and (yn,yn+i) and (y'n,y'n+i) are in Ax F. Since A x F c / ?
we conclude <j>(yo) = 4>{yn) and 4>(y'0) = <!>{y'n)- Passing to a subsequence we may
assume yn^>y and y'n-*y'. Since a"(k") is eventually disjoint from any finite set of
indices we have d{yn, y'n)-*0 so y = y'. Since <f> is continuous <j>{yo)

 = <J>{yn)^> <f>(y)

so cf>(y0) = 4>{y) and similarly <t>(y'o) — 4>{y') so we conclude 4>(y0) — 4>(y'o)- Thus 4>

does not depend on co-ordinates in k", again contradicting essentiality. This estab-
lishes our claim that x2e (X*)k.

Lemma 3.5(a) now tells us that <?((*,, x2), U x U) is a union of POOD's on xkKjk'
each of which has no links within k. Let A denote any one of these POOD's. The
arguments we just used to show that X2e (X*)k can be applied again to show that
there is a (potentially) one-to-many map a from k to k' such that A links co-ordinate
iek with all co-ordinates in a(i), a(i)na(j)^0 for i^j and the range of a is
all of k'. We claim that in fact a(i) is a singleton for each iek. To see this let us
call i 0 , . . . , ir_i a cycle if (,-+, e a(i}) for j = 0 , . . . , r - 1 , with the convention that
ir = i0. Now, the disjointness property of a implies the following fact: if i0, i , , . . .
is an infinite sequence in k with i}+1ea(i,) then either the i} are pairwise distinct
or ir = i0 for some r. In other words, beginning at i0 cycling can occur only by coming
back to J'O itself. Moreover, different cycles are disjoint. Now suppose the cardinality
of a(i0) is two or more. If i0 does not belong to a cycle then we immediately have
that i'o. «('o)» • • • a r e distinct so our previous argument shows that <f> does not depend
on the co-ordinate i0. If i0 does belong to a cycle simply choose i'oe a(i0) so that
i'o does not belong to the cycle of i0 and again we have i'o, a(i'o),... distinct. Thus
in either case we have contradicted the essentiality of <f>, establishing our claim that
a is actually a 1-1, onto map from k to k'. Thus there is an m:k-»Z such that
/± = {(x,U(a,m)x):xeXk}.

In particular we may take A to be a POOD in ^((x, ,x2),UxU) with (xj, x2) e A
and we conclude that x2 — U(a, m)xl sox2e E also. Moreover A <= R so U(a,m)e G.
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Summarizing we have shown that E is i?-saturated and

RnExE = RanExE.

Next we want to show that G is compact. For U{a, m)e G(fc) we write ir(U(a, m)) =
a and l( U(a, m)) = m. IT is a homomorphism from G(fc) to the permutation group
S(k). Setting G = n(G) we claim that G has finite orbits as a group of permutations
of fc. Indeed if G(i) is infinite for some ie fc there are U{ax, m,), U(a2, m2) , . . .e G
such that a,(i), a2(i"),... are distinct. If x, and x2 in Xk differ only at i, U(an, mn)xi
and i/(an,mn)x2) differ only at an(i) so d(U(an,mn)xl, U{an,mn)x2)->0. Since
<£(*,) = </)(t/(an,mn)x,), i = 1,2, we conclude that <j>{x) = </>(*')> contradicting essen-
tiality of 0.

Next we claim that for Ve G, iek, if ir{ V)(i) = i then 1( V)(i) = 0. If this were
not the case let fc, c fc be the union of the cycles of TT( V) over which 1( V) has a
non-zero sum, so iek^. Write V=V1xV2 on XklxX\ k2 = k-kx. Let fcM / fc,
and fc2,i /" ̂ 2 be finite unions of cycles of TT( V) and TV, > 0 be such that VN> has
the form

T"' x [/,,, x i d x C/2>, on X k ' ' xXk^k^' xX^. ' xX 1 ^"^ '

for some nij:fcM-*Z-{0}. Now if {xl,x2)&XkixXk2 and JC, has no pair of co-
ordinates on the same T-orbit we have

<?((*,, x2), V) 3 6((Xl, x2), Tm. x UUi x id x t/2iI)

and denoting projection on Xk'-' x X*2' by a, and the projection of x2 on X ^ ' by x2,

This implies that

Now ^(x , , x2) = 0(>>) for any y e ^((x, , x2), V). Thus 4>{x^, x2) = <j>(x[, x2) for any
x^eX^1 so <f> does not depend on the co-ordinates in fcx. This conflict establishes
our claim. As a consequence, if V,, V2e G and TT( V1)(i) = TT( V2)(i) then 1( Vj)(i) =
l(V2)(i), because ir( VJ1 V,)(i) = i so

o = K v j 1 v,)(i) = - i ( v2)(i)+i( v,)(i).

We can now complete the proof that G is compact. If Vj, V 2 , . . . e G then, since
G has finite orbits, we can find a subsequence n, such that for each i e fc, TT( Vn ) ( I )
is constant for sufficiently large / Define this constant to be a{i). It follows that
l(Vn>)(0 is also a constant, say m(i), for large; and Vn.-> U(a,m) uniformly. This
establishes the compactness of G. If V e G then

<j)Uvu~l = s<t>vu~l = s<t>u-x = <t>uu-x = <i>
so t/VLT1 e G Thus [/GIT1 c G and similarly U'GUc G so t /Gt/"1 = G.

Finally, let cr:Xk^Xk/G denote the projection. Since R => Ra, <t> factors

<j>:Xk -?-* Xk/G - ^ Y.

As E is G-invariant and we have shown RnExE = RGr\ExE and E is R-
saturated, ^ " ^ ^ ( x ) = <r(x) for xeE. Thus to complete the proof of the theorem it
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suffices to show that o-(E) is a dense Gs in X/G. Now

where the Â  are the countably many POOD's which link precisely two co-ordinates.
We claim G(A^) is a closed nowhere dense set. Indeed suppose Â  =

{xeXk:x(j)=T'x(i)}. Then for U(a,m)eG

U(a,m)\l3={xEXk: x(a(j))= T'+mU)-m(i)x(a{i))}.

Since G has finite orbits there are only finitely many possibilities for a(j) and a(i)
and moreover a(j) and a(i) determine 111(7) an<^ m(i). Thus we see that GA^ is
actually a finite union of sets U(a, m)A0, so it is closed and nowhere dense.

Now suppose that (X*)c = U n Fn, Fn closed nowhere dense sets. Then

iefc n

Now G((X*)k~{'} x Fn) is closed and nowhere dense by the argument we just gave
- it is actually a finite union of G-translates of (X*)k~{i)x Fn.

Putting these facts together, Ec = G(EC) = U n d where the Cn are closed nowhere
dense G-invariant sets. Then, since E is G-invariant

and since the Cn are closed, nowhere dense and G-invariant, the <r{Cn) are closed
and nowhere dense in X/ G. This completes the proof of the theorem. •

We now state a couple of corollaries to the proof of theorem 3.6 which correspond
to results in [Ru].

COROLLARY 3.7. / / V, V'eG and ir(V)(i) = ir(V')(i) for some i then l(V)(i) =

COROLLARY 3.8. G= TT(G) has finite orbits on k.

We equip S(k), the group of permutations of k, with the topology of pointwise
convergence.

COROLLARY 3.9. TT: G-» G is continuous.

Theorem 3.10 below corresponds to theorem 3.13 of [Ru]. It completes our develop-
ment of the key points of a theory corresponding to that of § 3 of [Ru]. As we have
already stated the rest of the development in [Ru] proceeds along formal algebraic
lines and can be carried out in precisely the same way in our setting.

THEOREM 3.10. Suppose U= U(TT, 1) and U'= U(TT', 1') on Xk and Xk' are ergodic
TT, IT' compact and <f>: (Xk, U)-> (Y, S), <j>':(Xk', U')^(Y', S') are essential
homomorphisms. Set G=G(<j>) and G'=G(<f>'). Suppose that (Y, 5) and (Y',S')
are weakly isomorphic via a map i//. Then there is a U(a, m): Xk-» Xk such that the
following diagram commutes (for all points for which the appropriate compositions are
defined).
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Xk/Gi '•Xk'/G

Moreover U(a, m) takes G-orbits to G'-orbits and induces a (strict) isomorphism of
(Xk/G, U) and (Xk'/G', U') which lifts tp.

Proof. Since d and 0' are almost 1-1 factor maps they are also weak isomorphisms
so ip lifts to a weak isomorphism ij/:F^F' of (Xk/G, U) and (Xk'/G', t / ' ) , where
F and F' are invariant dense Gs's in Xk/ G and Xk'/G'.

As in the proof of theorem 3.6 let E c Xk be the intersection of (X*)k and those
points having no two co-ordinates on the same T-orbit. Let E' be the corresponding
set in Xk. As in the proof of theorem 3.6, <x(£) and o-'(E') are dense Gs's in Xk/G
and Xk'/G'. It follows that we may choose a(xo)ea(E) with <j/a(xo) = a'(x'0)e

a'(E')-

Now since &o-(x0) = o-'(x'0),

\p<j>x0 = ipdox0 = d'<j/orx0 = d'a'x'o = <f>'x'o.

It follows that

<r~l(F) x (or ' )- 'F 'n &({x0, x'o), UxU')<= {(x, x'): *<j>x = <j>'x'}.
Note that <r-1(F) and (o-')~xF' are dense Gs's by compactness of G and G'. By
lemma 3.5, 0((x0, x'o), U x U') contains a POOD A which has no links within k or
k'. We claim that A is actually the graph of a U(a, m): Xk -»Xk'.

To see this observe that A has the following form: there are fcj <= fc, k[ c fc' and
t/(a, m): Xfc' -* ATk' such that

A = {(x, x'): U(a, m)rtx = T[X'},

TJ and T[ the projections on Xkl and Xfc'. What we are trying to show is that kx = k
and k[ = k'. By [O, theorem 15.1], Tl(a~l(F)) contains a dense Gs in Xk

see that
so we

W={x<= o--\F): 3x' € ', (x, x') e A}

contains a dense Gg in Xk. Suppose that kt ^ k. Now, if x, x e W and x(j) = x(j)
forje fc, then, choosing x'e ((r')~lF' with (x, x ' )eA, we have also (x, x')eA. Since
x, x£ ^ " ' F and x'e (o-')~'F' we conclude that ij/tpx = <j>'x' = i/j<j>x whence <j>x = <f>x.
For zeXk' set Wz= W n r ^ f z } . We have shown that <f> is a constant on sets Wz.
When Wz is dense in {z}xXk~kl^> is constant on {z}xXk~k< by continuity. Since
this occurs for a dense set of z by [O, theorem 15.1], we conclude that <f> is constant
on X''"''1 x{z} for all z e XkK That is, <£ does not depend on co-ordinates in k — kx,
contradicting essentiality. It follows that kx = k, and similarly k\ = k'.

Thus A is the graph of U(a, m):Xk^Xk'. It follows that i/»^x = 4>'U(a, m)x for
x in the dense Gs W = {xeo-~1(F): U(a,m)xe(a-')~lF'}. Thus t /(a, m) provides
the desired lifting of ip.
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Writing U(a, m) = U, we have shown that a'LJx = ij/ox for x in W. In particular
UxU(RanWxW)cRo,. Now if x, yeXk withy = gx, geG, since Wng-'W
is a dense Gs we may choose xn e Wng~l W so that *„ -»x Since (xn, gxn) e WxW
we have (t/xn, C/gxn)eKG.. But (Uxn, Ugxn)^{Ux, Uy) so (Ox, Uy)eRa.. Thus
(t) x U)RGc i?G. and by symmetry (U x U)Ra = Ro , that is U takes G-orbits to
G'-orbits. Thus U induces a homeomorphism of Xk/G and Xk /G' which agrees
with tfi. Since i/< is equivariant on its domain F which is dense, we conclude that U
is equivariant everywhere.

We conclude this section with some remarks on the connection between AMPJ
and Auslander and Markley's notion of a graphic flow [M], [AM]. (X, T) is called
graphic if it is minimal and the only minimal subsets of (XxX, Tx T) are off-
diagonals. The following proposition is due to Markley.

PROPOSITION 3.11. If (X, T) is minimal and has AMSJ then it is graphic.

Proof. Let M be a minimal subset of X x X and ITX : M -* X the projection on the
first co-ordinate, (-n̂  is onto by minimality of X). TT\1(X*) is a non-empty invariant
set in M, hence it is dense in M by minimality. Thus v^x{X*) is a dense Gs in M.
Similarly ir^iX*) is a dense Gs in M where TT2 denotes the projection on the
second co-ordinate. Thus ir^l(X*) n TT21(X*) is non-empty so there is an (xt, x2) 6
MnX*nX*. Thus M = 6((xi,x2),TxT) is an off-diagonal (it is not X x X
because X x X is not minimal).

It is worth noting that AMPJ does not imply minimality. Indeed one can mimic
the construction of a rank one mixing map as carried out in [Ru] to obtain a subshift
of {0,1}Z which has a fixed point (corresponding to the 'spacer' symbol) but has
AMPJ. This was a suggestion of Ken Berg.

Finally graphic does not imply SAMPJ, as has been observed by Auslander. To
see this take any proximal but not almost 1-1 extension of a graphic flow (X, T).
The resulting flow is graphic by a result of [A, M] but does not have SAMPJ by
proposition 3.2.

4. Real flows
If (X,{T,}) is an IR-flow, k is a finite or countable set and a:fc-»R we write
T' = (x)i<=k Ta(l-). By an off-diagonal for {T,} we mean any set T"A, A the diagonal
in Xk and a POOD has the obvious meaning. We say (X, {T,}) has almost minimal
self-joinings (AMSJ) if there is an invariant dense Gs X* in X such that for all
finite k a n d x e (X*)k, 6(x, {T1'}) is a POOD. Setting X' = X - X * we say (X, {T,})
has strongly almost minimal self-joining (SAMSJ) if for all finite k and k' and
xe(X*)k,x'e(X')k'

x'), Tl) = G+X(x, T1) x (x1, Tl).

PROPOSITION 4.1. Let {T,} be defined as the flow over Chacon's example under the
function al{ x : x ( 0 ) = 0}+ l{*:x(o)=i} where a is irrational. Then {T,} is weak-mixing, POD
and has SAMSJ. X* consists of all points whose orbits never pass through the bad set
in the cross-section.
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We shall not prove this but mention only that it can be proved using topological
versions of the ideas in [J, P].

We say (X, {T,}) has almost minimal re-scaling joinings (AMRJ) if, for all finite
k, a:fc^R-{0}, and xe(X*)k, O(x,{T"}) is a POOD. Strongly almost minimal
re-scaling joinings (SAMRJ) can be defined in an obvious way. The flow of 4.1
surely has SAMRJ but we have not been able to find a proof of this. It is not difficult
to show, as in [J, P], that distinct rescalings Tai, and Ta2, are not isomorphic. In
ergodic theory the general machinery of [J, R] shows that minimal self-joinings and
pairwise non-isomorphism of rescalings imply minimal rescaling joinings. We do
not know if the analogous result in topological dynamics is valid. One way to show
the example of 4.1 has SAMRJ would be to establish an obvious analogue of the
result in [J, K] and then use it together with (measure-theoretic) minimal re-scaling
joinings as we did for the discrete-time Chacon flow in § 2.

We will say (X, {T,}) is almost transitive if it has a single orbit which is a dense
Gs.

PROPOSITION 4.2. If {X,{T,}) has AMSJ then (X, {T,}) is either almost transitive or
weak-mixing.

Proof. Suppose that {X,{T,}) is not almost transitive. Let A, denote the off-diagonal
(T, x id)A, A the diagonal in X2. We claim that U (eR A, is an FCT with empty interior.
Since

UA, = U(T,xid)( U A,),

it suffices to show that the closed set U,e[o,i]AT is nowhere dense. Suppose this
were not the case, then there exist open sets U and V in X such that U,e[0 n {T&} => U
for x e V. Since any x' e X* has dense orbit, the orbit of x' and x are the same, that
is X* is precisely the orbit of x which means that (X, {T,}) is almost transitive, a
contradiction.

It follows that X*xX*-U, e R A, is a dense Gs in X x X so we may choose
(x,, x2) e X* x X* with Xi, x2 on different { 7",}-orbits. Thus 0((x,, x2), {Tt x T,}) is
not an off-diagonal so by AMSJ it must be X x X, establishing weak-mixing of {T,}.

PROPOSITION 4.3. If (X, Tt) is weak-mixing with AMSJ then for x e (X*)k the discrete
orbit closure 6(x, T1) is a POOD.

Proof. It suffices to assume that x has no two co-ordinates on the same {7",}-orbit
and show_that C(x, T1) = Xk. In this case by AMSJ of (X, {T,}), €(x,{Tu}) = Xk.
Set E = €(x, T1) and for each n set En = Uo~,«n/n TuEn. Since the closed set
U"Jo Tli/nEn contains C(x, {T11}) it must be Xk. Thus some Tu/nEn, and hence En

itself, has non-empty interior. Since En is T1- invariant and T1 is ergodic (by
weak-mixing of {T,}) En = Xk. It follows that E = f)„ En = Xk. •

Using proposition 4.3 one can establish results for AMSJ R-flows similar to those
of § 3 for maps. Having only AMSJ and not AMRJ imposes some unnatural
restrictions so we simply restrict ourselves to stating some results for T1 on Xk, k
finite.
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PROPOSITION 4.4. Suppose {X, {T,}) is weak-mixing with AMSJ. Then the automorph-
ism group of (Xk, Tl) consists of the maps S^T' where n:k->k is a permutation.
In particular the automorphism group of (X, 7\) is {T,: te U}. Suppose (X, {T,}) has
SAMSJ. If <f>: (Xk, Tl) -> (Y, S) is a factor map then there is a compact subgroup G
of the S^T", necessarily having finite orbits, such that (f> is the composition of the
projection Xk -» Xk/ G and an almost 1-1 factor map Xk/ G-> Y. In particular (X, T,)
has only almost 1-1 factors.

For both Z and R-flows the question remains whether we can obtain minimal
self-joinings with no exceptional set. For R-flows certain horocycle flows supply
examples, as can be shown using results of Ratner [Ra]. Say (X, {T,}) has fe-fold
minimal self-joinings (MSJ) if for all x&Xk, 0(x, Tu) is a POOD.

THEOREM 4.5. If (X, T,) is a horocycle flow defined by a maximal discrete co-compact
non-arithmetic subgroup of SL2(IR) then {h,} has 2-fold MSJ.

Proof. It suffices to show that for x, y on different orbits E = €((x, y), {T, x T,}) = X2.
Let A be an invariant ergodic measure supported on E. By unique ergodicity of {T,}
both projections of A are the unique invariant measure fi for {T,}. Since {T,} has
measure-theoretic MSJ ([Ra]) we conclude that A is either / iX/xoran off-diagonal
measure (IXT^/J.^, /iA the diagonal measure on X x X. If A = / A X / X , supp A =
X x X <= E so we are done.

Suppose then that A = (/ x T^)/xA so

suppA={(z, Thz):zeX} = \^E.

This means that for all 8>0 there is a t with d{T'x, T''«y)<S. Fix peZ+. For
e > 0 , by the Hp property of {T,} ([Ra]), if S is sufficiently small there is an s such
that either

d(T'+sx, T'+s-'o+py)<e

or

d(T'+sx;T'+s-o-"y)<e.

As e^O either p or — p will occur infinitely often so we conclude that for each
p e Z+, E contains either the off-diagonal A^+p or A^_p. Thus there are sets A+ and
A~ in Z+ such that A + u A " = Z+ and for each z e X

({z}x X n E =>{z}x{{Th+pz: pe A+}<j{Th.pz: pe A~}).

Suppose now that A+ contains arbitrarily long intervals. By minimality of T, we
conclude that

({z}xX)nE = {z}xX

for all z € X so E = X x X. If A+ does not contain arbitrarily long intervals then
A~ has gaps of length less than some /. By minimality of T_, it follows that

so {T^-pZ: pe A~}~ has interior for all z. Choose a countable base {I/,} for the
topology of X and for each z choose a t/,(z) such that UiU)<^ {T'°~pz: peA~}~. Let
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Xt = {z: i(z) = i} so X = U( Xt whence the closure X, of some Xt has non-empiy
interior. If Xt contains a non-empty open set V then since E =>X,,x I/;

E=>(XjX [/,)"=> Vx Ui.

Thus E has non-empty interior and by ergodicity of {h, x /»,} we conclude E = XxX.
D

We conjecture that any horocycle flow as in theorem 4.5 actually has fe-fold MSJ
for all k. It does not have minimal re-scaling joinings, or even AMRJ, since {h,}
and {hal} are isomorphic for a>0.

A number of questions are left open by this paper. Do there exist Z-flows with
unrestricted (that is, no exceptional set) MSJ or MPJ? Does MSJ or AMSJ for
Z-flows together with non-isomorphism of T and T"1 imply MPJ or AMPJ, as it
does in ergodic theory? Does 2-fold MSJ or AMSJ for Z- or R-flows imply 3-fold
MSJ or AMSJ? Here the answer is not known in ergodic theory either. Is SAMPJ
necessary for the results on factors or will AMPJ suffice?
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