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Weak random periodic solutions of random
dynamical systems
Wei Sun and Zuo-Huan Zheng

Abstract. We first introduce the concept of weak random periodic solutions of random dynamical
systems. Then, we discuss the existence of such periodic solutions. Further, we introduce the definition
of weak random periodic measures and study their relationship with weak random periodic solutions.
In particular, we establish the existence of invariant measures of random dynamical systems by virtue
of their weak random periodic solutions. We use concrete examples to illustrate the weak random
periodic phenomena of dynamical systems induced by random and stochastic differential equations.

1 Introduction

Periodic solutions are a very active research topic of the qualitative theory of ordinary
differential equations. Given a dynamical system, it is important to investigate the
existence, number, and positions of periodic solutions as well as the behavior of
their nearby trajectories. For example, for polynomial vector fields in the plane, it
is essential to derive an upper bound of the number of limit cycles and discuss
their relative positions. This is the second part of Hilbert’s 16th problem. Another
example is the famous Poincaré–Bendixson theorem. It plays a fundamental role in
the qualitative theory of differential equations in the plane because it provides a useful
method to check the existence of periodic solutions and to find their positions (cf. [3,
10, 18, 19]). In the past 50 years, a lot of progress has been made for periodic solutions
and the global structure of dynamical systems (cf. [9, 11, 13, 15, 21–23, 26]).

When we study random dynamical systems, it is natural to consider the counter-
parts of fixed points and periodic solutions. In the literature, the counterparts are
called stationary solutions and random periodic solutions, respectively. Stationary
solutions have attracted lots of attention, and a series of results have been obtained
(cf. [2, 14, 17, 24]). In [25], Zhao and Zheng introduced for the first time the concept
of random periodic solutions and gave a sufficient condition for their existence.
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In [7], Feng and Zhao introduced random periodic measures and discussed the close
relationship between random periodic solutions and random periodic measures. We
call the reader’s attention to [5, 6, 8] for some other recent works on random periodic
solutions.

Note that the period T of the random periodic solutions introduced in [25] is
deterministic and uniform for all random paths ω. However, for many random
dynamical systems induced by random or stochastic differential equations, the solu-
tions exhibit some periodic behaviors, while the periods depend on ω. To deal with
these phenomena, we introduce in this paper the novel concept of weak random
periodic solutions. It is easy to see that any random periodic solution is a weak random
periodic solution. But, in general, a weak random periodic solution might not be a
random periodic solution.

The remainder of this paper is organized as follows. In Section 2, we introduce the
concept of weak random periodic solutions and present a useful criterion for their
existence. In Section 3, we give the definition of weak random periodic measures
and show that the existence of weak random periodic solutions implies the existence
of weak random periodic measures. Further, we establish the existence of invariant
measures for random dynamical systems by virtue of their weak random periodic
solutions. In Section 4, we use concrete examples to illustrate the weak random peri-
odic phenomena of dynamical systems induced by random and stochastic differential
equations.

2 Definition and existence of weak random periodic solutions

First, let us recall the concepts of fixed point and periodic solution. Let E be a Polish
space with Borel σ-algebra B(E). For a deterministic dynamical system Ψ ∶ R × E →
E, a fixed point is a point x ∈ E such that

Ψ(t)x = x , ∀t ∈ R.

A periodic solution with period T > 0 is aB(R)-measurable function Y ∶ R → E such
that

Ψ(t)Y(s) = Y(t + s), Y(t + T) = Y(t), ∀s, t ∈ R.

Suppose that Ψ ∶ R × Ω × E → E is a measurable random dynamical system on
(E ,B(E)) over a metric dynamical system (Ω,F, P, (θ t)t∈R). Then, for ω ∈ Ω,

Ψ(0, ω) = idE , Ψ(t + s, ω) = Ψ(t, θs ω)Ψ(s, ω), ∀s, t ∈ R.(2.1)

A stationary solution (cf. [2]) of Ψ is a random variable Y ∶ Ω → E such that for almost
all ω ∈ Ω,

Ψ(t, ω)Y(ω) = Y(θ t ω), ∀t ∈ R.

A random periodic solution with period T > 0 (see [7, 25]) is aB(R) × F-measurable
function Y ∶ R × Ω → E such that for almost all ω ∈ Ω,

Ψ(t, θs ω)Y(s, ω) = Y(t + s, ω), Y(s + T , ω) = Y(s, θT ω), ∀s, t ∈ R.
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Weak random periodic solutions of random dynamical systems 139

The period T in the above definition is nonrandom. For many applications, this is
not satisfactory. Here is a simple example. Suppose that X(ϖ) is a positive random
variable. Consider the following random differential equation (RDE):

d2x(t)
dt2 = sin(X(ϖ)(t + s)),(2.2)

where s ∈ R. The periodic solution of (2.2) is given by

x(t) = − sin(X(ϖ)(t + s))
X(ϖ)2 + r, r ∈ R,

whose period Tϖ = 2π
X(ϖ) is random.

To deal with the phenomenon of random periods, we now introduce the concept
of weak random periodic solution of a random dynamical system.

Definition 2.1 A weak random periodic solution of Ψ is a pair of measurable maps
Y ∶ R × Ω → E and T ∶ Ω → (0, ∞) such that for almost all ω ∈ Ω,

Ψ(t, θs ω)Y(s, ω) = Y(t + s, ω), Y(s + Tω, θ−T ω ω) = Y(s, ω), ∀s, t ∈ R.(2.3)

Obviously, if T is a constant map, then the weak random periodic solution is
reduced to the random periodic solution. For the existence of weak random periodic
solutions, we have the following useful criterion.

Proposition 2.2 If there exist measurable maps Y0 ∶ Ω → E and T ∶ Ω → (0, ∞) such
that for almost all ω ∈ Ω,

Y0(ω) = Ψ(Tω, θ−T ω ω)Y0(θ−T ω ω),(2.4)

then the random dynamical system Ψ has a weak random periodic solution.

Proof For ω ∈ Ω, define Y(0, ω) = Y0(ω) and

Y(t, ω) ∶= Ψ(t, ω)Y(0, ω), t ∈ R.(2.5)

Then, by (2.1), (2.4), and (2.5), we obtain that for almost all ω ∈ Ω,

Ψ(t, θs ω)Y(s, ω) = Ψ(t, θs ω)Ψ(s, ω)Y(0, ω)
= Ψ(t + s, ω)Y(0, ω)
= Y(t + s, ω), ∀s, t ∈ R,

and

Y(s, ω) = Ψ(s, ω)Y(0, ω)
= Ψ(s, ω)Ψ(Tω, θ−T ω ω)Y(0, θ−T ω ω)
= Ψ(s + Tω, θ−T ω ω)Y(0, θ−T ω ω)
= Y(s + Tω, θ−T ω ω), ∀s ∈ R.

Therefore, (Y , T) is a weak random periodic solution of Ψ. ∎
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We next consider the weak random periodic solution of a stochastic semiflow.
Denote

Δ = {(t, s) ∈ R2 ∶ s ≤ t}.

Let φ ∶ Δ × Ω × E → E be a stochastic semiflow. Then, for ω ∈ Ω,

φ(t, s, ω) = φ(t, u, ω) ○ φ(u, s, ω), ∀s ≤ u ≤ t,(2.6)

and

φ(s, s, ω) = idE , ∀s ∈ R.

Definition 2.3 A weak random periodic solution of φ is a pair of measurable maps
Y ∶ R × Ω → E and T ∶ Ω → (0, ∞) such that for almost all ω ∈ Ω,

φ(t, s, ω)Y(s, ω) = Y(t, ω), Y(s + Tω, θ−T ω ω) = Y(s, ω), ∀s ≤ t.(2.7)

3 Weak random periodic measures and invariant measures

Let Ψ be a measurable random dynamical system. Define

Υt(ω, x) = (θ t ω, Ψ(t, ω)x), ω ∈ Ω, x ∈ E , t ∈ R.

Denote by P(Ω × E) the set of all probability measures on (Ω × E ,F ⊗ B(E)).

Definition 3.1 A weak random periodic probability measure of Ψ is a pair of
measurable maps μ ∶ R × Ω → P(Ω × E) and T ∶ Ω → (0, ∞) such that for almost all
ω ∈ Ω,

Υt μ(s, ω) = μ(t + s, ω), μ(s + Tω, θ−T ω ω) = μ(s, ω), ∀s, t ∈ R.

Theorem 3.2 If a random dynamical system Ψ ∶ R × Ω × E → E has a weak random
periodic solution Y ∶ R × Ω → E and T ∶ Ω → (0, ∞), then it has a weak random
periodic probability measure. Additionally, if for almost all ω ∈ Ω,

Tω = T(θs ω), ∀s ∈ R,(3.1)

then Ψ has an invariant probability measure whose random factorization is supported
by

Lω ∶= {Y(s, θ−s ω) ∶ s ∈ [0, Tω)}.

Proof For s ∈ R and ω ∈ Ω, define

μ(s, ω)(A) = δY(s ,ω)(Aθ s ω), A ∈ F ⊗ B(E),

where Aω is the ω-section of A. Then, μ(s, ω) ∈ P(Ω × E).
We have

(Υ−1
t (A))ω = {x ∶ (θ t ω, Ψ(t, ω)x) ∈ A} = {x ∶ Ψ(t, ω)x ∈ Aθ t ω} = Ψ−1(t, ω)Aθ t ω .
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Then, by (2.3), we obtain that for almost all ω ∈ Ω,

Υt μ(s, ω)(A) = μ(s, ω)(Υ−1
t (A))

= δY(s ,ω)((Υ−1
t (A))θ s ω)

= δΨ(t ,θ s ω)Y(s ,ω)(Aθ t+s ω)
= δY(t+s ,ω)(Aθ t+s ω)
= μ(t + s, ω)(A)

and μ(s + Tω, θ−T ω ω)(A) = δY(s+T ω ,θ−T ω ω)(Aθ s ω)
= δY(s ,ω)(Aθ s ω)
= μ(s, ω)(A).

Thus, μ is a weak random periodic probability measure of Ψ.
For A ∈ F ⊗ B(E), define

μ̃(A) ∶= ∫
Ω

1
Tω ∫

T ω

0
μ(s, ω)(A)dsP(dω).

By (2.3), (3.1), and the measure preserving property of {θ t}, we get

μ̃(A) = ∫
R

∫
Ω

δs([0, Tω]) ⋅ δY(s ,ω)(Aθ s ω)
Tω

P(dω)ds

= ∫
R

∫
Ω

δs([0, Tω]) ⋅ δY(s+T ω ,θ−T ω ω)(Aθ s ω)
Tω

P(dω)ds

= ∫
R

∫
Ω

δs([0, Tω]) ⋅ δY(s+T ω ,θ−s−T ω ω)(Aω)
Tω

P(dω)ds

= ∫
Ω

∫
R

δs([0, Tω]) ⋅ δY(s+T ω ,θ−s−T ω ω)(Aω)
Tω

dsP(dω)

= ∫
Ω

∫
R

δs([Tω, 2Tω]) ⋅ δY(s ,θ−s ω)(Aω)
Tω

dsP(dω)

= ∫
R

∫
Ω

δs([Tω, 2Tω]) ⋅ δY(s ,θ−s ω)(Aω)
Tω

P(dω)ds

= ∫
R

∫
Ω

δs([Tω, 2Tω]) ⋅ δY(s ,ω)(Aθ s ω)
Tω

P(dω)ds

= ∫
Ω

1
Tω ∫

2T ω

T ω
μ(s, ω)(A)dsP(dω).

Repeating this argument, we can show that

μ̃(A) = ∫
Ω

1
Tω ∫

(k+1)(T ω)

k(T ω)
μ(s, ω)(A)dsP(dω), ∀k ∈ N,

which implies that

μ̃(A) = ∫
Ω

lim
N→∞

1
N ∫

N

0
δY(s ,ω)(Aθ s ω)dsP(dω)

= lim
N→∞

1
N ∫

N

0
∫

Ω
δY(s ,ω)(Aθ s ω)P(dω)ds.(3.2)
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By (2.3), (3.2), and the measure preserving property of {θ t}, we obtain that

Υt μ̃(A) = μ̃(Υ−1
t (A))

= lim
N→∞

1
N ∫

N

0
∫

Ω
δY(s ,ω)((Υ−1

t (A))θ s ω)P(dω)ds

= lim
N→∞

1
N ∫

N

0
∫

Ω
δΨ(t ,θ s ω)Y(s ,ω)(Aθ t+s ω)P(dω)ds

= lim
N→∞

1
N ∫

N

0
∫

Ω
δY(t+s ,ω)(Aθ t+s ω)P(dω)ds

= lim
N→∞

1
N ∫

N

0
∫

Ω
δY(s ,ω)(Aθ s ω)P(dω)ds

= μ̃(A).

Let πΩ ∶ Ω × E → Ω, πΩ(ω, x) = ω, be the projection onto Ω. By (3.2) and the
measure preserving property of {θ t}, we get μ̃ ○ π−1

Ω = P. Hence, μ̃ is an invariant
probability measure of Ψ (cf. [2, Definition 1.4.1]).

By (3.1) and the measure preserving property of {θ t}, we get

μ̃(A) = ∫
R

∫
Ω

δs([0, Tω]) ⋅ δY(s ,ω)(Aθ s ω)
Tω

P(dω)ds

= ∫
R

∫
Ω

δs([0, Tω]) ⋅ δY(s ,θ−s ω)(Aω)
Tω

P(dω)ds

= ∫
Ω

1
Tω ∫

T ω

0
δY(s ,θ−s ω)(Aω)dsP(dω).

Then, the random factorization of μ̃ is given by

(μ̃)ω = 1
Tω ∫

T ω

0
δY(s ,θ−s ω)ds,

which is supported by Lω . Therefore, the proof is complete. ∎

We now consider weak random periodic measures and invariant measures of a
semiflow φ. Define E ∶= R × E and

Ψ(t, ω)(s, x) = (t + s, φ(t + s, s, θ−s ω)x), ω ∈ Ω, s ∈ R, x ∈ E , t ≥ 0.

Then, Ψ ∶ [0, ∞) × Ω × E → E is a measurable random dynamical system on
(E ,E(E)) over the metric dynamical system (Ω,F, P, (θ t)t∈R). Assume that φ has a
weak random periodic solution (Y , T). Define

Y(s, ω) = (s, Y(s, ω)), ω ∈ Ω, s ∈ R,

and

ηt(s, x) = (t + s, x), ω ∈ Ω, s, t ∈ R, x ∈ E .

Then, by (2.7), we obtain that for almost all ω ∈ Ω,

Ψ(t, θs ω)Y(s, ω) = Y(t + s, ω), Y(s + Tω, θ−T ω ω) = ηT ω ○ Y(s, ω), s ∈ R, t ≥ 0.
(3.3)
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Define

Υt(ω, s, x) = (θ t ω, Ψ(t, ω)(s, x)), ω ∈ Ω, s ∈ R, x ∈ E , t ≥ 0,

and η̃t(ω, s, x) = (ω, t + s, x), ω ∈ Ω, s, t ∈ R, x ∈ E .

Denote by P(Ω × E) the set of all probability measures on (Ω × E ,F ⊗ B(E)). Let
πΩ ∶ Ω × E → Ω, πΩ(ω, (s, x)) = ω, be the projection onto Ω.

Definition 3.3 A weak random periodic probability measure of φ is a pair of
measurable maps μ ∶ R × Ω → P(Ω × E) and T ∶ Ω → (0, ∞) such that for almost all
ω ∈ Ω,

Υt μ(s, ω) = μ(t + s, ω), μ(s + Tω, θ−T ω ω) ○ η̃T ω = μ(s, ω), ∀s ∈ R, t ≥ 0.

Theorem 3.4 If a stochastic semiflow φ ∶ Δ × Ω × E → E has a weak random periodic
solution Y ∶ R × Ω → E and T ∶ Ω → (0, ∞), then it has a weak random periodic
probability measure. If in addition (3.1) holds for almost all ω ∈ Ω, then there exists
a weak-invariant probability measure μ̃ on F ⊗ B(E) satisfying μ̃ ○ π−1

Ω = P,

Υt μ̃(A) = μ̃(A), ∀A ∈ F ⊗ {∅,R} × B(E), t ≥ 0,

and its random factorization is supported by

Lω ∶= {Y(s, θ−s ω) ∶ s ∈ [0, Tω)}.

Proof For s ∈ R and ω ∈ Ω, define

μ(s, ω)(A) = δY(s ,ω)(Aθ s ω), A ∈ F ⊗ B(E),

where Aω is the ω-section of A. Then, μ(s, ω) ∈ P(Ω × E).
We have

(Υ
−1
t (A))ω = {(s, x) ∶ (θ t ω, Ψ(t, ω)(s, x)) ∈ A}

= {(s, x) ∶ Ψ(t, ω)(s, x) ∈ Aθ t ω}

= Ψ
−1(t, ω)Aθ t ω .

Then, by (3.3), we obtain that for almost all ω ∈ Ω,

Υt μ(s, ω)(A) = μ(s, ω)(Υ
−1
t (A))

= δY(s ,ω)((Υ−1
t (A))θ s ω)

= δΨ(t ,θ s ω)Y(s ,ω)(Aθ t+s ω)
= δY(t+s ,ω)(Aθ t+s ω)
= μ(t + s, ω)(A)

and
μ(s + Tω, θ−T ω ω)(η̃T ω A) = δY(s+T ω ,θ−T ω ω)((η̃T ω A)θ s ω)

= δηT ω○Y(s ,ω)(ηT ω Aθ s ω)
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= δY(s ,ω)(Aθ s ω)
= μ(s, ω)(A).

Thus, μ is a weak random periodic probability measure of φ.
For A ∈ F ⊗ B(E), define

μ̃(A) ∶= ∫
Ω

1
Tω ∫

T ω

0
μ(s, ω)(A)dsP(dω).

Then, by using (3.3) and following the same argument of the proof of Theorem 3.2,
we can complete the proof. ∎

4 Examples

In this section, we use examples to illustrate the weak random periodic phenomena
of dynamical systems induced by random and stochastic differential equations.

First, we investigate the periodic behavior of RDEs of type (2.2) by virtue of weak
random periodic solutions.

Example 4.1 Let X(ϖ) be a positive random variable and ak , bk ∈ R, 1 ≤ k ≤ N , for
some N ∈ N. Consider the following RDE:

d2x(t)
dt2 =

N
∑
k=1

[ak sin(kX(ϖ)(t + s)) + bk cos(kX(ϖ)(t + s))],(4.1)

where s ∈ R. Note that equation (4.1) is equivalent to

{dx1(t) = x2(t)dt,
dx2(t) = {∑N

k=1[ak sin(kX(ϖ)(t + s)) + bk cos(kX(ϖ)(t + s))]} dt.(4.2)

Denote by ν the distribution of X(ϖ). Define

V = {(x , y) ∶ x ∈ (0, ∞), y ∈ [0, 2π
x

)} .

We equip (V ,B(V)) with the probability measure PV :

PV (A) = ∫
∞

0
∫
∞

0

x1A(x , y)
2π

d yν(dx), A ∈ B(V).

Define

gx , y(t) =
N

∑
k=1

[ak sin(kx(t + y)) + bk cos(kx(t + y))], t ∈ R, (x , y) ∈ V ,

and

Ω = {gx , y ∶ (x , y) ∈ V}.

Set J ∶ V ↦ Ω, J(x , y) = gx , y . Define

F = J(B(V)), P = PV ○ J−1 ,
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and

θ t ω(s) = ω(t + s), ω ∈ Ω, s, t ∈ R.

Then, (Ω,F, P, (θ t)t∈R) is a metric dynamical system and equation (4.2) is equivalent
to the following RDE:

{dx1(t) = x2(t)dt,
dx2(t) = ω(t)dt.(4.3)

The random dynamical system Ψ ∶ R × Ω × R
2 → R

2 induced by equation (4.3) is
given by

Ψ(t, gx , y)(x1 , x2)

= (x1 + x2 t −
N

∑
k=1

ak[sin(kx(t + y)) − kxt cos(kx y) − sin(kx y)]
k2x2

−
N

∑
k=1

bk[cos(kx(t + y)) + kxt sin(kx y) − cos(kx y)]
k2x2 ,

x2 +
N

∑
k=1

−ak[cos(kx(t + y)) − cos(kx y)] + bk[sin(kx(t + y)) − sin(kx y)]
kx

) ,

where t ∈ R, (x , y) ∈ V , and (x1 , x2) ∈ R2. Fix a B(R)-measurable function h ∶ R →
R. For t ∈ R and (x , y) ∈ V , define

Y(t, gx , y)

= (h(x) −
N

∑
k=1

ak sin(kx(t + y)) + bk cos(kx(t + y))
k2x2 ,

N
∑
k=1

−ak cos(kx(t + y)) + bk sin(kx(t + y))
kx

)(4.4)

and

T gx , y = 2π
x

.

Then, (Y , T) is a weak random periodic solution of Ψ. Further, by Theorem 3.2, we
know that Ψ has an invariant probability measure.

Remark 4.2 Theorem 3.2 shows that, if a random dynamical system has a weak
random periodic solution, then it has an invariant probability measure induced by this
solution. On the other hand, Example 4.1 shows that different weak random periodic
solutions can be obtained for the same random dynamical system through choosing
different functions h in (4.4). It is interesting to consider how weak random periodic
solutions affect the ergodicity of random dynamical systems.

Next, we consider a system of RDEs driven by periodic multiplicative noises.
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Example 4.3 Suppose that d ≥ 1. Denote by C(R;Rd ) and C1(R;Rd ) the spaces
of all continuous and continuously differentiable Rd -valued functions on R, respec-
tively. We equip C(R;Rd ) with topology of locally uniform convergence. Define
Ω = C1(R;Rd ) and

F = {A ∩ Ω ∶ A ∈ B(C(R;Rd ))}.

For ω = (ω1 , . . . , ωd ) ∈ Ω and s, t ∈ R, set (θ t ω)(s) = ω(t + s) − ω(t).
We choose ω1 , ω2 , ⋅ ⋅ ⋅ ∈ Ω with periods T1 < T2 < ⋯, respectively, and a1 , a2 , ⋅ ⋅ ⋅ ∈

(0, ∞) satisfying ∑∞n=1 an = 1. Define

Ωn ∶= {θ t ωn ∶ 0 ≤ t < Tn}, n ∈ N.

Denote byL the Lebesgue measure onR. We define a probability measure P on (Ω,F)
by

P (Ω ∖
∞
⋃
n=1

Ωn) = 0,

and

P({θ t ωn ∶ t ∈ A}) = anL(A)
Tn

, ∀A ∈ B([0, Tn)), n ∈ N.

Set

Tω = Tn , ∀ω ∈ Ωn , n ∈ N,

and

Tω = 1, ∀ω ∉
∞
⋃
n=1

Ωn .

Then, {θ t} are P-measure preserving and T ∶ Ω → (0, ∞) is a measurable map such
that for almost all ω ∈ Ω,

ω(s + Tω) = ω(s), ∀s ∈ R.

Let A be a d × d hyperbolic matrix and σ = (σi j)1≤i , j≤d with σi j ∶ Rd → R being
Lipschitz-continuous and satisfying σi j(x) = o(∣x∣) as ∣x∣ → ∞. Consider the RDE

dx(t) = Ax(t)dt + σ(x(t))dω(t).(4.5)

By [1, Theorem 22.1], we know that (4.5) has a Tn-periodic solution for each ωn , which
is denoted by x(t, ωn). For s, t ∈ R, define

Y(t, θs ωn) = x(t + s, ωn).

Then, (Y , T) is a weak random periodic solution of the random dynamical system
induced by equation (4.5). Further, by Theorem 3.2, we know that this random
dynamical system has an invariant probability measure.

The third example is concerned with a random dynamical system induced by
stochastic differential equations (SDEs), which is an extension of the example given
by Zhao and Zheng (see [25, Section 2]).
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Example 4.4 Let Ω ∶= C(R;R) and {ω(t)}t∈R be a one-dimensional two-sided
Brownian motion on the path space (Ω,B(Ω), P) with θ being the shift operator
(θ t ω)(s) = ω(t + s) − ω(t) for s, t ∈ R. We define an equivalence relation ∼ on Ω
by ω ∼ ω′ if and only if there exists t ∈ R such that ω′ = θ t ω. For ω ∈ Ω, denote by
[ω] the equivalence class of ω. Let Ω′ ∶= Ω/ ∼ be the quotient space of Ω, B(Ω′) ∶=
{∪ω∈F {[ω]} ∶ F ∈ B(Ω)}, and P′ be the induced image measure of P on (Ω′ ,B(Ω′)).

Before stating the example, we present a proposition. To the best of our knowledge,
this is a novel result in the literature, which is of independent interest.

Proposition 4.5 (Ω′ ,B(Ω′), P′) is isomorphic (mod 0) to [0, 1] with the Lebesgue
measure.

Proof We equip Ω with the locally uniform metric:

d(ω1 , ω2) ∶=
∞

∑
n=1

1
2n max
−n≤t≤n

(∣ω1(t) − ω2(t)∣ ∧ 1), ω1 , ω2 ∈ Ω.

Then, Ω is a Polish space. By [20, pp. 14 and 24], we know that Ω is a Lebesgue space
(also called standard probability space or Lebesgue–Rohlin probability space). Note
that (Ω,B(Ω)) is countably generated (cf. [16, Sections 1 and 2] for the definition
of countably generated). Let {On , n ∈ N} be a sequence of open subsets of Ω which
generatesB(Ω) and separates Ω. Define O′n ∶= ∪ω∈On {[ω]}, n ∈ N. Then, {O′n , n ∈ N}
generates B(Ω′) and separates Ω′. Hence, (Ω′ ,B(Ω′)) is also countably generated.
Further, by [4, Theorem 3.2], we conclude that (Ω′ ,B(Ω′), P′) is a Lebesgue space.

It is known that any Lebesgue space is isomorphic (mod 0) to an interval with
Lebesgue measure, a finite or countable set of atoms, or a combination (disjoint union)
of both (see [20, p. 20]). Then, to show that (Ω′ ,B(Ω′), P′) is isomorphic (mod 0)
to [0, 1] with the Lebesgue measure, it suffices to prove that the probability space
(Ω′ ,B(Ω′), P′) has no atom, equivalently, P([w]) = 0 for almost all ω ∈ Ω. Note that

[w] = {θ t ω ∶ t ∈ [0, ∞)} ∪ {θ t ω ∶ t ∈ (−∞, 0]}.

By symmetry, it suffices to show that for almost all ω ∈ Ω,

P∗({θ t ω∣[0,∞) ∶ t ∈ [0, ∞)}) = 0,

where P∗ is the restriction of P on C[0, ∞).
Define

A = {ω ∈ C[0, ∞) ∶ lim sup
t→∞

ω(t) = ∞ and lim inf
t→∞

ω(t) = −∞} .

It is well known that P∗(A) = 1. Fix an ω0 ∈ A. We choose 0 < t1 < t2 < ∞ such that
ω0(t1) = ω0(t2) = 0 and

m1 ∶= max
0≤u≤t1

ω0(u) > 0, m2 ∶= max
t1≤u≤t2

ω0(u) > 0.

Then, there exists ε > 0 such that

m1 = max
ε≤u≤t1+ε

ω0(u), m2 = max
t1+ε≤u≤t2+ε

ω0(u).
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Define

B = {ω ∈ C[0, ∞) ∶ [ max
t1≤u≤t2

ω(u)] − [ max
0≤u≤t1

ω(u)] = m2 − m1} .

Then,

{θ t ω0 ∶ t ∈ [0, ε)} ⊂ B.(4.6)

For ω ∈ C[0, ∞), we have

[ max
t1≤u≤t2

ω(u)] − [ max
0≤u≤t1

ω(u)]

= [ max
t1≤u≤t2

{ω(u) − ω(t1)}] − [ max
0≤u≤t1

{ω(u) − ω(t1)}]

= [ max
0≤v≤t2−t1

{ω(t1 + v) − ω(t1)}] − [ max
0≤v≤t1

{ω(t1 − v) − ω(t1)}]

∶= M2 − M1 .

It is known that M2 and M1 are two independent continuous random variables such
that (cf. [12, p. 96])

P∗(M2 ∈ dx) = 2√
2π(t2 − t1)

e−
x2

2(t2−t1) dx , P∗(M1 ∈ dx) = 2√
2πt1

e−
x2
2t1 dx; x > 0.

Then, P∗(B) = 0, which together with (4.6) implies that

P∗({θ t ω0 ∶ t ∈ [0, ε)}) = 0.

Applying the similar argument, we can show that for any s ≥ 0, there exists εs > 0
such that

P∗({θ t(θs ω0) ∶ t ∈ [0, εs)}) = 0,

which implies that

P∗({θ t ω0 ∶ t ∈ [s, s + εs)}) = 0, ∀s ≥ 0.(4.7)

Define

C = sup{c ∶ P∗({θ t ω0 ∶ t ∈ [0, c)}) = 0}.

Then, by (4.7), we obtain that C = ∞. Hence,

P∗({θ t ω0 ∶ t ∈ [0, ∞)}) = 0.

Since ω0 ∈ A is arbitrary, we conclude that for almost all ω ∈ Ω,

P∗({θ t ω∣[0,∞) ∶ t ∈ [0, ∞)}) = 0.

Therefore, (Ω′ ,B(Ω′), P′) is isomorphic (mod 0) to [0, 1] with the Lebesgue mea-
sure. ∎

We consider the SDE

{dx(t) = {x(t) − y(t) − x(t)[x2(t) + y2(t)]}dt + x(t) ○ dω(t),
d y(t) = {x(t) + y(t) − y(t)[x2(t) + y2(t)]}dt + y(t) ○ dω(t),(4.8)
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where ○dω(t) denotes the Stratonovich stochastic integral. Using polar coordinates

x = ρ cos(2πα), y = ρ sin(2πα),

we can transform equation (4.8) on R
2 to the following equation on [0, ∞) × [0, ∞):

{dρ(t) = [ρ(t) − ρ3(t)]dt + ρ(t) ○ dω(t),
dα(t) = 1

2π dt.(4.9)

Equation (4.9) has a unique closed form solution as follows:

ρ(t, α0 , ρ0 , ω) = ρ0e t+ω(t)

(1 + 2ρ2
0 ∫

t
0 e2s+2ω(s)ds) 1

2
, α(t, α0 , ρ0 , ω) = α0 + t

2π
.

One can check that

ρ∗(ω) = (2 ∫
0

−∞
e2s+2ω(s)ds)

− 1
2

is the stationary solution of the first equation of (4.9), i.e.,

ρ(t, α0 , ρ∗(ω), ω) = ρ∗(θ t ω).

By Proposition 4.5, we can choose a surjective measurable map T ′ ∶ Ω′ → (0, ∞).
Define Tω ∶= T ′[ω] for ω ∈ Ω. Then, T is a measurable map on Ω. Define

Ψ∗(t, ω)(α0 , ρ0) = ((α0 + t
Tω

) mod 1, ρ(t, α0 , ρ0 , ω)) .

We find that
Ψ∗(0, ω)(α , ρ) = (α , ρ), Ψ∗(t + s , ω) = Ψ∗(t , θ s ω)Ψ∗(s , ω), ∀(α , ρ) ∈ [0, 1) × [0,∞), s , t ∈ R.

Hence, Ψ∗(t, ω) = (Ψ∗1 (t, ω), Ψ∗2 (t, ω)) defines a random dynamical system on the
cylinder [0, 1) × [0, ∞). Next, we transform the random dynamical system Ψ∗ back
to R

2. For (x , y) ∈ R2 , x = ρ cos(2πα), y = ρ sin(2πα), define
Ψ(t , ω)(x , y) = (Ψ∗2 (t , ω)(α , ρ) ⋅ cos[2πΨ∗1 (t , ω)(α , ρ)], Ψ∗2 (t , ω)(α , ρ) ⋅ sin[2πΨ∗1 (t , ω)(α , ρ)]) .

Now, we investigate weak random periodic solutions of the random dynamical
system Ψ. Fix an α0 ∈ [0, 1) and define

Y(t, ω) = (ρ∗(θ t ω) cos [2πα0 + 2πt
Tω

] , ρ∗(θ t ω) sin [2πα0 + 2πt
Tω

]) .

Then, we have

Ψ(Tω, θ−T ω ω)Y0(θ−T ω ω)
= Ψ(Tω, θ−T ω ω)(ρ∗(θ−T ωω) cos(2πα0), ρ∗(θ−T ωω) sin(2πα0))
= (Ψ∗2 (Tω, θ−T ω ω) ⋅ cos[2πΨ∗1 (Tω, θ−T ω ω)(α0 , ρ∗(θ−T ωw))],

Ψ∗2 (Tω, θ−T ω ω) ⋅ sin[2πΨ∗1 (Tω, θ−T ω ω)(α0 , ρ∗(θ−T ωw))])

= (ρ(Tω, α0 , ρ∗(θ−T ωw), θ−T ω ω) ⋅ cos [2π ((α0 + Tω
T(θ−T ω ω) ) mod 1)] ,
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ρ(Tω, α0 , ρ∗(θ−T ωw), θ−T ω ω) ⋅ sin [2π ((α0 + Tω
T(θ−T ω ω) ) mod 1)])

= (ρ∗(ω) cos(2πα0), ρ∗(ω) sin(2πα0))
= Y0(ω),

which implies that (2.4) holds. Therefore, by Proposition 2.2, we find that (Y , T) is
a weak random periodic solution of Ψ. Further, by Theorem 3.2, we conclude that Ψ
has an invariant probability measure.

Remark 4.6 By Proposition 4.5, we know that there are different choices of the
random period map T ′. Hence, Example 4.7 implies that the weak random periodic
solution of a random dynamical system is not necessarily a random periodic solution
defined as in [7, 25].

The last example is related to SDEs in random environments.

Example 4.7 Let Z be an N-valued random variable on a probability space
(Ω1 ,F1 , P1). Suppose that d ≥ 1, Ω2 ∶= C(R;Rd ), and {ω2(t)}t∈R is a d-dimensional
two-sided Brownian motion on the path space (Ω2 ,B(Ω2), P2) with θ2 being
the shift operator (θ2,t ω2)(s) = ω2(t + s) − ω2(t) for s, t ∈ R. Let m ∈ N, Tn > 0,
bn , i ∶ R × R

m → R, σn , i j ∶ R × R
m → R, 1 ≤ i ≤ m, 1 ≤ j ≤ d, n ∈ N. Suppose

bn , i (t + Tn , x) = bn , i (t, x), σn , i j(t + Tn , x) = σn , i j(t, x), t ∈ R, x ∈ Rm , n ∈ N.

Assume that, for each n ∈ N, the stochastic semiflow φn induced by the following SDE
has a random periodic solution {Yn(t, ω2)} with period Tn :

dxn(t) = bn(t, xn(t))dt + σn(t, xn(t))dw2(t).

We refer the reader to [5–8] for some concrete examples of random periodic solutions
of nonautonomous SDEs.

Let (Ω,F, P) = (Ω1 ,F1 , P1) × (Ω2 ,B(Ω2), P2) and θ t(ω1 , ω2) = (ω1 , θ2,t(ω2)).
We consider the following SDE in random environment:

dx(t) = bZ (t, x(t))dt + σZ (t, x(t))dw2(t),

which induces a stochastic semiflow φ:

φ(t, s, ω1 , ω2) = φZ(ω1)(t, s, ω2), (ω1 , ω2) ∈ Ω, s ≤ t.

Define

T(ω1 , ω2) = TZ(ω1), Y(t, ω1 , ω2) = YZ(ω1)(t, ω2), (ω1 , ω2) ∈ Ω, t ∈ R.

Then, (Y , T) is a weak random periodic solution of φ, which has a weak-invariant
probability measure by Theorem 3.4.
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