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Abstract
Let G be a finite group. Let 𝐻, 𝐾 be subgroups of G and 𝐻\𝐺/𝐾 the double coset space. If Q is a probability on
G which is constant on conjugacy classes (𝑄(𝑠−1𝑡𝑠) = 𝑄(𝑡)), then the random walk driven by Q on G projects to a
Markov chain on 𝐻\𝐺/𝐾 . This allows analysis of the lumped chain using the representation theory of G. Examples
include coagulation-fragmentation processes and natural Markov chains on contingency tables. Our main example
projects the random transvections walk on 𝐺𝐿𝑛 (𝑞) onto a Markov chain on 𝑆𝑛 via the Bruhat decomposition. The
chain on 𝑆𝑛 has a Mallows stationary distribution and interesting mixing time behavior. The projection illuminates
the combinatorics of Gaussian elimination. Along the way, we give a representation of the sum of transvections in
the Hecke algebra of double cosets, which describes the Markov chain as a mixture of Metropolis chains. Some
extensions and examples of double coset Markov chains with G a compact group are discussed.
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1. Introduction

This paper develops tools which allow projecting a random walk on a group to a Markov chain on
special equivalence classes of the group. Fourier analysis on the group can then be harnessed to give
sharp analysis of rates of convergence to stationarity for the Markov chain on equivalence classes. We
begin with a motivating example.
Example 1.1 (Coagulation-fragmentation processes). In chemistry and physics, coagulation-
fragmentation processes are models used to capture the behavior of ‘blobs’ that combine and break
up over time. These processes are used in population genetics to model the merging and splitting of fam-
ily groups. A simple mean field model considers n unlabeled particles in a partition 𝜆 = (𝜆1, . . . , 𝜆𝑘 ),
𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝑘 > 0,

∑𝑘
𝑖=1 𝜆𝑖 = 𝑛. At each step of the process, a pair of particles is chosen uniformly

at random and the partition evolves according to the rules:
1. If the particles are in distinct blocks, combine the blocks.
2. If the particles are in the same block, break the block uniformly into two blocks.
3. If the same particle is chosen twice, do nothing.
This defines a Markov chain on partitions of n. Natural questions are:
◦ What is the stationary distribution 𝜋(𝜆)?
◦ How does the process evolve?
◦ How long to reach stationarity?
All of these questions can be answered by considering the random transpositions process on the
symmetric group 𝑆𝑛. The transition probabilities for this process are constant on conjugacy classes, the
conjugacy classes are indexed by partitions and the conjugacy class containing the current permutation
of the walk evolves as the coagulation-fragmentation process on partitions. The answers are (see
section 2.3):
◦ The stationary distribution is 𝜋(𝜆) =

∏𝑛
𝑖=1 1/(𝑖𝑎𝑖𝑎𝑖!) for a partition 𝜆 with 𝑎𝑖 parts of size i.

◦ Starting at 𝜆 = 1𝑛, the pieces evolve as the connected components of a growing Erdős-Rényi random
graph process: Initially there are n vertices and no edges. Random edges are added to the graph so
that the connected components correspond to the parts of a partition 𝜆 of n. This works as long as
there are no repeated edges (𝑖, 𝑗) (so for number of steps of smaller order than n). Repeated edges can
be easily handled so that there is a tight connection between the growth of the random graph and the
random transpositions Markov chain. In particular, random transpositions mix in order (1/2)𝑛 log 𝑛,
which is the same amount of time for the random graph to become connected. See [6] for more details.

◦ It takes order 𝑛 log 𝑛 steps to reach stationarity.
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The coagulation-fragmentation process is a special case of a double coset walk: Let G be a finite
group, 𝐻, 𝐾 subgroups of G. The equivalence relation

𝑠 ∼ 𝑡 ⇐⇒ ℎ𝑠𝑘 = 𝑡, ℎ ∈ 𝐻, 𝑘 ∈ 𝐾

partitions the group into double cosets 𝐻\𝐺/𝐾 . Let 𝑄(𝑠) be a probability measure on G. That is,
0 ≤ 𝑄(𝑠) ≤ 1 for all 𝑠 ∈ 𝐺 and

∑
𝑠∈𝐺 𝑄(𝑠) = 1. Further assume 𝑄(𝑠) is a class function: It is constant

on conjugacy classes, that is, 𝑄(𝑠) = 𝑄(𝑡−1𝑠𝑡) for all 𝑠, 𝑡 ∈ 𝐺. Then Q defines a random walk on G by
repeated multiplication of random elements chosen according to Q. In other words, the random walk is
induced by convolution, 𝑄∗𝑘 (𝑠) =

∑
𝑡 ∈𝐺 𝑄(𝑡)𝑄∗(𝑘−1) (𝑠𝑡−1) and a single transition step has probability

𝑃(𝑥, 𝑦) = 𝑄(𝑦𝑥−1).
This random walk induces a random process on the space of double cosets. While usually a function

of a Markov chain is no longer a Markov chain, in this situation the image of the random walk on
𝐻\𝐺/𝐾 is Markov. Section 2.2 proves the following general result. Throughout, we pick double coset
representatives 𝑥 ∈ 𝐺 and write x for 𝐻𝑥𝐾 .

Theorem 1.2. For 𝑄(𝑠) = 𝑄(𝑡−1𝑠𝑡) a probability on G, the induced process on 𝐻\𝐺/𝐾 is Markov with
the following properties.

1. The transitions are

𝑃(𝑥, 𝑦) = 𝑄(𝐻𝑦𝐾𝑥−1), 𝑥, 𝑦 ∈ 𝐻\𝐺/𝐾.

2. The stationary distribution is

𝜋(𝑥) = |𝐻𝑥𝐾 |
|𝐺 | .

3. If 𝑄(𝑠−1) = 𝑄(𝑠), then P is reversible with respect to 𝜋:

𝜋(𝑥)𝑃(𝑥, 𝑦) = 𝜋(𝑦)𝑃(𝑦, 𝑥).

Further, suppose Q is concentrated on a single conjugacy class C (that is, 𝑄(𝑠) = 𝛿C (𝑠)/|C |). Then the
Markov chain P has the following properties.

1. The eigenvalues of P are among the set {
𝜒𝜆(C)
𝜒𝜆(1)

}
𝜆∈𝐺

,

where 𝐺 is the set of all irreducible representations of G and 𝜒𝜆 is the character of the irreducible
representation indexed by 𝜆.

2. The multiplicity of 𝜒𝜆 (C)/𝜒𝜆(1) is

𝑚𝜆 = 〈𝜒𝜆 |𝐻 , 1〉 · 〈𝜒𝜆 |𝐾 , 1〉,

where 〈𝜒𝜆 |𝐻 , 1〉 is the number of times the trivial representation appears when 𝜒𝜆 is restricted to H.
3. For any time ℓ > 0, ∑

𝑥∈𝐻\𝐺/𝐾
𝜋(𝑥)‖𝑃ℓ

𝑥 − 𝜋‖2
𝑇𝑉 ≤ 1

4

∑
𝜆≠1

𝑚𝜆

���� 𝜒𝜆(C)
𝜒𝜆(1)

����2ℓ .
This theorem shows that the properties of the induced chain are available via the character theory

of G. It is proved with variations and extensions in Section 2.2. The main example is introduced next.
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Example 1.3 (𝐺𝐿𝑛 (𝑞) and Gaussian elimination). Fix a prime power q, and let 𝐺𝐿𝑛 (𝑞) be the invertible
𝑛 × 𝑛 matrices over F𝑞 . Let 𝐻 = 𝐾 = B be the Borel subgroup: upper-triangular matrices in 𝐺𝐿𝑛 (𝑞). A
classical result is the Bruhat decomposition,

𝐺𝐿𝑛 (𝑞) =
⊔
𝜔∈𝑆𝑛

B𝜔B,

where𝜔 is the permutation matrix for the permutation 𝜔 ∈ 𝑆𝑛. This decomposition shows that the double
cosets B\𝐺𝐿𝑛 (𝑞)/B are indexed by permutations. As explained in Section 2.5 below, the permutation
𝜔 associated to 𝑀 ∈ 𝐺𝐿𝑛 (𝑞) is the ‘pivotal’ permutation when M is reduced to upper-triangular form
by row reduction (Gaussian elimination).

The set of transvections T𝑛,𝑞 is the conjugacy class containing the basic row operations 𝐼 + 𝜃𝐸𝑖 𝑗 ;
here, 𝜃 ∈ F𝑞 , and 𝐸𝑖 𝑗 is the matrix with a 1 in position (𝑖, 𝑗) and zeroes everywhere else (so 𝐼 + 𝜃𝐸𝑖 𝑗

acts by adding 𝜃 times row i to row j). Hildebrand [35] gave sharp convergence results for the Markov
chain on 𝐺𝐿𝑛 (𝑞) generated by the class function Q which gives equal probability to all transvections.
He shows that n steps are necessary and sufficient for convergence to the uniform distribution for any
q. Of course, convergence of the lumped chain on B\𝐺𝐿𝑛 (𝑞)/B might be faster. The results we found
surprised us. Careful statements are included below. At a high level, we found:
◦ Starting from a ‘typical’ state 𝑥 ∈ 𝑆𝑛, order log 𝑛/log 𝑞 steps are necessary and sufficient for

convergence. This is an exponential speed-up from the original chain.
◦ Starting from 𝑖𝑑, order n steps are necessary and sufficient for convergence.
◦ Starting from 𝜔0, the reversal permutation, order log 𝑛/(2 log 𝑞) steps are necessary and sufficient

for convergence.
To simplify the statement of an honest theorem, let us measure convergence in the usual chi-square or
𝐿2 distance:

𝜒2
𝑥 (ℓ) =

∑
𝑦

(
𝑃ℓ (𝑥, 𝑦) − 𝜋𝑞 (𝑦)

)2
𝜋𝑞 (𝑦)

.

In Section 3, the usual total variation distance is treated as well.
Theorem 1.4. The random transvections walk on 𝐺𝐿𝑛 (𝑞) induces a Markov chain 𝑃(𝑥, 𝑦) on 𝑆𝑛 �
B\𝐺𝐿𝑛 (𝑞)/B with stationary distribution.

𝜋𝑞 (𝜔) = 𝑞𝐼 (𝜔) /[𝑛]𝑞!, where [𝑛]𝑞! := (1 + 𝑞) (1 + 𝑞 + 𝑞2) . . . (1 + 𝑞 + . . . + 𝑞𝑛−1),

for 𝜔 ∈ 𝑆𝑛, where 𝐼 (𝜔) = |{(𝑖, 𝑗) : 𝑖 < 𝑗 , 𝜔(𝑖) > 𝜔( 𝑗)}| is the number of inversions in 𝜔.
Furthermore, if log 𝑞 > 6/𝑛 then the following statements are true.

1. (Typical start) If ℓ ≥ (log 𝑛 + 𝑐)/(log 𝑞 − 6/𝑛) for any 𝑐 > 0, then∑
𝑥∈𝑆𝑛

𝜋(𝑥)𝜒2
𝑥 (ℓ) ≤ (𝑒𝑒−𝑐 − 1) + 𝑒−𝑐𝑛.

Conversely, for any ℓ ∑
𝑥∈𝑆𝑛

𝜋(𝑥)𝜒2
𝑥 (ℓ) ≥ (𝑛 − 1)2𝑞−4ℓ .

These results show order log𝑞 (𝑛) steps are necessary and sufficient for convergence.
2. (Starting from 𝑖𝑑) If ℓ ≥ (𝑛 log 𝑞/2 + 𝑐)/(log 𝑞 − 6/𝑛), 𝑐 > 0, then

𝜒2
𝑖𝑑 (ℓ) ≤ (𝑒𝑒−2𝑐 − 1) + 𝑒−𝑐𝑛.
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Conversely, for any ℓ,

𝜒2
𝑖𝑑 (ℓ) ≥ (𝑛 − 1) (𝑞𝑛−1 − 1)𝑞−4ℓ .

These results show that order n steps are necessary and sufficient for convergence starting from the
identity.

3. (Starting from 𝜔0) If ℓ ≥ (log 𝑛/2 + 𝑐)/(log 𝑞 − 6/𝑛) for 𝑐 ≥ 2
√

2, then there is a universal constant
𝐾 > 0 (independent of 𝑞, 𝑛) such that

𝜒2
𝜔0 (ℓ) ≤ −2𝐾 log(1 − 𝑒−𝑐) + 𝐾𝑒−𝑐𝑛.

Conversely, for any ℓ,

𝜒2
𝜔0 (ℓ) ≥ 𝑞−(𝑛−2) (𝑛 − 1) (𝑞𝑛−1 − 1)𝑞−4ℓ .

These results show that order log𝑞 (𝑛)/2 steps are necessary and sufficient for convergence starting
from 𝜔0.

Remark 1.5. Note that, while Hildebrand’s result of order n convergence rate was independent of the
parameter q, the rates in Theorem 1.4 depend on q.

The stationary distribution 𝜋𝑞 is the Mallows measure on 𝑆𝑛. This measure has a large enumerative
literature; see [24] Section 3 for a review or [64]. It is natural to ask what the induced chain ‘looks like’
on 𝑆𝑛. After all, the chain induced by random transpositions on partitions has a simple description and
is of general interest. Is there a similarly simple description of the chain in 𝑆𝑛? This question is treated
in Section 5 using the language of Hecke algebras.

Theorem 1.6. Let 𝐻𝑛 (𝑞) be the Hecke algebra corresponding to the B\𝐺𝐿𝑛 (𝑞)/B double cosets and
𝐷 =
∑

𝑇 ∈T𝑛,𝑞
𝑇 ∈ 𝐻𝑛 (𝑞) be the sum of all transvections. Then,

𝐷 = (𝑛 − 1)𝑞𝑛−1 − [𝑛 − 1]𝑞 + (𝑞 − 1)
∑

1≤𝑖< 𝑗≤𝑛

𝑞𝑛−1−( 𝑗−𝑖)𝑇𝑖 𝑗 ,

with 𝑇𝑖 𝑗 in the Hecke algebra.

This gives a probabilistic description of the induced chain on 𝑆𝑛. Roughly stated, from 𝜔 ∈ 𝑆𝑛 pick
(𝑖, 𝑗), 𝑖 < 𝑗 , with probability proportional to 𝑞−( 𝑗−𝑖) and transpose i and j in 𝜔 using the Metropolis
algorithm (reviewed in Section 2.6). This description is explained in Section 5; see also [18]. The
probabilistic description is crucial in obtaining good total variation lower bounds for Theorem 1.4.

Outline

Section 2 develops and surveys background material on double cosets, Markov chains (proving Theorem
1.2), transpositions and coagulation-fragmentation processes, transvections and Gaussian elimination.
Theorem 1.4 is proved in Section 3. Theorem 1.6 is proved in Section 5 using a row reduction. Section 6
contains another Markov chain from a lumping of the transvections chain, and Section 7 surveys further
examples—contingency tables and extensions of the 𝐺𝐿𝑛 results to finite groups of Lie type, for which
the Bruhat decomposition holds and there are natural analogs of transvections. Of course, there are an
infinite variety of groups 𝐺, 𝐻, 𝐾 , and we also indicate extensions to compact Lie groups.

We have posted a more leisurely, expository version of the present paper on the arXiv [19]. This
contains more examples and proof details.
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Notation

Throughout, q will be a prime power. For a positive integer n, define the quantities

[𝑛]𝑞 :=
𝑞𝑛 − 1
𝑞 − 1

= 𝑞𝑛−1 + 𝑞𝑛−2 + . . . + 𝑞 + 1, [𝑛]𝑞! := [𝑛]𝑞 [𝑛 − 1]𝑞 . . . [1]𝑞 .

2. Background

This section gives the basic definitions and tools needed to prove our main results. Section 2.1 gives
background on double cosets. In Section 2.2, Markov chains are reviewed and Theorem 1.2 is proved,
along with extensions. Section 2.3 reviews the coagulation-fragmentation literature along with the
random transpositions literature. Section 2.4 develops what we need about transvections, and Section 2.5
connects the Bruhat decomposition to Gaussian elimination. Finally, Section 2.6 reviews the Metropolis
algorithm.

2.1. Double cosets

Let 𝐻, 𝐾 be subgroups of a finite group G. The double coset decomposition is a standard tool of
elementary group theory. The original proof of Sylow’s first theorem uses double cosets, as does
Mackey’s basic theorems on decomposing restrictions of induced representations. The Hecke algebra
End𝐺 (𝐺/𝐻)—the linear maps of the right H-invariant functions that commute with the action of G—
has a basis induced by H-H double cosets. Hecke algebras are basic objects of study in modern number
theory. For a detailed survey, see [24] or [14]. Double cosets can have very different sizes and [24], [48]
develop a probabilistic and enumerative theory. For present applications, an explicit description of the
double cosets is needed.

Example 2.1. Let 𝑆𝜆, 𝑆𝜇 be parabolic subgroups of the symmetric group 𝑆𝑛. Here, 𝜆 = (𝜆1, . . . , 𝜆𝐼 )
and 𝜇 = (𝜇1, . . . , 𝜇𝐽 ) are partitions of n. The subgroup 𝑆𝜆 consists of all permutations in which the
first 𝜆1 elements may only be permuted amongst each other, the next 𝜆1 + 1, . . . , 𝜆1 + 𝜆2 elements may
only be permuted amongst each other and so on. It is a classical fact that the double cosets 𝑆𝜆\𝑆𝑛/𝑆𝜇

are in bijection with ‘contingency tables’—arrays of nonnegative integers with row sums 𝜆 and column
sums 𝜇. See [38], Section 1.3. For proofs and much discussion of the connections between the group
theory and applications and statistics, see [24], Section 5. Random transpositions on 𝑆𝑛 induces a natural
Markov chain on these tables, see [60] and Chapter 3 of [59]. Contingency tables also label the double
cosets of parabolic subgroups in 𝐺𝐿(𝑛, 𝑄). See [39] and Section 7.1 below.

Example 2.2. Let M be a finite group, 𝐺 = 𝑀 ×𝑀 , and 𝐻 = 𝐾 = 𝑀 embedded diagonally as subgroups
of G (that is, {(𝑚, 𝑚) : 𝑚 ∈ 𝑀}). The conjugacy classes in G are products of conjugacy classes in each
coordinate of M. In the double coset equivalency classes, note that

(𝑠, 𝑡) ∼ (𝑖𝑑, 𝑠−1𝑡) ∼ (𝑖𝑑, 𝑘−1𝑠−1𝑡𝑘),

and so double cosets can be indexed by conjugacy classes of M. If 𝑄1 is a conjugacy invariant probability
on M, then 𝑄 = 𝑄1 × 𝛿𝑖𝑑 is conjugacy invariant on G. The random walk on G induced by Q maps to
the random walk on M induced by 𝑄1. In this way, the double coset walks extend conjugacy invariant
walks on M. Example 1.1 in the introduction is a special case.

Of course, the conjugacy classes in M (and so the double cosets) can be difficult to describe.
Describing the conjugacy classes of 𝑈𝑛 (𝑞)—the unit upper-triangular matrices in 𝐺𝐿𝑛 (𝑞)—is a well-
known ‘wild’ problem. See [2] or [17] for background and details. Describing the double cosets for the
Sylow p-subgroup in 𝑆𝑛 seems difficult.
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Example 2.3. Let G be a finite group of Lie type, defined over F𝑞 , with Weyl group W. Let B be the
Borel subgroup (maximal solvable subgroup). Take 𝐻 = 𝐾 = B. The Bruhat decomposition gives

𝐺 =
⊔
𝜔∈𝑊

B𝜔B,

so the double cosets are indexed by W. See [11], Chapter 8, for a clear development in the language of
groups with a (B, 𝑁) pair.

Conjugacy invariant walks on G have been carefully studied in a series of papers by David Gluck,
Bob Guralnick, Michael Larsen, Martin Liebeck, Aner Shalev, Pham Tiep and others. These authors
develop good bounds on the character ratios needed. See [30] for a recent paper with careful reference
to earlier work. Of course, Example 2 with 𝐺 = 𝐺𝐿𝑛 (𝑞),𝑊 = 𝑆𝑛 is a special case. The present paper
shows what additional work is needed to transfer character ratio results from G to W.

The double cosets form a basis for the algebra of H-K bi-invariant functions 𝐿(𝐻\𝐺/𝐾) with product

𝑓 ★ 𝑔(𝑠) =
∑
𝑡

𝑓 (𝑡)𝑔(𝑠𝑡−1).

This is usually developed for 𝐻 = 𝐾 [14], [12], [15], but the extra flexibility is useful. We add a caveat:
When 𝐻 = 𝐾 , the algebra of bi-invariant functions (into C) is semisimple and with a unit. This need not
be the case for general H and K. David Craven tried many pairs of subgroups of 𝑆4 and found examples
which were not semisimple. For 𝐺 = 𝑆4, Marty Issacs produced the example H the cyclic subgroup
generated by (1234) and K the cyclic subgroup generated by (1243). The algebra doesn’t have a unit and
so cannot be semisimple. This occurs even for some pairs of distinct parabolic subgroups of 𝑆𝑛. There
are also distinct pairs of parabolics where the algebra is semisimple. Determining when this occurs is
an open question.

Further examples are in Section 7. Since the theory is developed for general 𝐻, 𝐾, 𝐺 there is a
large set of possibilities. What is needed are examples where the double cosets are indexed by familiar
combinatorial objects and the walks induced on 𝐻\𝐺/𝐾 are of independent interest.

2.2. Markov chain theory

Let 𝐻, 𝐾 be subgroups of a finite group G, and Q a probability on G. See [43] for an introduction to
Markov chains; see [15] or [53] for random walks on groups.
Proposition 2.4. Let Q be a probability on G which is H-conjugacy invariant (𝑄(𝑠) = 𝑄(ℎ−1𝑠ℎ) for
ℎ ∈ 𝐻, 𝑠 ∈ 𝐺). The image of the random walk driven by Q on G maps to a Markov chain on 𝐻\𝐺/𝐾
with transition kernel

𝑃(𝑥, 𝑦) = 𝑄(𝐻𝑦𝐾𝑥−1).

The stationary distribution of P is 𝜋(𝑥) = |𝐻𝑥𝐾 |/|𝐺 |. If 𝑄(𝑠) = 𝑄(𝑠−1), then (𝑃, 𝜋) is reversible.
Proof. The kernel P is well defined; that is, it is independent of the choice of double coset representatives
for 𝑥, 𝑦. Dynkin’s criteria ([40] Chapter 6, [49]) says that the image of a Markov chain in a partitioning
of the state space is Markov if and only if for any set in the partition and any point in a second set, the
chance of the original chain moving from the point to the first set is constant for points in the second set.

Fixing 𝑥, 𝑦, observe

𝑄(𝐻𝑦𝐾 (ℎ𝑥𝑘)−1) = 𝑄(𝐻𝑦𝐾𝑥−1ℎ−1) = 𝑄(𝐻𝑦𝐾𝑥−1).

Since the uniform distribution on G is stationary for the walk generated by Q, the stationary distribution
of the lumped chain is 𝜋(𝑥) = |𝐻𝑥𝐾 |/|𝐺 |. Finally, any function of a reversible chain is reversible and
𝑄(𝑠) = 𝑄(𝑠−1) gives reversibility of the walk on G. �
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Remark 2.5. A different sufficient condition for Proposition 2.4 is 𝑄(𝑠ℎ) = 𝑄(𝑠) for all 𝑠 ∈ 𝐺, ℎ ∈ 𝐻.

Remark 2.6. Usually, a function of a Markov chain is not Markov. For relevant discussion of similar
‘orbit chains’, see [9].

In all of our examples, the measure Q is a class function (𝑄(𝑠) = 𝑄(𝑡−1𝑠𝑡) for all 𝑠, 𝑡 ∈ 𝐺), which is
a stronger requirement than that in Proposition 2.4. The eigenvalues of the walk on G can be given in
terms of the irreducible complex characters of G. Let 𝐺 be an index set for these characters. We write
𝜆 ∈ 𝐺 and 𝜒𝜆 (C) for the character value at the conjugacy class C. Let

𝛽𝜆 =
1

𝜒𝜆(1)
∑
𝑠∈𝐺

𝑄(𝑠)𝜒𝜆(𝑠).

If Q is simply concentrated on a single conjugacy class C, then 𝛽𝜆 is the character ratio

𝛽𝜆 =
𝜒𝜆 (C)
𝜒𝜆 (1)

.

For a review of a large relevant literature on character ratios and their applications, see [30].
The restriction of 𝜒𝜆 to H is written 𝜒𝜆 |𝐻 and 〈𝜒𝜆 |𝐻 , 1〉 is the number of times the trivial rep-

resentation of H appears in 𝜒𝜆 |𝐻 . By reciprocity, this is
〈
𝜒𝜆, Ind𝐺

𝐻 (1)
〉
, where Ind𝐺

𝐻 is the induced
representation from H to G.

Proposition 2.7. Let Q be a class function on G. The induced chain 𝑃(𝑥, 𝑦) of Proposition 2.4 has
eigenvalues

𝛽𝜆 =
1

𝜒𝜆(1)
∑
𝑠∈𝐺

𝑄(𝑠)𝜒𝜆(𝑠), (2.1)

with multiplicity

𝑚𝜆 = 〈𝜒𝜆 |𝐻 , 1〉 · 〈𝜒𝜆 |𝐾 , 1〉. (2.2)

The average square total variation distance to stationarity satisfies∑
𝑥

𝜋(𝑥)‖𝑃ℓ
𝑥 − 𝜋‖2

𝑇𝑉 ≤ 1
4

∑
𝜆∈𝐺,𝜆≠1

𝑚𝜆𝛽
2ℓ
𝜆 . (2.3)

Proof. The eigenvalues of a lumped chain are always some subset of the eigenvalues of the original
chain. To determine the multiplicity of the eigenvalue 𝛽𝜆 in the lumped chain, fix 𝜆 : 𝐺 → 𝐺𝐿𝑑𝜆 an
irreducible representation of G. Let 𝑀𝜆 be the 𝑑𝜆 × 𝑑𝜆 matrix representation of 𝜆. That is, each entry
𝑀𝜆

𝑖 𝑗 : 𝐺 → C is a function of G. These functions are linearly independent and can be chosen to be
orthogonal with respect to

〈 𝑓1, 𝑓2〉 :=
1
|𝐺 |
∑
𝑔∈𝐺

𝑓1 (𝑔) 𝑓2(𝑔)

(see Chapter 3 of [58]). Let 𝑉𝜆 be the space of all linear combinations of the functions 𝑀𝜆
𝑖 𝑗 . If 𝑓 ∈ 𝑉𝜆,

then

𝑃 𝑓 (𝑥) =
∑
𝑦∈𝐺

𝑃(𝑥, 𝑦) 𝑓 (𝑦) = 𝛽𝜆 𝑓 (𝑥)

That is, 𝑉𝜆 is the eigenspace for the eigenvalue 𝛽𝜆 and it has dimension 𝑑2
𝜆 = 𝜒𝜆 (1)2.
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In the lumped chain on 𝐻\𝐺/𝐾 , a basis for the eigenspace for eigenvalue 𝛽𝜆 are the 𝐻 ×𝐾 invariant
functions in 𝑉𝜆 [9]. To determine the dimension of this subspace, note that 𝐺 × 𝐺 can act on 𝑉𝜆 by
𝑓 𝑔1 ,𝑔2 (𝑥) = 𝑓 (𝑔−1

1 𝑥𝑔2). This gives a representation of 𝐺 × 𝐺 on 𝑉𝜆. The matrix of this representation
is isomorphic to 𝑀 ⊗ 𝑀 , since 𝑀𝑖 𝑗 (𝑠−1𝑡𝑢) = 𝑀𝑖 𝑗 (𝑠−1)𝑀𝑖 𝑗 (𝑡)𝑀𝑖 𝑗 (𝑢).

This representation restricts to a representation 𝑀𝐻 ⊗𝑀𝐾 of 𝐻 ×𝐾 , and the dimension of the 𝐻 ×𝐾
invariant functions in 𝑉𝜆 is the multiplicity of the trivial representation on 𝑀𝐻 ⊗ 𝑀𝐾 . This is

〈𝜒𝜆 |𝐻 ⊗ 𝜒𝜆 |𝐾 , 1〉 = 〈𝜒𝜆 |𝐻 , 1〉 · 〈𝜒𝜆 |𝐾 , 1〉.

To note the total variation inequality, let 1 = 𝛽1 ≥ 𝛽2 ≥ · · · ≥ 𝛽𝑛 ≥ · · · ≥ 𝛽 |𝑆𝑛 | ≥ −1 be the
eigenvalues with eigenfunctions 𝑓 𝑗 (chosen to be orthonormal with respect to 𝜋), and we have

𝜒2
𝑥 (ℓ) := ‖

𝑃ℓ
𝑥

𝜋
− 1‖2

2, 𝜋 =
∑
𝑗≠1

𝑓 𝑗 (𝑥)2𝛽2ℓ
𝑗

where ‖ · ‖2, 𝜋 denotes the ℓ2 norm with respect to the distribution 𝜋. Multiplying by 𝜋(𝑥) and summing
over all x in the state space gives∑

𝑥

𝜋(𝑥)
����𝑃ℓ

𝑥

𝜋
− 1
����2

2, 𝜋
=
∑
𝑥

𝜋(𝑥)
∑
𝑗≠1

𝑓 𝑗 (𝑥)2𝛽2ℓ
𝑗 =
∑
𝜆≠1

𝑚𝜆𝛽
2ℓ
𝜆 , (2.4)

using orthonormality of 𝑓 𝑗 . The total variation bound arises since 4‖𝑃ℓ
𝑥 − 𝜋‖2

𝑇𝑉 ≤ ‖𝑃ℓ
𝑥/𝜋 − 1‖2

2, 𝜋 . �

2.3. Random transpositions and coagulation-fragmentation processes

Let 𝐺 = 𝑆𝑛 be the symmetric group. The random transpositions Markov chain, studied in [22], is
generated by the measure

𝑄(𝜔) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/𝑛, 𝜔 = 𝑖𝑑,

2/𝑛2, 𝜔 = (𝑖 𝑗),
0, otherwise.

This was the first Markov chain where a sharp cutoff for convergence to stationarity was observed.
A sharp, explicit rate is obtained in [54]. They show

‖𝑄ℓ − 𝑢‖𝑇𝑉 ≤ 2𝑒−𝑐 , with ℓ =
1
2
𝑛(log 𝑛 + 𝑐).

The asymptotic ‘profile’ (the limit of ‖𝑄ℓ − 𝑢‖𝑇𝑉 as a function of c for n large) is determined in [63].
Schramm [56] found a sharp parallel between random transpositions and the growth of an Erdős-Rényi
random graph: Given vertices 1, 2, . . . , 𝑛, for each transposition (𝑖, 𝑗) chosen, add an edge from vertices
i to j to generate a random graph. See [6] for extensions and a comprehensive review. The results,
translated by the coagulation-fragmentation description of the cycles, give a full and useful picture for
the simple mean field model described in the introduction.

It must be emphasized that this mean field model is a very special case of coagulation-fragmentation
models studied in the chemistry-physics-probability literature. These models study the dynamics of
particles diffusing in an ambient space, and allow general collision kernels (e.g., particles close in space
may be more likely to join). The books by Bertoin [7] and Pitman [50] along with the survey paper of
Aldous [3] are recommended for a view of the richness of this subject. On the other hand, the sharp
rates of convergence results available for the mean field model are not available in any generality.

There is a healthy applied mathematics literature on coagulation-fragmentation. A useful overview
which treats discrete problems such as the ones treated here is [5]. A much more probabilistic
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development of the celebrated Becker–Doring version of the problem is in [36]. This develops rates
of convergence using coupling. See also [27] for more models with various stationary distributions on
partitions.

Other lumpings of random transpositions include classical urn models—the Bernoulli–Laplace model
[23], [28], and random walks on phylogenetic trees [26]. The sharp analysis of random transpositions
transfers, via comparison theory, to give good rates of convergence for quite general random walks on
the symmetric group [20], [34]. For an expository survey, see [16].

2.4. Transvections

Fix n, a prime p and 𝑞 = 𝑝𝑎 for some positive integer a. A transvection is an invertible linear
transformation of F𝑛𝑞 which fixes a hyperplane, is not the identity and has all eigenvalues equal to 1.
Transvections are convenient generators for the group 𝑆𝐿𝑛 (𝑞) because they generalize the basic row
operations of linear algebra. These properties are carefully developed in [62] Chapter 1, 9; [4] Chapter 4.

Using coordinates, let a, v ∈ F𝑛𝑞 be two nonzero vectors with a�v = 0. A transvection, denoted
𝑇a,v ∈ 𝐺𝐿𝑛 (𝑞) is the linear map given by

𝑇a,v (x) = x + v(a�x), for x ∈ F𝑛𝑞 .

It adds a multiple of v to x, the amount depending on the ‘angle’ between a and x. As a matrix,
𝑇a,v = 𝐼 + [𝑎1v𝑎2v . . . 𝑎𝑛v] = 𝐼 + va�. Multiplying a by a nonzero constant and dividing v by the same
constant doesn’t change 𝑇a,v. Let us agree to normalize v by making its last nonzero coordinate equal to
1. Let T𝑛,𝑞 ⊂ 𝑆𝐿𝑛 (𝑞) be the set of all transvections.

An elementary count shows

|T𝑛,𝑞 | =
(𝑞𝑛 − 1) (𝑞𝑛−1 − 1)

𝑞 − 1
. (2.5)

It is easy to generate𝑇 ∈ T𝑛,𝑞 uniformly: Pick v ∈ F𝑛𝑞 uniformly, discarding the zero vector. Normalize
v so the last nonzero coordinate, say index j, is equal to 1. Pick 𝑎1, 𝑎2, . . . , 𝑎 𝑗−1, 𝑎 𝑗+1, . . . 𝑎𝑛 uniformly
in F𝑛−1

𝑞 − {0}, and set 𝑎 𝑗 so that a�v = 0. The transvection 𝑇a,v fixes the hyperplane {x : a�x = 0}.

Example 2.8. Taking v = e1, a = e2 gives the transvection with matrix

𝑇e1 ,e2 =

��������

1 1 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . . 0

0 0 0 . . . 1

��������
.

This acts on x by adding the second coordinate to the first. Similarly, the basic row operation of adding
𝜃 times the ith coordinate to the jth is given by 𝑇e 𝑗 , 𝜃e𝑖 .

Lemma 2.9. The set of transvections T𝑛,𝑞 is a conjugacy class in 𝐺𝐿𝑛 (𝑞).

Proof. Let 𝑀 ∈ 𝐺𝐿𝑛 (𝑞), so 𝑀𝑇e2 ,e1 𝑀
−1 is conjugate to 𝑇e2 ,e1 . Then,

𝑀𝑇e2 ,e1 𝑀
−1 (x) = 𝑀 (𝑀−1x + (𝑀−1x)2e1) = x + (𝑀−1x)2𝑀e1.

Let a be the second column of (𝑀−1)𝑇e2 ,e1 and v the first column of M, and check this last is 𝑇a,v (and
a�v = 0). Thus, transvections form a conjugacy class. �
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2.5. Gaussian elimination and the Bruhat decomposition

The reduction of a matrix 𝑀 ∈ 𝐺𝐿𝑛 (𝑞) to standard form by row operations is a classical topic in
introductory linear algebra courses. It gives efficient, numerically stable ways to solve linear equations,
compute inverses and calculate determinants. There are many variations.

Example 2.10. Consider the sequence of row operations

𝑀 =
���
0 3 2
1 2 0
3 0 5

���→ ���
0 3 2
1 2 0
0 −6 5

���→ ���
0 3 2
1 2 0
0 0 9

���→ ���
1 2 0
0 3 2
0 0 9

��� = 𝑈.

The first step subtracts 3 times row 2 from row 3, multiplication by

𝐿1 =
���
1 0 0
0 1 0
0 −3 1

���.
The second step adds 2 times row 1 to row 3, multiplication by

𝐿2 =
���
1 0 0
0 1 0
2 0 1

���.
The third (pivot) step brings the matrix to upper-triangular form by switching rows 1 and 2, which
corresponds to multiplication by the matrix by

𝜔1 =
���
0 1 0
1 0 0
0 0 1

���.
This gives 𝜔1𝐿2𝐿1𝑀 = 𝑈 =⇒ 𝑀 = 𝐿−1

2 𝐿−1
1 𝜔−1

1 𝑈 = 𝐿𝜔𝑈 with 𝐿 = 𝐿−1
2 𝐿−1

1 , 𝜔 = 𝜔−1
1 = 𝜔1.

If L,B are the subgroups of lower and upper-triangular matrices in 𝐺𝐿𝑛 (𝑞), this gives

𝐺𝐿𝑛 (𝑞) =
⊔
𝜔∈𝑆𝑛

L𝜔B. (2.6)

Any linear algebra book treats these topics. A particularly clear version which uses Gaussian elimi-
nation as a gateway to Lie theory is in Howe [37]. Articles by Lusztig [45] and Strang [61] have further
historical, mathematical and practical discussion.

Observe that carrying out the final pivoting step costs 𝑑𝑐 (𝜔, id) operations, where 𝑑𝑐 (𝜔, id), the
Cayley distance of 𝜔 to the identity, is the minimum number of transpositions required to sort 𝜔 (with
arbitrary transpositions (𝑖, 𝑗) allowed). Cayley proved 𝑑𝑐 (𝜔, id) = 𝑛 − #cycles in 𝜔 (see [16]). In the
example above 𝑛 = 3, 𝜔 = 213 has two cycles and 3 − 2 = 1—one transposition sorts 𝜔.

How many pivot steps are needed ‘on average’? This becomes the question of the number of cycles
in a pick from Mallows measure 𝜋𝑞 . Surprisingly, this is a difficult question. Following partial answers
by Gladkich and Peled [29], this problem was recently solved by Jimmy He, Tobias Möller and Teun
Verstraaten in [33]. They show that, when 𝑞 > 1, the limiting behavior of the number of even cycles
under 𝜋𝑞 has an approximate normal distribution with mean and variance proportional to n, and that the
number of odd cycles has bounded mean and variance.
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The Bruhat decomposition
In algebraic group theory, one uses

𝐺𝐿𝑛 (𝑞) =
⊔
𝜔∈𝑆𝑛

B𝜔B. (2.7)

This holds for any semisimple group over any field with B replaced by the Borel group (the largest
solvable subgroup) and 𝑆𝑛 replaced by the Weyl group.

Let 𝜔0 =
( 1 2 · · · 𝑛
𝑛 𝑛−1 · · · 1

)
be the reversal permutation in 𝑆𝑛. Since L = 𝜔0B𝜔0, equation (2.7) is

equivalent to the LU decomposition (2.6). Given 𝑀 ∈ 𝐺𝐿𝑛 (𝑞), Gaussian elimination on 𝜔0𝑀 can be
used to find 𝜔0𝑀 ∈ 𝐿𝜔′𝑈 and thus 𝑀 ∈ 𝐵𝜔𝐵 with 𝜔 = 𝜔0𝜔

′.

The subgroup B gives rise to the quotient 𝐺𝐿𝑛 (𝑞)/B. This may be pictured as the space of ‘flags’.
Here, a flag F consists of an increasing sequence of subspaces 𝐹 = 𝐹1 ⊂ 𝐹2 ⊂ . . . ⊂ 𝐹𝑛 with
dim(𝐹𝑖) = 𝑖. Indeed, 𝐺𝐿𝑛 (𝑞) operates transitively on flags and the subgroup fixing the standard flag
𝐸 = 〈e1〉 ⊂ 〈e1, e2〉 . . . ⊂ 〈e1, . . . , e𝑛〉 is exactly B. This perspective will be further explained and used
in Section 6 to study a function of the double coset Markov chain on B\𝐺𝐿𝑛 (𝑞)/B.

Remark 2.11. The double cosets of 𝐺𝐿𝑛 (𝑞) define equivalence classes for any subgroup of 𝐺𝐿𝑛 (𝑞).
For the matrices 𝑆𝐿𝑛 (𝑞) with determinant 1, these double cosets again induce the Mallows distribution
on permutations. More precisely, for 𝑥 ∈ 𝑆𝐿𝑛 (𝑞), let [𝑥]𝑆𝐿𝑛 (𝑞) = {𝑥 ′ ∈ 𝑆𝐿𝑛 (𝑞) : 𝑥 ′ ∈ B𝑥B} be the
equivalence class created by the double coset relation B\𝐺𝐿𝑛 (𝑞)/B, within 𝑆𝐿𝑛 (𝑞). Note that two
matrices 𝑥, 𝑥 ′ ∈ 𝑆𝐿𝑛 (𝑞) could be in the same double coset with 𝑥 ′ = 𝑏1𝑥𝑏2, but 𝑏1, 𝑏2 ∉ 𝑆𝐿𝑛 (𝑞)
(necessarily, det(𝑏1) = det(𝑏2)−1).

Then, | [𝜔]𝑆𝐿𝑛 (𝑞) |/|𝑆𝐿𝑛 (𝑞) | = 𝑝𝑞 (𝜔). This follows since |𝐺𝐿𝑛 (𝑞) | = (𝑞 − 1) · |𝑆𝐿𝑛 (𝑞) |, and
|B𝜔B | = (𝑞 − 1) · | [𝜔]𝑆𝐿𝑛 (𝑞) |. If 𝑀 ∈ 𝐺𝐿𝑛 (𝑞) and 𝑀 ∈ 𝐵𝜔𝐵, then 𝑀/det(𝑀) ∈ [𝜔]𝑆𝐿𝑛 (𝑞) .
Conversely, for each 𝑀 ∈ 𝑆𝐿𝑛 (𝑞) there are (𝑞 − 1) unique matrices in 𝐺𝐿𝑛 (𝑞) created by multiplying
M by 1, 2, . . . , 𝑞 − 1.

2.6. The Metropolis algorithm

The Metropolis algorithm is a basic algorithm of scientific computing which arises in describing the
random walk induced by transvections on the double cosets B𝑛\𝐺𝐿𝑛 (𝑞)/B𝑛 (Section 3.2). This section
gives background.

Given a probability distribution 𝜋 on a space X , the Metropolis algorithm gives a way of changing
the output of a Markov chain with transition matrix 𝐾 (𝑥, 𝑦) to have stationary distribution 𝜋 on X .
For simplicity, suppose the original chain is symmetric, 𝐾 (𝑥, 𝑦) = 𝐾 (𝑦, 𝑥) (as in our examples). This
implies that 𝐾 (𝑥, 𝑦) has a uniform stationary distribution. Define the Metropolis Markov chain with the
transition matrix:

𝑀 (𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐾 (𝑥, 𝑦), if 𝜋(𝑦) ≥ 𝜋(𝑥), 𝑥 ≠ 𝑦,

𝐾 (𝑥, 𝑦) · 𝜋 (𝑦)
𝜋 (𝑥) , if 𝜋(𝑦) < 𝜋(𝑥), 𝑥 ≠ 𝑦,

𝐾 (𝑥, 𝑥) +
∑

𝑧:𝜋 (𝑧)<𝜋 (𝑥) 𝐾 (𝑥, 𝑧)
(
1 − 𝜋 (𝑧)

𝜋 (𝑥)

)
, if 𝑥 = 𝑦.

These transition probabilities have a simple implementation: From x, pick y according to 𝐾 (𝑥, 𝑦). If
𝜋(𝑦) ≥ 𝜋(𝑥), move to y. If 𝜋(𝑦) < 𝜋(𝑥), flip a coin with heads probability 𝜋(𝑦)/𝜋(𝑥). If the coin is heads,
move to y. If the coin is tails, stay at x. Elementary calculations show that 𝜋(𝑥)𝑀 (𝑥, 𝑦) = 𝜋(𝑦)𝑀 (𝑦, 𝑥),
that is, M has 𝜋 as stationary distribution. Note that the normalizing constant of 𝜋 is not needed.

For background, applications, and theoretical properties of the Metropolis algorithm, see the textbook
of Liu [44] or the survey [21]. Sharp analysis of rates of convergence of the Metropolis algorithm is still
an open research problem. The special cases developed in Section 3.2 show it can lead to fascinating
mathematics.
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3. Double coset walks on B\𝐺𝐿𝑛 (𝑞)/B
Throughout this section, B is the group of upper-triangular matrices in 𝐺𝐿𝑛 (𝑞), T𝑛,𝑞 is the conjugacy
class of transvections in 𝐺𝐿𝑛 (𝑞). This gives the probability measure on 𝐺𝐿𝑛 (𝑞) defined by

𝑄(𝑀) =
{

1
|T𝑛,𝑞 | , if 𝑀 ∈ T𝑛,𝑞 .

0, else.

Note the random transvections measure Q is supported on 𝑆𝐿𝑛 (𝑞), a subgroup of 𝐺𝐿𝑛 (𝑞). This
means that the random walk on 𝐺𝐿𝑛 (𝑞) driven by Q is not ergodic (there is zero probability of moving
x to y if 𝑥, 𝑦 are matrices with different determinants). However, Q is a class function on 𝐺𝐿𝑛 (𝑞) since
transvections form a conjugacy class. The image of the uniform distribution on 𝐺𝐿𝑛 (𝑞) mapped to
B\𝐺𝐿𝑛 (𝑞)/B is the Mallows measure 𝜋𝑞 (𝜔) = 𝑞𝐼 (𝜔) /[𝑛]𝑞!.

Section 3.1 introduces the definition of the Markov chain as multiplication in the Hecke algebra, which
is further explained in Section 5. Section 3.3 gives the combinatorial expressions for the eigenvalues
and their multiplicities, which are needed to apply Theorem 1.2 for this case. Section 4.2 shows that
for the induced Markov chain on 𝑆𝑛, starting from 𝑖𝑑 ∈ 𝑆𝑛, order n steps are necessary and sufficient
for convergence. Section 4.3 studies the chain starting from the reversal permutation, for which only
order log 𝑛/2 log 𝑞 steps are required. Finally, Section 4.4 considers starting from a ‘typical’ element,
according to the stationary distribution, for which log 𝑛/log 𝑞 steps are necessary and sufficient.

These results can be compared to Hildebrand’s Theorem 1.1 [35] which shows that the walk driven
by Q on 𝐺𝐿𝑛 (𝑞) converges in 𝑛 + 𝑐 steps (uniformly in q). Our results thus contribute to the program
of understanding how functions of a Markov chain behave and how the mixing time depends on the
starting state. In this case, changing the starting state gives an exponential speed up.

3.1. Hecke algebras and the Metropolis algorithm

The set of B-B double cosets of 𝐺𝐿𝑛 (𝑞) has remarkable structure. For 𝜔 ∈ 𝑆𝑛, let 𝑇𝜔 = B𝜔B. Linear
combinations of double cosets form an algebra (over C, for example).

Definition 3.1. The Iwahori–Hecke algebra 𝐻𝑛 (𝑞) is spanned by the symbols {𝑇𝜔}𝜔∈𝑆𝑛 and generated
by 𝑇𝑖 = 𝑇𝑠𝑖 for 𝑠𝑖 = (𝑖, 𝑖 + 1), 1 ≤ 𝑖 ≤ 𝑛 − 1, with the relations

{
𝑇𝑠𝑖𝑇𝜔 = 𝑇𝑠𝑖𝜔 if 𝐼 (𝑠𝑖𝜔) = 𝐼 (𝜔) + 1,
𝑇𝑠𝑖𝑇𝜔 = 𝑞𝑇𝑠𝑖𝜔 + (𝑞 − 1)𝑇𝜔 if 𝐼 (𝑠𝑖𝜔) = 𝐼 (𝜔) − 1,

(3.1)

where 𝐼 (𝜔) is the usual length function on 𝑆𝑛 (𝐼 (𝑠𝑖𝜔) = 𝐼 (𝜔) ± 1).

Consider the flag space F = 𝐺/B. The group 𝐺𝐿𝑛 (𝑞) acts on the left on F . One can see 𝐻𝑛 (𝑞)
acting on the right of F and in fact

𝐻𝑛 (𝑞) = End𝐺𝐿𝑛 (𝑞) (𝐺𝐿𝑛 (𝑞)/B).

The Hecke algebra is the full commuting algebra of𝐺𝐿𝑛 (𝑞) acting on𝐺𝐿𝑛 (𝑞)/B. Because transvections
form a conjugacy class, the sum of transvections is in the center of the group algebra C[𝐺𝐿𝑛 (𝑞)], and
so it may be regarded as an element of 𝐻𝑛 (𝑞). This will be explicitly delineated and the character theory
of 𝐻𝑛 (𝑞) used to do computations.
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3.2. The Metropolis connection

The relations (3.1) can be interpreted probabilistically. Consider what equation (3.1) says as linear
algebra: Left multiplication by𝑇𝑠𝑖 can take 𝜔 to 𝜔 or 𝑠𝑖𝜔. The matrix of this map (in the basis {𝑇𝜔}𝜔∈𝑆𝑛 )
has 𝜔, 𝜔′ entry

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if 𝐼 (𝑠𝑖𝜔) = 𝐼 (𝜔) + 1, and 𝜔′ = 𝑠𝑖𝜔,

𝑞, if 𝐼 (𝑠𝑖𝜔) = 𝐼 (𝜔) − 1, and 𝜔′ = 𝜔,

𝑞 − 1, if 𝐼 (𝑠𝑖𝜔) = 𝐼 (𝜔) − 1, and 𝜔′ = 𝑠𝑖𝜔,

0, otherwise.

For example, on 𝐺𝐿3 (𝑞) using the ordered basis 𝑇𝑖𝑑 , 𝑇𝑠1 , 𝑇𝑠2 , 𝑇𝑠1𝑠2 , 𝑇𝑠2𝑠1 , 𝑇𝑠1𝑠2𝑠1 , the matrix of left
multiplication by 𝑠1 is

𝑇𝑠1 =

���������

0 𝑞 0 0 0 0
1 𝑞 − 1 0 0 0 0
0 0 0 𝑞 0 0
0 0 1 𝑞 − 1 0 0
0 0 0 0 0 𝑞
0 0 0 0 1 𝑞 − 1

���������
.

The first column has a 1 in row 𝑠1 because 𝐼 (𝑠1) > 𝐼 (𝑖𝑑). The second column has entries q and 𝑞 − 1 in
the first two rows because 𝐼 (𝑠2

1) = 𝐼 (𝑖𝑑) < 𝐼 (𝑠1).
We can also write the matrices for multiplication defined by 𝑇𝑠2 and 𝑇𝑠1𝑠2𝑠1 as

𝑇𝑠2 =

���������

0 0 𝑞 0 0 0
0 0 0 0 𝑞 0
1 0 𝑞 − 1 0 0 0
0 0 0 0 0 𝑞
0 1 0 0 𝑞 − 1 0
0 0 0 1 0 𝑞 − 1

���������
𝑇𝑠1𝑠2𝑠1 =

���������

0 0 0 0 0 𝑞3

0 0 0 𝑞2 0 𝑞2 (𝑞 − 1)
0 0 0 0 𝑞2 𝑞2 (𝑞 − 1)
0 𝑞 0 𝑞(𝑞 − 1) 𝑞(𝑞 − 1) 𝑞(𝑞 − 1)2

0 0 𝑞 𝑞(𝑞 − 1) 𝑞(𝑞 − 1) 𝑞(𝑞 − 1)2

1 𝑞 − 1 𝑞 − 1 (𝑞 − 1)2 (𝑞 − 1)2 (𝑞 − 1)3 + 𝑞(𝑞 − 1)

���������
.

Observe that all three matrices above have constant row sums (q, q and 𝑞3, respectively). Dividing
by these row sums gives three Markov transition matrices: 𝑀1, 𝑀2 and 𝑀121 = 𝑀1𝑀2𝑀1.

These matrices have a simple probabilistic interpretation: Consider, for 𝑞 = 1/𝑞, the matrix defined

𝑀1 =

���������

0 1 0 0 0 0
𝑞 1 − 𝑞 0 0 0 0
0 0 0 1 0 0
0 0 𝑞 1 − 𝑞 0 0
0 0 0 0 0 1
0 0 0 0 𝑞 1 − 𝑞

���������
.
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The description of this Markov matrix is: From 𝜔, propose 𝑠1𝜔:

◦ If 𝐼 (𝑠1𝜔) > 𝐼 (𝜔), go to 𝑠1𝜔.
◦ If 𝐼 (𝑠1𝜔) < 𝐼 (𝜔), go to 𝑠1𝜔 with probability 1/𝑞, else stay at 𝜔.

This is exactly the Metropolis algorithm on 𝑆𝑛 for sampling from 𝜋𝑞 (𝜔) with the proposal given by the
deterministic chain ‘multiply by 𝑠1’. The matrices 𝑀𝑖 , 1 ≤ 𝑖 ≤ 𝑛 − 1, have a similar interpretation and
satisfy

𝜋𝑞 (𝜔)𝑀𝑖 (𝜔, 𝜔′) = 𝜋𝑞 (𝜔′)𝑀𝑖 (𝜔′, 𝜔).

The Metropolis algorithm always results in a reversible Markov chain. See Section 2.6 or [21] for
background. It follows that any product of {𝑀𝑖} and any convex combination of such products yields a
𝜋𝑞 reversible chain. Note also that the Markov chain on 𝑆𝑛 is automatically reversible since it is induced
by a reversible chain on 𝐺𝐿𝑛.

Corollary 3.2. The random transvections chain on 𝐺𝐿𝑛 (𝑞) lumped to B-B cosets gives a 𝜋𝑞 reversible
Markov chain on 𝑆𝑛.

Proof. Up to normalization, the matrix D in Theorem 1.6 is a positive linear combination of Markov
chains corresponding to multiplication by

𝑇(𝑖, 𝑗) = 𝑇𝑠𝑖𝑇𝑠𝑖+1 · · ·𝑇𝑠 𝑗−2𝑇𝑠 𝑗−1𝑇𝑠 𝑗−2 · · ·𝑇𝑠𝑖+1𝑇𝑠𝑖 .

This yields a combination of the reversible chains 𝑀𝑖𝑀𝑖+1 . . . 𝑀 𝑗−1 . . . 𝑀𝑖 . �

Example 3.3. The transition matrix of the transvections chain on 𝐺𝐿3 (𝑞) lumped to 𝑆3 is 1
|T𝑛,𝑞 |𝐷, with

𝐷 = (2𝑞2 − 𝑞 − 1)I

+ (𝑞 − 1)

���������

0 𝑞2 𝑞2 0 0 𝑞3

𝑞 𝑞(𝑞 − 1) 0 𝑞2 𝑞2 𝑞2(𝑞 − 1)
𝑞 0 𝑞(𝑞 − 1) 𝑞2 𝑞2 𝑞2(𝑞 − 1)
0 𝑞 𝑞 2𝑞(𝑞 − 1) 𝑞(𝑞 − 1) 𝑞2 + 𝑞(𝑞 − 1)2

0 𝑞 𝑞 𝑞(𝑞 − 1) 2𝑞(𝑞 − 1) 𝑞2 + 𝑞(𝑞 − 1)2

1 𝑞 − 1 𝑞 − 1 𝑞 + (𝑞 − 1)2 𝑞 + (𝑞 − 1)2 (𝑞 − 1)3 + 3𝑞(𝑞 − 1)

���������
.

When 𝑞 = 2, the lumped chain has transition matrix

1
21

���������

5 4 4 0 0 8
2 7 0 4 4 4
2 0 7 4 4 4
0 2 2 9 2 6
0 2 2 2 9 6
1 1 1 3 3 12

���������
.

We report that this example has been verified by several different routes including simply running the
transvections chain, computing the double coset representative at each step and estimating the transition
rates from a long run of the chain.

Remark 3.4. The random transvections Markov chain on 𝑆𝑛 is the ‘q-deformation’ of random trans-
positions on 𝑆𝑛. That is, as q tends to 1, the transition matrix tends to the transition matrix of random
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transpositions. To see this, recall |T𝑛,𝑞 | = (𝑞𝑛 − 1) (𝑞𝑛−1 − 1)/(𝑞 − 1) and use L’Hopitals rule to note,
for any integer k,

lim
𝑞→1+

(𝑞 − 1)2𝑞𝑘 (𝑞 − 1)ℓ

(𝑞𝑛 − 1) (𝑞𝑛−1 − 1)
=

{
0, if ℓ > 0,

1
𝑛(𝑛−1) , if ℓ = 0.

The interpretation of multiplication on the Hecke algebra as various ‘systematic scan’ Markov chains
is developed in [18], [10]. It works for other types in several variations. We are surprised to see it come
up naturally in the present work.

The following corollary provides the connection to [52, (3.16),(3.18),(3.20)] and [18, Proposition
4.9].

Corollary 3.5. Let 𝐽1 = 1, and let 𝐽𝑘 = 𝑇𝑠𝑘−1 · · ·𝑇𝑠2𝑇𝑠1𝑇𝑠1𝑇𝑠2 · · ·𝑇𝑠𝑘−1 , for 𝑘 ∈ {2, . . . , 𝑛}. Then

𝐷 =
𝑛∑

𝑘=1
𝑞𝑛−𝑘 (𝐽𝑘 − 1).

Proof. Using that 𝐽𝑘 = 𝑇𝑠𝑘−1𝐽𝑘−1𝑇𝑠𝑘−1 , check, by induction, that

𝐽𝑘 = 𝑞𝑘−1 + (𝑞 − 1)
𝑘−1∑
𝑗=1

𝑞 𝑗−1𝑇( 𝑗 ,𝑘) .

Thus,

𝑛∑
𝑘=1

𝑞𝑛−𝑘 (𝐽𝑘 − 1) = 0 +
𝑛∑

𝑘=2

���𝑞𝑛−𝑘+(𝑘−1) − 𝑞𝑛−𝑘 + (𝑞 − 1)
𝑘−1∑
𝑗=1

𝑞𝑛−𝑘+ 𝑗−1𝑇( 𝑗 ,𝑘)
���

= (𝑛 − 1)𝑞𝑛−1 − [𝑛 − 1]𝑞 + (𝑞 − 1)𝐷 (21𝑛−2) = 𝐷,

where 𝐷 (21𝑛−2) :=
∑

𝑖< 𝑗 𝑞
(𝑛−1)−( 𝑗−𝑖)𝑇(𝑖, 𝑗) . �

3.3. Eigenvalues and multiplicities

Hildebrand [35] determined the eigenvalues of the random walk driven by Q on 𝐺𝐿𝑛 (𝑞). His arguments
use Macdonald’s version of J.A. Green’s formulas for the characters of 𝐺𝐿𝑛 (𝑞) along with sophisticated
use of properties of Hall–Littlewood polynomials. Using the realization of the walk on the Hecke
algebra, developed below in Section 5, and previous work of Ram and Halverson [31], we can find
cleaner formulas and proofs. Throughout, we have tried to keep track of how things depend on both q
and n (the formulas are easier when 𝑞 = 2).

Theorem 3.6.

1. The eigenvalues 𝛽𝜆 of the Markov chain 𝑃(𝑥, 𝑦) driven by the random transvections measure Q on
B\𝐺𝐿𝑛 (𝑞)/B are indexed by partitions 𝜆 � 𝑛. These are

𝛽𝜆 =
1

|T𝑛,𝑞 |

(
𝑞𝑛−1

∑
𝑏∈𝜆

𝑞𝑐𝑡 (𝑏) − 𝑞𝑛 − 1
𝑞 − 1

)
, (3.2)

with b ranging over the boxes of the partition 𝜆. For the box in row i and column j, the content is
defined as 𝑐𝑡 (𝑏) = 𝑗 − 𝑖, as in [46].
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2. The multiplicity of 𝛽𝜆 for the induced Markov chain on B\𝐺𝐿𝑛 (𝑞)/B is 𝑓 2
𝜆 , where

𝑓𝜆 =
𝑛!∏

𝑏∈𝜆 ℎ(𝑏) . (3.3)

Here, ℎ(𝑏) is the hook length of box b [46].
3. The multiplicity of 𝛽𝜆 for the Markov chain induced by Q on 𝐺𝐿𝑛 (𝑞)/B is

𝑑𝜆 = 𝑓𝜆 ·
[𝑛]𝑞!∏

𝑏∈𝜆 [ℎ(𝑏)]𝑞
. (3.4)

The argument uses the representation of the Markov chain as multiplication on the Hecke algebra.
This is developed further in Section 5.

Proof. (a): Let D be the sum of transvections as in Theorem 1.6. By [31] (3.20), the irreducible repre-
sentation 𝐻𝜆

𝑛 of 𝐻𝑛 indexed by 𝜆 has a ‘seminormal basis’ {𝑣𝑇 | 𝑆𝜆
𝑛} such that 𝐽𝑘𝑣𝑇 = 𝑞𝑘−1𝑞𝑐 (𝑇 (𝑘))𝑣𝑇 ,

where 𝑇 (𝑘) is the box containing k in T. Thus,

𝐷𝑣𝑇 =
𝑛∑

𝑘=1
𝑞𝑛−𝑘 (𝑞𝑘−1𝑞𝑐 (𝑇 (𝑘)) − 1)𝑣𝑇 =

(
−
(
𝑞𝑛 − 1
𝑞 − 1

)
+

𝑛∑
𝑘=1

𝑞𝑛−1𝑞𝑐 (𝑇 (𝑘))

)
𝑣𝑇 .

(b): The dimension of the irreducible representation of 𝐻𝑛 indexed by 𝜆 is the same as the dimension
of the irreducible representation of 𝑆𝑛 indexed by 𝜆, which is well known as the hook-length formula
[46, Ch. I(7.6)(ii), §6 Ex.2(a)]:

dim(𝐻𝜆
𝑛 ) = Card(𝑆𝜆

𝑛) =
𝑛!∏

𝑏∈𝜆 ℎ(𝑏) .

(c): With 𝐺 = 𝐺𝐿𝑛 (𝑞), 𝐻 = 𝐻𝑛, the result follows since [46, Ch. IV(6.7)],

dim(𝐺𝜆) =
[𝑛]𝑞!∏

𝑏∈𝜆 [ℎ(𝑏)]𝑞
and 1𝐺

B =
∑
𝜆∈𝑆𝑛

𝐺𝜆 ⊗ 𝐻𝜆.

�

Example 3.7. Equation 3.2 for some specific partitions gives

𝛽(𝑛) =
1

|T𝑛,𝑞 |

(
𝑞𝑛−1 ·

(
𝑞𝑛 − 1
𝑞 − 1

)
− 𝑞𝑛 − 1

𝑞 − 1

)
= 1

𝛽(𝑛−1,1) =
1

|T𝑛,𝑞 |

(
𝑞𝑛−1
(
𝑞−1 + 𝑞𝑛−1 − 1

𝑞 − 1

)
− 𝑞𝑛 − 1

𝑞 − 1

)
=

𝑞𝑛−2 − 1
𝑞𝑛−1 − 1

𝛽(𝑛−2,12) =
1

|T𝑛,𝑞 |

(
𝑞𝑛−1
(
𝑞−1 + 𝑞−2 + 𝑞𝑛−2 − 1

𝑞 − 1

)
− 𝑞𝑛 − 1

𝑞 − 1

)
=

𝑞𝑛−3 − 1
𝑞𝑛−1 − 1

𝛽(𝑛−2,2) =
1

|T𝑛,𝑞 |

(
𝑞𝑛−1
(
1 + 𝑞−1 + 𝑞𝑛−2 − 1

𝑞 − 1

)
− 𝑞𝑛 − 1

𝑞 − 1

)
=

𝑞𝑛−2 − 1
𝑞𝑛 − 1

𝛽(2,1𝑛−2) =
1

|T𝑛,𝑞 |

(
𝑞𝑛−1
(
1 + 𝑞 + 𝑞−1 + 𝑞−2 + . . . + 𝑞−(𝑛−2)

)
− 𝑞𝑛 − 1

𝑞 − 1

)
=

𝑞 − 1
𝑞𝑛−1 − 1

𝛽(1𝑛) =
1

|T𝑛,𝑞 |

(
𝑞𝑛−1 (𝑞0 + 𝑞−1 + . . . + 𝑞−(𝑛−1) ) − 𝑞𝑛 − 1

𝑞 − 1

)
= 0.
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The following simple lemma will be used several times in subsequent sections. It uses the usual
majorization partial order (moving up boxes) on partitions of n, [46]. For example, when 𝑛 = 4 the
ordering is 1111 ≺ 211 ≺ 22 ≺ 31 ≺ 4.

Lemma 3.8. The eigenvalues 𝛽𝜆 of Theorem 3.6 are monotone increasing in the majorization order.

Proof. Moving a single box (at the corner of the diagram of 𝜆) in position (𝑖, 𝑗) to position (𝑖′, 𝑗 ′)
necessitates 𝑖′ < 𝑖 and 𝑗 ′ > 𝑗 , and so 𝑞 𝑗−𝑖 < 𝑞 𝑗′−𝑖′ . Since any 𝜆 ≺ 𝜆′ can be obtained by successively
moving up boxes, the proof is complete. For example,

𝜆 = 𝜆′ =

�

The partition 1𝑛 = (1, 1, . . . , 1) is the minimal element in the partial order, and since 𝛽(1𝑛) = 0, we
have the following:

Corollary 3.9. If 𝜆 � 𝑛, then

𝛽𝜆 ≥ 0.

Corollary 3.10. If 𝜆 = (𝜆1, . . . , 𝜆𝑘 ), 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝑘 > 0 is a partition of n with 𝜆1 = 𝑛 − 𝑗 and
𝑗 ≤ 𝑛/2, then

𝛽𝜆 ≤ 𝛽(𝑛− 𝑗 , 𝑗) =
𝑞 𝑗 (𝑞𝑛− 𝑗−1 − 1) (𝑞𝑛− 𝑗 − 1) + (𝑞𝑛−2 − 1) (𝑞 𝑗 − 1)

(𝑞𝑛−1 − 1) (𝑞𝑛 − 1)
≤ 𝑞− 𝑗 (1 + 𝑞−(𝑛−2 𝑗+1) ) (1 + 𝑞−(𝑛−1) ) (1 + 𝑞−(𝑛−2) ).

Proof. The first inequality follows from Lemma 3.8. The formula for 𝛽(𝑛− 𝑗 , 𝑗) is a simple calculation
from equation (3.2). Recall the elementary inequalities:

1
𝑞𝑟

<
1

𝑞𝑟 − 1
<

1
𝑞𝑟−1 ,

1
1 − 𝑞−𝑟

= 1 + 1
𝑞𝑟 − 1

< 1 + 𝑞−(𝑟−1) .

These give the inequality for 𝛽(𝑛− 𝑗 , 𝑗) :

𝛽(𝑛− 𝑗 , 𝑗) =
𝑞 𝑗 (𝑞𝑛− 𝑗−1 − 1) (𝑞𝑛− 𝑗 − 1) + (𝑞𝑛−2 − 1) (𝑞 𝑗 − 1)

(𝑞𝑛−1 − 1) (𝑞𝑛 − 1)

≤
(
𝑞 𝑗𝑞𝑛− 𝑗−1𝑞𝑛− 𝑗 + 𝑞𝑛−2𝑞 𝑗

𝑞𝑛−1𝑞𝑛

)
1

(1 − 𝑞−(𝑛−1) ) (1 − 𝑞−𝑛)
≤ (𝑞− 𝑗 + 𝑞−(𝑛− 𝑗+1)) ) (1 + 𝑞−(𝑛−2) ) (1 + 𝑞−(𝑛−1) ).

�

In the following sections, we will use a further bound from Corollary 3.10.

Corollary 3.11. Define 𝜅𝑛,𝑞, 𝑗 := (1 + 𝑞−(𝑛−2 𝑗+1) ) (1 + 𝑞−(𝑛−1) ) (1 + 𝑞−(𝑛−2) ) and

𝛼𝑛,𝑞 := max
1≤ 𝑗≤𝑛/2

log(𝜅𝑛,𝑞, 𝑗 )
𝑗

.

Then for all 𝑛, 𝑞,

𝛼𝑛,𝑞 ≤ 6
𝑛
.
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Proof. Using 1 + 𝑥 ≤ 𝑒𝑥 , there is the initial bound

𝜅𝑛,𝑞, 𝑗 ≤ exp
(
𝑞−(𝑛−2 𝑗+1) + 𝑞−(𝑛−1) + 𝑞−(𝑛−2)

)
≤ exp

(
3𝑞−(𝑛−2 𝑗)

)
,

which uses that 𝑗 ≥ 1 and so (𝑛 − 2) ≥ (𝑛 − 2 𝑗). Then,

log(𝜅𝑛,𝑞, 𝑗 )
𝑗

≤ 3𝑞−(𝑛−2 𝑗)

𝑗
.

With 𝑓 (𝑥) = 3𝑞−(𝑛−2𝑥) /𝑥, we have

𝑓 ′(𝑥) = 3𝑞−(𝑛−2𝑥) (2𝑥 log 𝑞 − 1)
𝑥2 .

Since 2 log(2) > 1, we see that 𝑓 (𝑥) is increasing for 𝑥 ≥ 1 and any 𝑞 ≥ 2. Thus, for 1 ≤ 𝑗 ≤ 𝑛/2, 𝑓 ( 𝑗)
is maximized for 𝑗 = 𝑛/2, which gives

𝛼𝑛,𝑞 ≤ max
1≤ 𝑗≤𝑛/2

3𝑞−(𝑛−2 𝑗)

𝑗
≤ 6

𝑛
.

�

4. Mixing time analysis

In this section, the eigenvalues from Section 3.3 are used to give bounds on the distance to stationarity
for the random transvections Markov chain on 𝑆𝑛. Section 4.1 reviews the tools which are needed for
the bounds from specific starting states. Section 4.2 proves results for the chain started from the identity
element, Section 4.3 proves results for the chain started from the reversal permutation, and Section 4.4
contains bounds for the average over all starting states.

4.1. Eigenvalue bounds

The following result from [18] will be the main tool for achieving bounds on the chi-square distance of
the chain from different starting states.

Proposition 4.1 (Proposition 4.8 in [18]). Let H be the Iwahori–Hecke algebra corresponding to a
finite real reflection group W. Let K be a reversible Markov chain on W with stationary distribution 𝜋
determined by left multiplication by an element of H (also denoted by K). The following identities are
true:

1. 𝜒2
𝑥 (ℓ) = 𝑞−2𝐼 (𝑥) ∑

𝜆≠1 𝑡𝜆𝜒
𝜆
𝐻 (𝑇𝑥−1𝐾2ℓ𝑇𝑥), 𝑥 ∈ 𝑊 ,

2.
∑

𝑥∈𝑊 𝜋(𝑥)𝜒2
𝑥 (ℓ) =

∑
𝜆≠1 𝑓𝜆𝜒

𝜆
𝐻 (𝐾2ℓ),

where 𝜒𝜆
𝐻 are the irreducible characters, 𝑡𝜆 the generic degrees and 𝑓𝜆 the dimensions of the irreducible

representations of W.

In general, the right-hand side of (a) could be difficult to calculate, but it simplifies for the special
cases 𝑥 = 𝑖𝑑, 𝑥 = 𝜔0. These calculations, and the analysis of the sum, are contained in the following
sections.

The right-hand side of the equations in Proposition 4.1 involves the following quantities, defined for
𝜆 � 𝑛:

◦ 𝑛𝜆 =
∑ |𝜆 |

𝑖=1(𝑖 − 1)𝜆𝑖 ,
◦ 𝑐𝜆 =

∑
𝑏∈𝜆 𝑐𝑡 (𝑏), where 𝑐𝑡 (𝑏) = 𝑗 − 𝑖 if box b is in column j and row i,
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Table 1. The quantities involved in the eigenvalue and multiplicity
calculations for 𝑛 = 4..

𝜆 𝑓𝜆 𝑛𝜆 𝑡𝜆 𝑐𝜆 𝛽𝜆

(4) 1 0 1 6 1
(3, 1) 3 1 𝑞 (𝑞3−1)

𝑞−1 2 𝑞2−1
𝑞3−1

(2, 2) 2 2 𝑞2 (𝑞4−1)
𝑞2−1 0 𝑞2−1

𝑞4−1

(2, 1, 1) 3 3 𝑞3 (𝑞3−1)
𝑞−1 -2 𝑞−1

𝑞3−1

(1, 1, 1, 1) 1 6 𝑞6 -6 0

◦ 𝑡𝜆 = 𝑞𝑛𝜆 · 𝑟𝜆, where 𝑟𝜆 =
[𝑛]𝑞 !∏

𝑏∈𝜆 [ℎ𝑏 ]𝑞
, [𝑘]𝑞 = (𝑞𝑘 − 1)/(𝑞 − 1) and [𝑘]𝑞! = [𝑘]𝑞 · [𝑘 − 1]𝑞 . . . [2]𝑞 ,

◦ 𝑓𝜆, which is the number of standard Young tableau of shape 𝜆. The formula is

𝑓𝜆 =
𝑛!∏

𝑏∈𝜆 ℎ(𝑏) .

Table 1 shows these values for 𝑛 = 4 and general q. From this example, we can observe that 𝑐𝜆 is
increasing with respect to the partial order on partitions, while 𝑛𝜆 is decreasing.

Let us record that

𝛽(𝑛−1,1) =
𝑞𝑛−2 − 1
𝑞𝑛−1 − 1

, 𝑡 (𝑛−1,1) = 𝑞 · 𝑞
𝑛−1 − 1
𝑞 − 1

and 𝑓(𝑛−1,1) = 𝑛 − 1. (4.1)

Since 𝑛! ≤ 𝑛𝑛 = 𝑒𝑛 log 𝑛 then

𝑛!
𝑒𝑛 log 𝑛

≤ 1. (4.2)

We will use the following bounds from [18, Lemma 7.2]:

𝑡𝜆 ≤ 𝑞−(
𝜆1
2 )+(𝑛2) 𝑓𝜆, and

∑
𝜆�𝑛

𝑓 2
𝜆 = 𝑛!. (4.3)

In addition, we need the following bounds for sums of 𝑓𝜆. Part (b) of the proposition below is Lemma
7.2(b) in [18]; the proof there is incomplete, so we give the simple proof below.

Proposition 4.2.

1. There is a universal constant 𝐾 > 0 such that, for all 1 ≤ 𝑗 ≤ 𝑛,∑
𝜆:𝜆1=𝑛− 𝑗

𝑓𝜆 ≤ 𝑛 𝑗√
𝑗!

· 𝐾
𝑗
𝑒2
√

2 𝑗 .

2. For 1 ≤ 𝑗 ≤ 𝑛, ∑
𝜆:𝜆1=𝑛− 𝑗

𝑓 2
𝜆 ≤ 𝑛2 𝑗

𝑗!
.

Proof. Recall that 𝑓𝜆 is the number of standard tableau of shape 𝜆, that is, the elements 1, 2, . . . , 𝑛
are arranged in the shape 𝜆 so that rows are increasing left to right and columns are increasing top to
bottom. If 𝜆1 = 𝑛 − 𝑗 , then there are

(𝑛
𝑗

)
ways to choose the elements not in the first row of the tableau.

For a fixed partition 𝜆, the number of ways of arranging the remaining j elements is at most the number
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of Young tableau corresponding to the partition of j created from the remaining rows of 𝜆. This number
is at most

√
𝑗! (Lemma 3 in [22]). Thus,∑

𝜆:𝜆1=𝑛− 𝑗

𝑓𝜆 ≤
(
𝑛

𝑗

)
·
√
𝑗! · 𝑝( 𝑗),

where 𝑝( 𝑗) is equal to the number of partitions of j. It is well known that log(𝑝(𝑛)) ∼ 𝐵 ·
√
𝑛 for a

constant B. More precisely, from (2.11) in [32], there is a universal constant 𝐾 > 0 such that for all 𝑛 ≥ 1,

𝑝(𝑛) <
𝐾

𝑛
𝑒2

√
2𝑛.

This gives (a).
For part (b), we again use the inequality 𝑓𝜆 ≤

(𝑛
𝑗

)
𝑓𝜆∗ , where 𝜆∗ = (𝜆2, . . . , 𝜆𝑘 ) is the partition of j

determined by the rest of 𝜆 after the first row. Then,∑
𝜆:𝜆1=𝑛− 𝑗

𝑓 2
𝜆 ≤
(
𝑛

𝑗

)2∑
𝜆∗� 𝑗

𝑓 2
𝜆∗ =

(
𝑛

𝑗

)2
· 𝑗! =

(
𝑛!

(𝑛 − 𝑗)! 𝑗!

)2
· 𝑗! ≤ 𝑛2 𝑗

𝑗!
.

�

Proposition 4.3. The function 𝑠(𝜆) := 𝑞𝑐𝜆 𝑡𝜆 is monotone with respect to the partial order on partitions.
For any 𝜆 � 𝑛,

𝑠(𝜆) ≤ 𝑞(
𝑛
2) .

Proof. Suppose that 𝜆 ≺ 𝜆 and 𝜆 is obtained from 𝜆 by ‘moving up’ one box. Suppose the box at
position (𝑖, 𝑗) is moved to (𝑖′, 𝑗 ′), with 𝑖′ < 𝑖, 𝑗 ′ > 𝑗 .

Let 𝑔(𝜆) = 𝑐𝜆 + 𝑛𝜆. Then,

𝑐𝜆 = 𝑐𝜆 + ( 𝑗 ′ − 𝑗) + (𝑖 − 𝑖′)
𝑛𝜆 = 𝑛𝜆 − (𝑖 − 1) + (𝑖′ − 1) = 𝑛𝜆 + (𝑖′ − 𝑖).

This implies that

𝑔(𝜆) = 𝑔(𝜆) + ( 𝑗 ′ − 𝑗) + (𝑖 − 𝑖′) − (𝑖 − 1) + (𝑖′ − 1) = 𝑔(𝜆) + ( 𝑗 ′ − 𝑗).

Now, consider the change in 𝑟𝜆. The hook lengths of 𝜆 are:

ℎ̃(𝑖, 𝑗) = ℎ(𝑖, 𝑗) − 1 = 0, ℎ̃(𝑖′, 𝑗 ′) = ℎ(𝑖, 𝑗) + 1 = 1

ℎ̃(𝑘, 𝑗) = ℎ(𝑘, 𝑗) − 1, 𝑘 < 𝑖, 𝑘 ≠ 𝑖′

ℎ̃(𝑖, 𝑙) = ℎ(𝑖, 𝑙) − 1, 𝑙 < 𝑗

ℎ̃(𝑘, 𝑗 ′) = ℎ(𝑘, 𝑗 ′) + 1, 𝑘 < 𝑖′

ℎ̃(𝑖′, 𝑙) = ℎ(𝑖′, 𝑙) + 1, 𝑙 < 𝑗 ′, 𝑙 ≠ 𝑗

and ℎ̃(𝑘, 𝑙) = ℎ(𝑘, 𝑙) for all other boxes 𝑏 = (𝑘, 𝑙). Thus,∑
𝑏

ℎ̃(𝑏) −
∑
𝑏

ℎ(𝑏) = ( 𝑗 ′ − 1) + (𝑖′ − 1) − (𝑖 − 1) − ( 𝑗 − 1)

= ( 𝑗 ′ − 𝑗) + (𝑖′ − 𝑖).
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Using the inequalities 𝑞𝑟−1 < (𝑞𝑟 − 1) < 𝑞𝑟 , we have

𝑟 (𝜆) =
[𝑛]𝑞!(𝑞 − 1)𝑛∏

𝑏 (𝑞ℎ (𝑏) − 1)

≤
[𝑛]𝑞!(𝑞 − 1)𝑛

𝑞
∑

𝑏 ℎ̃ (𝑏)−𝑛
=

1
𝑞 ( 𝑗′− 𝑗)+(𝑖′−𝑖)−𝑛

[𝑛]𝑞!(𝑞 − 1)𝑛

𝑞
∑

𝑏 ℎ (𝑏)

≤ 1
𝑞 ( 𝑗′− 𝑗)+(𝑖′−𝑖)−𝑛

[𝑛]𝑞!(𝑞 − 1)𝑛∏
𝑏 (𝑞ℎ (𝑏) − 1)

=
1

𝑞 ( 𝑗′− 𝑗)+(𝑖′−𝑖)−𝑛 𝑟 (𝜆).

Combining this with the result for 𝑔(𝜆):

𝑠(𝜆) = 𝑞𝑔 (𝜆)𝑟𝜆 = 𝑞𝑔 (𝜆)+( 𝑗′− 𝑗) · 1
𝑞 ( 𝑗′− 𝑗)+(𝑖′−𝑖)−𝑛 𝑟 (𝜆) = 𝑠(𝜆)𝑞𝑖−𝑖′+𝑛 > 𝑠(𝜆)

since 𝑖 > 𝑖′.
Assuming the monotonicity, then if 𝜆1 ≥ 𝑛/2 we have 𝑠(𝜆) ≤ 𝑠((𝜆1, 𝑛 − 𝜆1)). To calculate this

quantity:

𝑔(𝜆) ≤ 𝑔((𝜆1, 𝑛 − 𝜆1)) = 𝑐 (𝜆1 ,𝑛−𝜆1) + 𝑛(𝜆1 ,𝑛−𝜆1)

=

(
𝜆(𝜆1 − 1)

2
+ (𝑛 − 𝜆1 − 1) (𝑛 − 𝜆1 − 2)

2
− 1
)
+ (𝑛 − 𝜆1)

=

(
𝜆1
2

)
+
(
𝑛 − 𝜆1

2

)
=

𝑛(𝑛 − 1)
2

− 𝜆1(𝑛 − 𝜆1).

For 𝑟𝜆, note that the hook lengths of (𝜆1, 𝑛 − 𝜆1) are

𝜆1 + 1, 𝜆1, . . . , 2𝜆1 − 𝑛 + 2
2𝜆1 − 𝑛, 2𝜆1 − 𝑛 − 1, . . . , 3, 2, 1
𝑛 − 𝜆1, 𝑛 − 𝜆1 − 1, . . . , 3, 2, 1.

If 𝜆1 = 𝑛 − 𝑗 , we see the terms that cancel:

𝑟 (𝜆1 ,𝑛−𝜆1) =
[𝑛]𝑞!∏

𝑏 [ℎ(𝑏)]𝑞
=

(𝑞𝑛 − 1) (𝑞𝑛−1 − 1) . . . (𝑞 − 1)∏
𝑏 (𝑞ℎ (𝑏) − 1)

=
(𝑞𝑛 − 1) (𝑞𝑛−1 − 1) . . . (𝑞𝜆1+2 − 1) · (𝑞2𝜆1−𝑛+1 − 1)

(𝑞𝑛−𝜆1 − 1) (𝑞𝑛−𝜆−1 − 1) . . . (𝑞 − 1)

<
𝑞
∑ 𝑗−2

𝑘=0 (𝑛−𝑘)+(𝑛−2 𝑗+1)

𝑞
∑ 𝑗

𝑘=1 𝑘− 𝑗

= 𝑞
1
2 ( 𝑗−1) (2(𝑛+1)− 𝑗)+(𝑛−2 𝑗+1)− 1

2 𝑗 ( 𝑗+1)+ 𝑗

= 𝑞 𝑗 (𝑛− 𝑗−1)+ 𝑗 = 𝑞 𝑗 (𝑛− 𝑗) = 𝑞𝜆1 (𝑛−𝜆1) .

This uses the inequality 𝑞𝑟−1 < 𝑞𝑟 − 1 < 𝑞𝑟 . Thus, if 𝜆1 ≥ 𝑛/2, we have shown

𝑠(𝜆) = 𝑞𝑔 (𝜆)𝑟𝜆 ≤ 𝑞(
𝑛
2)−𝜆1 (𝑛−𝜆1) · 𝑞𝜆1 (𝑛−𝜆1) = 𝑞(

𝑛
2) .
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Now, suppose 𝜆1 ≤ 𝑛/2, so 𝑠(𝜆) ≤ 𝑠((𝑛/2, 𝑛/2)) (assume n is even). To calculate this,

𝑔(𝜆) ≤ 𝑔((𝑛/2, 𝑛/2)) = 𝑐 (𝑛/2,𝑛/2) + 𝑛(𝑛/2,𝑛/2)

=
(𝑛/2 − 1)𝑛/2

2
+ (𝑛/2 − 2) (𝑛/2 − 1)

2
− 1 + 𝑛

2
=

𝑛2

4
− 𝑛

2
.

To bound 𝑟𝜆, use the same calculation as before to get

𝑟 (𝑛/2,𝑛/2) ≤ 𝑞𝑛2/4,

and so in total 𝑠((𝑛/2, 𝑛/2)) ≤ 𝑞𝑛2/2−𝑛/2 = 𝑞(
𝑛
2) . �

4.2. Starting from id

Theorem 4.4. Let P be the Markov chain on 𝑆𝑛 induced by random transvections on 𝐺𝐿𝑛 (𝑞).

1. For 𝑡𝜆, 𝛽𝜆 defined in Theorem 3.6, we have

4‖𝑃ℓ
𝑖𝑑 − 𝜋𝑞 ‖2

𝑇𝑉 ≤ 𝜒2
𝑖𝑑 (ℓ) =

∑
𝜆�𝑛,𝜆≠(𝑛)

𝑡𝜆 𝑓𝜆𝛽
2ℓ
𝜆 .

2. Let 𝛼𝑛,𝑞 be as in Corollary 3.11 and 𝑛, 𝑞 such that log 𝑞 > 6/𝑛. Then if ℓ ≥ 𝑛 log 𝑞/2+log 𝑛+𝑐
(log 𝑞−𝛼𝑛,𝑞 ) , 𝑐 > 0,

we have

𝜒2
𝑖𝑑 (ℓ) ≤ (𝑒𝑒−2𝑐 − 1) + 𝑒−𝑐𝑛.

3. For any ℓ ≥ 1,

𝜒2
𝑖𝑑 (ℓ) ≥ (𝑞𝑛−1 − 1) (𝑛 − 1)𝑞−4ℓ .

4. If ℓ ≤ 𝑛/8, then for fixed q and n large,

‖𝑃ℓ
𝑖𝑑 − 𝜋𝑞 ‖𝑇𝑉 ≥ 1 − 𝑜(1). (4.4)

Theorem 4.4 shows that restricting the random transvections walk from 𝐺𝐿𝑛 (𝑞) to the double coset
space only speeds things up by a factor of 2 when started from the identity. Hildebrand [35] shows that
the total variation distance on all of 𝐺𝐿𝑛 (𝑞) is only small after 𝑛+𝑐 steps. Note this is independent of q.

Proof. (a): The inequality follows from Proposition 4.1 (b):

𝜒2
𝑖𝑑 (ℓ) = 𝑞−2𝐼 (𝑖𝑑)

∑
𝜆≠(𝑛)

𝑡𝜆𝜒
𝜆
𝐻 (𝑇𝑖𝑑𝐾2ℓ𝑇𝑖𝑑)

=
∑
𝜆≠(𝑛)

𝑡𝜆𝜒
𝜆
𝐻 (𝐾2ℓ) =

∑
𝜆≠(𝑛)

𝑡𝜆 𝑓𝜆𝛽
2ℓ
𝜆 .

(b): From Corollary 3.10 if 𝜆1 = 𝑛 − 𝑗 , then 𝛽𝜆 ≤ 𝜅𝑛,𝑞, 𝑗𝑞
− 𝑗 , where

𝜅𝑛,𝑞, 𝑗 = (1 + 𝑞−(𝑛−2 𝑗+1) ) (1 + 𝑞−(𝑛−1) ) (1 + 𝑞−(𝑛−2) ).
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Using the bound on 𝑡𝜆 from equation (4.3), for 1 ≤ 𝑗 ≤ �𝑛/2�, we have∑
𝜆:𝜆1=𝑛− 𝑗

𝑡𝜆 𝑓𝜆𝛽
2ℓ
𝜆 ≤ (𝜅𝑛,𝑞, 𝑗𝑞− 𝑗 )2ℓ

∑
𝜆:𝜆1=𝑛− 𝑗

𝑞−(
𝑛− 𝑗

2 )+(𝑛2) 𝑓 2
𝜆

≤ (𝜅𝑛,𝑞, 𝑗𝑞− 𝑗 )2ℓ𝑞𝑛 𝑗− 𝑗 ( 𝑗+1)/2 · 𝑛
2 𝑗

𝑗!

≤ 1
𝑗!

exp
(
−2ℓ 𝑗

(
log 𝑞 −

log(𝜅𝑛,𝑞, 𝑗 )
𝑗

)
+ log 𝑞(𝑛 𝑗 − 𝑗 ( 𝑗 + 1)/2) + 2 𝑗 log 𝑛

)
≤ 1

𝑗!
exp
(
−2ℓ 𝑗

(
log 𝑞 − 𝛼𝑛,𝑞

)
+ log 𝑞(𝑛 𝑗 − 𝑗 ( 𝑗 + 1)/2) + 2 𝑗 log 𝑛

)
. (4.5)

Recall the final inequality follows since 𝛼𝑛,𝑞 := max1≤ 𝑗≤𝑛/2 log(𝜅𝑛,𝑞, 𝑗 )/ 𝑗 . If ℓ = 𝑛 log 𝑞/2+log 𝑛+𝑐
(log 𝑞−𝛼𝑛,𝑞 ) ,

then the exponent in equation (4.5) is

−2 𝑗 (𝑛 log 𝑞/2 + log 𝑛 + 𝑐) + log 𝑞(𝑛 𝑗 − 𝑗 ( 𝑗 + 1)/2) + 2 𝑗 log 𝑛

= − 𝑗 (2𝑐 + log 𝑞( 𝑗 + 1)/2).

This gives

�𝑛/2�∑
𝑗=1

∑
𝜆:𝜆1=𝑛− 𝑗

𝑡𝜆 𝑓𝜆𝛽
2ℓ
𝜆 ≤

�𝑛/2�∑
𝑗=1

𝑒−2 𝑗𝑐

𝑗!
≤ 𝑒𝑒

−2𝑐 − 1.

Next, we need to consider the partitions 𝜆 with 𝜆1 ≤ 𝑛/2. For these partitions,

𝛽𝜆 ≤ 𝛽(𝑛/2,𝑛/2) ≤ 𝜅𝑛,𝑞,𝑛/2𝑞
−𝑛/2.

Then we have

𝑛−1∑
𝑗=𝑛/2

∑
𝜆:𝜆1=𝑛− 𝑗

𝑡𝜆 𝑓𝜆𝛽
2ℓ
𝜆 ≤ 𝛽2ℓ

(𝑛/2,𝑛/2)

𝑛−1∑
𝑗=𝑛/2

∑
𝜆:𝜆1=𝑛− 𝑗

𝑡𝜆 𝑓𝜆

≤ 𝛽2ℓ
(𝑛/2,𝑛/2)

𝑛−1∑
𝑗=𝑛/2

∑
𝜆:𝜆1=𝑛− 𝑗

𝑞𝑛 𝑗− 𝑗 ( 𝑗+1)/2 𝑓 2
𝜆

≤ 𝑛! · exp
(
−2ℓ(𝑛/2)

(
log 𝑞 +

𝜅𝑛,𝑞,𝑛/2

𝑛/2

)
+ 𝑛2/2

)
≤ exp

(
−𝑛(𝑛 log 𝑞/2 + log 𝑛 + 𝑐) + 𝑛2/2

)∑
𝜆�𝑛

𝑓 2
𝜆

≤ 𝑛! exp
(
−𝑛(𝑛 log 𝑞/2 + log 𝑛 + 𝑐) + 𝑛2/2

)
,

using
∑

𝜆 𝑓 2
𝜆 = 𝑛! and that if 𝑛/2 ≤ 𝑗 ≤ 𝑛, then

𝑛 𝑗 − 𝑗 ( 𝑗 + 1)/2 ≤ 𝑛2 − 𝑛2/4 < 𝑛2 − 𝑛(𝑛 + 1)/2 ≤ 𝑛2/2
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since the function is increasing in j. Note also that if 𝑞 ≥ 3, then log 𝑞 > 1 and 𝑛! ≤ 𝑛𝑛 = 𝑒log 𝑛. To
finish the bound,

𝑛−1∑
𝑗=𝑛/2

∑
𝜆:𝜆1=𝑛− 𝑗

𝑡𝜆 𝑓𝜆𝛽
2ℓ
𝜆 ≤ exp

(
𝑛 log 𝑛 − 𝑛(𝑛 log 𝑞/2 + log 𝑛 + 𝑐) + 𝑛2/2

)
= exp

(
−(𝑛2/2) (log 𝑞 − 1) − 𝑐𝑛

)
≤ 𝑒−𝑐𝑛.

(c): The lower bound comes from considering the 𝜆 = (𝑛 − 1, 1) term from the sum in (a). Using the
quantities (4.1), this gives

𝜒2
𝑖𝑑 (ℓ) =

∑
𝜆≠(𝑛)

𝑡𝜆 𝑓𝜆𝛽
2ℓ
𝜆 ≥ 𝑡 (𝑛−1,1) 𝑓(𝑛−1,1) 𝛽

2ℓ
(𝑛−1,1)

= 𝑞 · 𝑞
𝑛−1 − 1
𝑞 − 1

(𝑛 − 1)
(
𝑞𝑛−2 − 1
𝑞𝑛−1 − 1

)2ℓ
≥ (𝑞𝑛−1 − 1) (𝑛 − 1)𝑞−4ℓ .

This uses that (𝑞𝑛−2 − 1)/(𝑞𝑛−1 − 1) ≥ 𝑞−2.
(d): From the alternative version of the walk on the Hecke algebra, involving 𝐷/|T𝑛,𝑞 | with D from

1.6, the walk proceeds by picking a transposition (𝑖, 𝑗), 𝑖 < 𝑗 with probability proportional to

𝑞−( 𝑗−𝑖)

and multiplying by 𝑇𝑖 𝑗 . As described in Section 3.2, multiplication by 𝑇𝑖 𝑗 corresponds to proposing the
transposition (𝑖, 𝑗) and proceeding via the Metropolis algorithm. Thus, multiplication by 𝑇𝑖 𝑗 induces at
most 2( 𝑗 − 𝑖) inversions, always less than 2𝑛. From [22] Theorem 5.1, under 𝜋𝑞 , a typical permutation
has
(𝑛
2
)
− 𝑛−𝑞

𝑞+1 + 𝑂 (
√
𝑛) inversions (and the fluctuations are Gaussian about this mean). If ℓ = 𝑛/8, the

measure 𝑃ℓ
𝑖𝑑 (·) is concentrated on permutations with at most 𝑛2/4 inversions and 𝜋𝑞 is concentrated on

permutations with order 𝑛2/2 − (𝑛 − 1)/(𝑞 + 1) +𝑂 (
√
𝑛) inversions. �

4.3. Starting from 𝜔0

Theorem 4.5. Let P be the Markov chain on 𝑆𝑛 induced by random transvections on 𝐺𝐿𝑛 (𝑞), and let
𝜔0 ∈ 𝑆𝑛 be the reversal permutation in 𝑆𝑛.

1. With 𝑡𝜆, 𝑐𝜆, 𝛽𝜆 defined in Section 3.3,

4‖𝑃ℓ
𝜔0 − 𝜋𝑞 ‖2

𝑇𝑉 ≤ 𝜒2
𝜔0 (ℓ) = 𝑞−(

𝑛
2)
∑
𝜆≠(𝑛)

𝑞𝑐𝜆 𝑡𝜆 𝑓𝜆𝛽
2ℓ
𝜆 .

2. Let 𝛼𝑛,𝑞 be as in Corollary 3.11 and 𝑛, 𝑞 such that log 𝑞 > 6/𝑛. If ℓ ≥ (log 𝑛/2 + 𝑐)/(log 𝑞 − 𝛼𝑛,𝑞)
for 𝑐 > 0 with 𝑐 ≥ 2

√
2 then

𝜒2
𝜔0 (ℓ) ≤ −2𝐾 log(1 − 𝑒−𝑐) +

√
𝐾𝑒−𝑐𝑛,

for a universal constant 𝐾 > 0 (independent of 𝑞, 𝑛).
3. For any ℓ ≥ 1,

𝜒2
𝜔0 (ℓ) ≥ 𝑞−(𝑛−2) (𝑛 − 1) (𝑞𝑛−1 − 1)𝑞−4ℓ .

Remark 4.6. Theorem 4.5 shows that the Markov chain has a cutoff in its approach to stationarity in
the chi-square metric. It shows the same exponential speed up as the walk started at a typical position
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(Theorem 4.7 below) and indeed is faster by a factor of 2. This is presumably because it starts at the
permutation 𝜔0, at which the stationary distribution 𝜋𝑞 is concentrated, instead of ‘close to 𝜔0’.

Proof of Theorem 4.5. (a): By Proposition 4.9 in [18], if 𝜔0 is the longest element of W, then

𝜌𝜆(𝑇2
𝜔0 ) = 𝑞𝐼 (𝜔0)+𝑐𝜆Id,

where 𝜌𝜆 is the irreducible representation indexed by 𝜆. Using this and 4.1 (a),

𝜒2
𝜔0 (ℓ) = 𝑞−2𝐼 (𝜔0)

∑
𝜆≠1

𝑡𝜆𝜒
𝜆
𝐻 (𝑇𝜔−1

0
𝐾2ℓ𝑇𝜔0 )

= 𝑞−2𝐼 (𝜔0)
∑
𝜆≠1

𝑡𝜆𝜒
𝜆
𝐻 (𝐾2ℓ𝑇𝜔0𝑇𝜔−1

0
)

= 𝑞−2𝐼 (𝜔0)
∑
𝜆≠1

𝑡𝜆𝜒
𝜆
𝐻 (𝐾2ℓ𝑇2

𝜔0)

= 𝑞−2𝐼 (𝜔0)
∑
𝜆≠1

𝑡𝜆𝜒
𝜆
𝐻 (𝐾2ℓ𝑞𝑐𝜆+𝐼 (𝜔0) )

= 𝑞−𝐼 (𝜔0)
∑
𝜆≠1

𝑞𝑐𝜆 𝑡𝜆𝜒
𝜆
𝐻 (𝐾2ℓ) = 𝑞−𝐼 (𝜔0)

∑
𝜆≠1

𝑞𝑐𝜆 𝑡𝜆 𝑓𝜆𝛽
2ℓ
𝜆

since 𝐾 ∈ 𝑍 (𝐻), that is, K commutes with all elements of the Hecke algebra.
(b): Suppose 𝜆1 = 𝑛 − 𝑗 for 1 ≤ 𝑗 ≤ 𝑛/2. Recall the definition 𝑠(𝜆) = 𝑞𝑐𝜆 𝑡𝜆. From Proposition 4.3,

𝑠(𝜆) ≤ 𝑞(
𝑛
2) . Then,

𝑞−(
𝑛
2)
∑

𝜆:𝜆1=𝑛− 𝑗

𝑞𝑐𝜆 𝑡𝜆 𝑓𝜆𝛽
2ℓ
𝜆 = 𝑞−(

𝑛
2)
∑

𝜆:𝜆1=𝑛− 𝑗

𝑠(𝜆) 𝑓𝜆𝛽2ℓ
𝜆

≤ (𝜅𝑛,𝑞, 𝑗𝑞− 𝑗 )2ℓ𝑞−(
𝑛
2)
∑

𝜆:𝜆1=𝑛− 𝑗

𝑞(
𝑛
2) 𝑓𝜆

≤ (𝜅𝑛,𝑞, 𝑗𝑞− 𝑗 )2ℓ
∑

𝜆:𝜆1=𝑛− 𝑗

𝑓𝜆

≤ (𝜅𝑛,𝑞, 𝑗𝑞− 𝑗 )2ℓ · 𝑛 𝑗√
𝑗!

· 𝐾
𝑗
𝑒2
√

2 𝑗

≤ 𝐾√
𝑗!

exp
(
−2ℓ 𝑗

(
log 𝑞 −

log(𝜅𝑛,𝑞, 𝑗 )
𝑗

)
+ ( 𝑗 − 1) log 𝑛 + 2

√
2 𝑗

)
.

The third inequality uses Proposition 4.2 for
∑

𝜆:𝜆1=𝑛− 𝑗 𝑓𝜆. Recall 𝛼𝑛,𝑞 := max1≤ 𝑗≤𝑛/2 log(𝜅𝑛,𝑞, 𝑗 )/ 𝑗 . If
ℓ = (log 𝑛/2 + 𝑐)/(log 𝑞 − 𝛼𝑛,𝑞), then the bound becomes

𝑛/2∑
𝑗=1

𝑞−(
𝑛
2)
∑

𝜆:𝜆1=𝑛− 𝑗

𝑞𝑐𝜆 𝑡𝜆 𝑓𝜆𝛽
2ℓ
𝜆 ≤

𝑛/2∑
𝑗=1

𝐾√
𝑗!

exp
(
− 𝑗 log 𝑛 − 2 𝑗𝑐 + ( 𝑗 − 1) log 𝑛 + 2

√
2 𝑗
)

≤ 2𝐾
𝑛/2∑
𝑗=1

𝑒−2 𝑗𝑐+2
√

2 𝑗

𝑗
,
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using the loose bound
√
𝑗! > 𝑗/2 for all 𝑗 ≥ 1. With the assumption that 𝑐 ≥ 2

√
2, we have−2 𝑗𝑐+2

√
2 𝑗 ≤

− 𝑗𝑐 for all 𝑗 ≥ 1. Finally,

2𝐾
𝑛/2∑
𝑗=1

𝑒− 𝑗𝑐

𝑗
≤ 2𝐾

∞∑
𝑗=1

𝑒− 𝑗𝑐

𝑗

= −2𝐾 log(1 − 𝑒−𝑐).

Now, for the 𝜆 with 𝜆1 ≥ 𝑛/2, we have

𝑛−1∑
𝑗=𝑛/2

∑
𝜆:𝜆1=𝑛− 𝑗

𝑞−(
𝑛
2)𝑞𝑐𝜆 𝑡𝜆 𝑓𝜆𝛽

2ℓ
𝜆 ≤ 𝛽2ℓ

(𝑛/2,𝑛/2)

𝑛−1∑
𝑗=𝑛/2

∑
𝜆:𝜆1=𝑛− 𝑗

𝑓𝜆

≤ 𝛽2ℓ
(𝑛/2,𝑛/2)

∑
𝜆�𝑛

𝑓𝜆

≤ 𝛽2ℓ
(𝑛/2,𝑛/2)

(∑
𝜆�𝑛

𝑓 2
𝜆

)1/2

· 𝑝(𝑛)1/2,

where 𝑝(𝑛) is equal to the number of partitions of n (the inequality is Cauchy–Schwarz). Since 𝑝(𝑛) ≤
𝐾
𝑛 𝑒2

√
2𝑛 for a constant 𝐾 > 0 ([32]) and

∑
𝜆�𝑛 𝑓 2

𝜆 = 𝑛!, this gives

≤
√
𝑛! ·
√

𝐾

𝑛
exp
(√

2𝑛 − 2ℓ(𝑛/2)
(
log 𝑞 −

𝜅𝑛,𝑞,𝑛/2

𝑛/2

))
≤
√
𝑛! ·
√

𝐾

𝑛
exp
(√

2𝑛 − 𝑛 log 𝑛/2 − 2𝑛𝑐
)

≤
√
𝐾 exp

(
−𝑛𝑐 − 𝑛(𝑐 −

√
2𝑛−1/2)

)
since

√
𝑛! ≤ 𝑒𝑛 log 𝑛/2. Since 𝑐 > 2

√
2, then the bound is ≤

√
𝐾𝑒−𝑐𝑛 for any 𝑛 ≥ 1.

(c): A lower bound comes from using equation (4.1) for the lead term on the right-hand side of (a):

𝜒2
𝜔0 (ℓ) ≥ 𝑞−(

𝑛
2)𝑞𝑐(𝑛−1,1) 𝑡 (𝑛−1,1) 𝑓(𝑛−1,1) 𝛽

2ℓ
(𝑛−1,1)

= 𝑞−(
𝑛
2)𝑞(

𝑛−1
2 )+1 · 𝑞 𝑞𝑛−1 − 1

𝑞 − 1
· (𝑛 − 1)

(
𝑞𝑛−2 − 1
𝑞𝑛−1 − 1

)2ℓ
≥ 𝑞−(𝑛−2) (𝑞𝑛−1 − 1) (𝑛 − 1)𝑞−4ℓ .

�

4.4. Starting from a typical site

In analyzing algorithms used repeatedly for simulations, as the algorithm is used, it approaches station-
arity. This means the quantity ∑

𝑥∈𝑆𝑛

𝜋𝑞 (𝑥)‖𝑃ℓ
𝑥 − 𝜋𝑞 ‖𝑇𝑉

is of interest. For the problem under study, 𝜋𝑞 is concentrated near 𝜔0 so we expect rates similar to
those in Theorem 4.5.

Theorem 4.7. Let P be the Markov chain on 𝑆𝑛 induced by random transvections on 𝐺𝐿𝑛 (𝑞).
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1. With 𝑓𝜆, 𝛽𝜆 defined in Section 3.3,(∑
𝑥∈𝑆𝑛

𝜋𝑞 (𝑥)‖𝑃ℓ
𝑥 − 𝜋𝑞 ‖𝑇𝑉

)2
≤ 1

4

∑
𝑥∈𝑆𝑛

𝜋𝑞 (𝑥)𝜒2
𝑥 (ℓ) =

1
4

∑
𝜆≠(𝑛)

𝑓 2
𝜆 𝛽

2ℓ
𝜆 .

2. Let 𝛼𝑛,𝑞 be as in Corollary 3.11 and 𝑛, 𝑞 such that log 𝑞 > 6/𝑛. If ℓ ≥ (log 𝑛+𝑐)/(log 𝑞−𝛼𝑛,𝑞), 𝑐 > 0,
then ∑

𝑥∈𝑆𝑛

𝜋𝑞 (𝑥)𝜒2
𝑥 (ℓ) ≤ (𝑒𝑒−𝑐 − 1) + 𝑒−𝑐𝑛.

3. For any ℓ ≥ 1, ∑
𝑥∈𝑆𝑛

𝜋𝑞 (𝑥)𝜒2
𝑥 (ℓ) ≥ (𝑛 − 1)2𝑞−4ℓ .

Proof. (a): This is simply a restatement of 4.1 part (b).
(b): We will divide the sum depending on the first entry of the partition. By Proposition 4.2, we have

the bound (true for any 1 ≤ 𝑗 ≤ 𝑛) ∑
𝜆:𝜆1=𝑛− 𝑗

𝑓 2
𝜆 ≤ 𝑛2 𝑗

𝑗!
.

Combining this with Corollary 3.10, for 𝑗 ≤ �𝑛/2�,∑
𝜆:𝜆1=𝑛− 𝑗

𝛽2ℓ
𝜆 𝑓 2

𝜆 ≤
∑

𝜆:𝜆1=𝑛− 𝑗

𝛽2ℓ
(𝑛− 𝑗 , 𝑗) 𝑓

2
𝜆 ≤ 𝛽2ℓ

(𝑛− 𝑗 , 𝑗) ·
𝑛2 𝑗

𝑗!

≤ 𝜅2ℓ
𝑛,𝑞, 𝑗𝑞

−2ℓ 𝑗 · 𝑛
2 𝑗

𝑗!
=

1
𝑗!

exp
(
2ℓ(log(𝜅𝑛,𝑞, 𝑗 ) − 𝑗 log 𝑞) + 2 𝑗 log 𝑛

)
=

1
𝑗!

exp
(
2ℓ 𝑗
( log(𝜅𝑛,𝑞, 𝑗 )

𝑗
− log 𝑞

)
+ 2 𝑗 log 𝑛

)
.

Define

𝛼𝑛,𝑞 := max
1≤ 𝑗≤𝑛/2

log(𝜅𝑛,𝑞, 𝑗 )
𝑗

,

so then if ℓ = (log 𝑛 + 𝑐)/(log 𝑞 − 𝛼𝑛,𝑞), the bound is

≤ 1
𝑗!

exp
(
2ℓ 𝑗 (𝛼𝑛,𝑞 − log 𝑞) + 2 𝑗 log 𝑛

)
=

1
𝑗!

exp(−2 𝑗 log 𝑛 − 2 𝑗𝑐 + 2 𝑗 log 𝑛) = 𝑒−2 𝑗𝑐

𝑗!
.

Then summing over all possible j gives

�𝑛/2�∑
𝑗=1

∑
𝜆:𝜆1=𝑛− 𝑗

𝑓 2
𝜆 𝛽

2ℓ
𝜆 ≤

�𝑛/2�∑
𝑗=1

𝑒−2 𝑗𝑐

𝑗!
≤
(
𝑒𝑒

−𝑐 − 1
)
.
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Now, we have to bound the contribution from partitions 𝜆 with 𝜆1 ≤ 𝑛/2. Because 𝛽𝜆 is monotone
with respect to the order on partitions, we have for all 𝜆 such that 𝜆1 ≤ 𝑛/2,

𝛽𝜆 ≤ 𝛽(𝑛/2,𝑛/2) ≤ 𝜅𝑛,𝑞,𝑛/2𝑞
−𝑛/2

since 𝜆 � (𝑛/2, 𝑛/2) (assuming without essential loss that n is even). Then,

𝑛−1∑
𝑗=𝑛/2

∑
𝜆:𝜆1=𝑛− 𝑗

𝑓 2
𝜆 𝛽

2ℓ
𝜆 ≤ 𝛽2ℓ

(𝑛/2,𝑛/2)

∑
𝜆

𝑓 2
𝜆

≤ 𝑛! · exp
(
2ℓ(𝑛/2) (log 𝑞 +

𝜅𝑛,𝑞,𝑛/2

𝑛/2
)
)

≤ 𝑛! · exp(−𝑛(log 𝑛 + 𝑐))
≤ 𝑒−𝑐𝑛,

using
∑

𝜆 𝑓 2
𝜆 = 𝑛! ≤ 𝑛𝑛.

(c): The sum is bounded below by the term for 𝜆 = (𝑛 − 1, 1). This is

𝑓 2
(𝑛−1,1) · 𝛽

2ℓ
(𝑛−1,1) = (𝑛 − 1)2

(
𝑞𝑛−2 − 1
𝑞𝑛−1 − 1

)2ℓ
≥ (𝑛 − 1)2𝑞−4ℓ .

�

5. Hecke algebra computations

This section proves Theorem 1.6 which describes the transvections Markov chain on 𝑆𝑛 as multiplication
in the Hecke algebra from Definition 3.1. This is accomplished by careful and elementary row reduction.
Our first proof used Hall–Littlewood symmetric functions. It is recorded in the expository account [19].

5.1. Overview

Let C[𝐺] denote the group algebra for 𝐺 = 𝐺𝐿𝑛 (𝑞). This is the space of functions 𝑓 : 𝐺 → C, with
addition defined ( 𝑓 + 𝑔) (𝑠) = 𝑓 (𝑠) + 𝑔(𝑠) and multiplication defined by

𝑓1 ∗ 𝑓2 (𝑠) =
∑
𝑡 ∈𝐺

𝑓1(𝑡) 𝑓2(𝑠𝑡−1).

Equivalently, C[𝐺] = span{𝑔 | 𝑔 ∈ 𝐺} and we can write an element 𝑓 =
∑

𝑔 𝑐𝑔𝑔 for 𝑐𝑔 ∈ C, so
𝑓 (𝑔) = 𝑐𝑔.

Define elements in C[𝐺]:

1B =
1
|B |
∑
𝑥∈B

𝑥, and 𝑇𝜔 =
1
|B |

∑
𝑥∈B𝜔B

𝑥, for 𝜔 ∈ 𝑆𝑛.

Note that if 𝑏 ∈ B, then

𝑏1B = 1B𝑏 = 1B, 12
B = 1B .
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If 𝑔 ∈ B𝜔B, so 𝑔 = 𝑏1𝜔𝑏2 with 𝑏1, 𝑏2 ∈ B, then

1B𝑔1B = 1B𝑏1𝜔𝑏21B = 1B𝜔1B

=
1

|B |2
∑

𝑏1 ,𝑏2∈B
𝑏1𝜔𝑏2 =

1
|B |2

|B |2
|B𝜔B |

∑
𝑥∈B𝜔B

𝑥

=
|B |

|B𝜔B |
1
|B |

∑
𝑥∈B𝜔B

𝑥 =
|B |

|B𝜔B |
1
|B |𝑇𝜔 = 𝑞−𝐼 (𝜔)𝑇𝜔 .

The Hecke algebra is 𝐻𝑛 (𝑞) = 1BC[𝐺]1B and has basis {𝑇𝜔 | 𝜔 ∈ 𝑆𝑛}. Note that 𝐻𝑛 (𝑞) are all
functions in C[𝐺] which are B-B invariant, that is, 𝑓 (𝑏1𝑔𝑏2) = 𝑓 (𝑔).

Now, let P be the transition matrix for G defined by multiplying by a random transvection. We can
also write this

𝑃 =
1

|T𝑛,𝑞 |
∑

𝑇 ∈T𝑛,𝑞

𝑀𝑇 ,

where 𝑀𝑇 is the transition matrix ‘multiply by T’. In other words, 𝑀𝑇 (𝑥, 𝑦) = 1(𝑦 = 𝑇𝑥).
Then P defines a linear transform on the space C[𝐺], with respect to the basis {𝑔 | 𝑔 ∈ 𝐺}. The

matrix 𝑀𝑇 is just the function: Multiply by T in the group algebra. This means P is equivalent to
multiplication by 1

|T𝑛,𝑞 |𝐷, with 𝐷 =
∑

𝑇 ∈T𝑛,𝑞
𝑇 as an element in C[𝐺]. The Markov chain lumped

to 𝑆𝑛 = B\𝐺𝐿𝑛 (𝑞)/B is then equivalent to multiplication by D on 𝐻𝑛 (𝑞). Since D is the sum of all
elements in a conjugacy class, it is in the center 𝑍 (C[𝐺]). This means if 𝑔 ∈ B𝜔B, then

1B (𝐷𝑔)1B = 𝐷1B𝜔1B = (𝐷1B)𝑞−𝐼 (𝜔)𝑇𝜔 .

In conclusion, to determine how D acts in 𝐻𝑛 (𝑞), we can compute 𝐷1B. The remainder of the section
proves the following.

Theorem 5.1. Let 𝐷 =
∑

𝑇 ∈T𝑛,𝑞
𝑇 ∈ C[𝐺]. Then,

𝐷1B =
(
(𝑛 − 1)𝑞𝑛−1 − [𝑛 − 1]𝑞

)
1B + (𝑞 − 1)

∑
1≤𝑖< 𝑗≤𝑛

𝑞𝑛−1−( 𝑗−𝑖)𝑇𝑠𝑖 𝑗 ,

where 𝑠𝑖 𝑗 is the transposition switching i and j.

5.2. Row reduction

Let 𝐺 = 𝐺𝐿𝑛 (𝑞) and B be the upper-triangular matrices. For 1 ≤ 𝑖 ≤ 𝑛−1 and 𝑐 ∈ F𝑞 , define 𝑦𝑖 (𝑐) ∈ 𝐺
by

𝑦𝑖 (𝑐) =

𝑖 𝑖 + 1

��������������

��������������

1
. . .

1
𝑖 𝑐 1

𝑖 + 1 1 0
1

. . .

1

.
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That is, multiplication on the left by 𝑦𝑖 (𝑐) acts by adding c times the ith row to the (𝑖 + 1)th row, then
permuting the i and 𝑖 + 1 rows.

Let 𝜔 ∈ 𝑆𝑛. We can write the reduced word 𝜔 = 𝑠𝑖1 . . . 𝑠𝑖ℓ , for 𝑠𝑖 = (𝑖, 𝑖 + 1) the simple reflections.
Then,

B𝜔B =
{
𝑦𝑖1 (𝑐1) . . . 𝑦𝑖ℓ (𝑐ℓ)B | 𝑐1, . . . , 𝑐ℓ ∈ F𝑞

}
,

and |B𝜔B |/|B | = 𝑞𝐼 (𝜔) and 𝐺 =
⊔

𝜔∈𝑆𝑛 B𝜔B. This provides a very useful way for determining the
double coset that a matrix M belongs to, which just amounts to performing row reduction by multiplying
by different matrices 𝑦𝑖 (𝑐).

5.3. Transvections

For every transvection 𝑇 ∈ T𝑛,𝑞 , we can perform row operations, multiplying by 𝑦𝑖 (𝑐), to determine
which double coset T belongs to.

A transvection is defined by two vectors a, v ∈ F𝑛𝑞 with v�a = 0, with the last nonzero entry of v
normalized to be 1. Assume this entry is at position j. Assume the first nonzero entry of a is at position
i. That is, the vectors look like:

a = (0, . . . , 0, 𝑎𝑖 , 𝑎𝑖+1, . . . , 𝑎𝑛)�, 𝑎𝑖 ≠ 0,
v = (𝑣1, . . . , 𝑣 𝑗−1, 1, 0, . . . , 0)�.

Let 𝑇a,v = 𝐼 + va�. We consider the possible cases for i and j to prove the following result.

Proposition 5.2. Let 𝑇a,v = 𝐼 + va� be the transvection defined by nonzero vectors a, v with v�a = 0
and the last nonzero entry of v equal to 1. Let j be the index of the last nonzero entry of v and i the index
of the first nonzero entry of a. If 𝑖 > 𝑗 , then 𝑇a,v ∈ B. If 𝑖 < 𝑗 , then

𝑇a,v ∈ B𝑠 𝑗−1 · · · 𝑠𝑖+1𝑠𝑖𝑠𝑖+1 · · · 𝑠 𝑗−1B.

The case 𝑖 = 𝑗 does not occur.

Proof. Case 1 𝑖 > 𝑗 . If 𝑖 > 𝑗 , then 𝑇a,v ∈ B. To see this, suppose 𝑘 > 𝑙. Then

𝑇a,v (𝑘, 𝑙) = (va�)𝑘,𝑙 = 𝑣𝑘𝑎𝑙 = 0

because 𝑣𝑘𝑎𝑙 can only be nonzero if 𝑘 ≤ 𝑗 < 𝑖 ≤ 𝑙. Now, we can count how many transvections satisfy
this. There are (𝑞 − 1)𝑞𝑛−𝑖 choices for a (because 𝑎𝑖 must be nonzero) and 𝑞 𝑗−1 choices for v (because
𝑣 𝑗 is fixed at 1). In total for this case, there are

𝑛−1∑
𝑗=1

𝑛∑
𝑖= 𝑗+1

(𝑞 − 1)𝑞𝑛−𝑖𝑞 𝑗−1 = (𝑞 − 1)
𝑛−1∑
𝑗=1

𝑞 𝑗−1 (𝑞𝑛− 𝑗−1 + 𝑞𝑛− 𝑗−2 + . . . + 𝑞 + 1)

= (𝑞 − 1)
𝑛−1∑
𝑗=1

𝑞 𝑗−1 𝑞
𝑛− 𝑗 − 1
𝑞 − 1

=
𝑛−1∑
𝑗=1

(𝑞𝑛−1 − 𝑞 𝑗−1)

= (𝑛 − 1)𝑞𝑛−1 − (1 + 𝑞 + . . . + 𝑞𝑛−1) = (𝑛 − 1)𝑞𝑛−1 − [𝑛 − 1]𝑞 .

Case 2 𝑖 = 𝑗 . In this case, v�a = 𝑎𝑖 ≠ 0. This does not satisfy the condition v�a = 0, so this case
cannot occur.
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Case 3 𝑖 < 𝑗 . The transvection is of the form

𝑇a,v =

1 . . . 𝑖 . . . 𝑗 . . . 𝑛

��������������

��������������

1
... 𝐼𝑑 ∗ ∗
𝑖
... 𝑁a,v ∗
𝑗

... 𝐼𝑑
𝑛

,

where

𝑁a,v =

������
1 + 𝑎𝑖𝑣𝑖 𝑎𝑖+1𝑣𝑖 𝑎𝑖+2𝑣𝑖 · · · 𝑎 𝑗𝑣𝑖
𝑎𝑖𝑣𝑖+1 1 + 𝑎𝑖+1𝑣𝑖+1 𝑎𝑖+2𝑣𝑖+1 · · · 𝑎 𝑗𝑣𝑖+1

...
...

𝑎𝑖 𝑎𝑖+1 · · · 1 + 𝑎 𝑗

������
.

Then,

𝑇a,v = 𝑦 𝑗−1 (𝑣 𝑗−1) . . . 𝑦𝑖+1(𝑣𝑖+1) · 𝑦𝑖 (1 + 𝑎−1
𝑖 ) · 𝑦𝑖+1(−𝑎𝑖+1𝑎

−1
𝑖 ) . . . 𝑦 𝑗−1 (−𝑎 𝑗−1𝑎

−1
𝑖 ) · 𝐴,

where A is the upper-triangular matrix

𝐴 = ��� ���
𝐼𝑑 ∗ ∗
0 𝑏 ∗
0 0 𝐼𝑑

, with 𝑏 =

��������

𝑎𝑖 𝑎𝑖+1 . . . 𝑎 𝑗−1 −1 − 𝑎 𝑗

0 1 . . . 0 −𝑣𝑖+1

0 0
. . .

...
0 0 0 1 −𝑣 𝑗−1
0 0 0 0 −𝑎−1

𝑖

��������
.

See Appendix A for details of this row reduction calculation.
To count how many transvections fit Case 3: There are

◦ 𝑞𝑛−𝑖 choices for 𝑎𝑖+1, . . . , 𝑎𝑛.
◦ 𝑞 − 1 choices of 𝑎𝑖 .
◦ 𝑞𝑖−1 choices of 𝑣1, . . . , 𝑣𝑖−1.
◦ 𝑞 𝑗−1−𝑖 choices of 𝑣𝑖 , . . . , 𝑣 𝑗−1 to satisfy 𝑎𝑖𝑣𝑖 + . . . + 𝑣 𝑗−1𝑎 𝑗−1 + 𝑎 𝑗 = 0.

The total is

𝑞𝑛−𝑖 (𝑞 − 1)𝑞𝑖−1𝑞 𝑗−1−𝑖 = (𝑞 − 1)𝑞𝑛−𝑖+ 𝑗−2 = (𝑞 − 1)𝑞𝑛−1−( 𝑗−𝑖)𝑞2( 𝑗−1−𝑖)+1

= (𝑞 − 1)𝑞𝑛−1−( 𝑗−𝑖)𝑞𝐼 (𝑠𝑖 𝑗 ) .

�
Proposition 5.2 now enables the proof of Theorem 5.1.
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Proof of Theorem 5.1. Let C[𝐺] be the group algebra of 𝐺 = 𝐺𝐿𝑛 (𝑞), and 𝑍 (C[𝐺]) the center. Then
since transvections are a conjugacy class, the sum of transvections is in the center,

𝐷 =
∑
a,v

𝑇a,v ∈ 𝑍 (C[𝐺]).

Since D commutes with every element of C[𝐺], we can compute

𝐷1B = 𝐷12
B = 1B𝐷1B =

∑
a,v

1B𝑇a,v1B

=
∑
a,v:
𝑖> 𝑗

1B𝑇a,v1B +
∑
a,v:
𝑖< 𝑗

𝑇a,v1B =
∑
a,v:
𝑖> 𝑗

1B +
∑
a,v:
𝑖< 𝑗

1B𝑠𝑖 𝑗1B

= ((𝑛 − 1)𝑞𝑛−1 − [𝑛 − 1]𝑞)1B +
∑

1≤𝑖< 𝑗≤𝑛

(𝑞 − 1)𝑞𝑛−1−( 𝑗−𝑖)𝑞𝐼 (𝑠𝑖 𝑗 )1B𝑠𝑖 𝑗1B

= ((𝑛 − 1)𝑞𝑛−1 − [𝑛 − 1]𝑞)1B + (𝑞 − 1)
∑

1≤𝑖< 𝑗≤𝑛

𝑞𝑛−1−( 𝑗−𝑖)𝑇𝑠𝑖 𝑗 .

�

6. A single coset lumping

This section develops the correspondence between B\𝐺𝐿𝑛 (𝑞)/B double cosets and flags and describes
the random transpositions Markov chain in this setting. This description is useful for analyzing specific
features of the Markov chain. If {𝜔𝑡 }𝑡≥0 is the induced chain on 𝑆𝑛, then {𝜔𝑡 (1)}𝑡≥0 is a process on
{1, . . . , 𝑛}. Thinking of 𝜔 ∈ 𝑆𝑛 as a deck of cards, this is the evolution of the label of the ‘top card’. It
is the lumping of the chain on 𝑆𝑛 onto cosets 𝑆𝑛/𝑆𝑛−1. The main result, Lemma 6.11 below, shows that
the top card takes only a bounded number of steps to reach stationarity.

Remark 6.1. If Q is any probability measure which defines a random walk on G, then the process
induced by multiplication on the left by Q on left cosets 𝐺/𝐾 , for any subgroup 𝐾 ⊂ 𝐺, is always
Markov. This is the special case of Proposition 2.4 with 𝐻 = {𝑖𝑑} (similarly, if Q defines a random walk
by multiplication on the right, then it always induces a Markov chain on right cosets 𝐻\𝐺). There are
many examples of random walks lumped to single cosets, for example, [26], for which the properties of
Q are used to analyze the mixing times of the lumped Markov chain.

6.1. Flag representation

The subgroup B gives rise to the quotient 𝐺𝐿𝑛 (𝑞)/B. This may be pictured as the space of ‘flags’.

Definition 6.2. Here, a flag F consists of an increasing sequence of subspaces 𝐹 = 𝐹1 ⊂ 𝐹2 ⊂ . . . ⊂ 𝐹𝑛

with dim(𝐹𝑖) = 𝑖. The standard flag is

𝐸 = 〈e1〉 ⊂ 〈e1, e2〉 . . . ⊂ 〈e1, . . . , e𝑛〉.

Indeed, 𝐺𝐿𝑛 (𝑞) operates transitively on flags, and the subgroup fixing the standard flag is exactly
B. There is a useful notion of ‘distance’ between two flags 𝐹, 𝐹 ′ which defines a permutation.

Definition 6.3. Let 𝐹, 𝐹 ′ be two flags. The Jordan–Holder permutation 𝜔(𝐹, 𝐹 ′) is a permutation
𝜔 = 𝜔(𝐹, 𝐹 ′) ∈ 𝑆𝑛 defined by 𝜔(𝑖) = 𝑗 if j is the smallest index such that

𝐹𝑖−1 + 𝐹 ′
𝑗 ⊇ 𝐹𝑖 .
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The Jordan–Holder permutation distance satisfies

𝜔(𝐹, 𝐹 ′) = 𝜔(𝐹 ′, 𝐹)−1 and 𝜔(𝐹, 𝐹 ′) = 𝜔(𝑀𝐹, 𝑀𝐹 ′) for 𝑀 ∈ 𝐺𝐿𝑛 (𝑞). (6.1)

A thorough development with full proofs is in [1].

Lemma 6.4. For 𝑀 ∈ 𝐺𝐿𝑛 (𝑞) and E the standard flag,

𝑀 ∈ B𝜔B ⇐⇒ 𝜔 = 𝜔(𝐸, 𝑀𝐸).

6.2. Top label chain

This representation is useful for analyzing a further projection of the chain on 𝑆𝑛: Let {𝜔𝑡 }𝑡≥0 denote the
Markov chain on 𝑆𝑛. Let 𝑃1 (·, ·) denote the marginal transition probabilities of the first position. That is,

𝑃1 ( 𝑗 , 𝑘) = P(𝜔𝑡+1 (1) = 𝑘 | 𝜔𝑡 (1) = 𝑗), 𝑗 , 𝑘 ∈ {1, . . . , 𝑛}.

If 𝜔 is distributed as 𝜋𝑞 , then the marginal distribution on {1, . . . , 𝑛} of the first card 𝜔(1) is

𝜋𝑞,1 ( 𝑗) := 𝑃(𝜔(1) = 𝑗) =
∑

𝜔:𝜔 (1)= 𝑗

𝑞𝐼 (𝜔)

[𝑛]𝑞!
=

𝑞 𝑗−1

1 + 𝑞 + . . . + 𝑞𝑛−1 =
𝑞 𝑗−1

[𝑛]𝑞
.

Lemma 6.5. For 1 ≤ 𝑖, 𝑗 ≤ 𝑛,

𝑃1 (𝑖, 𝑗) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(𝑞 − 1)2𝑞𝑛+ 𝑗−3

(𝑞𝑛 − 1) (𝑞𝑛−1 − 1)
, 𝑖 ≠ 𝑗 ,

(𝑞𝑛−1 − 1)2 + (𝑞 − 1)2(𝑞𝑖−1 − 1)𝑞𝑛−2

(𝑞𝑛 − 1) (𝑞𝑛−1 − 1)
, 𝑖 = 𝑗 .

Remark 6.6. Observe that for 𝑖 ≠ 𝑗 the transition probabilities can be written

𝑃1 (𝑖, 𝑗) =
𝑞 𝑗−1

(𝑞𝑛 − 1)/(𝑞 − 1)

(
(𝑞 − 1)𝑞𝑛−2

𝑞𝑛−1 − 1

)
= 𝜋𝑞,1 ( 𝑗) ·

(
(𝑞 − 1)𝑞𝑛−2

𝑞𝑛−1 − 1

)
𝑃1 ( 𝑗 , 𝑗) = 𝜋𝑞,1 ( 𝑗) ·

(
(𝑞 − 1)𝑞𝑛−2

𝑞𝑛−1 − 1

)
+
(
1 − (𝑞 − 1)𝑞𝑛−2

𝑞𝑛−1 − 1

)
.

Write 𝑝 := ((𝑞 − 1)𝑞𝑛−2)/(𝑞𝑛−1 − 1). This provides another description of the Markov chain: At each
step, flip a coin which gives heads with probability p, tails with probability 1 − 𝑝. If heads, move to a
random sample from 𝜋𝑞,1. Otherwise, don’t move.

Remark 6.7. Though the Markov chain 𝑃1 on {1, . . . , 𝑛} was defined via lumping from a chain on the
group 𝐺𝐿𝑛 (𝑞) with 𝑞 > 1 a prime power, note that the transitions are well defined even for 𝑞 < 1. If
𝑞 < 1, then the Mallows measure 𝜋𝑞 is concentrated at the identity permutation and 𝑃1 (𝑖, 𝑗) is largest for
𝑗 = 1. Note also that the description in Remark 6.6 is also valid since 𝑝 = ((𝑞− 1)𝑞𝑛−2)/(𝑞𝑛−1 − 1) < 1
for all 𝑞 > 0.

Proof. If 𝜔(1) = 𝑖, then a flag representing the double coset has 𝐹1 = e𝑖 . Recall that a transvection T
defined by vectors v, a has 𝑇 (e𝑖) = e𝑖 + 𝑎𝑖v. The first coordinate in the new permutation is the smallest
j such that

e𝑖 + 𝑎𝑖v ⊂
〈
𝑒1, . . . , 𝑒 𝑗

〉
.
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There are two cases when this smallest j is equal to i:

1. 𝑎𝑖 = 0, and v can be anything: There are (𝑞𝑛−1 − 1) possibilities for a such that 𝑎𝑖 = 0. Then there
are (𝑞𝑛−1 − 1)/(𝑞 − 1) possibilities for v.

2. 𝑎𝑖 ≠ 0 and v is such that 𝑎𝑖𝑣𝑖 ≠ −1 and 𝑣𝑘 = 0 for all 𝑘 > 𝑖. Note that if 𝑖 = 1, then this is not
possible. Since the nonzero entry at the largest index in v is normalized to be 1, there are two further
possibilities:
◦ If 𝑣𝑖 = 1, then there are (𝑞 − 2) possibilities for 𝑎𝑖 , (𝑞𝑖−1 − 1) possibilities for the rest of v (note

that it’s not allowed for the rest of v to be 0 because then we could not get a�v = 0), and then
𝑞𝑛−2 possibilities for the rest of a.

◦ If 𝑣𝑖 = 0, then there are (𝑞𝑖−1−1)/(𝑞−1) possibilities for v and then (𝑞−1)𝑞𝑛−2 possibilities for a.

In summary, if 𝑖 ≠ 1, then

𝑃1 (𝑖, 𝑖) =
1

|T𝑛,𝑞 |

(
(𝑞𝑛−1 − 1) (𝑞𝑛−1 − 1)

𝑞 − 1
+ (𝑞𝑖−1 − 1) (𝑞 − 2)𝑞𝑛−2 + (𝑞𝑖−1 − 1) (𝑞 − 1)𝑞𝑛−2

𝑞 − 1

)
=

(𝑞𝑛−1 − 1)2 + (𝑞 − 1)2(𝑞𝑖−1 − 1)𝑞𝑛−2

(𝑞𝑛 − 1) (𝑞𝑛−1 − 1)
.

Now, if 𝑖 ≠ 𝑗 we consider the two possibilities.

1. 𝑖 > 𝑗 : This transition will occur if 𝑎𝑖 · 𝑣𝑖 = −1 and v is such that 𝑣 𝑗 > 0 and 𝑣𝑘 = 0 for all 𝑗 < 𝑘 < 𝑖.
Since the v is normalized so that the entry at the largest index is 1, this requires 𝑣𝑖 = 1 and 𝑎𝑖 = −1.
There are then (𝑞 − 1)𝑞 𝑗−1 such v, and for each v there are 𝑞𝑛−2 possibilities for a. This gives in total

(𝑞 − 1)𝑞𝑛+ 𝑗−3.

2. 𝑖 < 𝑗 : This transition will occur if 𝑎𝑖 ≠ 0, 𝑣 𝑗 = 1 and 𝑣𝑘 = 0 for 𝑘 > 𝑗 . There are 𝑞 𝑗−1 possibilities
for v and then (𝑞 − 1)𝑞𝑛−2 possibilities for a, so again in total

(𝑞 − 1)𝑞𝑛+ 𝑗−3.

In summary, for any 𝑖 ≠ 𝑗 ,

𝑃1 (𝑖, 𝑗) =
(𝑞 − 1)𝑞𝑛+ 𝑗−3

|T𝑛,𝑞 |
=

(𝑞 − 1)2𝑞𝑛+ 𝑗−3

(𝑞𝑛 − 1) (𝑞𝑛−1 − 1)
.

�

Lemma 6.8. Let 𝑃1 be the Markov chain from Lemma 6.5 with stationary distribution 𝜋𝑞,1. Then 𝑃1
has eigenvalues {1, 𝛽} with

𝛽 =
𝑞𝑛−2 − 1
𝑞𝑛−1 − 1

,

which is equal to 𝛽(𝑛−1,1) from Section 3.3. The eigenvalue 𝛽 has multiplicity 𝑛− 1. If 𝑞 > 1 is fixed and
n large, then 𝛽 ∼ 1/𝑞.

Proof. Call 𝑃1 (𝑖, 𝑗) = 𝑐 𝑗 , and remember this is constant across all 𝑖 ≠ 𝑗 . Then 𝑃1(𝑖, 𝑖) = 𝑝𝑖 =
1 −
∑

𝑗≠𝑖 𝑐 𝑗 . Let M be the matrix with column j constant 𝑐 𝑗 , so the rows are constant [𝑐1, . . . , 𝑐𝑛] and
let 𝑟 =

∑
𝑐 𝑗 be the constant row sum. Note we can write our transition matrix as

𝑇 = (1 − 𝑟)𝐼 + 𝑀.

Note that the diagonal entries of this matrix match what we want since𝑇 (𝑖, 𝑖) = (1−𝑟)+𝑐𝑖 = 1−
∑

𝑗≠𝑖 𝑐 𝑗 =
𝑝𝑖 .
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Since M has constant columns/rows it has null space of dimension 𝑛 − 1. That is, we can find 𝑛 − 1
vectors 𝑣2, 𝑣3, . . . 𝑣𝑛 such that 𝑣𝑀 = 0. Then

𝑣𝑇 = 𝑣((1 − 𝑟)𝐼 + 𝑀) = (1 − 𝑟)𝑣

(and remember of course the other eigenvector is the stationary distribution, with eigenvalue 1). This
says that there is only one eigenvalue 𝛽 = 1 − 𝑟 , with multiplicity 𝑛 − 1—eigenfunctions are basis of
null space of M. The eigenvalue 𝛽 is

𝛽 = 1 −
∑
𝑗

(𝑞 − 1)2𝑞𝑛+ 𝑗−3

(𝑞𝑛 − 1) (𝑞𝑛−1 − 1)
= 1 − 𝑞𝑛−2 (𝑞 − 1)

𝑞𝑛−1 − 1
=

𝑞𝑛−2 − 1
𝑞𝑛−1 − 1

.

Note that this is the largest eigenvalue of the full chain on 𝑆𝑛. �

Remark 6.9. This lumping comes from the embedding 𝑆𝑛−1 ⊂ 𝑆𝑛 as all permutations which fix the
first coordinate. Then the coset space 𝑆𝑛/𝑆𝑛−1 consists of equivalence classes of permutations which
have the same label in the first element. Similarly, we could consider the embedding 𝑆𝑛−2 ⊂ 𝑆𝑛 as all
permutations which fix the first two coordinates. This would induce a Markov chain on the space of
{(𝑎, 𝑏) : 1 ≤ 𝑎, 𝑏, ≤ 𝑛, 𝑎 ≠ 𝑏}; we have not attempted to find the more complicated transitions of this
chain.

6.3. Mixing time

The mixing time of the Markov chain 𝑃1 is very fast; the chain reaches stationarity within a constant
number of steps (the constant depends on q but not on n). This can be proven using a strong stationary
time.

Strong stationary time
An strong stationary time for a Markov chain is a random stopping time 𝜏 at which the chain is
distributed according to the stationary distribution. That is, if (𝑋𝑡 )𝑡≥0 is a Markov chain on Ω with
stationary distribution 𝜋, then 𝜏 satisfies

P(𝜏 = 𝑡, 𝑋𝜏 = 𝑦 | 𝑋0 = 𝑥) = P(𝜏 = 𝑡 | 𝑋0 = 𝑥)𝜋(𝑦), 𝑥, 𝑦 ∈ Ω. (6.2)

In words, 𝑋𝜏 has distribution 𝜋 and is independent from 𝜏. See Section 6.4 of [43].
A strong stationary time is very powerful for bounding convergence time. Intuitively, once the strong

stationary time is reached the chain has mixed, so the mixing time is bounded by the random time 𝜏.
This idea is formalized in the following.

Proposition 6.10 (Proposition 6.10 from [43]). If 𝜏 is a strong stationary time for a Markov chain P on
state space Ω, then for any time t,

max
𝑥∈Ω

‖𝑃𝑡 (𝑥, ·) − 𝜋‖𝑇𝑉 ≤ max
𝑥∈Ω
P(𝜏 > 𝑡 | 𝑋0 = 𝑥).

For most Markov chains it is very difficult to find an obvious strong stationary time. A simple one
exists for the chain 𝑃1, using the alternate description from Remark 6.6.

To restate the alternate description, let 𝑝 := ((𝑞 − 1)𝑞𝑛−2)/(𝑞𝑛−1 − 1). Let {𝑅𝑡 }𝑡≥1 be a sequence
Bernoulli(𝑝) random variables. The Markov chain {𝑋𝑡 }𝑡≥0 defined by 𝑃1 can be coupled with the
random variables 𝑅𝑡 by: Given 𝑋𝑡 ,
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1. If 𝑅𝑡+1 = 1, sample 𝑍 ∼ 𝜋𝑞,1 and set 𝑋𝑡+1 = 𝑍 .
2. If 𝑅𝑡+1 = 0, set 𝑋𝑡+1 = 𝑋𝑡 .
Lemma 6.11. With {𝑅𝑡 }𝑡≥1 defined above, the random time 𝜏 = inf{𝑡 > 0 : 𝑅𝑡 = 1} is a strong
stationary time for {𝑋𝑡 }𝑡≥0. If

𝑡 = 𝑐 · 𝑞𝑛−1 − 1
(𝑞 − 1)𝑞𝑛−2 , with 𝑐 > 0,

then

P(𝜏 > 𝑡) < 𝑒−𝑐 .

Proof. By the alternate description of the Markov chain 𝑃1, whenever 𝑅𝑡 = 1, the next state 𝑋𝑡 is a
sample from 𝜋𝑞,1. That is,

𝑋𝑡 | {𝑅𝑡 = 1} is distributed as 𝜋𝑞,1.

Then, by equation (6.2),

P(𝜏 = 𝑡, 𝑋𝜏 = 𝑦 | 𝑋0 = 𝑥) = P(𝜏 = 𝑡 | 𝑋0 = 𝑥)𝜋𝑞,1 (𝑦),

and 𝜏 is a strong stationary time. The time 𝜏 is a geometric random variable with parameter p. Note also
that 𝜏 is independent of the starting state 𝑋0. Then,

P(𝜏 > 𝑡) = (1 − 𝑝)𝑡 ≤ 𝑒−𝑝𝑡 = exp
(
−𝑡 (𝑞 − 1)𝑞𝑛−2

(𝑞𝑛−1 − 1)

)
≤ 𝑒−𝑐 ,

for 𝑡 = 𝑐 · 𝑞𝑛−1−1
(𝑞−1)𝑞𝑛−2 . �

7. Some extensions

The main example treated above has 𝐺 = 𝐺𝐿𝑛 (𝑞) and 𝐻 = 𝐾 the Borel subgroup. As explained
in Theorem 1.2 for any finite group, any subgroups 𝐻, 𝐾 , and any H-conjugacy invariant probability
measure Q on G (𝑄(ℎ𝑠ℎ−1) = 𝑄(𝑠) for all 𝑠 ∈ 𝐺, ℎ ∈ 𝐻), the walk on G generated by Q, lumped to
double cosets 𝐻\𝐺/𝐾 =: X gives a Markov chain on X with transition kernel

𝐾 (𝑥, 𝐴) = 𝑄(𝐻𝐴𝐾𝑥−1), 𝐴 ⊂ X ,

and stationary distribution the image of Haar measure on G.
There are many possible choices of 𝐺, 𝐻, 𝐾 and Q. This gives rise to the problem of making choices

and finding interpretations that will be of interest. This section briefly describes a few examples: Gelfand
pairs, contingency tables, the extension from𝐺𝐿𝑛 (𝑞) to finite Chevally groups and a continuous example
O𝑛−1\O𝑛/O𝑛−1. We have high hopes that further interesting examples will emerge.

7.1. Parabolic subgroups of 𝐺𝐿𝑛

In [39], the authors enumerate the double cosets of 𝐺𝐿𝑛 (𝑞) generated by parabolic subgroups.
Definition 7.1. Let 𝛼 = (𝛼1, . . . , 𝛼𝑘 ) be a partition of n. The parabolic subgroup 𝑃𝛼 ⊂ 𝐺𝐿𝑛 (𝑞) consists
of all invertible block upper-triangular matrices with diagonal block sizes 𝛼1, . . . , 𝛼𝑘 .

Section 4 of [39] shows that if 𝛼, 𝛽 are two partitions of n, the double cosets 𝑃𝛼\𝐺𝐿𝑛 (𝑞)/𝑃𝛽 are
indexed by contingency tables with row sums 𝛼 and column sums 𝛽. Proposition 4.37 of [39] contains
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a formula for the size of a double coset which corresponds to the table X, with 𝜃 = 1/𝑞,

𝜃−𝑛
2+
∑

1≤𝑖<𝑖′≤𝐼 ,1≤ 𝑗< 𝑗′≤𝐽 𝑋𝑖 𝑗𝑋𝑖′ 𝑗′ (1 − 𝜃)𝑛 ·
∏𝐼

𝑖=1 [𝛼𝑖]𝜃 !
∏𝐽

𝑗=1 [𝛽 𝑗 ]𝜃 !∏
𝑖, 𝑗 [𝑋𝑖 𝑗 ]𝜃 !

, 𝐼 = |𝛼 |, 𝐽 = |𝛽 |. (7.1)

Dividing equation (7.1) by (1 − 𝜃)𝑛 and sending 𝜃 → 1 recovers the usual Fisher–Yates distribution for
partitions 𝛼, 𝛽.

For 𝛼 = (𝑛− 1, 1), 𝛽 = (1𝑛), the contingency tables 𝑃𝛼\𝐺𝐿𝑛 (𝑞)/𝑃𝛽 are uniquely determined by the
position of the single 1 in the second row. That is, the space is in bijection with the set {1, 2, . . . , 𝑛}. If
𝑋 𝑗 denotes a table with the 1 in the second row in column j, that is, 𝑋 𝑗

2 𝑗 = 1, 𝑋 𝑗
2𝑘 = 0 for all 𝑘 ≠ 𝑗 , then

equation (7.1) becomes

𝑞−𝑛+𝑛
2−( 𝑗−1) (𝑞 − 1)𝑛 · [𝑛 − 1]1/𝑞! = 𝑞(

𝑛
2)−( 𝑗−1) 𝑞

𝑛 − 𝑞𝑛−1

𝑞𝑛 − 1
·

𝑛∏
𝑘=1

(1 − 𝑞𝑘 ),

which uses

[𝑛 − 1]1/𝑞! =
((1/𝑞)𝑛−1 − 1) ((1/𝑞)𝑛−2 − 1) . . . (1/𝑞 − 1)

(1/𝑞 − 1)𝑛−1 =
𝑛−1∏
𝑖=1

𝑞𝑖 − 1
𝑞𝑖 − 𝑞𝑖−1

=
𝑞𝑛 − 𝑞𝑛−1

𝑞𝑛 − 1
·

𝑛∏
𝑖=1

𝑞𝑖 − 1
𝑞𝑖 − 𝑞𝑖−1 =

𝑞𝑛 − 𝑞𝑛−1

𝑞𝑛 − 1
· 1
𝑞(

𝑛
2) (𝑞 − 1)𝑛

·
𝑛∏

𝑘=1
(1 − 𝑞𝑘 ).

Dividing by |𝐺𝐿𝑛 (𝑞) | = (𝑞 − 1)𝑛𝑞(
𝑛
2) · [𝑛]𝑞 gives

𝑞−( 𝑗−1) · (𝑞
𝑛 − 𝑞𝑛−1) (𝑞 − 1)

(𝑞𝑛 − 1)2(𝑞 − 1)𝑛
𝑛∏

𝑘=1
(𝑞𝑘 − 1).

Note that this distribution is equal to 𝜋𝑞,1 from Section 6 if we map 𝑗 → 𝑛 − 𝑗 , that is, index the
double cosets by 𝑛, 𝑛 − 1, . . . , 1 instead of 1, 2, . . . , 𝑛. The ‘follow the top card’ chain in Section 6 is
then equivalent to the induced chain on double cosets 𝑃𝛼\𝐺𝐿𝑛 (𝑞)/𝑃𝛽 from random transvections on
𝐺𝐿𝑛 (𝑞).

It remains an open problem to further investigate probability distributions and Markov chains on the
double cosets of 𝐺𝐿𝑛 (𝑞) from parabolic subgroups. In a reasonable sense, for finite groups of Lie type,
parabolic subgroups or close cousins are the only systematic families which can occur; see [57].

7.2. Gelfand pairs

A group G with subgroup H is a Gelfand pair if the convolution of H-bi-invariant functions is commu-
tative. Probability theory for Gelfand pairs was initiated by Letac [42] and Sawyer [55] who studied the
induced chain on

𝐺𝐿𝑛 (Z𝑝)\𝐺𝐿𝑛 (Q𝑝)/𝐺𝐿𝑛 (Z𝑝)

as simple random walk on a p-ary tree. Many further examples of finite Gelfand pairs appear in [23],
[15], [12]. These allow analysis of classical problems such as the Bernoulli–Laplace model of diffusion
and natural walks on phylogenetic trees. The literature cited above contains a large number of concrete
examples waiting to be interpreted. For surprising examples relating Gelfand pairs, conjugacy class
walks on a ‘dual group’ and ‘folding’, see [41].
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We also note that Gelfand pairs occur more generally for compact and noncompact groups. For
example, O𝑛/O𝑛−1 is Gelfand and the spherical functions become the spherical harmonics of classical
physics (this example is further discussed in Section 7.5 below). Gelfand pairs are even useful for large
groups such as 𝑆∞ and 𝑈∞, which are not locally compact; see [8] and [47] for research in this direction.

7.3. Contingency tables

Simper [59] considers the symmetric group 𝑆𝑛 with parabolic subgroups 𝑆𝜆 and 𝑆𝜇, for 𝜆 =
(𝜆1, . . . , 𝜆𝐼 ), 𝜇 = (𝜇1, . . . , 𝜇𝐽 ) partitions of n. Then 𝑆𝜆\𝑆𝑛/𝑆𝜇 can be interpreted as 𝐼 × 𝐽 contin-
gency tables {𝑇𝑖 𝑗 }1≤𝑖≤𝐼 ,1≤ 𝑗≤𝐽 with row sums 𝜆 and column sums 𝜇. Such tables appear in every kind
of applied statistical work. See [24] Section 5 for references. The stationary distribution,

𝜋(𝑇) = 1
𝑛!

∏
𝑖, 𝑗

𝜆𝑖!𝜇 𝑗 !
𝑇𝑖 𝑗 !

,

is the familiar Fisher–Yates distribution underlying ‘Fisher’s exact test for independence’. Markov chains
with the Fisher–Yates distribution as stationary were studied in [25]. If Q is the random transposition
measure on 𝑆𝑛, [59] uses knowledge of the Q chain to give an eigen-analysis of the chain induced by Q
on contingency tables.

7.4. Chevalley groups

Let G be a finite Chevalley group (a finite simple group of Lie type). These come equipped with natural
notions of Borel subgroups B and Weyl groups W. The Bruhat decomposition

𝐺 =
⊔
𝜔∈𝑊

B𝜔B

is in force, and conjugacy invariant probabilities Q on G induce Markov chains on W. Let U be a
minimal unipotent conjugacy class in G ([11], Chapter 5) and Q the uniform probability on U. Conjugacy
invariance implies that convolving by Q induces an element of End𝐺 (𝐺/B). This may be identified
with the Hecke algebra of B-bi-invariant functions. James Parkinson has shown us that the argument of
Section 2.4 (for the computation of D in the Hecke algebra) goes through for a general Chevalley groups
G over a finite field F𝑞 . Although a similar formula holds in full generality, for simplicity we will state
it in the equal parameter case (nontwisted) and when G is not of type 𝐶𝑛 with character lattice equal
to the root lattice. Let 𝜃 be the highest root, and let X𝜃 = {𝑥𝜃 (𝑐) | 𝑐 ∈ F𝑞} be the corresponding root
subgroup. The conjugacy class of 𝑥𝜃 (1) is an analogue, for general Chevalley groups, of the conjugacy
class of transvections in 𝐺𝐿𝑛 (𝑞). The sum of the elements in the conjugacy class of 𝑥𝜃 (1) provides a
Markov chain on B\𝐺/B which acts the same way as

𝐷 = (𝑞 − 1)
∑
𝛼∈Φ+

𝑙

𝑞
1
2 (𝐼 (𝑠𝜃 )−𝐼 (𝑠𝛼)) (1 + 𝑇𝑠𝛼 ),

where 𝜃 is the highest root, Φ+
𝑙 is the set of positive long roots, and 𝑠𝛽 denotes the reflection in the root

𝛽 and 𝑇𝑤 is the element of the Iwahori–Hecke algebra for B\𝐺/B corresponding to the element w in
the Weyl group.

Following the ideas in [18], the 𝑇𝑠𝛼 can be interpreted via the Metropolis algorithm applied to the
problem of sampling from the stationary distribution 𝜋(𝑥) = 𝑍−1𝑞𝐼 (𝑥) on W by choosing random
generators. We have not worked out any further examples but would be pleased if someone would.
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7.5. A continuous example

Most of the generalities above extend to compact groups G and closed subgroups 𝐻, 𝐾 ≠ 𝐺. Then,
𝑋 = 𝐻\𝐺/𝐾 is a compact space and an H-conjugacy invariant probability Q on G induces a Markov
chain on X.

To consider a simple example, let 𝐺 = O𝑛, the usual orthogonal group over R and 𝐻 = 𝐾 = O𝑛−1
embedded as all 𝑚 ∈ O𝑛 fixing the ‘north pole’ 𝑒1 = (1, 0, 0 . . . , 0)�. Then, O𝑛/O𝑛−1 can be thought
of as the (𝑛 − 1)-sphere S𝑛−1. The double coset space O𝑛−1\O𝑛/O𝑛−1 codes up the ‘latitude’. Consider
the sphere O𝑛/O𝑛−1 defined by ‘circles’ orthogonal to 𝑒1 (see Figure 1).

Then O𝑛−1\O𝑛/O𝑛−1 simply codes which circle contains a given point on the sphere. Thus,
O𝑛−1\O𝑛/O𝑛−1 may be identified with [−1, 1].

Represent a uniformly chosen point on the sphere as 𝑥 = 𝑧/‖𝑧‖ with 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑛) independent
standard normals. The latitude is 𝑧1/‖𝑧‖ and so 𝜋(𝑥) is the distribution of the square root of a 𝛽(1/2, (𝑛−
1)/2) distribution on [−1, 1]. When 𝑛 = 3, 𝜋(𝑥) is uniform on [−1, 1] (theorem of Archimedes).

One simple choice for a driving measure Q on O𝑛 is ‘random reflections’. In probabilistic language,
this is the distribution of 𝐼 − 2𝑈𝑈�, with U uniform on S𝑛−1. There is a nice probabilistic description
of the induced walk on the sphere.

Lemma 7.2. The random reflections measure on S𝑛−1 has the following equivalent description:

◦ From 𝑥 ∈ S𝑛−1, pick a line ℓ through x uniformly (see Figure 2). With probability 1, ℓ intersects the
sphere in a unique point y. Move to y.

Figure 1. The space O𝑛/O𝑛−1 is defined by the circles on the sphere orthogonal to 𝑒1.

Figure 2. Illustration of procedure from Lemma 7.2.
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Remark 7.3. As the lemma shows, there is a close connection between the walk generated from Q and
the popular ‘princess and monster’ algorithm. See [13]. These algorithms proceed in general convex
domains. We know all the eigenvalues of the walk on the sphere and can give sharp rates of convergence.

The induced chain on [−1, 1] � O𝑛−1\O𝑛/O𝑛−1 is obtained by simply reporting the latitude of y.
Thanks to Sourav Chatterjee for the following probabilistic description. For simplicity, it is given here
for 𝑛 = 3 (so 𝜋(𝑥) is uniform on [−1, 1]).

Lemma 7.4. For 𝑛 = 3, the Markov chain on [−1, 1] described above is; from 𝑥0 ∈ [−1, 1], the chain
jumps to

𝑋1 := (1 − 2𝑈2
1 )𝑥0 + 2(cos(𝜋𝑈2)) |𝑈1 |

√
1 −𝑈2

1

√
1 − 𝑥2

0,

where 𝑈1,𝑈2 are i.i.d. uniform on [−1, 1] random variables. (We have checked that the uniform
distribution is stationary using Monte Carlo.)

Remark 7.5. For a detailed analysis of the random reflections walk onO𝑛 (including all the eigenvalues),
see [51].

A. Row reduction for 𝐺𝐿𝑛 (𝑞)

Explicit row reduction can be performed on a general transvection to determine which B-B double
coset it lies in. This allows computing transition probabilities using the combinatorics of possi-
ble transvections, which is elementary but tedious. This section proves the following result, used
in Section 5.2.

Proposition A.1. Let 𝑇a,v = 𝐼 + va� be the transvection defined by nonzero vectors a, v with v�a = 0
and the last nonzero entry of v equal to 1. If 𝑗 > 𝑖, then

𝑇𝑎,𝑣 ∈ 𝐵𝑠 𝑗−1 · · · 𝑠𝑖+1𝑠𝑖𝑠𝑖+1 · · · 𝑠 𝑗−1𝐵

exactly when the last nonzero entry of v is 𝑣 𝑗 and the first nonzero entry of a is a𝑖 .

The transvection corresponding to a, v is

𝑇a,v (x) = 𝑥 + v(a�x) so that 𝑇a,v (e𝑖) = e𝑖 + 𝑎𝑖v,

and the ith column of 𝑇a,v is 𝑎𝑖v except with an extra 1 added to the ith entry. So

𝑇a,v =

������
1 + 𝑎1𝑣1 𝑎2𝑣1 𝑎3𝑣1 · · · 𝑎𝑛𝑣1
𝑎1𝑣2 1 + 𝑎2𝑣2 𝑎3𝑣2 · · · 𝑎𝑛𝑣2
...

...
𝑎1𝑣𝑛 𝑎2𝑣𝑛 · · · 1 + 𝑎𝑛𝑣𝑛

������
= 1 +

(
𝑎𝑖𝑣 𝑗
)

1≤𝑖, 𝑗≤𝑛.

As an example of the row reduction, take 𝑛 = 5 with 𝑣5 = 1, 𝑎1 ≠ 0. Then,

𝑇a,v =

�������
1 + 𝑎1𝑣1 𝑎2𝑣1 𝑎3𝑣1 𝑎4𝑣1 𝑎5𝑣1
𝑎1𝑣2 1 + 𝑎2𝑣2 𝑎3𝑣2 𝑎4𝑣2 𝑎5𝑣2
𝑎1𝑣3 𝑎2𝑣3 1 + 𝑎3𝑣3 𝑎4𝑣3 𝑎5𝑣3
𝑎1𝑣4 𝑎2𝑣4 𝑎3𝑣4 1 + 𝑎4𝑣4 𝑎5𝑣4
𝑎1𝑣5 𝑎2𝑣5 𝑎3𝑣5 𝑎4𝑣5 1 + 𝑎5𝑣5

�������
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= 𝑦4 (𝑣4𝑣
−1
5 )

�������
1 + 𝑎1𝑣1 𝑎2𝑣1 𝑎3𝑣1 𝑎4𝑣1 𝑎5𝑣1
𝑎1𝑣2 1 + 𝑎2𝑣2 𝑎3𝑣2 𝑎4𝑣2 𝑎5𝑣2
𝑎1𝑣3 𝑎2𝑣3 1 + 𝑎3𝑣3 𝑎4𝑣3 𝑎5𝑣3
𝑎1𝑣5 𝑎2𝑣5 𝑎3𝑣5 𝑎4𝑣5 1 + 𝑎5𝑣5

0 0 0 1 −𝑣4𝑣
−1
5

�������
= 𝑦4 (𝑣4𝑣

−1
5 )𝑦3(𝑣3𝑣

−1
5 )

�������
1 + 𝑎1𝑣1 𝑎2𝑣1 𝑎3𝑣1 𝑎4𝑣1 𝑎5𝑣1
𝑎1𝑣2 1 + 𝑎2𝑣2 𝑎3𝑣2 𝑎4𝑣2 𝑎5𝑣2
𝑎1𝑣5 𝑎2𝑣5 𝑎3𝑣5 𝑎4𝑣5 1 + 𝑎5𝑣5

0 0 1 0 −𝑣3𝑣
−1
5

0 0 0 1 −𝑣4𝑣
−1
5

�������
= 𝑦4 (𝑣4𝑣

−1
5 )𝑦3(𝑣3𝑣

−1
5 )𝑦2 (𝑣2𝑣

−1
5 )

�������
1 + 𝑎1𝑣1 𝑎2𝑣1 𝑎3𝑣1 𝑎4𝑣1 𝑎5𝑣1
𝑎1𝑣5 𝑎2𝑣5 𝑎3𝑣5 𝑎4𝑣5 1 + 𝑎5𝑣5

0 1 0 0 −𝑣2𝑣
−1
5

0 0 1 0 −𝑣3𝑣
−1
5

0 0 0 1 −𝑣4𝑣
−1
5

�������
= 𝑦4 (𝑣4𝑣

−1
5 )𝑦3(𝑣3𝑣

−1
5 )𝑦2 (𝑣2𝑣

−1
5 )𝑦1(𝑎−1

1 𝑣−1
5 + 𝑣1𝑣

−1
5 )

�������
𝑎1𝑣5 𝑎2𝑣5 𝑎3𝑣5 𝑎4𝑣5 1 + 𝑎5𝑣5

0 −𝑎−1
1 𝑎2 −𝑎−1

1 𝑎3 −𝑎−1
1 𝑎4 𝑧

0 1 0 0 −𝑣2𝑣
−1
5

0 0 1 0 −𝑣3𝑣
−1
5

0 0 0 1 −𝑣4𝑣
−1
5

�������
,

with (𝑎−1
1 𝑣−1

5 + 𝑣1𝑣
−1
5 ) (1 + 𝑎5𝑣5) + 𝑧 = 𝑎5𝑣1 so that

𝑧 = 𝑎5𝑣1 − (𝑎−1
1 𝑣−1

5 + 𝑎−1
1 𝑎5 + 𝑣1𝑣

−1
5 + 𝑎5𝑣1) = −𝑎−1

1 𝑎5 − 𝑎−1
1 𝑣−1

5 − 𝑣1𝑣
−1
5 .

Thus,

𝑇a,v = 𝑦4 (𝑣4𝑣
−1
5 )𝑦3(𝑣3𝑣

−1
5 )𝑦2 (𝑣2𝑣

−1
5 )𝑦1 (𝑎−1

1 𝑣−1
5 + 𝑣1𝑣

−1
5 )

· 𝑦2 (−𝑎2𝑎
−1
1 )

�������
𝑎1𝑣5 𝑎2𝑣5 𝑎3𝑣5 𝑎4𝑣5 1 + 𝑎5𝑣5

0 1 0 0 −𝑣2𝑣
−1
5

0 0 −𝑎3𝑎
−1
1 −𝑎4𝑎

−1
1 𝑧 − 𝑎2𝑣2𝑎

−1
1 𝑣−1

5
0 0 1 0 −𝑣3𝑣

−1
5

0 0 0 1 −𝑣4𝑣
−1
5

�������
= 𝑦4 (𝑣4𝑣

−1
5 )𝑦3(𝑣3𝑣

−1
5 )𝑦2 (𝑣2𝑣

−1
5 )𝑦1 (𝑎−1

1 𝑣−1
5 + 𝑣1𝑣

−1
5 )

· 𝑦2 (−𝑎2𝑎
−1
1 )𝑦3(−𝑎3𝑎

−1
1 )

�������
𝑎1𝑣5 𝑎2𝑣5 𝑎3𝑣5 𝑎4𝑣5 1 + 𝑎5𝑣5

0 1 0 0 −𝑣2𝑣
−1
5

0 0 1 0 −𝑣3𝑣
−1
5

0 0 0 −𝑎4𝑎
−1
1 𝑧 − (𝑎2𝑣2 + 𝑎3𝑣3)𝑎−1

1 𝑣−1
5

0 0 0 1 −𝑣4𝑣
−1
5

�������
= 𝑦4 (𝑣4𝑣

−1
5 )𝑦3(𝑣3𝑣

−1
5 )𝑦2 (𝑣2𝑣

−1
5 )𝑦1 (𝑎−1

1 𝑣−1
5 + 𝑣1𝑣

−1
5 )

· 𝑦2 (−𝑎2𝑎
−1
1 )𝑦3(−𝑎3𝑎

−1
1 )𝑦4(−𝑎4𝑎

−1
1 )

�������
𝑎1𝑣5 𝑎2𝑣5 𝑎3𝑣5 𝑎4𝑣5 1 + 𝑎5𝑣5

0 1 0 0 −𝑣2𝑣
−1
5

0 0 1 0 −𝑣3𝑣
−1
5

0 0 0 1 −𝑣4𝑣
−1
5

0 0 0 0 𝑧 − (𝑎2𝑣2 + 𝑎3𝑣3 + 𝑎4𝑣4)𝑎−1
1 𝑣−1

5

�������
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= 𝑦4 (𝑣4𝑣
−1
5 )𝑦3(𝑣3𝑣

−1
5 )𝑦2(𝑣2𝑣

−1
5 )𝑦1 (𝑎−1

1 𝑣−1
5 + 𝑣1𝑣

−1
5 )

· 𝑦2 (−𝑎2𝑎
−1
1 )𝑦3(−𝑎3𝑎

−1
1 )𝑦4(−𝑎4𝑎

−1
1 )

�������
𝑎1𝑣5 𝑎2𝑣5 𝑎3𝑣5 𝑎4𝑣5 1 + 𝑎5𝑣5

0 1 0 0 −𝑣2𝑣
−1
5

0 0 1 0 −𝑣3𝑣
−1
5

0 0 0 1 −𝑣4𝑣
−1
5

0 0 0 0 −𝑎−1
1 𝑣−1

5

�������
.
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