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Harmonic Measure and Elliptic Measures

For the harmonic measure in the plane, see [221]. Toro’s survey [424] discusses
relations between geometric measure theory and harmonic measure both in the
plane and in higher dimensions.

11.1 Harmonic Measure

Let Ω � Rn be an open connected subset of Rn, n ≥ 2. We assume that ∂Ω is
not too small; it is not a polar set. This is true if Hn−1(∂Ω) > 0. By classical
potential theory, see, for example, [28], for any continuous function f on ∂Ω
one can solve the Dirichlet problem to find a harmonic function uf in Ω with
boundary values f , in a generalized sense if ∂Ω is not sufficiently nice. Fixing
p ∈ Ω for a while, the Riesz representation theorem and the maximum principle
can be used to show that there is a probability measure ωp

Ω
∈ M(∂Ω) such that

u f (p) =
∫

f dωp
Ω
. (11.1)

Then u(p) =
∫

u dωp
Ω

if u is continuous in Ω and harmonic in Ω. The measure
ω

p
Ω

is called the harmonic measure of Ω at p. It depends on p, but by the
Harnack inequality for any two points p, q ∈ Ω, the measures ωp

Ω
and ωq

Ω
are

comparable.
According to Kakutani’s probabilistic characterization, ωp

Ω
(A) is the proba-

bility that the Brownian traveller starting from p hits A before hitting any other
part of the boundary. This helps to visualize the fact that in the case of com-
plicated boundaries ωp

Ω
lives on parts of the boundary which are more easily

accessible from Ω. A more precise statement in the plane is a result of Wolff
[442] saying that harmonic measure lives on a set of sigma-finiteH1 measure.
The corresponding statement in R3 is false by his example in [443]. However,
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100 Harmonic Measure and Elliptic Measures

Bourgain [79] proved that in Rn it lives on a set of dimension at most n − ε(n),
where ε(n) is a small positive constant, whose best value is unknown.

From the point of view of this survey, the main question is: what are the
relations between harmonic measure and the geometry of the boundary? More
precisely, for E ⊂ ∂Ω does rectifiability of E imply something on the harmonic
measure on E, and conversely, do some properties of the harmonic measure
lead to rectifiability? The first general result was proved already in 1916 by
the Riesz brothers: if Ω ⊂ R2 is simply connected and H1(∂Ω) < ∞, then ωp

Ω

and H1 ∂Ω are mutually absolutely continuous. Here the whole boundary
is rectifiable, but Bishop and Jones extended this in [66] by showing that if
Ω ⊂ R2 is simply connected and E ⊂ ∂Ω∩Γ, where Γ is a rectifiable curve, then
ω

p
Ω

(E) = 0 if and only if H1(E) = 0. They used Jones’s travelling salesman
Theorem 3.16 for this.

In the plane, complex analytic tools are very effective, but in higher dimen-
sions quite different methods are required and the situation is in many ways
different. First, the analogue of the Riesz brothers theorem fails. Ziemer con-
structed in [447] a domain in R3 whose boundary is 2-rectifiable – it even has
an ordinary tangent plane at each point – and it has finiteH2 measure, butH2

is not absolutely continuous with respect to harmonic measure. To the other di-
rection, Wu showed in [444] that there exists a domainΩ ⊂ R3 and E ⊂ ∂Ω∩V ,
where V is a plane, with positive harmonic measure and H2(E) = 0, even
dim E = 1.

Starting from Dahlberg [130] in 1977 and Lipschitz boundaries and followed
by David, Jerison, Kenig and Semmes and more general boundaries in the
1980s, a great number of people have produced results in the spirit that various
geometric properties of the boundary imply absolute continuity of harmonic
measure, often with quantitative estimates such as being an A∞ weight. Uni-
form rectifiability of the boundary alone is not sufficient to get such results by
an example of Bishop and Jones in [66]. But starting with some natural geo-
metric conditions of the boundary, uniform rectifiability often comes into play
leading to, or even characterizing, quantitative properties of the harmonic mea-
sure. Commonly used conditions are corkscrew and Harnack chain conditions.
Roughly speaking, the former says that every ball centred in the boundary
contains a ball of comparable size inside the domain and the latter that any two
points in the domain can be joined with a chain of balls whose size is compa-
rable to the distance to the boundary. The corkscrew condition is automatically
satisfied if Ω = Rn \ E, where E is AD-m-regular, for any 0 < m < n.

The proof of the following theorem was completed by Azzam, Hofmann,
Martell, Mourgoglou and Tolsa in [36]. The authors explain by several ex-
amples that the result is in many ways optimal. It is a culmination of a long
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11.1 Harmonic Measure 101

process involving many other people and articles, see [36, 235] for the history,
references and other related results. In particular, that A∞ implies uniform rec-
tifiability was proved earlier by Hofmann and Martell, see [235], where this is
obtained even for the non-linear p-harmonic equation.

Theorem 11.1 Let Ω satisfy the corkscrew condition and have AD-(n − 1)-
regular boundary. Then ∂Ω is uniformly rectifiable and satisfies the weak local
John condition if and only if ωp

Ω
is locally in weak A∞.

The weak local John condition is a quantitative connectivity condition say-
ing, roughly, that each point of Ω can be connected to a large subset of the
boundary by rectifiable curves in Ω staying away from the boundary. That ωp

Ω

is locally in weak A∞ means that there is s > 0 such that for every x ∈ ∂Ω and
0 < r < d(∂Ω)/4,

ω
p
Ω

(A) �
(

Hn−1(A)
Hn−1(∂Ω ∩ B(x, r))

)s

ω
p
Ω

(∂Ω ∩ B(x, 2r))

for all p ∈ Ω \ B(x, 4r) and for all Borel sets A ⊂ ∂Ω ∩ B(x, r).
The local weak A∞ condition is known to be equivalent to the quantitative

solvability of the Lp Dirichlet problem.
Let us now look at a qualitative rectifiability criterion. After many partial

results by several people, Azzam, Hofmann, Martell, Mayboroda, Mourgoglou,
Tolsa and Volberg proved in [35]:

Theorem 11.2 Let p ∈ Ω and E ⊂ ∂Ω withHn−1(E) < ∞.

(1) If ωp
Ω

E � Hn−1 E, then ωp
Ω

E is (n − 1)-rectifiable.
(2) IfHn−1 E � ω

p
Ω

E, then E is (n − 1)-rectifiable.

By the Radon–Nikodym theorem, it is easy to see that these statements are
equivalent. For example, if (1) holds and Hn−1 E � ω

p
Ω

, then Hn−1 E =
gωp
Ω

for some non-negative function g on E for which g(x) > 0 forHn−1 almost
all x ∈ E. Then ωp

Ω
� Hn−1 {x ∈ E : g(x) > 0}, and it follows from (1) that

E is (n − 1)-rectifiable.
The key to the proof of Theorem 11.2 is the relation between the Green

function and the Riesz transform and Theorem 10.4 of Nazarov, Tolsa and
Volberg. In classical potential theory, the Green function GΩ : Ω × Ω \ {(p, x):
p = x} → R is a basic tool to study harmonic measure. It is harmonic in
both variables separately. For a fixed p ∈ Ω, G(p, ·) has zero boundary values.
At x = p, it has the same singularity as the fundamental solution Γ of the
Laplacian, which is a constant multiple of |x|2−n, if n ≥ 3, and of log |x|, if
n = 2. More precisely, Γ(p − x) − GΩ(p, x) is a harmonic function of x in Ω.
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102 Harmonic Measure and Elliptic Measures

For nice domains, the harmonic measure is absolutely continuous with respect
to the surface measure, and its density is given by the normal derivative of the
Green function. By (11.1), the Green function can be written as

GΩ(p, x) = Γ(p − x) −
∫

Γ(p − x) dωp
Ω

x, p, x ∈ Ω, x � p.

Since ∇Γ = cRn−1, we have

∇xGΩ(p, x) = cRn−1(p − x) − c
∫

Rn−1(p − x) dωp
Ω

x, p, x ∈ Ω, x � p. (11.2)

As in (1) of Theorem 11.2 suppose that ωp
Ω

E � Hn−1 E, so that we have
ω

p
Ω

E = gHn−1 E for some non-negative g. Given M > 0, it is enough
to prove that EM := {x ∈ E : 1/M < g(x) < M} is (n − 1)-rectifiable. One
could then hope that, similarly to the case of nice boundaries, the left-hand side
of (11.2) would have enough boundedness to give boundedness for the Riesz
transform when x ∈ EM . In this very general case this is not clear at all, but
the authors of [35] managed to show something like this. A bit more precisely,
they again used generalized dyadic cubes, now from [143] since there is no
doubling, and they showed using (11.2) that there are enough cubes Q to cover
a large part of EM such that the truncated Riesz transform Rn−1

ω
p
Ω
,r(Q)

(x) with a

suitable r(Q) is bounded for x ∈ Q, with a quantitative bound. This allows us to
apply a T (b)-theorem of Nazarov, Treil and Volberg to get the L2(ωp

Ω
)-

boundedness of the Riesz transform on a subset of EM with positive measure.
From this an application of Theorem 10.4 yields rectifiability.

There are also results on two-phase problems involving rectifiability. The
following was proved by Azzam, Mourgoglou, Tolsa and Volberg in [39], and
the paper [38] contains a quantitative version:

Theorem 11.3 Let Ω1 and Ω2 be disjoint open connected subsets of Rn and
E ⊂ ∂Ω1 ∩ ∂Ω2 a Borel set such that ωp1

Ω1
and ω

p2

Ω2
, pi ∈ Ωi, are mutually

absolutely continuous on E. Then E contains an (n − 1)-rectifiable subset F
such that ωpi

Ωi
(E \ F) = 0 and ωp1

Ω1
and ωp2

Ω2
are mutually absolutely continuous

with respect toHn−1 F.

The proof uses an interesting blow-up argument involving tangent mea-
sures and the Alt–Caffarelli–Friedman monotonicity formula for pairs of sub-
harmonic functions applied to the Green functions. This method was intro-
duced by Kenig, Preiss and Toro in [275], where a partial result and deep
information about harmonic measures was obtained. The proof also relies on
Theorem 11.2, and so on the Nazarov–Tolsa–Volberg Riesz transform Theo-
rems 10.2 and 10.4, and on the result of Girela–Sarrión and Tolsa in [226].
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11.2 Elliptic Measures in Codimension 1

The previous section dealt with the Laplace equation Δu = 0. It is natural to ex-
pect that the results would have analogues for more general elliptic equations,
and this indeed is the case. Assuming that Ω is a uniform domain, Hofmann,
Martell, Mayboroda, Toro and Zhao [239] characterized the A∞ property with
uniform rectifiability for elliptic measures corresponding to equations with op-
timal conditions for the coefficients. Prat, Puliatti and Tolsa proved in [381]
an analogue of Theorem 11.2 for such elliptic measures with Hölder continu-
ous coefficients using their singular integral results mentioned in Section 10.2.
Then the same arguments as for the Laplace equation work.

Cao, Hidalgo-Palencia and Martell [86] investigated corona decompositions
associated with quite general elliptic measures. They showed, among other
things, that these are equivalent to square function estimates as in Theorem
9.12, also to a weaker form of them, which are equivalent to uniform rectifiabil-
ity. The boundary of the domain is assumed to be AD-regular and to satisfy the
cork-screw condition.

11.3 Elliptic Measures in Codimension Bigger Than One

If E ⊂ Rn is a closed set with Hn−2(E) < ∞, then it is polar. In particular, if
E ⊂ ∂Ω, then ωp

Ω
(E) = 0 and the properties of the harmonic measure are in no

way related to the geometric properties of E. The same is true for the elliptic
equations as above. But considering suitable degenerate elliptic equations, a
rich theory can be developed. This was realized and done by David, Feneuil
and Mayboroda and their co-authors in many papers, only some of which are
listed in the references.

Let E ⊂ Rn be AD-m-regular for some integer 0 < m < n − 1. The standard
ellipticity conditions (10.5) and (10.6) for a measurable n × n matrix-valued
function A are now replaced by

|ξ|2 � d(E, x)n−m−1A(x)ξ · ξ for all ξ, x ∈ Rn, (11.3)

d(E, x)n−m−1A(x)ξ · ζ � |ξ||ζ | for all ξ, ζ, x ∈ Rn. (11.4)

The authors developed in [142] a comprehensive theory for the degenerate
elliptic operators L = − div(A∇) analogous to the classical theory, including –
among others – solutions of the Dirichlet problem with continuous boundary
data, the corresponding elliptic measure ωp

L and its basic properties, and the
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104 Harmonic Measure and Elliptic Measures

existence and properties of the Green function and its relations to the elliptic
measure. As remarked before, in the classical theory one often needs some
conditions for the boundary to prevent it from being too massive. Here they
are not needed. The AD-m-regularity with m < n − 1 automatically gives the
corkscrew and Harnack chain conditions.

To get absolute continuity of the elliptic measure on Lipschitz graphs or
more general sets, one needs stronger assumptions on A, also in the classical
theory. I now restrict to a particular operator, which is the authors’ replacement
of the Laplacian. Again there is a weight like d(E, x)n−m−1, but this seems to
be too rough and it is replaced by a regularized distance Dα,μ, where α > 0
is a parameter and μ = Hm E or some other AD-m-regular measure with
support E:

Dα,μ(x) =

(∫

|x − y|−m−α dμy

)−1/α

.

AD-regularity easily implies that Dα,μ(x) ∼ d(E, x).
The elliptic operator attached to μ is given by

Lα,μ = − div(Dm+1−n
α,μ ∇). (11.5)

Denote now simply by ωp the elliptic measure related to Lα,μ and some base
point p ∈ Rn \ E. In this setting David and Mayboroda proved in [144]:

Theorem 11.4 If E is uniformly m-rectifiable, m ≤ n − 2, then ωp � μ.
Moreover ωp ∈ A∞(μ), which means that for every ε > 0 there is δ > 0 such
that if x ∈ E, r > 0 and F ⊂ E ∩ B(x, r) is a Borel set, then

ωp(F)
ωp(E ∩ B(x, r))

< δ =⇒ μ(F)
μ(E ∩ B(x, r))

< ε, (11.6)

where p ∈ Rn \ E is such that d(E, p) ∼ |p − x| ∼ r.

In [206], Feneuil gave a different simpler proof.
The converse of Theorem 11.4 fails completely for α = n − m − 2, then

m < n − 2. In this case, ω ∈ A∞(μ) for any AD-m-regular measure μ, and m
need not even be an integer. We shall say a bit more about this soon. The above
authors believe that this value of α is a unique exception and the converse
should be true for the other values.

In addition to extending from codimension one to general dimensions, the
work of David, Feneuil, Mayboroda and their co-authors contains several in-
teresting new results and phenomena also for codimension one. I present here
two new characterizations of uniform rectifiability. Now m can be any integer
with 0 < m < n.

https://doi.org/10.1017/9781009288057.012 Published online by Cambridge University Press

https://doi.org/10.1017/9781009288057.012
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In [140], David, Engelstein and Mayboroda characterized uniform rectifia-
bility in terms of the distance Dα,μ in the spirit of Theorems 9.11 and 9.12.

Theorem 11.5 Let E ⊂ Rn be AD-m-regular. Then E is uniformly rectifiable
if and only if

d(x, E)m+2−n|∇(|∇Dα,μ|2)(x)|2dx (11.7)

is a Carleson measure on Rn \ E.

The ‘only if’ direction uses Tolsa’s α’s, recall Theorem 5.10; (11.7) vanishes
if μ is a flat measure and the uniform rectifiability leads to approximation of μ
with flat measures. For the converse direction, the starting idea is that if (11.7)
vanishes then ∇Dα,μ is constant, from which it follows, but with a lot of work,
that μ is m-flat. They also characterized the rectifiability of E in terms of the
non-tangential limits of ∇|Dα,μ|.

Another characterization is in terms of the Green functions. Let Gα,μ be
the Green function corresponding to Lα,μ with the pole at ∞. If E is an m-
plane, then Gα,μ(x) = cd(E, x), and the elliptic measure is a constant multiple
of Hm E. Uniform rectifiability means that E is well approximated by m-
planes, and this turns out to be equivalent to Gα,μ being well approximated by
distances to m-planes:

Theorem 11.6 Let E ⊂ Rn be an unbounded AD-m-regular set. When m =
n − 1, assume also the corkscrew and Harnack chain conditions. Then E is
uniformly rectifiable if and only if for every ε > 0 and M > 1 the set E ×
(0,∞)\G(ε,M) is a Carleson set, where G(ε,M) is the set of (x, r) ∈ E×(0,∞)
such that there are an affine m-plane V and c > 0 for which

|d(y,V) − cGα,μ(y)| ≤ εr for y ∈ (Rn \ E) ∩ B(x,Mr).

This is a special case of the results proved by David and Mayboroda in
[145]. Again the proof of the ‘only if’ direction uses Tolsa’s α’s. For the con-
verse direction we have Gα,μ(y) = 0 when y ∈ E, which immediately gives
some approximation of E by planes. So it is a good starting point, but it only
gives a weak geometric lemma, and many more arguments are needed to get
the bilateral approximation, recall Theorem 5.7.

The result in [145] is more general in that the authors considered much more
general degenerate elliptic operators. They also have similar results with the
regularized distance for m = n − 1, where d(y,V) − cGα,μ(y) is replaced by
Dβ,μ(y) − cGa,μ(y), β > 0. Then they can start with any n − 2 < m < n and the
Carleson estimates force m to be an integer.

For m < n−2 and α = n−m−2, the smallness of |Dα,μ−cGa,μ| or the absolute
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continuity of the elliptic measure do not imply any kind of rectifiability, as was
already stated after Theorem 11.4. The reason is that then by direct computa-
tion Lα,μDα,μ =

1
α
ΔRα,μ, where, when α = n −m − 2, Rα,μ(x) =

∫

|x − y|2−n dμy
is harmonic, so Lα,μDα,μ = 0, from which it follows by the uniqueness of the
Green function that Gα,μ is a constant multiple of Dα,μ. This leads to ωLα,μ ∼ μ.
Further, if E is m-rectifiable, using basic properties of rectifiable sets, it follows
that ωLα,μ = cHm E. The details can be found in [140].
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