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particular, we show that for a functional f :X → A1
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312 A. Grataloup

1. Introduction

In the context of derived algebraic geometry ([10], [11], [15], [16], [17]), the notion of
shifted symplectic structures was developed in [12] (see also [5] and [6]). This has proven

to be very useful in order to obtain symplectic structures out of natural constructions.

For example, we obtain:

• shifted symplectic structures from transgression procedures (Theorem 2.5 in [12]),
for example, the Alexandrov, Kontsevich, Schwarz, Zaboronsky construction.

• shifted symplectic structures from derived intersections of Lagrangians structures
(Subsection 2.2 in [12]).

• symplectic structures on various moduli spaces (Subsection 3.1 in [12]).
• quasi-symplectic groupoids (see [19]) inducing shifted symplectic structures on the

quotient stack as explained in [6].
• symmetric obstruction theory as defined in [1] from (−1)-shifted symplectic

derived stacks (see [14] for the obstruction theory on derived stacks and [12] for
the symmetric and symplectic enhancement thereof).

• the d -critical loci as defined by Joyce in [9]. Every (−1)-shifted symplectic derived
scheme induces a classical d -critical locus on its truncation (see Theorem 6.6 in
[2]).

Another very useful construction in derived geometry is the derived intersection of

derived schemes or derived stacks (see [12]). This includes many constructions, such as:

• the derived critical locus of a functional (see [12] and [18]). For an action functional,
this amounts to finding the space of solutions to the Euler-Lagrange equations, as
well as remembering about the symmetries of the functional.

• G-equivariant intersections. This includes the example of symplectic reduction
which can be expressed as the derived intersection of derived quotient stacks (see
Subsection 2.1.2 in [4]).

In this paper, we make a more precise study of the shifted symplectic geometry

of derived critical loci and more generally of the derived intersections of Lagrangian
morphisms. In particular, the main theorem (Theorem 3.5) of this paper says that

whenever the Lagrangian morphisms fi :Xi → Z, i= 1..2 look like ‘sections’ in the sense

that there exists a map r : Z →X, such that the composition maps r ◦ fi :Xi →X are

weak equivalences, then the natural morphism X1×Z X2 →X is a Lagrangian fibration
(see [5]). We then specialise this result to various examples and show, in particular, that,

for the derived critical locus of a nondegenerate functional on a smooth algebraic variety,

the nondegeneracy of the Lagrangian fibration is related to the nondegeneracy of the
Hessian quadratic form of the functional.

This paper starts, in Section 2, by recalling the basic definitions and properties of shifted

symplectic structures, Lagrangian structures and Lagrangian fibrations. We also recall,
in Subsection 2.4, basic properties of the relative cotangent complexes of linear stacks

that prove useful when we try to understand in more detail the structure of Lagrangian

fibrations on derived critical loci.
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In Section 3, we start by recalling the fact that a derived intersection of Lagrangian
structures in an n-shifted symplectic derived Artin stack is (n− 1)-shifted symplectic.

Then, in Subsection 3.2, we state and prove the main theorem (Theorem 3.5) that roughly

says that if the Lagrangian morphisms look like sections (up to homotopy), then the
natural projection from the derived intersection has a structure of a Lagrangian fibration.

We then recall basic elements on the derived critical loci of a functional f :X →A1
k, and

then try to describe the Lagrangian fibration structure on the natural map Crit(f)→X

obtained from the main theorem.
Section 4 gives examples of applications of our main theorem. In particular, in

Subsections 4.1 and 4.2, we give a better description of the Lagrangian fibration on

the derived critical loci for nondegenerate functionals. We show that the nondegeneracy
condition of the Lagrangian fibration of the derived critical locus of a nondegenerate

functional on a smooth algebraic variety is given by the nondegeneracy of the Hessian

quadratic form.

Notation:

• Throughout this paper, k denotes a field of characteristic 0.
• cdga (respectively, cdga≤0) denotes the ∞-category of commutative differential

graded algebra over k (respectively, commutative differential graded algebra in
non positive degrees).

• cdgagr denotes the ∞-category of commutative monoids in the category of graded
complexes dggr

k .
• A−Mod denotes the ∞-category of differential graded A-modules for A ∈ cdga.
• cdgaε−gr denotes the ∞-category of graded mixed differential graded algebra. We

denote the differential δ and the mixed differential ε or d= dDR in the case of the
de Rham complex of a derived Artin stack X, denoted DR(X). We refer to [7] for
the definitions of cdgaε−gr, cdgagr, dggr

k and the de Rham complex (see also [12]
but with a different grading convention).

• All the ∞-categories above are localisations of model categories (see [7] for details
on these model structures and associated∞-categories). All along, unless explicitly
stated otherwise, every diagram will be homotopy commutative, every functor will
be ∞-functors and every (co)limits will be ∞-(co)limits.

• For X a derived Artin stack, QC(X) denote the ∞-category of quasi-coherent
sheaves on X.

• In this paper, derived Artin stacks, denoted dSt, are defined as in [17]. In
particular, derived Artin stacks are locally of finite presentation over Spec(k).

• We denote by LX the cotangent complex of a derived Artin stack X. We denote
by TX := L∨

X := Hom(LX,OX) its dual.

2. Derived symplectic geometry

2.1. Shifted symplectic structures

Before going to symplectic structures, we make a short recall of differential calculus

and (closed) differential p-forms in the derived setting. Recall from [12] that there are
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314 A. Grataloup

classifying stacks Ap(•,n) and Ap,cl(•,n) of, respectively, the space of n-shifted differential
p-forms and the space of n-shifted closed differential p-forms. We use the grading

conventions used in [7]. On a derived affine scheme Spec(A), the space of p-forms of

degree n and the space of closed p-forms of degree n are defined, respectively, by:

Ap(A,n) := Mapcdgagr (k[−n−p](−p),DR(A))

and:

Ap,cl(A,n) := Mapcdgaε−gr (k[−n−p](−p),DR(A)) .

From [7], the de Rham complex of A, denoted DR(A), can be described as a graded

complex by DR(A)# � SymALA[−1](−1), where (−)# : cdgaε−gr → cdgagr is the

functor forgetting the mixed structure (we refer to [7] for more details on the de Rham

complex).
All along, we denote the internal differential, that is, the differential on LA, by δ and

the mixed differential, that is, the de Rham differential, by d.

By definition, the space of p-forms of degree n on a derived stack X is the mapping
space MapdSt (X,Ap(•,n)) and the space of closed p-forms of degree n on X is

MapdSt
(
X,Ap,cl(•,n)

)
. Now the following proposition says that, in the case where X

is a derived Artin stack, the spaces of shifted differential forms are spaces of sections of
quasi-coherent sheaves on X.

Proposition 2.1 (Proposition 1.14 in [12]). Let X be a derived Artin stack over k and

LX be its cotangent complex over k. Then there is an equivalence:

Ap(X,n)�MapQC(X) (OX,ΛpLX [n]) .

Remark 2.2. More concretely, we have from [6] and [7] an explicit description of (closed)

p-forms of degree n on a geometric derived stack X. A p-form of degree n is given by a
global section ω ∈DR(X)(p)[n+p]�RΓ((

∧p
LX) [n]), such that δω = 0. A closed p-form

of degree n is given by a semi-infinite sequence ω=ω0+ω1+ · · · with ωi ∈DR(p+i)[n+p] =

RΓ
((∧p+i

LX

)
[n− i]

)
, such that δω0 = 0 and dωi = δωi+1.

Equivalently, being closed means that ω is closed for the total differential D = δ+ d

in the bicomplex DR(X)≥p[n] � RΓ
(∏

i≥0

(∧p+i
LX

)
[n]

)
, whose total degree is given

by n+p+ i. Note that the conditions imposed on ω are equivalent to saying that ω is a

cocycle of degree n+p for the total differential.
In general, we can also describe the spaces of (closed) differential forms as

Ap(X,n) �
∣∣DR(p)(X)[n+p]

∣∣ and Ap,cl(X,n) �
∣∣∣∏i≥pDR(p+i)(X)[n+p]

∣∣∣, where∏
i≥0DR(p+i)(X)[n] is endowed with the total differential.

Remark 2.3. Given a map of derived Artin stack f : Y →X, we define Ap,(cl)(Y/X,n),

the space of n-shifted (closed) p-forms on Y relative to X, to be the homotopy cofibre of
the natural map f∗ :Ap,(cl)(X,n)→Ap,(cl)(Y ,n). For instance, n-shifted relative p-forms

are equivalent to the derived global sections of
(∧p

LY�X

)
[n], with the relative cotangent

complex LY�X
defined as the homotopy cofibre of the natural map f∗LX → LY . We refer
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to [7] for more details on the relative n-shifted (closed) p-forms and the relative version

of the de Rham complex.

We say that a p-form, ω0, of degree n can be lifted to a closed p-form of degree n if there

exists a family of (p+ i)-forms ωi of degree n− i for all i > 0, such that ω= ω0+ω1+ · · · is
closed in DR(X)≥p[n] (i.e. Dω = 0). In this situation, we can see that dω0 is, in general,

not equal to 0 but is homotopic to 0 (dω0 = D
(
−
∑

i>0ωp+i

)
). The choice of such a

homotopy is the same as a choice of a closure of the p-form of degree n. Being closed is,

therefore, no longer a property of the underlying p-form of degree n but a structure given

by a homotopy between dω0 and 0. The collection of all closures of a p-form of degree n
forms a space:

Definition 2.4. Let α ∈Ap(X,n), then the space of all closures of α is called the space
of keys of α denoted key(α). It is given by the homotopy pullback:

key(α) Ap,cl(X,n)

� Ap(X,n).α

(1)

The mixed differential of the de Rham graded mixed complex induces a map:

d :Ap(X,n)→Ap+1,cl(X,n).

We are now turning toward symplectic geometry. Since we now know what are (shifted)

closed 2-forms, we only need to mimic the notion of nondegeneracy to define symplectic
structures.

Definition 2.5 (nondegenerate 2-form of degree n). For a derived Artin n-stack X, the

cotangent complex LX is dualisable. Therefore, there is a tangent complex TX = L∨
X . We

say that a (closed) 2-form of degree n is nondegenerate if the (underlying) 2-form ω0

of degree n induces a quasi-isomorphism:

ω�
0 : TX → LX [n].

We denote by A2,nd(X,n) the subspace of A2(X,n) generated by the nondegenerate
n-shifted 2-forms.

Definition 2.6 (shifted symplectic forms). An n-shifted symplectic structure is a

nondegenerate n-shifted closed 2-form on X. n-shifted symplectic structures form a space
defined as the pullback:

Symp(X,n) :=A2,nd(X,n)×A2(X,n)A
2,cl(X,n).

The standard example of symplectic manifold is the cotangent bundle. In our setting,

we can speak of n-shifted cotangent stacks. It is a derived stack defined as a linear stack
associated to LX [n], T ∗[n]X := A(LX [n]) (see Definition 2.7). It comes with a natural

morphism πX : T ∗[n]X →X. We refer to [5] for a general account of shifted symplectic

geometry on the cotangent stack.
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316 A. Grataloup

Definition 2.7 (linear stacks). Given F ∈QC(X) a quasi-coherent sheaf over a derived

Artin stack, we can construct a linear stack denoted A(F), defined as a derived stack

over X by:

A(F)(f : Spec(A)→X) :=MapA-Mod (A,f
∗F) .

Remark 2.8. A morphism Y → T ∗[n]X is determined by the induced morphism f :

Y → X (by composition with πX) and a section s : Y → f∗T ∗[n]X, which corresponds
to an element s ∈ MapQC(Y ) (OY ,f

∗LX [n]) (see [5], Section 2, for more details). In the

case of a section s : X → T ∗[n]X, we get the identity Id : X → X and a section s1 ∈
MapQC(X) (OX,LX [n]) � A1(X,n). This shows, using Proposition 2.1, that the space of
sections of T ∗[n]X is exactly the space of 1-forms of degree n as expected.

Example 2.9. As in the classical case, we can construct the canonical Liouville

1-form. Consider the identity Id : T ∗[n]X → T ∗[n]X. It is determined by the projection
π : T ∗[n]X →X and a section λX ∈MapQC(T∗[n]X)

(
OT∗[n]X,π

∗LX [n]
)
. Since we have a

natural map π∗LX [n]→LT∗[n]X [n], λX induces a 1-form on T ∗[n]X called the tautological

1-form. This 1-form induces a closed 2-form dλX , which happens to be nondegenerate
(see [5], Subsection 2.2, for a proof of the nondegeneracy).

This symplectic structure on the cotangent is universal in the sense that it satisfies the

usual universal property.

Lemma 2.10. Given a 1-form α :X → T ∗[n]X, we have that α∗λX = α.

Proof. In general, if we take f : X → Y , the pullback of an n-shifted 1-form, β, is
described by:

T ∗[n]X f∗T ∗[n]Y T ∗[n]Y

X Y.

(df)∗

f∗β f

β

Taking into account the fact that λ factors through π∗
XT ∗[n]X, we consider the following

diagram:

T ∗[n]X α∗T ∗T ∗[n]X T ∗T ∗[n]X

T ∗[n]X = α∗π∗
XT ∗[n]X π∗

XT ∗[n]X

X T ∗[n]X.

(dα)∗

Id
(dπX)∗ (dπX)∗

λ̃

α

λ

This proves that the pullback along α of λX seen as a 1-form of degree n on T ∗[n]X is

the same as the pullback along α of the section λX : T ∗[n]X → π∗
XT ∗[n]X.

We denote by α1 the associated section in MapQC(X) (OX,LX [n]) of degree n. There

is a one-to-one correspondence between sections of πX : T ∗[n]X → X and points of

MapQC(X) (OX,LX [n]). Now we use the fact that Id◦α= α:
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• On the one hand, α is completely described by α1 ∈MapQC(X) (OX,LX [n]).
• On the other hand, the map Id : T ∗[n]X → T ∗[n]X is described by the projection

π : T ∗[n]X →X and the section λX ∈MapQC(T∗[n]X)

(
OT∗[n]X,π

∗
XLX

)
. Therefore,

the composition Id ◦ α is also a section of πX and is described by α∗λX ∈
MapQC(X) (OX,LX [n]).

This proves that α∗λX = α1. Since these maps characterise the sections of πX they

represent, we have α∗λX = α.

2.2. Lagrangian structures

We recall from [12] the definition and standard properties of Lagrangian structures. We
also provide proves of some results which are well known to the expert but are not written

as far as we know.

Definition 2.11 (isotropic structures). Let f : L→X be a map of derived Artin stacks.

An isotropic structure on f is a homotopy, in A2,cl(L,n), between f∗ω and 0 for some
n-shifted symplectic structure ω : �→Symp(X,n). Isotropic structures on f form a space

described by the homotopy pullback:

Iso(f,n) Symp(X,n)

� A2,cl(L,n).

f∗

0

If we fix a given n-shifted symplectic structure ω : �→ Symp(X,n), we can define the
space of isotropic structures on f at ω defined by:

Iso(f,ω) := Iso(f,n)×Symp(X,n) �� �×0, A2,cl(X,n), f∗ω �.

Remark 2.12. More explicitly, an isotropic structure is given by a family of forms of

total degree (p+n−1), (γi)i∈N with γi ∈DR(L)(p+i)[p+n+ i−1], such that δγ0 = f∗ω0

and δγi+dγi−1 = f∗ωi. This can be rephrased as Dγ = f∗ω, thus, γ is indeed a homotopy
between f∗ω and 0.

Definition 2.13 (Lagrangian structures). An isotropic structure γ on f :L→X is called

a Lagrangian structure on f if the leading term, γ0, viewed as an isotropic structure

on the morphism TL → f∗TX , is nondegenerate. We say that γ0 is nondegenerate if the
following null-homotopic sequence (homotopic to 0 via γ0) is fibred:

TL f∗TX � f∗LX [n] LL[n].

(f∗ω0)
�

(2)

The space of n-shifted Lagrangian structures on f is denoted Lag(f,n). There are
natural morphisms of spaces Lag(f,n)→ Iso(f,n)→ Symp(X,n).

Remark 2.14. To say that that sequence is fibred can be reinterpreted as a more classical

condition involving the conormal. Since QC(X) is a stable ∞-category, the homotopy
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318 A. Grataloup

fibre of f∗LX [n] → LL[n] is denoted LL�X
[n− 1] := Lf [n− 1] and the nondegeneracy

condition can be rephrased by saying that the natural map Θf : TL → Lf [n− 1] is a
quasi-isomorphism.

Remark 2.15. To simplify the notations, we will abusively say that a morphism f :X →
Y is Lagrangian when we consider f together with a fixed Lagrangian structure on f and

a fixed symplectic structure ω.

Example 2.16. A 1-form of degree n on an Artin stack X is equivalent to a section

α :X → T ∗[n]X. This section is a Lagrangian morphism if and only if α admits a closure,

that is, Key(α) is nonempty. This is Theorem 2.15 in [5].

Proposition 2.17. There is a canonical homotopy equivalence Iso(α)→Key(α) between
the space of isotropic structures on the 1-form α and the space of keys of α.

Proof.

key(α) A1,cl(X,n) �

� A1(X,n) A2,cl(X,n).

0

α ddR

(3)

The leftmost square is Cartesian by definition of key(α) in Definition 2.4. By definition,

the pullback of the outer square is Iso(α) because ddRα = α∗ω (by universal property
of the Liouville 1-form, Lemma 2.10). It turns out that the rightmost square is also

Cartesian. This is simply saying that the space of closed 1-forms of degree n is the same

as the space of 1-forms of degree n whose de Rham differential is homotopic to 0. We
obtain that key(α) and Iso(α) are both pullbacks of the outer square and, therefore, are

canonically homotopy equivalent.

Remark 2.18. It turns out that Theorem 2.15 in [5] says that all the isotropic structures
on α (or, equivalently, the lifts of α to a closed form) are, in fact, nondegenerate, which

implies the statement in Example 2.16 and even that the space of Lagrangian structures

on α is equivalent to the space of keys of α.

Lemma 2.19 (Example 1.26 in [6]). Consider the map X → �n, where �n is the point

endowed with the canonical n-shifted symplectic structure given by 0. Then a Lagrangian
structure on this map is equivalent to an (n−1)-shifted symplectic structure on X.

Proof. Pick an isotropic structure γ on p. We know that γ is a homotopy between 0 and
0, which means that Dγ = 0. Therefore, γ is a closed 2-form of degree n−1. We want to

show that γ is nondegenerate as an isotropic structure if and only if it is nondegenerate

as a closed 2-form on X. The nondegeneracy of the Lagrangian structure, as described in
Remark 2.14, corresponds to the requirement that the natural map TX → LX [n−1] is a

quasi-isomorphism. This map depends on γ0, and we want to show that this map is, in

fact, γ�
0. This map is the natural map that fits in the following homotopy commutative
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diagram:

TX LX [n−1] 0

0 0 LX [n].0�

We can show that by strictifying the homotopy commutative diagram:

TX

0 LX [n].

p∗ω�=0

Note that this diagram is already commutative, but we see it as homotopy commutative
using the homotopy γ0. We use the homotopy γ0 to strictify the previous diagram, and

we obtain:

TX

LX [n−1]⊕LX [n] LX [n]
γ�
0+0

p∗ω�=0

pr

.

The homotopy fibre and also strict fibre of the projection pr :LX [n−1]⊕LX [n]→LX [n]

is LX [n−1], and, therefore, the natural map we obtain is γ�
0 : TX → LX [n−1].

Since the nondegeneracy condition of the isotropic structure γ is the same as saying

that the map γ�
0 is a quasi-isomorphism, we have shown that an isotropic structure γ

is an (n− 1)-shifted symplectic structure on X if and only if it is nondegenerate as an

isotropic structure on X → �n.

Definition 2.20 (Lagrangian correspondence, [4]). Let X and Y be derived Artin stacks

with n-shifted symplectic structures. A Lagrangian correspondence from X to Y is

given by a derived Artin stack L with morphims:

L

X Y

and a Lagrangian structure on the map L→X × Ȳ , where X × Ȳ is endowed with the

n-shifted symplectic structure π∗
XωX −π∗

Y ωY . For example, a Lagrangian structure on

L→X is equivalent to a Lagrangian correspondence from X to �.

As explained in [4], Subsection 4.2.2, these Lagrangian correspondences can be
composed. If we take X0, X1 and X2 derived Artin stacks with symplectic structures

and L01 and L12 Lagrangian correspondences from, respectively, X0 to X1 and X1

to X2, we can produce a Lagrangian correspondence L02 from X0 to X2 by setting
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320 A. Grataloup

L02 := L01×X1
L12.

L02

L01 L12

X0 X1 X2

.

2.3. Lagrangian fibration

We recall in this section the definition and standard properties of Lagrangian fibrations

([5]).

Definition 2.21. Let f : Y →X be a map of derived Artin stacks and ω a symplectic

structure on Y. A Lagrangian fibration on f is given by:

• A homotopy, denoted γ, between ω/X and 0, where ω/X is the image of ω

under the natural map A2,cl(Y ,n) → A2,cl(Y/X,n) (see Remark 2.3) for some
n-shifted symplectic structure ω : �→ Symp(Y ,n). This forms a space of isotropic
fibrations:

IsoFib(f,n) Symp(Y ,n)

� A2,cl(Y/X,n).0

• A nondegeneracy condition which says that the following sequence (homotopic to
0 via γ0) is fibred:

TY/X → TY � LY [n]→ LY/X [n].

In particular, the nondegeneracy condition can be rephrased by saying that there

is a canonical quasi-isomorphism αf : TY/X → f∗LX [n] (similar to the criteria for a

Lagrangian morphism in Remark 2.14) that makes the following diagram commute:

TY�X
f∗LX [n] 0

TY LY [n] LY�X
[n]

αf

ω�

. (4)

The subspace of IsoFib(f,n) generated by the nondegenerate objects is the space of

Lagrangian fibration structures on f and is denoted by LagFib(f,n). There are natural

maps LagFib(f,n)→ IsoFib(f,n)→ Symp(Y ,n).

Similarly to the Lagrangian case, we can fix an n-shifted symplectic structure on Y
and define Lagrangian and isotropic fibration of f at a given ω:

IsoFib(f,ω) = IsoFib(f,n)×Symp(Y ,n) �� �×0,A2,cl(Y/X,n),ω/X
�.
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Remark 2.22. To simplify the notations, we will abusively say that a morphism f :X →
Y is a Lagrangian fibration when we consider f together with a fixed shifted symplectic

structure ω and a fixed structure of Lagrangian fibration on f at ω.

Example 2.23. The natural projection πX : T ∗[n]X →X is a Lagrangian fibration. The

Liouville 1-form is a section of π∗
XLX [n] which is part of the fibre sequence:

π∗
XLX [n]→ LT∗[n]X [n]→ LT∗[n]X�X

[n].

Thus, the 1-form induced by λX in LT∗[n]X�X
[n] is homotopic to 0. The nondegeneracy

condition is more difficult and is proven in Subsection 2.2.2 of [5]. It turns out that

the morphism expressing the nondegeneracy condition, απX
, is given by a canonical

construction (Proposition 2.25), which does not depend on the symplectic structure. This

is the content of Proposition 2.29.

Lemma 2.24. Let x : �n → X be a point of X. Then, given a Lagrangian fibration
structure on x, the nondegeneracy condition is given by a quasi-isomorphism x∗TX →
x∗LX [n+1].

Proof. The Lagrangian fibration structure on �n → X is a homotopy between 0 and

itself in A2,cl(�n�X,n). As in the proof of Lemma 2.19, this is given by an element γ ∈
A2,cl(�n�X,n−1). Similarly to what was done in the proof of Lemma 2.19, we can show

that γ is nondegenerate as a Lagrangian fibration if and only if it is nondegenerate as
a closed 2-form of degree n. Again, it boils down to the fact that the natural morphism

in the nondegeneracy criteria for Lagrangian fibrations is, in fact, γ�
0 : T
n�X

→ L
n�X
[n−1].
Moreover, we have natural equivalences, T
n�X

� x∗TX [−1] and L
n�X
[n−1]� x∗LX [n]

because the sequence:

T
n�X
T
n

� 0 x∗TX [n]

is fibred. This concludes the proof.

2.4. Relative cotangent complexes of linear stacks

This section is devoted to the study of relative cotangent complexes of linear stacks. Given

F ∈QC(X), a dualisable quasi-coherent sheaf over a derived Artin stack X, we consider

its associated linear stack, A(F) (see Definition 2.7), and the goal of this section is to
describe LA(F)�X

and its functoriality in F and X.

Proposition 2.25. Let X be a derived Artin stack and F ∈QC(X) a dualisable quasi-

coherent sheaf on X. We denote πX : A(F) → X the natural projection. Then we

have:

LπX
� LA(F)�X

� π∗
XF∨.
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Proof. We will show the result for any B -point y : Spec(B)→ A(F), and we write x =

π ◦y : Spec(B)→X. We will show that for all M ∈B−Mod connective, we have:

HomB−Mod

(
y∗LA(F)�X

,M
)
�HomB−Mod (x

∗F∨,M) .

First we observe that HomB−Mod

(
y∗LA(F)�X

,M
)

is equivalent, using the universal

property of the cotangent complex, to the following homotopy fibre at y :

hofibrey

(
HomdSt�X

(Spec(B⊕M),A(F))→HomdSt�X
(Spec(B),A(F))

)
with B ⊕M denoting the square zero extension and Spec(B ⊕M) → X being the

composition:

Spec(B⊕M) Spec(B) X.
p x

Thus, a map in HomB−Mod

(
y∗LA(F)�X

,M
)
is completely determined by a map:

Φ : Spec(B⊕M)→ A(F)

making the following diagram commute:

Spec(B)

Spec(B⊕M) A(F)

Spec(B) X.

i
y

Φ

p πX

x

Thus, we obtain that HomB−Mod

(
y∗LA(F)�X

,M
)
is equivalent to:

hofibresy
(
MapB⊕M−Mod (B⊕M,p∗x∗F)→MapB−Mod (B,x∗F)

)
,

where sy ∈MapB−Mod (B,x∗F) is the section associated to y : Spec(B)→A(F). The map
is then given by precomposition with i∗. We can now observe that p∗x∗F= x∗F⊕x∗F⊗B

M , and that:

MapB⊕M−Mod (B⊕M,p∗x∗F)�MapB−Mod (B,x∗F⊕x∗F⊗B M) .

We obtain:

HomB−Mod

(
y∗LA(F)�X

,M
)

� hofibre
(
MapB−Mod (B,x∗F⊕x∗F⊗B M)→MapB−Mod (B,x∗F)

)
�MapB−Mod (B,x∗F⊗B M)�MapB−Mod (x

∗F∨,M) .
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Now the result follows from the fact that the functor:

B−Mod Fun
(
B−Mod≤0,sSet

)
N MapB−Mod (N,•) .

is fully faithful and the fact that everything we did is natural in B.

Lemma 2.26. Let f :X → Y be a morphism of derived Artin stacks. We consider F ∈
QC(Y ) dualisable. Then there is a commutative square:

Φ∗LA(F)�X
LA(f∗F)�Y

Φ∗π∗
Y F

∨ π∗
Xf∗F∨

� �

�

with Φ the natural morphism in the following homotopy pullback:

A(f∗F)� f∗A(F) A(F)

X Y

Φ

πX πY

f

and the lower horizontal equivalence Φ∗π∗
Y F

∨ → π∗
Xf∗F∨ being the equivalence coming

from the fact that πY ◦Φ� f ◦πX .

Proof. The first thing we observe is that A(f∗F) � f∗A(F). We consider as before B -

points:

Spec(B) f∗A(F) A(F)

X Y.

y

ỹ

x

x̃

Φ

πX πY

f

We want to show that the following diagram is commutative:

HomB−Mod

(
y∗LA(f∗F)�X

,M
)

HomB−Mod

(
ỹ∗LA(F)�Y

,M
)

HomB−Mod (y
∗π∗

Xf∗F∨,M) HomB−Mod (ỹ
∗π∗

Y F
∨,M)

� �
. (5)
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Using the universal property of the cotangent complex, the top horizontal arrow is
naturally equivalent to the map:

hofibrey

(
HomdSt�X

(Spec(B⊕M),A(f∗F))→HomdSt�X
(Spec(B),A(f∗F))

)

hofibreỹ

(
HomdSt�Y

(Spec(B⊕M),A(F))→HomdSt�Y
(Spec(B),A(F))

)

induced by HomdSt (−,Φ). A map ψ : Spec(B⊕M)→ A(f∗F) in this homotopy fibre

fits in the following commutative diagram:

Spec(B)

Spec(B⊕M) A(f∗F) A(F)

Spec(B) X Y ,

y
ỹ

i

p

ψ

πX

Φ

πY

x f

and the map between the homotopy fibre sends ψ to Φ◦ψ. Since the underlying map of

ψ is πX ◦ψ : Spec(B⊕M)→X is x ◦ p and the underlying map of Φ ◦ψ is πY ◦Φ ◦ψ :

Spec(B⊕M) → Y is f ◦x ◦ p = x̃ ◦ p, this map between the homotopy fibre of derived
stacks is, therefore, naturally equivalent to the map:

hofibresy
(
MapB⊕M−Mod (B⊕M,p∗x∗f∗F))→HomB−Mod (B,p∗x∗f∗F)

)

hofibresỹ
(
MapB⊕M−Mod (B⊕M,p∗x̃∗F))→HomB−Mod (B,p∗x̃∗F)

)
,

where sy and sỹ are the sections associated to y and ỹ, respectively. This map is, in fact,
induced by the natural identification p∗x̃∗F � p∗x∗f∗F (since x̃ = f ◦x). But following

the steps of the proof of Proposition 2.25, this map is naturally equivalent to the map:

HomB−Mod (y
∗π∗

Xf∗F∨,M)→HomB−Mod (ỹ
∗π∗

Y F
∨,M) .

The natural equivalences we used are the natural equivalences used in the proof of
Proposition 2.25 which proves that the Diagram (5) is commutative. Now the result

follows once again from the fact that the functor:

B−Mod Fun
(
B−Mod≤0,sSet

)
N MapB−Mod (N,•)

is fully faithful and the fact that everything we did is natural in B.
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Lemma 2.27. Let X be a derived Artin stacks. We consider F,G ∈ QC(X) dualisable

and h : F→ G. Then there is a commutative square:

ĥ∗LA(G)�X
LA(F)�X

π∗
XG∨ π∗

XF∨

� �
π∗
Xh∨

with ĥ : A(G)→ A(F) the map induced by F.

Proof. Every step of the proof of Proposition 2.25 is functorial in F.

Proposition 2.28. Let f :X → Y be a morphism of derived Artin stacks. We consider

F ∈ QC(X) and G ∈ QC(Y ) dualisable and a morphism h : f∗F → G. Then there is a
commutative square:

LA(F)�X
f̂∗LA(G)�Y

π∗
XF∨ π∗

Xf∗G∨ = f̂∗π∗
Y G

∨

� �

π∗
Xh∨

.

Proof. It follows from Lemmas 2.26 and 2.27.

Proposition 2.29. The quasi-isomorphism απX
: TT∗[n]X�X

→ π∗
XLX [n] of Example

2.23 expressing the nondegeneracy of the canonical Lagrangian fibration on the shifted

cotangent stacks is the canonical quasi-isomorphism from Proposition 2.25.

Proof. First, since the cotangent bundle has a section, we have a split exact sequence:

π∗
XLX [n] LT∗[n]X [n] LT∗[n]X�X

[n].

Proposition 2.25 gives us canonical equivalences LT∗[n]X�X
[n]� π∗

XTX . With this data,

we can rewrite Diagram (4), up to weak equivalences, as the strictly commutative
diagram:

TT∗[n]X�X
π∗
XLX [n] 0

π∗
XLX [n]⊕π∗

XTX π∗
XTX ⊕π∗

XLX [n] π∗
XTX .

�

ω

Through the canonical equivalence TT∗[n]X�X
→ π∗

XLX [n] of Proposition 2.25, the

morphism TT∗[n]X�X
→ π∗

XLX [n]⊕π∗
XTX simply becomes the natural inclusion and ω

becomes the identity. This implies that απX
: TT∗[n]X�X

→ π∗
XLX [n] is the canonical

equivalence of Proposition 2.25.
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3. Symplectic geometry of the derived critical locus

In Subsections 3.1 and 3.2, we present a few results on the symplectic geometry of
homotopy pullbacks of derived Artin stacks. These results apply, in particular, to the

case of derived intersections of derived schemes. In Subsection 3.3, we study in more

detail the special case of derived intersections given by derived critical loci.

3.1. Lagrangian intersections are (n−1)-shifted symplectic

Proposition 3.1 ([12], Subsection 2.2). Let Z be a derived Artin stack with an n-
shifted symplectic structure ω. Let f : X → Z and g : Y → Z be morphisms with γ and

δ Lagrangian structures on f and g, respectively. Then the homotopy pullback X ×Z Y

possesses a canonical (n− 1)-shifted symplectic structure called the residue of ω and
denoted R(ω,γ,δ).

Remark 3.2. If we fix f and g as above, we can extend the previous theorem to obtain

the following map of spaces (see Theorem 2.4 in [4]):

Lag(f,n)×Symp(X,n)Lag(g,n)→ Symp(X×Z Y ,n−1).

Remark 3.3. Theorem 3.1 can also be seen as a consequence of the procedure of

composition of Lagrangian correspondences. Consider the following composition of
Lagrangian correspondences:

X×Z Y

X Y

� Z �.

The maps X → Z × �̄ and Y → Y × �̄ are Lagrangian correspondences because X →
Z and Y → Z are Lagrangian. Therefore, by composition, X ×Z Y → �× �̄ is also a

Lagrangian correspondence, thus, X ×Z Y → � is Lagrangian. From Lemma 2.19, since
the point is n-shifted symplectic, then X×Z Y is (n−1)-shifted symplectic.

3.2. Lagrangian fibrations and derived intersections

Proposition 3.4. Suppose we have a sequence L Y X
f g

of Artin stacks
and ω an n-shifted symplectic form on Y. Assume that f is a Lagrangian morphism

and g is a Lagrangian fibration. Then there is a canonical quasi-isomorphism TL�X
→

LL�X
[n−1].

Proof. Consider the following commutative diagram:

In the upper face, every square is bicartesian because both the outer square and the
rightmost square are bicartesian. Every nondashed vertical arrow is quasi-isomorphisms

by assumption (because of the various nondegeneracy conditions). Focusing on the right-

hand cube, it sends the upper homotopy bicartesian square to the bottom square,

https://doi.org/10.1017/S147474802200041X Published online by Cambridge University Press

https://doi.org/10.1017/S147474802200041X


A derived Lagrangian fibration on the derived critical locus 327

TL f∗TY (g ◦f)∗TX

TL�X
f∗TY�X

0

LL�Y
[n−1] f∗LY [n] f∗LY�X

[n]

LL�X
[n−1] (g ◦f)∗LX [n] 0.

� � �
� �

�

which is also homotopy bicartesian. The homotopy cofibre of (g ◦ f)∗LX [n] → f∗LY [n]

is f∗LY�X
[n], and we obtain a quasi-isomorphism (g ◦f)∗TX → f∗LY�X

[n] depicted as a

dashed arrow.

By the same reasoning, since the upper outer square is homotopy bicartesian, it maps

to the lower outer square that is also homotopy bicartesian. Moreover, the homotopy fibre
of the map LL�Y

[n− 1]→ f∗LY�X
[n] is exactly LL�X

[n− 1]. This proves that there is a

canonical quasi-isomorphism TL�X
→ LL�X

[n−1].

Theorem 3.5. Let Y be an n-shifted symplectic derived Artin stack. Let fi : Li → Y be

Lagrangian morphisms (for i = 1 · · ·2) and π : Y → X a Lagrangian fibration. Suppose

that the maps π ◦ fi : Li → X are weak equivalences. Then P : Z = L1 ×Y L2 → X is a
Lagrangian fibration.

Proof. We summarise the notation in the following diagram:

Z L1

L2 Y

X.

p1

Fp2 f1

f2

π

We also denote P := π ◦F : Z →X.
To show that we can obtain an isotropic structure, we will show that we have

a map of spaces (dropping at first the nondegeneracy condition of the Lagrangian

fibration):

Lag(f1,n)×Symp(Y ,n)Lag(f2,n)×Symp(Y ,n) IsoFib(π,n)→ IsoFib(P,n−1).

If we forget the nondegeneracy of the Lagrangian structure, we obtain an element in
Iso(f1,n)×Symp(Y ,n) Iso(f2,n)×Symp(Y ,n) IsoFib(π,n), and we can show, with formal
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manipulations of the pullbacks defining the spaces of isotropic structures and isotropic
fibrations, that:

Iso(f1,n)×Symp(Y ,n) Iso(f2,n)×Symp(Y ,n) IsoFib(π,n)

= �×A2,cl(L1,n)Symp(Y ,n)×A2,cl(L2,n) �×A2,cl(Y/X,n) �.

Using the pullback to A2,cl(L1×Y L2,n) we obtain a morphism:

Iso(f1,n)×Symp(Y ,n) Iso(f2,n)×Symp(Y ,n) IsoFib(π,n)→

�×A2,cl(L1×Y L2,n)A
2,cl(L1×Y L2,n)×A2,cl(L1×Y L2,n) �×A2,cl(Y/X,n) �.

This last space naturally maps to:

•

A2,cl(L1×Y L2,n−1) = �×A2,cl(L1×Y L2,n)A
2,cl(L1×Y L2,n)×A2,cl(L1×Y L2,n) �.

Moreover, if we restrict this map to nondegenerate isotropic structures, then it is
valued in Symp(L1×Y L2,n−1) (thanks to Theorem 3.1).

•

A2,cl(Y/X,n−1) = �×A2,cl(Y/X,n) �.

We have the commutative diagram:

A2,cl(L1×Y L2,n−1)×A2,cl(Y/X,n−1) A2,cl(Y/X,n−1)

A2,cl(L1×Y L2,n−1) A2,cl(L1×Y L2/X,n−1).

P∗

Since the map A2,cl(Y/X,n − 1) → A2,cl(L1 ×Y L2/X,n − 1) factors through

A2,cl(Li/X,n−1)� �, we get a morphism:

A2,cl(L1×Y L2,n−1)×A2,cl(Y/X,n−1)→A2,cl(L1×Y L2,n−1)×A2,cl(L1×Y L2/X,n−1) �.

Now if we restrict to Symp(L1×Y L2,n− 1) ⊂ A2,cl(L1×Y L2,n− 1) (which amounts

to restricting to nondegenerate isotropic structures), we get a map:

Symp(L1×Y L2,n−1)×A2,cl(Y/X,n−1)→ IsoFib(P,n−1).

Therefore, we get the desired map and we will consider the isotropic fibration on P

given by the image along the morphism we just described of the Lagrangian structures
and Lagrangian fibration structure given on f1, f2 and π, respectively. We are left

to prove the nondegeneracy condition. To do that, we first consider the following

diagram:
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TZ�X
p∗1TL1�X

⊕p∗2TL2�X
F ∗TY�X

TZ p∗1TL1
⊕p∗2TL2

F ∗TY

P ∗TX P ∗TX ⊕P ∗TX P ∗TX .

The vertical sequences and the last two horizontal sequences are fibred and, therefore,

so is the first horizontal sequence. The last two horizontal sequences are fibred because
the following diagrams are Cartesian:

TZ p∗1TL1

p∗2TL2
F ∗TY

TX TX

TX TX .

Using Proposition 3.4 and nondegeneracy, we get the following commutative

diagram:

TZ�X
p∗1TL1�X

⊕p∗2TL2�X
F ∗TY�X

P ∗LX [n−1]
(
p∗1TL1�X

⊕p∗2TL2�X

)
[n−1] P ∗LX [n],

where all vertical morphisms are quasi-isomorphisms. The fibre in the lower sequence is

exactly LX [n−1] because p∗1TL1�X
⊕p∗2TL2�X

� 0 since Li →X are equivalences. We will

call α : TZ�X
→ P ∗LX [n−1] the dashed equivalence obtained.

We still need to show that α is the morphism used in the criteria for the nondegeneracy

of the Lagrangian fibration. Recall that this morphism is given by means of the universal

map filling Diagram (4):

TZ�X
P ∗LX [n−1] 0

TZ LZ [n−1] LZ�X
[n−1].

αP

∼

To compare α and αP , we summarise the construction of α and all the equivalences

coming from nondegeneracy conditions in the following diagram:
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TZ p∗1TL1
⊕p∗2TL2

F ∗TY

TZ�X
p∗1TL1�X

⊕p∗2TL2�X
F ∗TY�X

LZ [n−1]
(
p∗1LL1�Y

⊕p∗2LL2�Y

)
[n−1] F ∗LY [n]

P ∗LX [n−1]
(
p∗1LL1�X

⊕p∗2LL2�X

)
[n−1] P ∗LX [n]

� � �

� � � ,

(6)

where all the vertical maps are quasi-isomorphism obtained from the nondegeneracy

conditions. We want to prove that αP and α are homotopic. The relevant data extracted
from Diagram (6) are:

TZ�X
P ∗LX [n−1] 0

TZ LZ [n−1] p∗1LL1�Y
[n−1]⊕p∗2LL2�Y

[n−1].

α

∼

The composition:

P ∗LX [n−1]→ LZ [n−1]→ p∗1LL1�Y
[n−1]⊕p∗2LL2�Y

[n−1]

factorises through 0� p∗1LL1�X
[n−1]⊕p∗2LL2�X

[n−1]. This implies that the map LZ [n−
1] → p∗1LL1�Y

[n− 1]⊕ p∗2LL2�Y
[n− 1] factorises through LZ�X

[n− 1] and, therefore, α

satisfies the same universal property as αP , proving that α and αP are homotopic.

Remark 3.6. Similarly to Proposition 3.1, this theorem can be extended to a map of

spaces:

Lag(f1,n)×Symp(Y ,n)Lag(f2,n)×Symp(Y ,n)LagFib(π,n)→ LagFib(P,n).

This is simply the restriction of the map described in the proof of Theorem 3.5 to the

nondegenerate elements. Forgetting the extra Lagrangian fibration recovers the map in
Remark 3.2, the following diagram is commutative:

Lag(f1,n)×Symp(Y ,n)Lag(f2,n)×Symp(Y ,n)LagFib(π,n) LagFib(P,n)

Lag(f1,n)×Symp(Y ,n)Lag(f2,n) Symp(L1×Y L2,n−1).
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3.3. Derived critical locus

Given a derived Artin stack X and a morphism f :X →A1
k, we define the derived critical

locus of f, denoted Crit(f), as the derived intersection of df : X → T ∗X with the zero

section 0 :X → T ∗X. It is given by the homotopy pullback:

Crit(f) X

X T ∗X.

df

0

(7)

Example 3.7. We recall from [3] that if X is a smooth algebraic variety, its derived

critical locus can be described, as a derived scheme, by the underlying scheme given by

the ordinary critical locus of f, that we denote S, together with the sheaf of cdga≤0 given

by the derived tensor product OX ⊗L
OT∗X

OX , restricted to S. This derived tensor product
is described by the homotopy pushout:

SymOX
(TX) OX

OX OX ⊗L
OT∗X

OX .

0

df

Taking the derived tensor product amounts to replacing the 0-section morphism

0 : SymOX
TX → OX by the equivalent cofibration, in the model category of

commutative differential graded k-algebras, SymOX
TX ↪→ SymOX

(TX [1]⊕TX), where

SymOX
(TX [1]⊕TX) has the differential induced by Id : TX [1]→ TX . Then we take the

strict pushout of this replacement. The use of these resolutions is well explained in [3] or

[18]. We obtain:

OCrit(f) :=
(
OX ⊗L

OT∗X
OX

)
|S �

(
SymOX

TX [1],ιdf
)
|S,

where ιdf is the differential on OCrit(f) given by the contraction along df . The restriction

to S denotes the fact that this is a derived scheme whose underlying scheme is the

strict critical locus. Observe that outside of the critical locus,
(
SymOX

TX [1],ιdf
)
is

cohomologically equivalent to 0.

Remark 3.8. If we do not assume that X is smooth in Example 3.7, then LX usually

has a nontrivial internal differential. As a sheaf of graded algebra, we still obtain

SymOX
(TX [1]) since the replacement is the same as a graded algebra, but the differential

is a priori different and involves a combination of the internal differential on TX and the
contraction ιdf .

Remark 3.9. From Example 2.9, we know that T ∗X carries a canonical symplectic

form of degree 0, and from Example 2.16, we know that both the 0-section and df have

a natural Lagrangian structure. From Proposition 3.1, the derived intersection of these
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Lagrangian structures, namely, the derived critical locus Crit(f), has a natural (−1)-

shifted symplectic structure.

Remark 3.10. When X is a derived Artin stack and df = 0, we have that Crit(f) �
T ∗[−1]X and ωCrit(f) form the canonical (−1)-shifted symplectic structure on T ∗[−1]X.

In this situation, the strict critical locus is X itself and the restriction to X of
SymOX

TX [1] is, therefore, SymOX
TX [1] itself (with the differential being induced by

the differential on TX). Thus, Crit(f)� SpecX
(
SymOX

TX [1]
)
= T ∗[−1]X.

Remark 3.11. We want to understand, in general, the (−1)-shifted symplectic form

on Crit(f). We use the universal property of the tautological 1-form (Lemma 2.10)

to see that (df)∗ω = 0 (with ω = dλX the canonical symplectic structure on T ∗X).

Using the resolution of the zero section, as in Example 3.7, ω induces a closed
2-form on SpecX

(
SymOX

(TX [1]⊕TX)
)
. Since the differential on the resolution,

SymOX
(TX [1]⊕TX), is induced by Id : TX → TX [1], the tautological 1-form ω−1 on

T ∗[−1]X induces a closed 2-form on SpecX
(
SymOX

(TX [1]⊕TX)
)
, which is a homotopy

between ω and 0. We then have that the (−1)-shifted symplectic form is described by

the self-homotopy of 0 given by ω−1:

0 p∗ω = 0.
ω−1

The proof of Proposition 3.1 (see Theorem 2.9 in [12]) tells us that ω−1 is the (–1)-

shifted symplectic form on Crit(f).

Remark 3.12. From Theorem 3.5, we have that π : Crit(f) → X is a Lagrangian

fibration. In the situation where df = 0 and X is smooth, this Lagrangian fibration

coincides with the canonical Lagrangian fibration on πX : T ∗[−1]X → X. In general,
the morphism απ controlling the nondegeneracy condition of the Lagrangian fibration

(see Diagram (4)) is still natural in the sense given by the following proposition.

Proposition 3.13. απ is equivalent to the following composition of equivalences:

TCrit(f)�X
TX�X

×TT∗X�X

TX�X
� 0×TT∗X�X

0 0×π∗
XLX

0� π∗LX [−1],
0×β0

(8)

where β is the dual of the canonical equivalence LT∗X�X
� π∗

XLX of Proposition 2.25.

Proof. The strategy, here, is to express the Diagram (4) as a pullback of the same type

of diagrams. It reduces the problem to proving the same statement but for the projection

πX : T ∗X →X. But this Proposition is known for the Lagrangian fibration on the shifted
cotangent stacks (this is a direct consequence of Proposition 2.29).

First we express LCrit(f)[−1] as a pullback above LT∗X . This can be done by observing

that all squares in the following diagram are bicartesians:
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LCrit(f)[−1] π∗
10

∗LT∗X�X
0

π∗
2df

∗LT∗X�X
π∗
10

∗LT∗X � π∗
2df

∗LT∗X π∗
2LX

0 π∗
1LX LCrit(f),

where π1 and π2 are the natural projections Crit(f)→X given by the pullback Diagram
(7). We write Diagram (4) for π :Crit(f)→X as:

0×TT∗X�X

0 0×π∗
XLX

0 0

TX ×TT∗X
TX LT∗X�X

×LT∗X
LT∗X�X

LT∗X�X
×LT∗X�X

LT∗X�X
.

απ�0×απX
0

Id×prId

In this diagram, pullbacks have been omitted to keep the diagram easy to read. We
need to describe the morphism ωCrit(f) : TX ×TT∗X

TX → LT∗X�X
×LT∗X

LT∗X�X
. Recall

from Remark 2.14 and the proof of the nondegeneracy in Proposition 3.1 that ωCrit(f)

is Θdf ×ωΘ0, where Θh : TX → Lh[−1]� LX�T∗X
[−1]� LT∗X�X

is the natural morphism

expressing the nondegeneracy of the Lagrangian structure (see Definition 2.13).

Finally, Proposition 2.29 shows that β is the same as απX
. This completes the proof.

4. Examples

4.1. One nondegenerate critical point

Let X be a smooth algebraic variety over k and f : X → A1
k a map which is smooth

everywhere except at a point x ∈X, where there is a nondegenerate critical point. The

goal is to understand the Lagrangian fibration on Crit(f) → X and show that it is
related to the Hessian quadratic form of f at x. This section is a particular case of

Subsection 4.2, and we only sketch what is happening in this case. We will be making the

statements more precise and giving complete proofs in Subsection 4.2.

The strict critical locus is � :=
(
�,OX�I

)
, where I is the ideal generated by the partial

derivatives of f, I = 〈df.v,v ∈ TX〉. There is a natural morphism x̃ := �→Crit(f), such

that the following diagram commutes:

�(−1) Crit(f)

X.

x

x̃

π

The ideal generated by the partial derivatives is maximal, and the partial derivatives

form a regular sequence. This implies that x̃ is an equivalence. For more details, this is

the analogue of Proposition 4.6. We can even prove (in the general context of Subsection
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4.2) that T ∗[−1]S (where S is the strict critical locus) is weakly equivalent to Crit(f).

This result will, however, not be needed for the general case.

Using Lemma 2.24, the Lagrangian fibration induced on �(−1) → X gives us a closed
2-form in A2,cl

(
��X,−2

)
, which induces a metric on TxX. The nondegeneracy of the

symmetric bilinear form is equivalent to the nondegeneracy of the Lagrangian fibration,

which says that the natural map x∗TX → x∗LX is a quasi-isomorphism. We will show
that this metric is in fact characterised by the Hessian quadratic form of f at the critical

point.

We want to describe the Lagrangian fibration obtained on � → X by pulling back

along x̃ the homotopy between ω−1�X and 0 in A2,cl
(
Crit(f)�X,−1

)
. We obtain a

homotopy between 0 and itself in A2,cl
(
��X,−1

)
. We will relate the Hessian quadratic

form with the map αx defined to describe the nondegeneracy condition of Lagrangian
fibrations (see Definition 2.21 and Diagram (4)). ForCrit(f) and �, this diagram becomes,

respectively:

TCrit(f)�X
π∗LX [−1] 0

TCrit(f) LCrit(f)[−1] LCrit(f)�X
[−1]

απ

ω�
−1

and:

T
�X
x∗LX [−1] 0

0 0 L
�X
[−1].

αx

These two diagrams are supposed to represent the same Lagrangian fibration. We

will pullback along x̃ the diagram for Crit(f) to the category of differential graded
k -vector space (i.e. QC(�)). We can compare αx and απ via the following commutative

diagram:

x̃∗TCrit(f)�X
x∗LX [−1] 0

T
�X
L
�X

� x∗LX [−1] 0

x̃∗TCrit(f) x̃∗LCrit(f)[−1] x̃∗LCrit(f)�X
[−1]

0 L
�X
⊕L
�X

[−1] L
�X
[−1] .

απ

∼

αx

ω�
−1

ψ ∼
∼

We can now look at these morphisms in local étale coordinates around x. We denote by

Xi coordinates in X, pi a basis of x∗TX and ξi its associated shifted basis in x∗TX [1]. We
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also denote by dXi the dual basis of pi. We write k〈a〉 := k〈a1, · · · ,an〉 for the k-vector

space with basis a1, · · · ,an. We get:

k〈∂ξ〉 k〈dX〉 0

k〈∂ξ〉 k〈dθ〉 0

k〈∂ξ,∂X〉 k〈dX,dξ〉 k〈dξ〉

0 k〈dθ,dξ〉 k〈dξ〉 .

απ

Id

αx

ω�
−1

ψ ∼∼

Here, dθ is the standard shifted variable added to make the following pullback square
a strict pullback:

k〈dθ〉 0

k〈dθ,dξ〉 k〈dξ〉.

This imposes δdξ = dθ. To make the full diagram strictly commutative, we must have

ψ(dξ) = dξ. And to make ψ a map of chain complexes, we must have ψ(dδξi) = δψ(dξi) =
δdξi = dθi, and, therefore, it imposes ψ(dXi) = Hess−1

x (f)(dXi)(dXj)dθj . This implies

that αx(∂ξi) = Hess−1
x (f)(dXi)(dXj)dθj .

4.2. Family of nondegenerate critical points

We consider a generalisation of the previous example where f may have a family of critical

points which are all nondegenerate in the directions normal to the critical locus.
Let us fix some notations. We denote by S the strict critical locus, which comes with

a closed immersion i : S → X, and whose algebra of functions is OS = OX�I with I =

〈df.v, v ∈ TX〉.
We assume that both X and S are smooth algebraic varieties. We denote by Crit(f)

the derived critical locus of f, and we get a canonical morphism λ : S →Crit(f).

In order to define the Hessian quadratic form and the nondegeneracy condition, we
need to assume that the closed immersion S ↪→X has a first order splitting. Concretely,

we assume all along in this section that the following fibre sequence splits:

TS i∗TX TS�X
[1]. (9)

This assumption is necessary to be able to restrict Q to the normal part TS�X
[1].
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Definition 4.1. The Hessian quadratic form is defined by the symmetric bilinear
map:

Q : Sym2
OS

i∗TX → OS

(w,v) �→ d(df.v).w.

We define nondegeneracy to be along the ‘normal’ direction to S, by considering the

following diagram:

TS i∗TX TS�X
[1]

LS�X
[−1] i∗LX LS .

0
Q 0Q̃ (10)

Both rows are split fibre sequences (by assumption in Diagram (9)). The left and

right vertical maps are the zero map because Q restricted to TS is zero and, since Q

is symmetric, Q composed with the projection to LS is also zero. We obtain a map Q̃
(using Q and following the section and retract of the fibre sequences) which corresponds

to the map induced by Q on the normal bundle. Then the nondegeneracy condition
is the requirement that Q̃ is a quasi-isomorphism.

Since the differential on OCrit(f) is δ = ιdf (see Remark 3.8), we have the commutative

diagram in QC(S):

i∗TX i∗OX

i∗LX .
Q

ιdf

d (11)

We will abusively write Q= d◦δ : i∗TX [1]→ i∗LX for the map of degree 1 corresponding

to the composition d◦ ιdf : i∗TX → i∗LX of degree 0.
In general, the natural map λ : S →Crit(f) is not an equivalence. This is due to the

fact that the partial derivatives of f will not, in general, form a regular sequence and,

therefore, Crit(f) has higher homology. The default to be a regular sequence comes from
vector fields that annihilate df . Such vector fields are, in fact, vector fields on S when

f is nondegenerate. With that idea in mind, we show that an equivalent description of

Crit(f) is given by T ∗[−1]S when Q is nondegenerate.

Proposition 4.2. There exists a natural map Φ : T ∗[−1]S → Crit(f) making the
following diagram commute:

T ∗[−1]S Crit(f)

S X.

πS

Φ

π

i

Proof. Under our first order splitting assumption (Diagram (9)), the natural map TS →
i∗TX admits a retract, and, therefore, the natural map i∗T ∗X → T ∗S admits a section:
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T ∗S ��� i∗T ∗X. We consider the following diagram:

T ∗X i∗T ∗X T ∗S

X S S.

0

i

0 0

We want to pullback these zero sections along the maps induced by df represented by the
vertical morphisms in the following commutative diagram:

T ∗X i∗T ∗X T ∗S

X S S.

df

i

i∗df=0 0

This induces the following morphisms between the pullbacks:

Crit(f) S×i∗T∗X S T ∗[−1]S.

We obtain a map Φ : T ∗[−1]S →Crit(f). The maps we obtain come from the universal

properties of the pullbacks, therefore, if we denote s0 : X → T ∗X the zero section, we

have s0 ◦ π ◦Φ = s0 ◦ i ◦ πS . If we compose by the projection πX : T ∗X → X, we get
π ◦Φ= i◦πS .

We see that Φ gives a relationship between the Lagrangian fibration structures on

T ∗[−1]S → S and Crit(f) → X, which we now analyse. The idea is to show that the
difference between these Lagrangian fibrations is, in fact, controlled by Q̃ (see Proposition

4.6 and Remark 4.8).

Lemma 4.3. We see Φ induces a morphism TT∗[−1]S�S
→ Φ∗TCrit(f)�X

that fits in the

commutative diagram:

TT∗[−1]S�S
Φ∗TCrit(f)�X

π∗
SLS [−1] Φ∗π∗LX [−1]� π∗

Si
∗LX [−1],

απS απ
(12)

where the bottom horizontal arrow is the pullback along πS of the section LS [−1] →
i∗LX [−1] in the dual of the split fibre sequence (9).

Proof. The homotopy pullback Crit(f) = X ×h
T∗X X lives over X. We get the equiva-

lences:

TCrit(f)�X
TX�X

×h
TT∗X�X

TX�X
�×h

TT∗X�X
� π∗LX [−1].� � �

Proposition 2.29 tells us that the canonical fibrations on the cotangent stacks are the

canonical ones and, therefore, behave functorially (using Proposition 2.28). This implies
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that the following commutative square is commutative:

TT∗S�S
TT∗X�X

π∗
SLS π∗

Si
∗LX,

βS βX

π∗
Ss

where s is the section in the dual of the split fibre sequence (9). From Proposition 3.13,
we know that both απS

and απ are the morphism induced by the morphisms βS and βX

via Diagram (8). We then obtain the commutative diagram:

TT∗[−1]S�S
0×h

TT∗S�S

0 π∗
SLS [−1]

Φ∗TCrit(f)�X
Φ∗

(
0×h

TT∗X�X

0

)
Φ∗π∗LX [−1],

� 0×h
βS

0

� 0×h
βX

0

where the composition of the horizontal maps are exactly απS
and απ thanks to

Proposition 3.13.

Lemma 4.4. We first remark that Φ∗LCrit(f) can be described, as a sheaf of graded
modules (forgetting the differential), by:

Φ∗LCrit(f) � SymOS
(TS [1])⊗OS

(i∗LX ⊕ i∗TX [1]),

where LX is generated by terms of the form dg with g ∈ OX and TX [1] is generated

by terms of the form dξ with ξ ∈ TX [1] ⊂ OCrit(f). Then, the internal differential on
Φ∗LCrit(f) is characterised by Q= d◦ ιdf via δ(dξ) =Q(ξ) and δ(dg) = 0.

Proof. The differential on SymOS
(TS [1])⊗OS

(i∗LX ⊕ i∗TX [1]) is OT∗[−1]S-linear because

ιdf is zero on TS [1]. Moreover, for ξ ∈ TX [1]⊂OCrit(f) = SymOX
TX [1], we have δ ◦d(ξ) =

d◦ δ(ξ) = d◦ ιdf (ξ) =Q(ξ) (see Diagram (11)) and for g ∈ OX , δ ◦d(g) = d◦ δg = 0.

Lemma 4.5. The composition:

π∗
Si

∗TX [−1] Φ∗TCrit(f)�X
Φ∗π∗LX [−1]

απ

is given by π∗
SQ. Similarly, the composition:

π∗
STS [−1] TT∗[−1]S�S

π∗
SLS [−1]

απS

is 0 (the restriction of π∗
SQ to S).

Proof. The left morphism is the morphism fitting in the fibre sequence:

π∗
Si

∗TX [−1] Φ∗TCrit(f)�X
Φ∗TCrit(f),
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which gives us:

π∗
Si

∗TX [−1] Φ∗TCrit(f)�X
Φ∗TCrit(f)

π∗
Si

∗TX [−1] Φ∗π∗LX [−1] Φ∗π∗LX [−1]⊕Φ∗π∗TX .

απ �

The second row can be seen as the extension (by π∗
S) of the fibre sequence:

i∗TX [−1] i∗LX [−1] i∗LX [−1]⊕ i∗TX .

Since X and S are smooth, i∗TX [−1] and i∗LX [−1] are both quasi-isomorphic to
complexes concentrated in a single degree. This imposes that the dashed arrow is

equivalent to the connecting morphism of the induced long exact sequence in cohomology.

Therefore, it is equivalent to the map that sends a section s in i∗TX [−1] to its differential,

in i∗LX [−1]⊕ i∗TX , which can, in turn, be seen as an element in i∗LX . More concretely,
denote s̃ any lift of s to an element in i∗LX [−2]⊕ i∗TX [−1]. Using Lemma 4.4, its

differential is given by:

Q(s) =Q(s̃) ∈ i∗LX [−1]⊂ i∗LX [−1]⊕ i∗TX .

We then apply π∗
S to get the sequence we want. The second part of the statement is

proven the same way.

Proposition 4.6. The map TT∗[−1]S →Φ∗TCrit(f) induced by Φ is an equivalence if and

only if Q is nondegenerate.

Proof. First, using the equivalences απ : Φ∗TCrit(f)�X
→ π∗

Si
∗LX [−1] and απS

:

Φ∗TT∗[−1]S�S
→ π∗

SLS [−1], we can show that the cofibre of TT∗[−1]S�S
→ Φ∗TCrit(f)�X

is

equivalent to π∗
SLS�X

[−2]. Then Lemmas 4.3 and 4.5 ensure that the upper half of the

following diagram is commutative:

π∗
STS [−1] π∗

Si
∗TX [−1] π∗

STS�X

TT∗[−1]S�S
Φ∗TCrit(f)�X

π∗
SLS�X

[−2]

TT∗[−1]S Φ∗TCrit(f) F.

Q̃

(13)

This diagram is then commutative and all rows and columns are cofibre sequences and,

in particular, F is both the homotopy cofibre of TT∗[−1]S →Φ∗TCrit(f) and the homotopy

cofibre of Q̃. In particular, the homotopy cofibre of Q̃ is zero if and only the homotopy
cofibre of TT∗[−1]S → Φ∗TCrit(f) is also zero.

We now decompose απ into a part along S and a part normal to S. This decomposition

is by means of split fibred sequences coming from the split fibre sequence (9).
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Proposition 4.7. When Q is nondegenerate, the maps expressing the nondegeneracy of
the Lagrangian fibrations fit in the commutative diagram:

TT∗[−1]S�S
TCrit(f)�X

TS�X

π∗
SLS [−1] π∗

Si
∗LX [−1] LS�X

[−1],

απS απ Q̃

where the rows are fibre sequences.

Proof. First, when Q is nondegenerate, the top horizontal sequence is fibred and comes
from the following diagram:

TT∗[−1]S�S
Φ∗TCrit(f)�X

π∗
STS�X

TT∗[−1]S Φ∗TCrit(f) 0

π∗
STS Φ∗i∗TX π∗

STS�X
[1],

where all rows and columns are fibred and the cofibre of the second row is 0 thanks to
Proposition 4.6 since we assumed that Q is nondegenerate. Using Lemmas 4.3 and 4.5,

we obtain the following commutative diagram:

π∗
STS [−1] Φ∗i∗TX [−1] π∗

STS�X

TT∗[−1]S�S
Φ∗TCrit(f)�X

π∗
STS�X

π∗
SLS [−1] Φ∗i∗LX [−1] π∗

SLS�X
[−2].

0 Q Q̃

απS απ

(14)

The only map the dashed arrow can be, in order to make the diagram commutative,

is Q̃.

Remark 4.8. If we do not assume Q nondegenerate, the cofibre F of the map TT∗[−1]S →
Φ∗TCrit(f) will be nonzero. We will denote by G the fibre of the natural map F→ TS�X

.
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Then we can rewrite Diagram (14) as:

π∗
STS [−1] Φ∗i∗TX [−1] π∗

STS�X

TT∗[−1]S�S
Φ∗TCrit(f)�X

G

π∗
SLS [−1] Φ∗i∗LX [−1] π∗

SLS�X
[−2].

0 Q Q̃

απS απ
αN

The map αN : G → π∗
SLS�X

[−2] represents the ‘difference’ between the maps απ and

απS
from the Lagrangian fibrations. αN is still related to Q̃ in the sense that the following

diagram is commutative:

TS�X

G LS�X
[−2].

Q̃

αN

Therefore, the restriction of αN to TS�X
is again Q̃.

Remark 4.9. As a nonexample, if we take f : A1 → A1 sending X to X3

3 , the basic

assumptions that made this section work are failing. The strict critical locus S is not

smooth since it is a fat point, and the sequence (9) does not split.

4.3. Derived zero locus of shifted 1-forms

Let X be a derived Artin stack and α ∈ A1 (X,n) be a 1-form. If Key(α) is nonempty,
Proposition 2.17 and Remark 2.18 ensure that the map α :X → T ∗[n]X is a Lagrangian

morphism. Using Theorem 3.5, the derived intersection Z(α) of α with the zero section

gives us a Lagrangian fibration Z(α)→X. This example is a generalisation of the derived
critical locus we described in Subsection 3.3.

4.4. G-Equivariant twisted cotangent bundles

For X a smooth scheme, a twisted cotangent stack is a twist of the ordinary cotangent

stack by a closed 1-form of degree 1 on X, α ∈ H1(X,Ω1
X). Such a closed form has

an underlying 1-form of degree 1 that corresponds to a morphism α : X → T ∗[1]X.

The twisted cotangent bundle associated to α is defined to be the following

pullback:

T ∗
αX X

X T ∗[1]X.

α

0
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We refer to [8] for more informations on the relation between this definition and the

usual definition of twisted cotangent bundles. This is a particular case of the situation in

Subsection 4.3, and, as such, T ∗
αX is 0-shifted symplectic and the map T ∗

αX →X has a
Lagrangian fibration structure.

Now take G, an algebraic group acting on the algebraic variety X. Consider a

character χ : G → Gm. We have the logarithmic form on Gm given by a map Gm →
A1,cl(−,0) which sends z to z−1dz. We get a closed 1-form on G described by the

composition:

G→Gm →A1,cl(−,0).

This is also a group morphism for the additive structure on A1,cl(−,0). We can,
therefore, pass to classifying spaces and obtain a 1-shifted closed 1-form on BG:

αχ :BG→BA1,cl(−,0) =A1,cl(−,1).

We can consider the pullback of αχ along the G-equivariant moment map:[
T ∗X�G

]
×[

g
∗
�G

]BG BG

[
T ∗X�G

] [
g∗�G

]
� T ∗[1]BG.

αχ

μ

It turns out that the moment map μ is Lagrangian (see [6]), which implies (with
Proposition 3.1) that this fibre product is 0-shifted symplectic. It turns out that we

have an equivalence of shifted symplectic derived Artin stacks:[
T ∗X�G

]
×[

g
∗
�G

]BG� T ∗
α̂

[
X�G

]
,

where α̂ denotes the pullback of αχ to a 1-form of degree 1 on
[
X�G

]
. Therefore, according

to Theorem 3.5, the natural projection:

T ∗
α̂

[
X�G

] [
X�G

]
is a Lagrangian fibration.
To show the equivalence above, we use the following composition of the following

Lagrangian correspondences (see Subsection 2.20):

• The Lagrangian structure on the section
[
X�G

]
→ T ∗[1]

[
X�G

]
:

[
X�G

]

� T ∗[1]
[
X�G

]
.

0
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• Using Example 2.3 in [6], and the fact that
[
X×g∗�G

]
�

[
X�G

]
×[
�G]

[
g∗�G

]
,

we obtain the Lagrangian correspondence:

[
X×g∗�G

]
�
[
X�G

]
×[
�G]

[
g∗�G

]

T ∗[1]
[
X�G

] [
g∗�G

]
� T ∗[1]

[
��G

]
.

• The Lagrangian obtain from the closed 1-form of degree 1, αχ:

BG

[
g∗�G

]
�.

αχ

We then compose these Lagrangian correspondences:

T ∗
α̂

[
X�G

]

[
T ∗X�G

] [
X�G

]

[
X�G

] [
g∗×X�G

]
BG

� T ∗[1]
[
X�G

] [
g∗�G

]
�.

αχ

The only thing we need to show is that this is a diagram of Lagrangian correspondences,

and, therefore, we need to show that all squares in this diagrams are pullbacks. The

rightmost square is clearly a pullback, and we can recognise the pullback square defining

T ∗
α̂

[
X�G

]
.

We are left to prove that we have a natural equivalence:[
X�G

]
×

T∗[1][X�G]

[
g∗×X�G

]
�
[
T ∗X�G

]
.

We can commute taking the quotient by (compatible) G-action and taking the fibre
products so we have that:[

X�G

]
×

T∗[1][X�G]

[
g∗×X�G

]
�
[
X�G

]
×

T∗[1][X�G]

[
X�G

]
×[
�G]

[
g∗�G

]
.
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We now use the fact that the self intersection of the 0 section in T ∗[1]
[
X�G

]
is

T ∗
[
X�G

]
. This implies that:[

X�G

]
×

T∗[1][X�G]

[
g∗×X�G

]
� T ∗

[
X�G

]
×[
�G]

[
g∗�G

]
.

We can now use the fact the following square is a pullback (Example 2.2.1 in [13]):

T ∗
[
X�G

]
BG

[
T ∗X�G

] [
g∗�G

]
.

0

μ

We use that to decompose T ∗
[
X�G

]
in a fibre product, and we obtain:[

X�G

]
×

T∗[1][X�G]

[
g∗×X�G

]
�
[
T ∗X�G

]
×[

g
∗
�G

] [��G]
×[
�G]

[
g∗�G

]
�
[
T ∗X�G

]
.
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