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Abstract
Space manipulators are typically installed on spacecraft using an emergency separation device (ESD). In the event
of a malfunction, the ESD ejects the manipulator from the spacecraft. However, due to the relative rotation of the
manipulator’s joints during the ejection, the equivalent ejection mass varies depending on different attitudes. This
paper focuses on studying manipulators equipped with separation slide rails and analyzes their ejection charac-
teristics under different attitudes to determine the optimal manipulator attitude for ejection. Initially, the ejection
dynamics model of the space manipulator is established using the Lagrangian method, based on the kinetic energy
equation, kinematics equation, and the boundary condition between the manipulator and ESD. Afterward, the space
dynamics model is transformed into the dynamic model of plane ejection state by recursion formula. From this
model, the equivalent ejection mass and ejection velocity are obtained, and the joint angular variation during ejec-
tion is acquired by considering joint friction torque. Using the law of conservation of angular momentum, the
ejection angular velocity is then calculated. Finally, this study selected a 7-DOF space manipulator as an example
and adjusted the damping parameter B of the joint for more precise calculations by choosing the attitude with a
relatively larger joint angular variation. The modified model was then tested for its applicability to other attitudes.
After determining the value of B, the correctness of the algorithm was validated by MATLAB calculation, ADAMS
simulation, and real object ejection test.

1. Introduction
The space industry has entered a new phase marked by space resource exploitation and large-scale deep
space detection. The global space industry will usher in the age of “flight transportation,” which is to
deploy aerospace vehicles as the carriers in the space transportation system. This allows mankind to
enter and exit space freely, develop and utilize space resources, and find new space for survival and
development. Meanwhile, the space manipulator is responsible for the modular operation of on-orbit
devices and cargo maintenance transportation services [1, 2]. The emergency separation device (ESD)
typically serves as the base to fix the manipulator on the spacecraft. However, when the manipulator or
locking structure breaks down and cannot be returned to its initial position, the manipulator needs to
be ejected for the safety of the spacecraft. In such instances, the ESD serves as the ejector of the space
manipulator.

To avoid collision between the ejected manipulator and the spacecraft, a straight slide rail is deployed
at the ESD to guide the manipulator’s ejection along a straight line. Additionally, the optimal ejection
attitude maximizes the ejection velocity of the manipulator. Unlike rigid body ejection, if the joints of the
manipulator lose power and the ejection torque is larger than the static friction torque of the joints, they
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may experience relative rotation. This can cause changes to the manipulator’s configuration. Therefore,
more research into the ejection characteristics for various attitudes is required. Jiang et al. [3, 4] studied
the dynamics of centroid-biased on-orbit separation dynamics and proposed a method to restrain the
angular velocity. In ref. [5–7], the jumping separation form of the robot is described from three aspects:
one-legged hopping, water bouncing, and biped robot sliding jumping. Wang et al. [8] conducted the
dynamic analysis of space ejection using separation slide rails deployed at random positions and solved
the angular velocity problem caused by eccentricity. Zhang et al. [9] established a separation dynamic
model of the space docking mechanism, identifying major factors influencing spacecraft separation atti-
tude or velocity, including separation parameters, lock synchronization, and contact friction. Meanwhile,
Zhang et al. [10] chose the cubic satellite as the subject in his study of on-orbit release movement and
built an on-orbit release dynamic model to systematically analyze the nonlinear dynamic phenomenon.
Last, Luo et al. [11] focused on the on-orbit separation of multi-rigid bodies, utilized the Lagrange
multiplier to acquire the dynamics model, and achieved automatic separation using the ejection devices
between every two rigid bodies.

The literature mentioned above investigated different separation scenarios, including the installa-
tion eccentricity, nonlinear dynamics, the use of linear slide rails to control angular velocity, and the
ejection of every two rigid bodies in a multi-rigid body system. All of these studies were focused on
spacecraft separation technologies. For regular combined rigid bodies, the relative positions and atti-
tudes of each part are fixed during ejection, which means that the ejection mass equals the overall mass
of the combined bodies. However, the joints of the manipulator have relative rotation during ejection,
which can be converted into the equivalent mass according to the ejection dynamics model. The manip-
ulator has different ejection characteristics depending on its attitude during ejection. Additionally, the
ejection characteristics also change during the ejection process due to the change in the manipulator’s
attitude. This paper investigates the ejection characteristics of the manipulator in different attitudes,
such as ejection equivalent mass, ejection velocity, joint angular variance, and ejection angular veloc-
ity. Furthermore, it probed into the impact of joint friction on ejection characteristics and subsequently
adjusted the damping coefficient B in joint friction based on the results of the manipulator ejection test
and applied the corrected coefficient to other attitudes.

2. Ejection dynamics modeling
2.1. Fundamental hypothesis
During emergency ejection, the joints of a space manipulator may lose power and undergo relative
rotation due to their limited back rotation torque. In this study, a multi-rigid body dynamics model of
the space manipulator was established based on the dynamics of multi-rigid body systems. The ejection
constraint of separation slide rails was also used as the boundary condition and the base ejection force
as the generalized force. Then, the optimal ejection attitude of the manipulator was determined using
the equivalent mass method [12]. Furthermore, the joint angular variance was computed by considering
the joint friction characteristics. Following are the assumptions of this study.

1. The manipulator is regarded as a multi-rigid body without taking elastomer vibration in the arm
rods and joints into account, and the manipulator’s joints have no power during ejection.

2. The ejection dynamics model is built on the premise that the slide rail has sufficient support
rigidity and no gaps. Furthermore, the slide rails are considered to have a smooth surface.

3. The spacecraft is taken as a large-mass rigid body equipped with an ESD. The mechanism has
slide rails and is regarded as completely fixed and restricted. However, the impact on the rail
during separation, as well as the mutual influence between the rail and the spacecraft, are not
considered.

4. The analysis does not take into account the effects of gravity and other spatial perturbation
factors.
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Figure 1. Schematic diagram of space ejection manipulator.

2.2. Kinetic energy equation of space ejection manipulator
The recursive formulas for the line velocity ivi, angular velocity iωi and the center of mass line velocity
ivc,i of the space manipulator arm i are as follows:

ivi = i
i−1R

(
i−1vi−1 + i−1ωi−1 × i−1Li−1

)
iωi = i

i−1R
i−1ωi−1 + θ̇ i

iZi

ivc,i = ivi + iωi × ili

(1)

where i−1Li−1 is the vector from coordinates i − 1 to coordinates i, θ̇ i is the angular velocity of the joint
i, and iZi is the axis direction of the joint i. ili is the vector from the center of mass of the ith arm to the
origin of its coordinate i.

Figure 1 presents the space 7-DOF manipulator and its dynamic parameters (all the following vectors
are represented under the inertial frame I). The ESD comprises a fixed base and a movable base. The
fixed base is mounted on the spacecraft, and the reference coordinate system (Ref) of the manipulator
is located in the center of the fixed base, with the coordinate direction aligned with the direction of the
inertial system. Meanwhile, the base coordinate system, located below the first joint of the manipulator,
serves as the movable base. During ejection, the base coordinate system moves with a three-dimensional
linear velocity vector v0 and angular velocity vector ω0 relative to the Ref coordinate system [13, 14].

The total kinetic energy of the manipulator is the sum of kinetic energy generated by the linear
velocity Tv and angular velocity Tω of all arms, and Ii is the inertia tensor of arm i:

T = Tω + Tv = 1

2

7∑
i=0

(
(ωi)

T Iiωi + mi(vi)
T vi

)
(2)

The relationship between the total inertia matrix H and the kinetic energy of the system is

T = 1

2
ϕ̇TH(ϕ)ϕ̇ (3)
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where ϕ̇ is
[
v0, ω0, θ̇

]T
. Both the linear velocity and angular velocity of the manipulator base are three-

dimensional vectors. mi is the mass of the arm i, and M is the total mass of the manipulator. In Fig. 1, r0i

is the vector from the origin of the base coordinates 0 to the center of mass of the arm i. r0c is the vector
from the origin of the base coordinates 0 to the manipulator system centroid C:

r0i = ri − r0 =
i−1∑
k=0

Lk + li

r0c = rc − r0 = 1

M

7∑
k=0

mkr0k

(4)

In the formula, Li is the vector from the origin of the coordinates i to the origin of the coordinates
i + 1, and li is the vector from the origin of the joint coordinates i to the center of mass of the arm i.

Equation (1) is equivalent to Eqs. (5) and (6) in the inertial coordinates:

vi = v0 +ω0 × r0i + Jvi · θ̇

Jvi · θ̇ =
i∑

k=1

[(
Zk ×(ri − pk

)) · θ̇ k

] (5)

where Jvi is the Jacobian matrix of the linear velocity at the center of mass of arm i:

ωi = ω0 + Jωi · θ̇

Jωi · θ̇ =
i∑

k=1

(
Zkθ̇ k

) (6)

where Jωi is the Jacobian matrix of the angular velocity at the center of mass of the arm i. By substituting
Eqs. (4)–(6) into Eq. (2), Tv and Tω can be obtained and then can be combined with Eq. (3) to derive the
total inertia matrix H of the space manipulator system:

H =

⎡⎢⎢⎢⎢⎢⎢⎣
ME3 M

(
r∗

oc

)T
7∑

i=1

miJvi

Mr∗
oc

7∑
i=0

[
Ii + mi

(
r∗

oi

)T r∗
oi

] 7∑
i=1

[
IiJωi − mi

(
r∗

oi

)T Jvi

]
7∑

i=1

mi(Jvi)
T

7∑
i=1

[
(Jωi)

T Ii − mi(Jvi)
T r∗

oi

] 7∑
i=1

[
(Jωi)

T IiJωi + mi(Jvi)
T Jvi

]

⎤⎥⎥⎥⎥⎥⎥⎦ (7)

where E3 is a 3 × 3 identity matrix. If r = [a, b, c], then r∗ =
⎡⎣ 0 −c b

c 0 −a
−b a 0

⎤⎦. For the 7-DOF

manipulator, the matrix is 13 × 13 square matrix, including six movable base DOF and seven joints
DOF.

2.3. Dynamic equation and equivalent mass of manipulator in space ejection state
For the space manipulator, the absence of gravity implies that potential energy is not influenced by it.
Moreover, the potential energy is considered to be zero, since the elastic vibration of the manipulator is
not taken into account. According to the Lagrange equation of the second kind:

H(ϕ)ϕ̈ + C(ϕ, ϕ̇) = Q

C(ϕ, ϕ̇) = Ḣ(ϕ)ϕ̇ − ∂

∂ϕ

[
1

2
ϕ̇TH(ϕ)ϕ̇

] (8)
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where C(ϕ, ϕ̇) = [ cb cr ]T is the nonlinear velocity-dependent term. The global inertia matrix of the
dynamic equation is H. Substitute the generalized force Q into Eq. (8), and let ẍ0 = [ v̇0 ω̇0 ]T to obtain
the ejection dynamic model of the space manipulator as follows:[

Hb Hbr

HT
br Hr

][
ẍ0

θ̈

]
+
[

cb

cr

]
=
[

Fb

τ r

]
+
[

JT
b

JT
r

]
Fe (9)

The force at the end Fe = 0 when the space manipulator is ejected, and only the force Fb and the joint
friction torque τ r = τ f on the movable base is present:

Hbẍ0 + Hbrθ̈ + cb = Fb

HT
brẍ0 + Hrθ̈ + cr = τ f

(10)

By eliminating the variable θ̈ , the dynamic equation of the base coordinates can be obtained:

H̃bẍ0 + J̃bcb − cr = J̃bFb − τ f (11)

where H̃b = HrH−1
br Hb − HT

br, J̃b = HrH−1
br . The nonlinear term change very small and can be ignored.

Further, under the action of the slide rail and spring, the manipulator is ejected along the axis Z of the
ESD without any rotation. The boundary conditions are as follows:

vz �= 0, vx = vy =ωx =ωy =ωz = 0 (12)

The expression of the global inertia matrix of the space manipulator ejection system that satisfies the
condition is obtained by substituting the boundary condition into the global inertia matrix H as follows:

[
Hb Hbr

HT
br Hr

]
=

⎡⎢⎢⎣ M
7∑

i=1

mieT
z Jvi

7∑
i=1

mi(eT
z Jvi)T

7∑
i=1

[(Jωi)
T IiJωi + mi(Jvi )

TJvi ]

⎤⎥⎥⎦ (13)

In this case, ϕ̇ becomes [vz, θ̇ ]T , ez = [ 0 0 1 ]T . Here, we assume that friction torque τ f can be
equivalently taken account as an inertial effect [15]. Let λ = diag[0, λ1, . . . , λ7], Eq. (11) becomes

(H̃b + λ)ẍ0 = J̃bFb (14)

Both the ejection force and the ejection direction of the movable base are in the Z direction. Let
ẍ0 = ezab, Fb = ezFb, and substitute into Eq. (14), the equivalent mass of the manipulator is

mb = eT
z J̃b

−1
(H̃b + λ)ez = eT

z Ȟbez (15)

By substituting the corresponding terms of Eq. (13) into Eq. (14), the matrix Ȟb is obtained. λ can
be obtained by combining Eqs. (11) and (14).

2.4. Equivalent mass of manipulator in plane ejection state
The ejection test of the space manipulator is based on the air-floating platform [16, 17] and is supported
by air-floating support as shown in Fig. 2. The ejection force Fb is along the Z direction of Figs. 1
and 2. During the ejection in this state, the ejection force is coplanar with the axes of joints 1, 3, 5, and
7 and produces no additional torque. As a result, joints 1, 3, 5, and 7 are equivalent to fixed.

During the movement of joints 2, 4, and 6 simultaneously or separately, the arms are divided by
joints and reassembled into rigid bodies. For example, when joints 2, 4, and 6 move simultaneously, the
base and arm 1, arm 2 and arm 3, arm 4 and arm 5, arm 6, and end 7 are pairwise combined to form a
multi-rigid body. To make Hbr in Eq. (11) reversible, the space manipulator is reduced from 7-DOF to
3-DOF. As shown in Fig. 3, the joint numbers remain unchanged after reassembling the arm. The mass,
joint vector, and centroid vector after the combination of rod 2i and rod 2i + 1 are as follows:

https://doi.org/10.1017/S0263574723000747 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000747


Robotica 3257

Figure 2. The layout of the plane ejection test of the manipulator.

Figure 3. Robotic arm reconfiguration.

m̄2i = m2i + m2i+1

L̄2i = L2i + L2i+1

l̄2i = m2i
2il2i + m2i+1

2i
2i+1T

2i+1l2i+1

m2i + m2i+1

(16)

l̄2i is the vector of the combined center of mass in the coordinates 2i. 2i+1l2i+1 is the vector of the center
of mass of the arm 2i + 1 in the original coordinates 2i + 1. Furthermore, the inertia tensor expressed
in coordinates 2i of the combination of rod 2i and 2i + 1 at the combined center of mass l̄2i is as
follows:
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Ī2i = 2iI2i + 2iI2i+1 +
2i+1∑
k=2i

[
mk

(
PT

k PkE3 − PkPT
k

)]
2iI2i+1 = 2i

2i+1R · 2i+1I2i+1 · 2i+1RT

(17)

where 2iI2i+1 is the inertia tensor consistent with the attitude of the coordinates 2i and located at the
center of mass of the arm 2i + 1, and P2i+1 = 2il2i+1 − l̄2i.

The 7-DOF manipulator is simplified into a 3-DOF manipulator in a plane state with only four arms
and three joints. Then, the combined center of mass and inertia tensor of the four arms are calculated
according to Eqs. (16) and (17), and a new 3-DOF manipulator inertia matrix H̄ is reconstructed using
the recursive formula [18–21]. The linear acceleration and angular acceleration of the manipulator with
three degrees of freedom are further obtained from Eq. (1). In order to keep the number of joints 2, 4,
and 6 unchanged, let k = 2i = 2, 4, 6:

kω̇k = k−2
kR
(

k−2ω̇k−2 + k−2ωk−2 × θ̇ k
kZk

)+ θ̈ k
kZk

kv̇c,k = kv̇k + kω̇k × k l̄k + kωk ×
(

kωk × k l̄k

) (18)

From Eq. (12), it is known that the DOF in five directions of the movable base is zero. Considering
the reversibility of the matrix, the matrix is reduced from 13 × 13 to the 10 × 10 square matrix of
the space state or the 4 × 4 square matrix H̄ of the plane state. By substituting Eq. (18) into recursive
formula, the global inertia matrix H̄ in the plane state is obtained:

H̄ =
⎡⎢⎣ M

∑
k=2,4,6

m̄keT
z J̄vk∑

k=2,4,6

m̄k

(
eT

z J̄vk

)T ∑
k=2,4,6

[(
J̄ωk

)T ĪkJ̄ωk + m̄k(J̄vk )
T J̄vk

]
⎤⎥⎦ (19)

Then brought into Eq. (15), the equivalent mass of the manipulator in the plane state is obtained.

3. Ejection calculation
The space manipulator ejection process is divided into three steps. In the first step, the manipulator is in
the initial state, wherein the joint angular velocity, linear velocity, and angular velocity of the movable
base are all zero. In the second step, the manipulator ejects in the ESD until the forces of springs decrease
to zero (referred to as “zero force”). In the final step, the manipulator transits from a dynamic ejection
having the relative rotation of joints to a stable ejection, where there is no relative rotation between the
joints under the action of joint friction torque (referred to as “Stable Ejection”).

The ESD consists of two springs with identical stiffness, represented by k and l for the stiffness and
compression, respectively. The ejection process is a quarter cycle of simple harmonic vibration with
a variable mass. During ejection, the manipulator’s attitude and equivalent mass mb,j change with the
angular variation of joints 2, 4, and 6. mb,j represents the equivalent mass of the jth calculation, and d zf ,j

represents the residual compression of the spring at the jth calculation when the manipulator is ejected
inside ESD. j is the number of calculation times, f denotes ejected inside ESD, and g denotes ejected
outside ESD. The calculation algorithm flowchart in Fig. 5 is based on the ejection process in the three
stages as shown in Fig. 4.

3.1. Ejection time
The ejection process of the manipulator is regarded as the first quarter cycle of simple harmonic vibration
with a variable mass, and the analytical solution is very complex to calculate the ejection velocity and
joint angular variation [22]. As shown in Fig. 5, the ejection time can be obtained by the subsection
superposition method. The whole ejection process is divided into n segments, each with an ejection
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Figure 4. Three stages of ejection.

time of �t = 0.02 s. The spring recovery amount for each section is calculated based on the updated
equivalent mass and then summed.

When the accumulative value zf ,j+1 exceeds zero, the recursive process reaches step n. To improve
the accuracy of the result, the ejection time of the finial step n is determined by the residual recovery
amount of the spring and then added to the previous time, which is the zero force time tn = tr. During this
process, the spring recovery force needs to be compensated due to the change in the vibration period:

Kinetic equation: mb,jz̈f ,j + kzf ,j = 0

Initial condition: zf ,0 = −l, żf ,0 = 0,ωj =
√

k/mb,j, t0 = 0,�t = 0.02, j = 0, 1, 2 · · · n − 1

Recursive formula: zf ,j+1 = zf ,j cos
(
ωj�t

)+ żf ,j sin
(
ωj�t

)
ωj

(20a)

żf ,j+1 = −zf ,jωj sin
(
ωj�t

)+ żf ,j cos
(
ωj�t

)
(20b)

Judgment condition: if zf ,n > 0, then �tn = 1

ωn−1

arcsin
ωn−1zf ,n−1√

z2
f ,n−1ω

2
n−1 + ż2

f ,n−1

(20c)

Spring force compensation: Fb,j+1 = kl cosωjt − kl
j∑

i=1

[cos(ωi · i�t)− cos(ωi−1 · i�t)]

= kl
(
cosωjt −�ψj

)
(20d)

Ejection time: tj = j�t, tn = (n − 1)�t +�tn (20e)

https://doi.org/10.1017/S0263574723000747 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000747


3260 He Cai et al.

Figure 5. Flowchart of calculation algorithm.

3.2. Joint angular variation
In the process of the ejection, the spring force is parallel to the slide rail, and the manipulator moves
along the smooth track without any relative rotation. Based on the force analysis, it is concluded that the
external force acting on the manipulator is the spring force Fb, the normal force Fn of the slide rail, and
the moment Td acting on the slide rail. Since the manipulator has no displacement along the normal and
torque rotation directions of the slide rail during ejection, the work done by Fn and Td is zero.

In the case of manipulator ejection with a spring, the ejection time is generally 0.2–0.4 s. The motion
equations can be modeled by Duhamel’s integral, which can be summed up by the impulse response
function. In the plane state, Eq. (10) can be rewritten as:

H̄b
¨̄x0 + H̄br

¨̄θ + c̄b = Fb

H̄T

br
¨̄x0 + H̄r

¨̄θ + c̄r = τ̄ f

(21)

The angular acceleration of the manipulator can be obtained by eliminating the variable ¨̄x0 [23, 24]:
¨̄θ = Ĥ−1

θ

(̂
JθFb + ĉ − τ̄ f

)
(22)

where Ĥθ = H̄T

brH̄
−1
b H̄br − H̄r, Ĵθ = H̄T

brH̄
−1
b , ĉ = c̄r − H̄T

brH̄
−1
b c̄b, and H̄−1

b = 1/M. The friction torque
of the joint is composed of Coulomb friction τ̄c and joint damping B. Further, τ̄ s is static friction.
When the manipulator is ejected, the spring force causes an additional torque on the joint, which needs
enough torque to eject the multi-rigid body synchronously. However, the joint friction torque is limited,
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and when ĴθFb ≤ τ̄ s, the ejection passive torque is less than the joint static friction, so the joint does
not rotate. Otherwise, it causes the joint to rotate. The friction torque of the joint can be expressed as:

τ̄ f =

⎧⎪⎪⎨⎪⎪⎩
ĴθFb ĴθFb ≤ τ̄ s

τ̄ c + B ˙̄θ J̄θFb > τ̄ s, ˙̄θ > 0

−τ̄ c + B ˙̄θ ĴθFb > τ̄ s, ˙̄θ < 0

(23)

Friction torque of each joint is τ̄ f = [
τ̄f 2 τ̄f 4 τ̄f 6

]T , and τ̄ f are related to ˙̄θ . The friction torque
caused by ejection force is determined according to Eq. (23). And τ̄ f is determined according to the
direction of ˙̄θ . In a very short period of time, the velocity-dependent term ĉ can be ignored. When
˙̄θ > 0, Eq. (22) can be expressed as follows (when ˙̄θ < 0, the following τ̄ c takes a minus sign):

¨̄θ + Ĥ−1

θ
B ˙̄θ = Ĥ−1

θ
ĴθFb − Ĥ−1

θ
τ̄ c (24)

Then calculate the unit impulse response function at zero initial state h(t):

ḧ(t) + Ĥ
−1

θ
Bḣ(t) = δ(t)

h
(
0−)= 0, ḣ

(
0−)= [

0 0 0
] (25)

Since the impulse is applied to the system in an infinitely short time, the displacement remains
unchanged. When the velocity jumps from 0− to 0+, the acceleration can produce an instanta-
neous pulse δ(t). After the impulse, the system is in free vibration mode, so the above equation is
equivalent to:

ḧ(t) + Ĥ
−1

θ
Bḣ(t) = 0

h
(
0+)= 0, ḣ

(
0+)= [

1 1 1
] (26)

The unit impulse response function h(t) can be obtained by solving Eq. (26):

h(t) = 1

H−1
θ

B

(
1 − e−Ĥ−1

θ Bt
)

t ≥ 0 (27)

As shown in Fig. 4, when t ∈[0, tr], Duhamel’s integral is used to calculate the cumulative impulse
response function of excitation f (t) = Ĥ−1

θ
ĴθFb − Ĥ−1

θ
τ̄ c. θ̄ f ,initial is the response caused by the initial

condition at time tj. The joint angle is as follows:

θ̄ f ,j+1 = θ̄ f ,initial +
∫ tj+1

tj

h(tj+1 − τ )f (τ )dτ

= θ̄ f ,initial + 1

βθ

∫ tj+1

tj

[
1 − e−βθ ·(tj+1−τ )

][
ζ θ cos

(
ωjτ

)− ζ θ�ψj − γ θ

]
dτ (28)

where ζ θ = Ĥ−1

θ
Ĵθ · kl, βθ = Ĥ−1

θ
B, and γ θ = Ĥ

−1

θ
τ̄ c. Duhamel’s integral is obtained under zero initial

conditions, and the full response of the system also includes the part of the response caused by the
initial conditions. The manipulator is in static state before ejection, so the initial angle of the joint is
θ̄ f ,0 = [

θ̄f 2,0 θ̄f 4,0 θ̄f 6,0

]
. The initial angular velocity is ˙̄θ f ,0 =

[ ˙̄θf 2,0
˙̄θf 4,0

˙̄θf 6,0

]
.

The ejection process is divided into two stages. One is ejected inside ESD, where the movable base is
limited by boundary conditions Eq. (12). The other is ejected outside ESD, where the movable base has
no constraints. It is necessary to calculate the joint angular variation under the two states, respectively.

3.2.1. Eject inside ESD
During ejection in ESD, the full expression of the joint angle θ̄ f ,j =

[
θ̄f 2,j θ̄f 4,j θ̄f 6,j

]
under the spring

recovery force and the initial response is as follows. θ̄fk,j denotes the jth calculation of the angle of joint
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k when the manipulator is ejected inside ESD:

θ̄fk,j+1 = θ̄fk,j +
˙̄θfk,j

βθk

(
1 − eβθk(tj−tj+1)

)− ζθk�ψj + γθk

βθk

[
tj+1 − tj − 1 − eβθk(tj−tj+1)

βθk

]

+ ζθk

ω2
j + β2

θk

{βθk

ωj

sin(ωjtj+1) + eβθk(tj−tj+1) cos(ωjtj) − cos(ωjtj+1)

+
ω2

j

[
eβθk(tj−tj+1) − 1

]
− β2

θk

ωjβθk

sin(ωjtj)
}

(29)

where ˙̄θfk,j denotes the jth calculation of the angular velocity of joint k when the manipulator is ejected
inside ESD. So the angular velocity is

˙̄θfk,j+1 = ˙̄θfk,je
βθk(tj−tj+1) − ζθk�ψj + γθk

βθk

[
1 − eβθk(tj−tj+1)

]
+ ζθk

ω2
j + β2

θk

{
ωj sin(ωjtj+1)

+ βθk cos(ωjtj+1) − βθke
βθk(tj−tj+1) cos(ωjtj) −ωje

βθk(tj−tj+1) sin(ωjtj)
} (30)

3.2.2. Eject outside ESD
Upon ejection outside ESD, the manipulator is devoid of any external forces except for internal forces
arising from joint friction, as the spring force Fb reduces to zero. Since it is no longer constrained by
ESD, the boundary condition Eq. (12) becomes vx = vz �= 0,ωy �= 0, vy =ωx =ωz = 0. Considering the
reversibility of the inertia matrix, it becomes a 6 × 6 square matrix oH̄ in a plane state:⎡⎢⎢⎢⎢⎢⎢⎢⎣

MET
xzExz MET

xz

(
r̄∗

oc

)T ey

6∑
k=2

m̄kET
xzJ̄vk

MeT
y r̄∗

ocExz

6∑
k=0

eT
y

[
Īk + m̄k

(
r̄∗

ok

)T r̄∗
ok

]
ey

6∑
k=2

eT
y

[
ĪkJ̄ωk − m̄k

(
r̄∗

ok

)T J̄vk

]
6∑

k=2

m̄k

(
J̄vk

)T Exz

6∑
k=2

[(
J̄ωk

)T Īk − m̄k

(
J̄vk

)T r̄∗
ok

]
ey

6∑
k=2

[(
J̄ωk

)T ĪkJ̄ωk + m̄k

(
J̄vk

)T J̄vk

]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(31)

where Exz =
[

1 0 0

0 0 1

]T

, ey = [
0 1 0

]T , and 0ζ θ = 0H−1
θ

0̂Jθ · kl, 0βθ = 0Ĥ−1

θ
B, 0γ θ = 0Ĥ−1

θ
τ̄ c.

The initial joint conditions are the joint angle θ̄fk(tr) and the joint angular velocity ˙̄θfk(tr). The joint
will continue to rotate under the initial conditions and gradually stop rotating under the action of joint
friction torque. Since joints stop at different times, it causes the change of the inertia tensor Ik of the
arm and the inertia matrix mH̄, m = 0, 1, 2, 3 of the manipulator, as shown in Fig. 6. Considering that
the joint is greatly influenced by friction, and the effect of inertia change is small, so the effect of mH̄
change is ignored here. θ̄gk denotes the angle of joint k when the manipulator is ejected outside ESD:

θ̄gk(t) = θ̄fk(tr)+
( ˙̄θfk(tr)

0βθk

+
0γθk

0β2
θk

)[
1 − e−0βθk(t−tr )

]
−

0γθk

0βθk

(t − tr) (32)

where ˙̄θgk denotes the angular velocity of joint k when the manipulator is ejected outside ESD:

˙̄θgk(t) =
[

˙̄θfk(tr)+
0γθk

0βθk

]
e−0βθk(t−tr ) −

0γθk

0βθk

(33)

When the angular velocity of all joints gradually decreases to zero, the joints of the manipulator stop
rotating. The whole manipulator then ejects at the same velocity, and the attitude does not change. This
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Figure 6. Status of the manipulator when it is ejected outside ESD.

is the stable time ts, and ˙̄θgk(ts)= 0:

ts = max{ts2, ts4, ts6} = max

{
1

0βθk

ln

( ˙̄θfk(tr)
0
βθk + 0γθk

0γθk

)
+ tr

}
k = 2, 4, 6 (34)

Assuming that ts6 = min{ts2, ts4, ts6} and ts4 = max{ts2, ts4, ts6}, it may be different in other cases.

3.3. Ejection velocity
The acceleration of the movable base can be obtained by eliminating the variable ¨̄θ from Eq. (21):

¨̄x0 = Ĥ−1

b ĴbFb − Ĥ−1

b

(
τ̄ c + B ˙̄θ

)
(35)

where Ĥb = H̄r H̄−1

br H̄b − H̄T

br and Ĵb = H̄r H̄−1

br . Unlike Eq. (24), we can integrate both sides of Eq. (35)
directly to obtain the ejection velocity v̄0(t) of the movable base, as we have already calculated the
angular velocity of the joint.

3.3.1. Eject inside ESD
In the initial condition ˙̄xf 0 = v̄f 0(0) = 0, v̄f 0 denotes the ejection velocity of the movable base when the
manipulator is ejected inside ESD. By substituting θ̄ f (t) with θ̄ (t), the following equation takes into
account the energy loss caused by joint friction τ̄ c and damping B in the ejection process:∫ tj+1

tj

¨̄xf 0dt = Ĥ−1

b Ĵbkl
∫ tj+1

tj

[
cos(ωjt) −�ψj

]
dt −

∫ tj+1

tj

Ĥ−1

b

(
τ̄ c + B ˙̄θ f ,j

)
dt (36)

where ζb = Ĥ−1

b Ĵbkl, βb = Ĥ−1

b B, γb = Ĥ−1

b τ̄ c. We have the following equation:

v̄f 0,j+1 = v̄f 0,j + ζb

ωj

[
sin(ωjtj+1) − sin(ωjtj)

]−(ζb�ψj + γb

)(
tj+1 − tj

)− βb

[
θ̄ f ,j+1 − θ̄ f ,j

]
(37)

The ejection velocity of the movable base can be obtained by solving Eq. (37) with θ̄ f ,j+1(t) from
Eq. (29) substituted. At tn = tr, the velocity v̄f 0(tr) represents the ejection velocity of the movable base
at zero force separation.
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3.3.2. Eject outside ESD
When the manipulator is ejected outside ESD, the force Fb is zero, and each joint gradually stops under
the influence of joint friction torque τ̄f . At time ts, the angular velocity of all joints reduces to zero,
resulting in no change in the velocity of the movable base, and the entire manipulator ejects at a constant
velocity v̄s. Integrating both sides of Eq. (35) with Fb = 0, we have∫ t

tr

¨̄xg0dt = −
∫ t

tr

mĤ−1

b

(
mτ̄ c + Bm ˙̄θ g

)
dt (38)

where ˙̄xg0 = v̄g0 = [
v̄g0x v̄g0z ω̄g0

]T , m is in the upper left corner of mτ̄ c, and m ˙̄θ g denotes the number
of elements in a vector. When m = 0, 1, 2, 3, the number of elements is 3, 2, 1, 0.

v̄g0 includes the ejection velocity and ejection angular velocity of the movable base when the manip-
ulator is ejected outside ESD. Assuming that the joints stop in the sequence depicted in Fig. 6, and
t2 < t< t4, then Eq. (38) becomes

v̄g0(t) = v̄f 0(tr) − 0Ĥ−1

b
0τ̄ c(ts6 − tr)− 1Ĥ−1

b
1τ̄ c(ts2 − ts6)− 2Ĥ−1

b
2τ̄ c(t − ts2)

− 0Ĥ−1

b B
[

0θ̄ g(ts6) − 0θ̄ g(tr)
]− 1Ĥ−1

b B
[

1θ̄ g(ts2) − 1θ̄ g(ts6)
]

− 2Ĥ−1

b B
[

2θ̄ g(t) − 2θ̄ g(ts2)
] (39)

For simplicity, the ejection velocity v̄s at the stable stage can be calculated by the method of energy
conservation. The spring potential energy is equal to the sum of the linear velocity kinetic energy Tv,
angular velocity energy Tω, and joint energy loss η of the manipulator:

v̄s =
√

kl2 − ω̄2
s Īall − 2η

M

η=
∑

k=2,4,6

(∫ θ̄gk

θ̄fk,0

τ̄f dθ

)
=
∑

k=2,4,6

[∫ tr

0

(
τ̄ck + B ˙̄θfk

) ˙̄θfkdt +
∫ tsk

tr

(
τ̄ck + B ˙̄θgk

) ˙̄θgkdt

]
(40)

where Iall is the global inertia tensor of the manipulator in a certain attitude when all the joints are
fixed. The value of ω̄s can be obtained by Eq. (42), which is derived by substituting Eqs. (29)–(33) into
Eq. (40). After stable ejection, the velocity of the manipulator remains constant since the arm is not
subjected to external forces.

3.4. Ejection angular velocity
The manipulator is guided by the slide rail when ejected from the ESD; thus, no angular velocity is
generated. After disengaging from the ESD, the external force and torque on the manipulator become
zero. However, due to the relative rotation of the joints, the velocities of different rigid bodies are not the
same initially. After ejecting from the ESD for some time, the velocity of the multi-rigid body becomes
the same as the velocity of the center of mass under the effects of internal forces [25].

According to the theorem of the moment of momentum, when the external torque is zero, the moment
of multi-rigid bodies at the center of mass is conserved from the separation time to the stable time. After
the ejection becomes stable, the joints of the manipulator stop rotating, and the whole manipulator
ejects at the same ejection velocity and angular velocity. Then the ejection angular velocity ωs of the
manipulator can be obtained as follows:

7∑
i=0

[Iiωi + mirci × vci] = Iallωs (41)

The left side of the equation is the moment of momentum of each arm of the manipulator relative to
the center of mass of the manipulator when the manipulator just ejects from the ESD. The right side is the
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Table I. Dynamic parameters of the manipulator with air-floating
support.

i αi−1 αi−1 di θ i Angle
1 0◦ 0 250 0◦ [−180◦180◦]
2 90◦ 0 0 180◦ [−90◦90◦]
3 90◦ 0 1800 180◦ [−180◦180◦]
4 90◦ 150 0 180◦ [−180◦0◦]
5 90◦ 0 2280 180◦ [−180◦180◦]
6 90◦ 0 0 180◦ [−90◦90◦]
7 90◦ 280 0 180◦ [−180◦180◦]

moment of momentum of each arm of the manipulator relative to the center of mass of the manipulator
after the steady state (when each joint has no relative rotation).

Where ω̄f 0(tr) = 0 and ˙̄θfk is the angular velocity of the arm k at the zero force time tr, which is obtained
from Eq. (30), and v̄ck is the absolute velocity of the center of mass of the arm k in the coordinates of
the center of mass of the manipulator at the time of separation, which can be obtained by replacing Eqs.
(30) and (37) into Eq. (1). After transforming into a plane state, the ejection angular velocity ω̄s of the
manipulator can be obtained as follows:

ω̄s =
∑

k=2,4,6

[
Īk · ˙̄θfk(tr)ey + m̄k r̄ck × v̄ck

]
+ m̄0r̄c0 × v̄f 0(tr)ez

Īall
(42)

4. Ejection simulation verification
The space manipulator is a 7-DOF manipulator with several typical attitudes while in orbit. It is neces-
sary for the manipulator to not interfere with the surrounding spacecraft when being ejected in a certain
attitude. Regardless of the attitudes, the ejection direction is always along the Z direction. Five typical
attitudes are considered to analyze the equivalent mass of the manipulator along the Z direction.

4.1. Simulation model parameters
The DH parameters of the space manipulator are shown in Table I. The manipulator used in the plane
ejection test is ejected together with the air-floating support, and the dynamic parameters of the manip-
ulator and the air-floating support are shown in Table II. The static friction torque of joint τs = 4 Nm
and Coulomb friction torque of joint τc = 2 Nm. Spring stiffness k = 812.7 N/m, working compression
l = 86 mm. After the joint damping is corrected in Section 5.2, the final value is B = 5.4 Nms/rad.

Based on the manipulator used in the plane ejection test, the theoretical and the simulation models
are transformed into the plane state. During the plane transformation, only joints 1, 3, 5, and 7 need to be
fixed to their initial angles, while joints 2, 4, and 6 rotate. Then the theoretical calculation, simulation,
and experimental verification of plane ejection are compared with five typical of attitude, which can be
extended to any attitude in space.

4.2. MATLAB and ADAMS simulation
The monitoring point of MATLAB theoretical calculation and ADAMS simulation is the origin of the
movable base coordinate O, which is considered the extraction point of the ejection velocity and angular
velocity of the manipulator. The theoretical calculation and simulation results in Table III are obtained
using the parameters in Table I and Table II. Adams simulation results are shown in Fig. 7.
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Table II. Dynamic parameters of the manipulator with air-floating support.

Centroid (mm) Inertia relative to centroid C (kg∗mm2)

Arm X Y Z Mass (kg) Ixx Iyy Izz Ixy Ixz Iyz

Base 0 0 0 6.528 8.70e + 3 8.71e + 3 7.29e + 3 82.8 0 60.4
Link1 0 17.5 −29.45 8.986 8.69e + 3 7.60e + 3 6.34e + 3 0 −1.40e + 3 0
Link2 −1.65 −573.77 −16.18 34.83 2.00e + 6 1.12e + 5 1.96e + 6 −4.47e + 3 1.41e + 5 6.60e + 2
Link3 31.13 8.75 −27.84 19.44 4.11e + 4 8.63e + 4 1.01e + 5 −1.80e + 4 −4.25e + 3 −1.39e + 4
Link4 1.09 −181.88 −64.95 4.28 3.30e + 4 1.93e + 4 2.12e + 4 −2.99e + 2 1.24e + 4 2.71e + 2
Link5 −1.17 64.86 −403.95 14.18 1.99e + 6 1.94e + 6 9.08e + 4 −6.71e + 2 −2.11e + 5 1.33e + 3
Link6 −0.12 −39.04 −2.07 18.86 3.32e + 4 3.84e + 4 2.86e + 4 28.71 2.67e + 3 −112.73
Link7 0.128 −26.98 173.13 9.795 5.69e + 4 4.29e + 4 3.32e + 4 −48.42 5.51e + 2 −42.55
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Table III. Ejection calculation and simulation results of the manipulator in plane air flotation.

Effective Ejection Ejection Joint angular
mass (kg) time (s) velocity (mm/s) variance (◦)

Joint 4 Angular Joint 2 Joint 2 Joint 4 Joint 4
Attitude Space Plane free Theory simulation Theory simulation velocity (◦/s) simulation theory simulation theory
1 26.93 48.73 53.47 0.272 0.275 478.1 463.1 −9.45 −0.67 −0.75 −4.20 −4.36
2 21.89 33.05 83.74 0.225 0.230 573.8 564.7 4.95 −4.36 −4.48 −6.61 −6.75
3 19.06 33.76 53.45 0.228 0.234 562.5 546.3 −4.82 −2.63 −2.68 −4.39 −4.57
4 25.31 44.95 56.47 0.261 0.265 494.4 489.6 −13.4 1.41 1.48 −1.73 −1.63
5 48.73 84.87 85.91 0.359 0.352 377.2 370.3 −0.72 0.14 0.22 0.16 0.28
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(a) (b)

(c) (d)

Figure 7. Simulation results of four attitudes of the manipulator.

Table III presents the equivalent mass of the manipulator in the space state, plane state, and joint 4 free
plane state under five attitudes. Air-floating support is included in the calculation of equivalent mass for
all states except space, where no air-floating support exists. Meanwhile, the total mass of the manipulator
and air-floating support is 116.1 kg. In space, the equivalent mass of attitude 3 is the smallest. In attitude
5, the manipulator is straight, and the joint rotation is minor, so the entire arm is equal to a single rigid
body, and its equivalent mass is roughly equivalent to the overall mass of the manipulator. On the plane
with the air-floating support, the equivalent mass of attitude 2 is the lowest. The theoretical calculation
results of ejection time differ from the simulation results, with the largest difference of 2.6%. Further,
the ejection velocity difference’s largest value is 3.2%.

Figure 8 shows the ejection velocity of the movable base before the zero force separation. The ejection
velocity trend of each attitude is consistent with the equivalent mass in the plane state shown in Table III.
In the legend, “S” represents the simulation result and “T” represents the theoretical calculation result.
The curves include the energy loss caused by the joint motion.

Figure 9 shows the angular velocity variance of the manipulator during ejection. Joints 2 and 4 still
have relative rotation in each attitude after the manipulator’s zero force separation. At this moment, the
angular velocity of the movable base is the angular velocity caused by joint rotation, which is not the
ejection angular velocity of the manipulator. In the process from zero force separation to stable ejection,
the velocity of each arm of the manipulator changes from inconsistent to consistent, and the manipulator
will generate rotating angular velocity. After the ejection is stable, the joints of the manipulator will not
rotate, and the whole manipulator will eject at the same ejection velocity and angular velocity.

The ejection angular velocity of the manipulator remains unchanged when joints 2, 4, and 6 have no
relative rotation, as can be determined from Eq. (42). When the manipulator is in attitude 4, its center of
mass has the largest eccentricity and deviates to the right. The final ejection angular velocity is −13.4◦/s,
and the final ejection angular velocity of attitude 2 is 4.95◦/s.
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Figure 8. Simulation and theoretical results of ejection velocity.

Figure 9. Simulation results of ejection angular velocity.

Figure 10 shows the angular variation of joints 2 and 4 during ejection. It can be obtained by Eq. (29)
when the manipulator is ejected inside ESD, and by Eq. (32) when the manipulator is ejected outside
ESD. There is still relative rotation of the joint after the zero force separation.

5. Plane air-floating ejection test
5.1. Construction of plane air flotation test
In the plane ejection test, as shown in Fig. 2, the ESD of the manipulator is fixed on the rigid bracket.
The motion of the manipulator on the marble platform’s plane is enabled by the air-floating support.
An equivalent manipulator, which is consistent with the dynamic parameters of each part of the space
manipulator, is used as the ejection test manipulator. The monitoring points are affixed on the movable
base and each arm (Fig. 12). These monitoring points are observed by the high-speed camera to detect
the ejection velocity of the movable base and joint angular variation at the time of zero force separation,
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(a)

(b)

Figure 10. Simulation and theoretical results of angular variance of joints 2 and 4.

respectively [25]. Then, the results of MATLAB theoretical calculation, ADAMS simulation, and plane
air flotation test are compared.

5.2. Correction of joint damping B
Figure 11 shows the ejection velocity curves of attitudes 3 and 4 under three different joint damping
values. Since the joint angular variation of attitude 3 is larger than that of attitude 4, it is more sensitive to
joint damping. The degree of bending of the attitude 3 curve increases with an increase in joint damping.
When the joint damping increases 10 times, the bending degree of the ejection curve of attitude 3 is
larger, while that of attitude 4 is smaller, and the final ejection velocity of attitude 4 is greater than that
of attitude 3. Therefore, the joint dynamic friction torque and damping greatly influence on the ejection
velocity of the joint with large variations.

As can be seen from Figs. 11 and 12, joint damping B has an impact on the ejection velocity and the
joint angular variation and has the greatest impact on attitudes 2 and 3, which has large joint angular
variation. Therefore, the above two attitudes are considered as the basis for the correction of B.
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Figure 11. Simulation results with different joint damping.

Figure 12. Joint angular variation of attitude 3 under different damping.

Since the influence of joint angular variation has been considered in Eq. (36), the ejection velocity
calculated by this equation contains information on joint angular variation. Thus, the ejection velocity
error of calculation and test is taken as the correction target. Coefficient B was corrected by the least
square method. Set the initial value B0 = 4.8 Nms/rad (joint parameter identification) and incremental
value �B = 0.2 Nms/rad, then substitute damping Bp = B0 + p�B into Eq. (43) and calculate n times
with the least square method:

J
(
Bp

)=
3∑

j=2

[
jv̄f 0

(
Bp

)− 1

q

q∑
i=1

jvi
t

]2

, p = 1, 2 · · · l (43)
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Table IV. Dynamic parameters of manipulator with air-floating support.

Attitude

Method 1 2 3 4 5
Ejection velocity Theory 478.1 573.8 562.5 494.4 377.2

Test 446.8 540.6 534.3 456.2 364.2
error 6.5% 5.8% 5.4% 7.7% 3.4%

Joint 2 angular variance Theory −0.75 −4.48 −2.68 1.48 0.22
Test −0.92 −4.99 −3.24 1.80 0.31
error 0.17 0.51 0.56 0.32 0.09

Joint 4 angular variance Theory −4.36 −6.75 −4.57 1.63 0.28
Test −3.81 −7.53 −4.09 1.92 0.31
error 0.55 0.78 0.48 0.29 0.03

Figure 13. Attitude 1 ejection test.

jvi
t is the ejection velocity of the movable base of the equivalent manipulator in the ith test (total q times)

under attitude j at zero force separation time, and jv̄f 0

(
Bp

)
is the ejection velocity calculated at joint

damping Bp under attitude j at zero force separation time. After l groups J
(
Bp

)
are calculated, the joint

damping B corresponding to the minimum value J(Bs) is taken as the revised Bs value. The final value
is Bs = 5.4 Nms/rad:

Bs = min[J(B1) , J(B2) , · · · J(Bl)] (44)

Replacing the joint damping coefficient Bs into the rest of the attitudes, the calculation and simulation
results of the five attitudes are shown in Table IV. The maximum error between the test results and
the calculated results of the ejection velocity is 7.7%, the maximum error between the test results and
the calculated results of angular variance of joint 2 is 0.56◦, and that of joint 4 is 0.78◦. The primary
source of error can be attributed to nonlinear factors such as the guiding stiffness, friction, and lubrication
of the ESD, as well as the stiffness of the air-floating support and trachea. Among the tested attitudes,
attitude 4 has the highest ejection velocity error, while attitude 5, in the straightening state with low
nonlinear effects, has the lowest error.

Figure 13 shows the images taken by the high-speed camera before and after the ejection of the
manipulator in attitude 1. There is an obvious angular variation of joint 4, and the manipulator has
deflection caused by angular velocity.
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Then, the remaining attitudes were divided into the following two conditions for testing: the ejection
tests are carried out when joint has friction torque and when the joint is completely locked. Through
the above experiments, we have observed that the angles of joint 2 and 4 change obviously when there
is friction torque, and there is a deflection caused by ejection angular velocity after ejection. After the
manipulator is zero force separation, the angles of joints 2 and 4 still change. In order to maintain the
consistency of multi-rigid body velocity, the ejection angular velocity also changes until the ejection
angular velocity tends to be stable. However, when the joint was completely locked, the angle of the
joint did not change, and the manipulator did not deflect obviously after ejection.

6. Conclusion
This study presents a space manipulator ejection dynamics model based on the kinetic energy equa-
tion, kinematics equation, and ejection boundary conditions. An equivalent mass calculation method
for manipulator ejection and an approach to calculate the equivalent mass of the manipulator in the
plane state by dimensional reduction are proposed. The study uses the ejection dynamics equation to
obtain the ejection time, ejection velocity, and joint angular variation of the manipulator during ejection.
The variation of equivalent mass and global inertial matrix during ejection are considered in calculating
these ejection characteristics. The ejection angular velocity from zero force separation to stable ejection
is then calculated according to the law of conservation of angular momentum.

Taking the manipulator with 7-DOF as an example, the ADAMS simulation and equivalent manipu-
lator ejection test validated the correctness of the space manipulator ejection model. After revising the
joint damping parameter B according to test results, the model has high accuracy, with merely a 3.2%
error compared to the simulation results and an 7.7% error compared to the test results. Therefore, the
model can be applied to the ejection calculation of other mechanisms with multi degree of freedom and
non-fixed connection.

The study reveals that the kinetic friction torque and damping of joints play a significant role in deter-
mining the ejection velocity in certain attitudes. Furthermore, it analyzes the reasons for the generation
of the ejection angular velocity of the manipulator in an ideal scenario involving slide rails.
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