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The elasto-inertial focusing and rotating characteristics of spheroids in a square channel
flow of Oldroyd-B viscoelastic fluids are studied by the direct forcing/fictitious domain
method. The rotational behaviours, changes in the equilibrium positions and travel
distances are explored to analyse the mechanisms of spheroid migration in viscoelastic
fluids. Within the present simulated parameters (1 ≤ Re ≤ 100, 0 ≤ Wi ≤ 2, 0.4 ≤α ≤3),
the results show that there are four kinds of equilibrium positions and six (five) kinds of
rotational behaviours for the elasto-inertial migration of prolate (oblate) spheroids. We
are the first to identify a new rotational mode for the migration of prolate spheroids.
Only when the particles are initially located at a corner and wall bisector, some special
initial orientations of the spheroids have an impact on the final equilibrium position and
rotational mode. In other general initial positions, the initial orientation of the spheroid
has a negligible effect. A higher Weissenberg number means the faster the particles
migrate to the equilibrium position. The spheroid gradually changes from the corner (CO),
channel centreline (CC), diagonal line (DL) and cross-section midline (CSM) equilibrium
positions as the elastic number decreases, depending on the aspect ratio, initial orientation
and rotational behaviour of the particles and the elastic number of the fluid. When the
elastic number is less than the critical value, the types of rotational modes of the spheroids
are reduced. By controlling the elastic number near the critical value, spheroids with
different aspect ratios can be efficiently separated.
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1. Introduction

Particle-laden flow exists widely in nature and engineering. From a fundamental
perspective, many particles possess a variety of shapes, e.g. bacteria, viruses, biconcave
disc-like human red blood cells and cylindrical Escherichia coli (Daniel, Mehmet &
Patrick 2007; Park et al. 2008; Hu et al. 2023a). Spheroids are the simplest kind of
non-spherical particle. Jeffery (1922) first studied the motion of an ellipsoidal particle in a
Couette shear flow at a century ago. This classical study has received much attention since
2010 due to the recent progress in fluid dynamics in microfluidics, as well as microrobots,
and their applications to biological and medical problems (Di Carlo et al. 2009; Kroo et al.
2022; Ouyang et al. 2023). In practice, most fluids in nature show rheological properties,
which influence the motion of particles. For example, the transport of smog and virus
particles affects health; the sand-carrying technology of drilling fluid during fracturing
affects oil production in the petroleum industry (Bird 1976; Manoorkar & Morris 2021;
Sojwal & Morris 2021; Ferroudji et al. 2022; Hu et al. 2022). Some fundamental issues,
such as the effects of fluid rheology and particle shape on motion behaviour, have always
been a focus of attention (Reddy, Tiwari & Singh 2019; Li et al. 2020; Saccone, Marchioli
& Marchis 2022).

Lateral migration of particles in channel flow has gained much attention in
high-throughput cytometry (Liu et al. 2015; Haddadi & Di Carlo 2017; Majji, Banerjee &
Morris 2018; Nakayama et al. 2019). The classical Segre–Silberberg effect shows that the
spherical particles in a circular channel flow of Newtonian fluid migrates radially towards
the wall to seek an equilibrium position where the total radial force is zero (Segré &
Silberberg 1961; Yu & Shao 2010; Hamed, Lee & Di Carlo 2014; Yang, Huang & Lu
2017). The migration of spherical particles has been extensively studied in Newtonian
fluid (Shao, Yu & Sun 2008; Matas, Morris & Élisabeth 2009; Abbas et al. 2014).
Hood, Lee & Roper (2015) and Di Carlo et al. (2009) proposed the lift force equation
under low-Reynolds-number conditions (20 < Re < 80), which was insufficient in practical
applications. Under large fluid inertia, Matas et al. (2009) pointed out another equilibrium
position closer to the centreline of the circular channel. Miura, Itano & Sugihara-Seki
(2014) and Shichi et al. (2017) observed eight equilibrium positions located at four corners
and wall bisectors under high Reynolds number (Re). Choi, Seo & Lee (2011) suggested
that further works were needed to study the changes in the travel distance for particles to
reach equilibrium positions in channel flow.

From a practical point of view, viscoelastic properties have been demonstrated to be the
dominant behaviour in non-Newtonian fluids, and previous studies have mainly focused on
the motion of spherical particles in non-Newtonian fluids (Pasquino et al. 2014; D’Avino,
Del Greco & Maffettone 2017). The migration of spherical particles in a circular channel
flow of a viscoelastic fluid was first studied by Leshansky et al. (2007). Del Giudice et al.
(2018) found that the gradients of normal stress differences in viscoelastic fluid yielded an
elastic lift, which pushed particles towards the low-shear-rate regions when the fluid inertia
was negligible. Villone et al. (2013) reported that the particle in a Giesekus fluid could
be trapped by the secondary flow, the cross-streamline migration velocity overcame the
velocity of secondary flow as the Weissenberg number (Wi) was reduced, and the particles
migrated towards the channel centreline. Hu et al. (2022) found that the polydisperse
spherical particles in the square channel flow of viscoelastic fluid would migrate towards
the channel centreline and form particle chains. Generally, the previous studies mainly
considered the condition under low Reynolds number (D’Avino et al. 2017; Liu et al.
2017; Raoufi et al. 2019). The fluid inertial effect was found to be beneficial for particles
separation in a viscoelastic fluid, called elasto-inertial particle focusing (Lim et al. 2014;
Seo, Kang & Lee 2014). When considering the effect of fluid inertia, Kim & Kim (2016)
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found that the elastic lift in viscoelastic fluid pushed the spherical particles towards the
corners and centreline of the square channel, whereas the fluid inertia pulled the particles
out of the corners. Yu et al. (2019) discovered that the spherical particle in a square channel
would focus at corner, wall centreline, diagonal line and channel centreline equilibrium
positions. Li, Mckinley & Ardekani (2015) found that the motion of spherical particles in
an Oldroyd-B viscoelastic fluid depended on the interplay between the elastic and inertial
effects, and the channel centreline (CC) equilibrium position occurred in flows with strong
elasticity. For inelastic power-law fluids, Hu et al. (2020) found that the migration of
spherical particles in a square channel was similar to that of Newtonian fluids, the number
of equilibrium positions did not change when Re < 300.

The aforementioned proposed studies were, however, limited to spherical particles.
Because there is no asymptotic analytical solution for non-spherical particles, the motion
of ellipsoidal particles in viscous fluids is complicated. The rotational mode and its
orientation distribution of spheroids are strongly coupled with the rotational behaviours,
and the inhomogeneity of the particle orientation distribution also affects the flow field.
One of the classic investigations was the motion of ellipsoidal particles in Couette shear
flow of a Newtonian fluid (Jeffery 1922; Qi & Luo 2003). Rosén, Lundell & Aidun
(2014) found the log-rolling (LR), tumbling (TU), inclined-rolling (ILR), kayaking and
inclined-kayaking rotational modes for the motion of a prolate spheroid in Couette flow.
Huang et al. (2012) found that an oblate spheroid would maintain the LR and ILR
rotational modes, and that the rotational modes were insensitive to the initial orientation.
In a non-Newtonian fluid of Couette shear flow, it was observed that the ellipsoidal cells
orientated between the vorticity and the flow direction under a moderately elastic effect.
In highly elastic fluids, the fibre-like particles aligned their symmetry axes along the
flow direction (Iso, Cohen & Koch 1996a,b; Lyon et al. 2001). Recently, Li, Xu & Zhao
(2023) discovered five rotational modes of a prolate spheroid in a Couette shear flow of
viscoelastic fluids, where the prolate spheroid rotated with a newly asymmetric-kayaking
mode as the fluid elasticity increased. Moreover, Dabade, Marath & Subramanian (2015)
proposed a torque model based on the generalized reciprocal theorem for both prolate and
oblate spheroids in viscoelastic fluids, in which the first normal stress difference was found
to be the dominant effect. D’Avino et al. (2014) observed four different motion modes of
a prolate spheroid in an unconfined Couette shear flow of viscoelastic fluids as the Wi
increased, i.e. log-rolling, metabistability, bistability and flow aligning.

Due to the slow process for the lateral migration of the particles in a channel flow,
there are few related studies on the migration and control of the ellipsoidal particle in
channel flow. In a Newtonian fluid, Huang & Lu (2017) reported that there were five
types of rotational behaviours for prolate ellipsoidal particle migration in circular channel
flow, and the rotational behaviours were mainly dependent on the fluid inertia, particle
size and initial orientation. Hur, Tse & Di Carlo (2010) experimentally found that the
prolate spheroid in square channel flow predominantly maintained the tumbling rotational
mode when Re was above a critical value (Re ≈ 50). Masaeli et al. (2012) concluded
that the cylindrical and ellipsoid particles in a microchannel flow preferred to tumble,
while disk-like particles preferred to roll. Lashgari et al. (2017) concluded that the final
orientation of oblate particles exhibited chaotic behaviour when Re was beyond a critical
value. Li, Xia & Wang (2022) found that the oblate ellipsoidal particle in a square channel
maintained a stable corner equilibrium position only when the Reynolds number was
small. In viscoelastic fluid, D’Avino et al. (2019) found that a prolate ellipsoidal particle
in a wide-slit microchannel of viscoelastic fluid would migrate to the closest wall or the
channel centreline, depending on the initial position and fluid rheology, but the effects

997 A32-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

47
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.479


X. Hu, J. Lin, Z. Zhu, Z. Yu, Z. Lin and X. Li

U0

(a) (b) (c)

d
L H

Hz
y

x

x

z

y′

z′

x′

y

θ
ϕ

Φ

x

z

y′

z′

x′

y

θ

ϕ

Φ

Figure 1. Simulation set-up. (a) Schematic of particle migration in three-dimensional square channel flow
of Oldroyd-B viscoelastic fluids; the space-fixed coordinate system and body-fixed coordinate system for the
(b) prolate spheroid and (c) oblate spheroid. The sphere, prolate and oblate spheroids are represented by blue,
grey and pink colours, respectively.

of fluid inertia and particle shape were not studied in their works. For the migration of
spheroids in the channel flow of inelastic power-law fluid, Hu et al. (2023a,b) found that
the prolate spheroid exhibited TU and LR modes, and the LR mode was conditionally
stable. For the oblate spheroid, only the LR mode existed when Re was large, while TU
and ILR modes were observed when Re was decreased.

To summarize, although there have been a few studies conducted on the rotational
dynamics of non-spherical particles in viscoelastic Couette shear flow, these studies are
mostly concerned with fluid elasticity, where fluid inertia is absent. In addition, only
a few works have been conducted concerning the inertial migration of non-spherical
particles in the channel flow of power-law fluids, whose constitutive equation is relatively
simple. The interplay between fluid elasticity and inertial effects on spheroid migration
in channel flow has not yet been explored, and the corresponding rotational behaviour is
still unknown. Therefore, the direct forcing/fictitious domain method is used in this study
to determine how particle shape, fluid elastic effect and fluid inertia can together affect
particle motion and rotational behaviour in channel flow. Moreover, the effect of the Wi
and Re of the fluid, the effect of the particle aspect ratio on the elasto-inertial focusing and
rotating characteristics of the spheroid, the number of stable equilibrium positions and the
travel distance are systematically explored. These results are helpful for understanding the
motion of non-spherical particles in channel flow and pave the way for designing efficient
microfluidic devices.

The outline of this paper is as follows. The numerical methods adopted are described
in § 2, with the validation results are reported in Appendix A. In § 3, the main results
and discussions are presented. We study the mechanisms of elasto-inertial focusing and
rotating characteristics of a spheroid in a square channel flow of Oldroyd-B viscoelastic
fluids. A summary of the findings is given in § 4.

2. Numerical model

2.1. Simulation set-up
The elasto-inertial migration of neutrally buoyant particles in a straight square channel
flow of Oldroyd-B viscoelastic fluids is shown in figure 1(a). The constant pressure
gradient along the z direction is introduced to sustain the channel flow, the periodic
boundary condition is adopted along the flow direction and the no-slip boundary condition
is applied on the walls. The channel length, height and width are denoted as L, H and H,
respectively. The computational domain spans [−L/2, L/2] × [−H/2, H/2] × [−H/2, H/2].
The Reynolds number is defined as Re = U0ρf H/μ0, where U0 is the maximum velocity
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of the fluid at the channel centreline, μ0 is the total zero-shear-rate viscosity of the fluid
and ρf is the fluid density. The Weissenberg number is defined as Wi = λtU0/H (λt being
the fluid relaxation time). The elasticity number, El, is the ratio of the inertial and elastic
effects, i.e. El = Wi/Re = λtμ0/ρf H2.

The space-fixed coordinate system and body-fixed coordinate system for the prolate
spheroid and oblate spheroid are shown in figure 1(b,c). The spheroid is described by
x′2/a2 + y′2/b2 + z′2/c2 = 1, where (x′, y′, z′) denotes a body-fixed coordinate system; a,
b and c are the lengths of the three semi-axes of the particles. The aspect ratio is defined
as α = b/a, where α = 1, α < 1 and α > 1 correspond to the cases of spheres (a = b = c),
oblate ellipsoidal particles (a = c) and prolate ellipsoidal particles (a = b), respectively.
The blockage ratio of the sphere, prolate and oblate ellipsoidal particles are defined as
k = 2b/H. The blockage ratio is kept as k = 0.2 for all the ellipsoidal particles. The mesh
convergence is compared in our previous work (Liu et al. 2021). We further found that
the effect of the domain length L on the mesh convergence is insensitive when L = 256
and 384 (the mesh size is h = H/128). The effect of discretization of the particles is not
significant when the mesh size is h = H/128 and H/256 in the present work. Thus, the mesh
numbers along the z, x and y directions with 256, 128 and 128 are adopted to balance the
computational accuracy and efficiency. Taking the initial position of spherical particles at
the channel cross-section (xin, yin) as an example, the closest initial position of the spheroid
mass centre to the wall is uniformly set as 0.395 to avoid the initial overlap between the
particle surface and the wall.

Due to the geometric symmetry of the square channel, the particles are released only
in the upper right quadrant of the square channel cross-section (in the red triangle of
figure 1a) with various initial positions. We identify four kinds of final equilibrium
positions for the elasto-inertial migration of spheroids in the square channel flow of an
Oldroyd-B viscoelastic fluid. The final equilibrium positions located on the cross-section
midline (CSM), diagonal line (DL), corner (CO) and channel centreline (CC) are
represented in figure 1(a) by circles with black, blue, red and green colours, respectively.

2.2. Direct forcing/fictitious domain method
The elasto-inertial focusing of neutrally buoyant particles in a square channel flow of the
Oldroyd-B viscoelastic fluid is studied by the direct forcing/fictitious domain (DF/FD)
method. For the motion of particles in both Newtonian and non-Newtonian fluids,
the present method was described in detail and successfully verified in our previous
publications (Yu & Shao 2007; Wang, Yu & Lin 2018; Yu et al. 2019; Liu et al. 2020; Yu
et al. 2021; Hu et al. 2022), and the detail of the method can be seen in Yu & Shao (2007)
and Yu et al. (2019). Here, the dimensionless FD formulations for the incompressible
Oldroyd-B fluid comprise the following three parts.

(1) Combined momentum equations:

∂u
∂t

+ u · ∇u = μr∇2u
Re

− ∇p + (1 − μr)∇ · B
Re Wi

+ λ in Ω, (2.1)

u = U + ωp × r in S(t), (2.2)

(ρr − 1)V∗
p

dU
dt

= −
∫

P
λ dx, (2.3)

(ρr − 1)J∗ d(ωp)

dt
= −

∫
P

r × λ dx. (2.4)
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(2) Continuity equation:

∇ · u = 0 in Ω, (2.5)

where u and p are the fluid velocity and pressure, respectively; λ is the Lagrange
multiplier that is defined in the solid domain S(t); μr is the ratio of the solvent
viscosity (μs) to the total zero-shear-rate viscosity of the fluid (μ0); B is the
configuration tensor; Ω is the entire domain including the interior and exterior
of the solid particle; U and ωp are the particle translational velocity and angular
velocity; r is the position vector with respect to the mass centre of the particle;
ρr is the particle–fluid density ratio, ρr = ρs/ρ (ρs is the particle density), here
ρr = 1; V∗

p = Vp/H3 is the dimensionless particle volume, Vp is the particle volume;
J* = J /ρsH5 is the dimensionless moment of inertia.

(3) Oldroyd-B constitutive equation:

∂B
∂t

+ u · ∇B − B · ∇u − (∇u)T · B + B − I
Wi

= 0 in Ω. (2.6)

Constitutive equation sub-problem for B is updated by

Bn+1 − Bn

�t
+ un+1 · ∇Bn − Bn · ∇un+1 − (∇un+1)T · Bn + Bn+1 − I

Wi
= 0,

(2.7)

where un+1 has been determined from the first two sub-problems. This equation is
solved by the first-order time scheme, the central difference scheme for the velocity
gradient and the third-order upwinding MUSCL scheme for the convective term.

To realize the transformation of torque and angular velocity between the body-fixed
coordinate system and space-fixed frame, four quaternion variables are introduced:

q1 = sin(0.5θ) cos(0.5(φ − ϕ)),

q2 = sin(0.5θ) sin(0.5(φ − ϕ)),

q3 = cos(0.5θ) sin(0.5(φ + ϕ)),

q4 = cos(0.5θ) cos(0.5(φ + ϕ)),

⎫⎪⎬
⎪⎭ (2.8)

where n = (θ, φ, ϕ) is the Euler angle, which is used to show the initial orientation angle
in the body-fixed coordinate system. The orientation angle in a space-fixed frame can be
obtained as P = (Px, Py, Pz) = (2(q1q3 + q2q4), 2(q2q3 − q1q4), 2(q2

3 + q2
4 − 0.5)).

The transformation matrix M from the space-fixed frame to the body-fixed frame is

M = 2

⎡
⎣q2

1 + q2
4 − 0.5 q1q2 + q3q4 q1q3 − q2q4

q1q2 − q3q3 q2
2 + q2

4 − 0.5 q2q3 + q1q4
q1q3 + q2q4 q2q3 − q1q4 q2

3 + q2
4 − 0.5

⎤
⎦ . (2.9)

In the simulation, (2.8) and (2.9) are used to map the hydrodynamic moment vectors
and the angular velocity vectors between the inertial and body-fixed frames. Then the
fourth-order Runge–Kutta method is adopted to obtain each quaternion (q) and angular
velocity.
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Figure 2. Rotational mode classification for the prolate (first line) and oblate (second line) spheroids with
(a,g) tumbling (TU) mode; (b,h) tumbling mode in a diagonal plane (TUD); (c,i) log-rolling (LR) mode;
(d, j) inclined log-rolling (ILR) mode; (e) vibrated inclined log-rolling (VILR) mode; ( f,k) kayaking mode.

3. Results and discussion

3.1. Mode classification
Within the present simulated parameters (1 ≤ Re ≤ 100, 0 ≤ Wi ≤ 2, 0.4 ≤ α ≤ 3), there are
six (five) kinds of rotational behaviours for the elasto-inertial focusing of prolate (oblate)
spheroids in a square channel flow of Oldroyd-B viscoelastic fluids. All the rotational
modes are shown in figure 2.

(1) Tumbling (TU) mode: the prolate (oblate) spheroid rotates around the short (long)
axis, and the spheroid rotates in the YOZ plane. The corresponding rotational
behaviours are shown in figure 2(a,g).

(2) Tumbling mode in a diagonal plane (TUD): the spheroid migrates to the diagonal
plane and keeps tumbling, which is a special case of the TU mode. The
corresponding rotational behaviours are shown in figure 2(b,h).

(3) Log-rolling (LR) mode: the prolate (oblate) spheroid eventually rotates around
its long (short) axis, which is almost perpendicular to the flow direction. The
corresponding rotational behaviours are shown in figure 2(c,i).

(4) Inclined log-rolling (ILR) mode: the prolate (oblate) spheroid eventually rotates
around its long (short) axis, and the orientation is parallel to the diagonal line of the
square channel. The corresponding rotational behaviours are shown in figure 2(d, j).

(5) Vibrated inclined log-rolling (VILR) mode: here, the prolate spheroid also rotates
like the ILR mode, but the spheroid vibrates along the long axis (see figure 2e),
which is newly found in the present work as a special case of the ILR mode. This
rotational mode is unique to the migration of the prolate spheroid.

(6) Kayaking mode: the prolate (oblate) spheroid rotates around the short (long) axis
with precession and nutation (see figure 2f,k) between the tube axis and the wall.
It looks like a kayak paddle moving around its equilibrium position with a small
amplitude.

To describe the rotational motion modes in more detail, the orientation in the space-fixed
frame can be obtained as P = (Px, Py, Pz), and the long-time evolution of the orientation
in the space-fixed frame is shown in the following sentences.
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Figure 3. Effect of the Weissenberg number on the trajectories of the prolate and oblate spheroids in the
channel cross-section with Re = 1. (a) Wi = 0.01, α = 2 (top figure), α = 0.5 (bottom figure); (b) Wi = 1, α = 2;
(c) Wi = 2, α = 2; (d) Wi = 0.5, α = 0.5; (e) Wi = 1, α = 0.5; ( f ) Wi = 2, α = 0.5.

3.2. Spheroid migration under a low Reynolds number
The previous studies are mostly confined to inertia-free spherical particles immersed in
viscoelastic flows (D’Avino et al. 2017; Liu et al. 2017), so we first study the migration
and rotational behaviour of ellipsoidal particles at a low Reynolds number (Re = 1). In the
general initial positions, the initial orientation of spheroid has negligible effect. Thus, the
general initial Euler angle n = (π/2, π/4, 0) is adopted in §§ 3.2, 3.3 and 3.4 to analyse
the effect of general initial particle position. Only when the particles are initially located
at special positions (corner and wall bisector) do some special initial orientations of the
spheroids have an impact on the final equilibrium position and rotational mode. The effect
of initial Euler angle on the rotational motion of spheroid at the corner and wall bisector
is compared in § 3.5 in detail.

To intuitively obtain how fast the particle migrates in the channel, the trajectories are
marked by circles for every 10 000 dimensionless time units. Thus, there is more than one
circle on the trajectory when the migration velocity is extremely slow. Figure 3 shows the
trajectory of particles on the cross-section at different Wi and initial positions (represented
by the purple dashed circle). The background contour in figure 3 is the first normal stress
difference (N1) of the flow field at the particle mass centre in the XOY section when
the particles migrate to the CC equilibrium position. Comparing the results at different
Wi, it can be found that the regions of low first normal stress difference are generated
in the channel centre and the corners, and the maximum first normal stress difference
increases with increasing Wi. The orientation for particles initially placed at a corner (xin,
yin) = (0.395, 0.395) is shown in figure 4.

When the Wi is small (Wi = 0.01), as shown in figure 3(a), the first normal stress
difference of the flow field is weak, and the elastic migration velocity of the spheroid
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Figure 4. Long-time evolution of the orientation for the (a) prolate spheroid in the LR, VILR and ILR modes
and (b) oblate spheroid in the LR, kayaking and TUD modes when the Weissenberg number is reduced from
top to bottom, the particle is initially placed at a corner with (xin, yin) = (0.395, 0.395).

is very slow. Therefore, the migration time to the CC equilibrium position with a stable
rotational behaviour at the bottom of figure 4 is the largest. As shown at the bottom of
figure 4(a), the prolate spheroid initially located at a corner maintains the kayaking mode
for a long time, and it finally transforms into the ILR mode and migrates diagonally to the
CC equilibrium position. At the bottom of figure 4(b), the oblate spheroid initially located
at a corner maintains the TUD mode for a long time; consequently, the oblate spheroid
finally maintains the LR mode when it migrates diagonally to the CC equilibrium position.
Increasing Wi, as compared with the trend in figure 3(b,c,e, f ), the value of the first normal
stress difference near the wall increases, an obvious low first normal stress difference
region is formed at a corner, and the particle shape and Weissenberg number affect the
migration behaviours when the particles are initially placed near the corner. The particles
whose initial positions are far from a corner migrate to the CC equilibrium position. The
rotational motion of the spheroid results in the inability of the particles to stabilize in the
regions of low first normal stress difference at a corner. For example, when Wi = 1, the
prolate spheroid near a corner migrates diagonally towards the CO equilibrium position
and maintains the VILR mode, as shown in figure 3(b) and the middle of figure 4(a).
When Wi =0.5 (figure 3d and the middle of figure 4b), the oblate spheroid can stabilize
at the corners and maintain the kayaking mode. When Wi = 1, the oblate spheroid near
the corner migrates along the diagonal line with the unstable kayaking mode. Finally, it
migrates to the wall near the corners with the LR mode, as shown in figure 3(e), figure 8(i)
and the top of figure 4(b). Continuing to increase the Weissenberg number as Wi = 2, the
CO equilibrium position disappears, and both the prolate spheroid and oblate spheroid in
figure 3(c, f ) migrate to the CC equilibrium position and maintain the LR mode. Overall,
the spheroids with various initial positions migrate in the flow of the minimum first normal
stress difference, i.e. towards the centreline or a corner of the square channel under a low
inertial effect.

The travel distance of particles migrating to the final equilibrium position is an
important parameter for particle separation in designing the length of microfluidic devices.
We choose the initial position (xin, yin) = (0.2, 0.395) as a typical example to further
analyse the changes in travel distance for the prolate and oblate spheroids to migrate to the
channel centreline. Figure 5 shows that the larger the Wi, the faster the particles migrate
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Figure 5. Effect of the Weissenberg number on the travel distance for the (a) prolate (α = 2) and (b) oblate
(α = 0.5) spheroids when Re = 1 and (xin, yin) = (0.2, 0.395).

to the CC equilibrium position and the shorter is the travel distance. The prolate spheroid
maintains the VILR mode along the diagonal orientation with a small rotational amplitude,
while the oblate spheroid maintains the TUD and kayaking modes with a large rotational
amplitude. The oblate spheroid in figure 5(b) will migrate towards the corner along the
x-direction, causing a non-monotonic change in the initial trajectory in the y-direction.
Due to the low normal stress difference at the channel centre, the spheroid ultimately
stabilizes at the CC equilibrium position. As a result, the travel distance of the oblate
spheroid is slightly larger than that of the prolate spheroid. A greater first normal stress
difference means the faster the particles migrate to the low shear rate direction and the
shorter the channel needed for the particles to migrate to the CC equilibrium position.
A larger Wi means the less obvious the effect of the particle shape. Therefore, the travel
distance of particles to the CC equilibrium position is mainly affected by the elasticity of
the fluid. When the particles gradually approach the diagonal line, the trajectory in the x
and y directions remains unchanged, so the trajectory in the YOZ plane is presented in the
following sections.

3.3. Effect of the particle aspect ratio
For ellipsoidal particles, the aspect ratio is an important parameter of the particle shape.
We further analyse the migration behaviour and rotational mode of the prolate and oblate
spheroids with different aspect ratios. The background contour in figure 6(a–c) is the first
normal stress difference (N1) of the flow field at the particle mass centre in the XOY
section when the particles migrate to the channel centre. The changes in orientation when
the particles migrate to the CO equilibrium position is compared in figure 6(e).

As shown in figure 6(b), the motion trajectory of the spherical particle is a smooth curve.
The ellipsoidal particle maintains the rotational motion with a fluctuating trajectory on
the cross-section. Spheroids with different aspect ratios all have CC and CO equilibrium
positions, which are consistent with the results in figure 3(b,e). By comparing figure 3
with figure 6(a–c), it is found that a greater aspect ratio of the spheroids results in the
smaller the region in the square channel cross-section where the spheroid can migrate to
the CO equilibrium position. By changing xin from 0.05 to 0.395 and fixing yin = 0.395,
we compare whether spheroids with different aspect ratios can migrate towards the centre
or the corners. According to the final equilibrium position, a phase diagram regarding the
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Figure 6. Effect of the particle aspect ratio on spheroid migration with Wi = 1 and Re = 1: (a) oblate spheroid
with α = 0.6; (b) sphere with α = 1 and (c) prolate spheroid with α = 3. (d) Phase diagram of the final
equilibrium position; here, the initial position in the x-axis is changed from 0.05 to 0.395, and the initial
position in the y-axis is fixed as 0.395. (e) Long-time evolution of the orientation angle for the spheroid with
(xin, yin) = (0.395, 0.395), and α = 0.6, 1.5, 3. The corresponding rotational modes are kayaking, TUD and ILR
modes, respectively.

aspect ratio and the initial particle position is drawn in figure 6(d). When 0.4 ≤ α ≤ 0.6
(1 ≤α ≤ 3), a flatter (slenderer) spheroid means the larger (smaller) area required for the
spheroid to stabilize at the corners. When 0.6 ≤ α ≤ 1, as shown at the top of figure 6(e),
the oblate spheroid migrates diagonally in a stable kayaking mode. When 1 <α ≤ 1.75, as
shown in the middle of figure 6(e), the prolate spheroid migrates diagonally and maintains
the TUD mode at the CO equilibrium position. When 2 ≤α ≤ 3, the prolate spheroid
maintains the VILR and ILR modes, and the particle mass centre remains stable at the
corners only when the particle is initially placed near the diagonal line. The rotational
tumbling motion of prolate spheroid makes it easier to deviate from the corners and
eventually migrate to the CC equilibrium position, resulting in a smaller region where
the spheroids can migrate to the corners.

When particles migrate to the channel centreline (Wi = 1, Re = 1, (xin, yin) = (0.2,
0.395)), the effect of the particle aspect ratio on the travel distance (Z*) to the CC
equilibrium position is shown in figure 7. Since there is no rotational motion for spherical
particles, the travel distance of spherical particles to the CC equilibrium position is the
shortest. When the aspect ratio is less (greater) than 1, the travel distance decreases
(increases) as the aspect ratio increases; that is, a flatter and slenderer spheroid means
the greater the travel distance to the CC equilibrium position.

We further analyse the interaction mechanism between the particles and the flow field.
According to the Faxen law (Faxén 1922), a finite-sized particle in a parabolic Stokes flow
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Figure 7. Effect of the aspect ratio on the changes in the travel distance towards the CC equilibrium position.
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Figure 8. Velocity contours and the streamlines when the particles at the final equilibrium position with Re = 1
move into the paper. The particle maintains the CC equilibrium position with (Wi, α) = (a) (0.01, 2), (b) (1, 2),
(c) (1, 1) and the CO equilibrium position with (Wi, α) = (d) (1, 2), (e) (1, 1.5). The oblate spheroid maintains
the CC equilibrium position with (Wi, α) = ( f ) (0.01, 0.5), (g) (0.5, 0.5) and the CO equilibrium position with
(Wi, α) = (h) (0.5, 0.5), (i) (1, 0.5), ( j) (1, 0.6). The typical cross-section ahead of the particle centre by a
distance of the major axis of the spheroid is chosen.

exhibits only streamwise translational slip velocity with respect to the local unperturbed
flow, u∞ (Abbas et al. 2014). In addition, some of the fluid must flow past the particle
through the space between the particle and channel walls. As a result, the incoming
fluid tends to flow inwards from the channel walls to the shadow of the particle on
the cross-section ahead of the particle, the particle-induced secondary flow is formed
in the channel cross-section and the flow field away from the particles maintains zero
velocity along the y-axis (v = 0). In figure 8, the velocity contour and the flow streamlines
are plotted on the typical cross-section in front of the particle centre by one sphere
diameter or long axis length of the spheroids. As shown in figure 8(c), spherical particles
induce symmetrical streamlines that converge towards the four corners. When the prolate
spheroid and oblate spheroid migrate to the CC equilibrium position, the prolate spheroid
in figure 8(a,b) is oriented along the diagonal line; the oblate spheroid in figure 8( f,g)
maintains the orientation perpendicular to the y-axis. Due to the shape of the spheroid,
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butterfly-shaped streamlines are induced in figure 8(a,b, f,g), which are different from
those of the spherical particle. When the particle migrates to the CO equilibrium position,
as shown in figure 8(d,e,h–j), a region of lower velocity is formed near the area between
the particle and corner due to the interaction between the particles and the fluids near
the walls, and secondary flow is induced near the corners. A region of high velocity
is formed far from the corners, where the induced streamlines push the particles to the
CO equilibrium position. This phenomenon is more obvious for the oblate spheroid with
α = 0.6 and prolate spheroid with α = 1.5, as shown in figure 8(e, j). Therefore, under the
interaction of positive and negative fluid velocities around the particles, the oblate (prolate)
spheroid forms the stable kayaking (TUD) mode at the CO equilibrium position.

When particles migrate to the CC equilibrium position, the velocity contours in the
XOY plane are shown in figure 8(a–c, f,g). The particle-induced velocity increases as Wi
increases, so the travel distance for the particles migrating to the CC equilibrium position
decreases as Wi increases. According to the Faxen law (Faxén 1922), the drag force,
F d, exerted by the fluid on a spherical particle is F d = 6πμsR[u∞ − U s] + πμsR3∇2u∞,
where U s is the streamwise translational slip velocity of the particle and R is the radius
of sphere. After the particles migrate to the CC equilibrium position with F d = 0, the
velocity can be evaluated as u∞ − U s ∼ (−R2∇2u∞/6), which is inversely proportional to
the particle size. Thus, particles with small radius will move faster than the large particles.
Due to the different rotational behaviour when (Re, Wi) = (1, 1), the rotational diameter of
the spherical particles is the largest, then followed for the oblate spheroid and finally for the
prolate spheroid. Therefore, the spherical particles migrate fastest to the CC equilibrium
position, and rounder ellipsoidal particles result in a shorter travel distance.

3.4. Effect of elastic number
The elastic number of a viscoelastic fluid can explain the effect of fluid elasticity. This
article further analyses the elasto-inertial migration behaviours of prolate and oblate
spheroids at different elastic numbers. The background contours in figures 9 and 11 are
the first normal stress difference (N1) of the flow field at the particle mass centre in the
XOY section when the particles are at the corresponding equilibrium position.

When the elastic number is small, El = 0.001 (Re = 10, Wi = 0.01), as shown in
figure 9(a,d), the particles migrate away from the corners and eventually reach the DL
equilibrium position. The presence of a particle affects the distribution of the first normal
stress difference. A negative first normal stress difference appears on the particle side
close to the channel centreline, and a positive first normal stress difference appears on
the opposite side of the particle. In addition, the first normal stress difference caused by
the elastic effect is small, the migration of spheroid towards the final equilibrium position
is extremely slow and a particle annulus is formed at approximately 0.28H away from
the channel centreline (the shaded area in figure 9a,d), consistent with the experimental
observation (Choi et al. 2011; Abbas et al. 2014) in Newtonian fluid with Re = 10. As
shown at the bottom of figure 10, the prolate spheroid maintains the TUD mode, and the
oblate spheroid initially maintains the kayaking mode and eventually transforms into the
stable ILR mode.

When El = 0.01 (Re = 10, Wi = 0.1), the CO equilibrium position in figure 9(b,e) still
does not exist, and the particle shape affects the final equilibrium position. As shown in the
middle of figure 10(a), the prolate spheroid maintains the kayaking mode for a long time,
the rotational period continues to increase as the particles approach the channel centreline
and the ILR mode is finally formed. Since the prolate spheroids migrate extremely slowly
to the CC equilibrium position, only the motion within 4000 dimensionless time steps
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Figure 9. Effect of elastic number on the trajectories of the prolate (first line, α = 2) and oblate (second line,
α = 0.5) spheroids in the channel cross-section when Re = 10 with (a,d) Wi = 0.01, El = 0.001; (b,e) Wi = 0.1,
El = 0.01; (c, f ) Wi = 1, El = 0.1.

1

0

–1

0 100 200 300

Wi = 1, ILR mode

t∗ t∗

Wi = 0.1, ILR mode

O
ri

en
ta

ti
o
n
 (
P

)

Wi = 0.01, TUD mode

Wi = 1, LR mode

Wi = 0.1, kayaking mode

Px Py Pz

Px Py Pz

Wi = 0.01, ILR mode

400

1

0

–1

0 1000 2000 3000 4000

1

0

–1

800 900 1000

1

0

–1

0 100 200 300 400

1

0

–1

0 200 400 600 800

1

0

–1

0 1000500 1500

(b)(a)

Figure 10. Long-time evolution of the orientation for the (a) prolate spheroid in the ILR, ILR and TUD modes
and (b) oblate spheroid in the LR, kayaking and ILR modes, the elastic number is reduced from top to bottom.
The particle is initial placed at a corner with (xin, yin) = (0.395, 0.395) and Re = 10.

is given in the middle of figure 10(a) to present the rotational mode more clearly. It is
interesting to note in figure 9(e) and the middle of figure 10(b) that the oblate spheroid
affects the flow field around the particles and enlarges the influence region of the first
normal stress difference near the channel centre. Finally, the oblate spheroid migrates to
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Figure 11. Effect of elastic number on the trajectories of the prolate (first line, α = 2) and oblate (second line,
α = 0.5) spheroids in the channel cross-section when Re = 100 with (a) Wi = 0.01, El = 0.0001; (b) Wi = 0.5,
El = 0.005; (c) Wi = 1, El = 0.01; (d) Wi = 0.01, El = 0.0001; (e) Wi = 1, El = 0.01; (c) Wi = 2, El = 0.02.

the DL equilibrium position and maintains the kayaking mode, different from the prolate
spheroid in figure 9(b).

When El = 0.1 (Re = 10, Wi = 1), as shown in figure 9(c, f ), the contour of the first
normal stress difference is similar as the results in figures 3 and 6(a–c). Thus, the
elastic effect dominates, where the particles at a corner migrate to the CO equilibrium
position again. As shown at the top of figure 10, the prolate spheroid finally maintains
the ILR mode, and the oblate spheroid finally keeps the LR mode near a corner. Both
the prolate spheroid and the oblate spheroid away from the corners migrate towards the
CC equilibrium position. The final DL equilibrium position of the spheroids in figure 9 is
close to the channel centreline as Wi increases.

When Re is further increased to 100, the elastic effect continues to decrease as the fluid
inertia is enhanced, and the equilibrium position and rotational mode of the spheroids are
changed significantly. In figure 11, all particles migrate away from the corners, indicating
that the fluid inertia overcomes the influence of the first normal stress difference at the
corners, and the CO equilibrium position disappears.

When El = 0.0001 (Re = 100, Wi = 0.01), as shown in figure 11(a,d), the first normal
stress difference of the flow field is small, and the prolate and oblate spheroids migrate to
the CSM equilibrium position. This shows that when the fluid inertia is the dominant
effect, the elasto-inertial focusing behaviour is similar to the classic Segre–Silberberg
effect in a Newtonian fluid. The first normal stress difference distribution of the flow
field is bounded by the particle mass centre. A positive first normal stress difference
appears on the particle side close to the wall and a negative first normal stress difference
appears on the other particle side close to the channel centre. To clearly show the changes
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Figure 12. Long-time evolution of the orientation for the (a) prolate spheroid in the LR, TUD and TU modes
and (b) oblate spheroid in the kayaking, ILR and LR modes, the elastic number is reduced from top to bottom.
The particle is placed at a corner with (xin, yin) = (0.395, 0.395) and Re = 100.

in orientation, only the orientation within t* = 700–1000 is shown at the bottom of
figure 12(a), where the value of Py gradually approaches 0 and the prolate spheroid
eventually migrate to the CSM equilibrium position with the TU mode. Under the same
flow conditions, as shown at the bottom of figure 12(b), the oblate spheroid maintains the
LR mode. This is consistent with the rotational mode of prolate and oblate spheroids in
inelastic power-law fluids (Hu et al. 2023a,b).

When El = 0.005 (Re = 100, Wi = 0.5), as shown in the middle of figure 12(a,b), the
prolate spheroid and oblate spheroid maintain the DL equilibrium position, and keep the
TUD mode and ILR mode, respectively. When El = 0.01 (Re = 100, Wi = 1), as shown in
figure 11(c,e) and the top of figure 12(a,b), the prolate and oblate spheroids also show
the same phenomenon as at (Re, Wi) = (10, 0.1) in figure 9(b,e), i.e. the prolate (oblate)
spheroid can migrate to the CC (DL) equilibrium position. Due to the increase in Re and
Wi, the time for the particles to transform into the stable mode is faster than that in the
middle of figure 10(a,b) with the same elastic number. As shown in figure 11(e, f ), the
oblate spheroid does not migrate to the CC equilibrium position until the elastic number
is enhanced as El = 0.02 (Re = 100, Wi = 2).

Here, we examine the dependence of the equilibrium position on the elastic number
and Reynolds number in figure 13. For the prolate (α = 2) and oblate (α = 0.5) spheroids,
the equilibrium positions when Re = 100, 50 and 10 depend strongly on the elastic
number and weakly on the Reynolds number. In addition, the equilibrium position of
the spheroid moves closer to the channel centreline as the elastic number increases. That
is, a stronger elastic effect means the easier it is for the particles to migrate to the CC
equilibrium position. These results are consistent with the elasto-inertial migration of
spherical particles in a square channel (Li et al. 2015; Yu et al. 2019). Li et al. (2015)
noted that the critical transition elastic number was dependent on the balance between the
elastic force and the inertia-induced force, and a similar analysis is conducted here. The
elastic force derived by Ho & Leal (1976) has the following form for two-dimensional
Poiseuille flow of an Oldroyd-B fluid:

Fe = 40
3

πρf U2
0d2 d

H
El(1 − μr)y∗, (3.1)
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Figure 13. Changes in the equilibrium position for the migration of the prolate (α = 2) and oblate (α = 0.5)
spheroids at different elastic numbers. The green dashed line shows the theoretically calculated critical elastic
number.

where y* is the dimensionless lateral position in the range of −0.5 to 0.5. The
inertia-induced force derived by Ho & Leal (1974) for the two-dimensional Poiseuille
flow is

Fi = C(y∗)ρf U2
0d2

(
d
H

)2

, (3.2)

where C is a function of y* and has a maximum value of approximately 0.24 at y* ≈ 0.15.
The balance between the elastic and inertial forces at y* = 0.15 yields the critical elastic
number Elc ≈ 0.038(d/H)(1/(1 − μr)), which is approximately 0.0152 for the sphere with
d/H = 0.2 and μr = 0.5. The theoretical results of spherical particles are compared in
figure 13 with the green dashed line.

As shown in figure 13, when El is less than (greater than) the critical elastic number, the
particle shape does not affect the migration of the particles to the DL (CC) equilibrium
position. The critical elastic numbers are all near the theoretical value (Elc = 0.0152),
and the oblate spheroid remains the same as the theoretical value when Re = 100. At
other Reynolds numbers, the critical elastic number changes complexly. As the Reynolds
number increases, the critical elastic number in figure 13 shifts slightly to the left, i.e.
the critical elastic number for the CC equilibrium position decreases. The curve of the
oblate spheroid changes more gently than that of the prolate spheroid; that is, the oblate
spheroid can migrate to the CC equilibrium position only under a larger elastic number
than that for the prolate spheroid. Near the critical elastic number, the oblate spheroid is
more likely to maintain the stable kayaking mode at the DL equilibrium position (in the
top of figure 12b), and the effective cross-sectional radius on the diagonal plane is large.
While the prolate spheroid transforms from the kayaking mode into the TUD mode (in the
middle of figure 12a) at the DL equilibrium position, the effective cross-sectional radius
along the diagonal line is smaller than that for the oblate spheroid. Therefore, the critical
elastic number of an oblate spheroid is higher than that of a prolate spheroid.

To analyse the change in the equilibrium position of spheroids with different aspect
ratios and elastic numbers, we summarize the phase diagram in figure 14 when the spheroid
is initially located at a corner (xin, yin) = (0.395, 0.395). As El increases, the equilibrium
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Figure 14. Effect of the aspect ratio and elastic number on the phase diagram of the equilibrium position;
here, the initial particle position is (xin, yin) = (0.395, 0.395).

position of the spheroid gradually changes from the CSM, DL, CC and CO. When the
elastic number is greater than the critical value, there is a stable CO equilibrium position.
Only when the elastic number is high can the spheroids with 0.4 ≤ α ≤ 0.5 and 2 ≤α ≤ 3
at the corners keep the CC equilibrium position, as shown in figure 16(b). At high elastic
numbers (El = 2), the first normal stress difference near the wall increases (figure 3c, f ),
and the rotational behaviour of ellipsoids with 0.4 ≤ α ≤ 0.5 and 2 ≤α ≤ 3 becomes more
pronounced, as shown in figure 16(b). The particles are more likely to leave the corner,
and the high first normal stress difference near the wall will push the particles towards
the low normal stress difference region at the channel centre. Thus, a non-monotonic
CC–CO–CC transition of the equilibrium position is observed when 0.4 ≤α ≤ 0.5 and
2 ≤α ≤ 3. In addition, the aspect ratio of the spheroid has an impact on the equilibrium
position near the critical elastic number. Prolate spheroids with α > 1.5 can stabilize at the
CC equilibrium position, while the spheroid maintains the DL equilibrium position when
α ≤ 1.5. Therefore, by controlling the elastic number near the critical value, spheroids
with large aspect ratio migrate towards the channel centreline, while spheroids with small
aspect ratio can stabilize at the corners, which is helpful for the separation of particles
with different shapes.

We further compare the effects of the aspect ratio and elastic number on four kinds of
equilibrium positions in figure 15.

The CSM equilibrium position, as shown in figure 15(a), only exists when El is small
and Re is large. The CSM equilibrium position of the oblate spheroid increases rapidly, and
it eventually stabilizes for the prolate spheroid, especially when α = 2 and 2.25. Since the
prolate spheroid maintains the TU mode at the CSM equilibrium position (see figure 17b),
it maintains a horizontal orientation for a long time as the aspect ratio increases, resulting
in an equilibrium position close to the wall.

By increasing the elastic number, the particles migrate to the DL equilibrium position,
which is shown in figure 15(b). Comparing different curves, it is found that a larger elastic
number means the closer the particle is to the channel centre. When Re (Wi) maintains the
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Figure 15. Effect of aspect ratio and elastic number on the change in the final (a) CSM; (b) DL and CC; and
(c) CO equilibrium positions.

same value, a larger Wi (Re) means the closer (further away) the particle is to the channel
centre. When α < 1, the equilibrium position increases as the aspect ratio increases. When
α > 1, the equilibrium position decreases as the aspect ratio increases. When the elastic
number (El = 0.01) is near the critical value, the oblate spheroid and spheres are stabilized
at the DL equilibrium position, while the prolate spheroid cannot keep the DL equilibrium
position until the aspect ratio is close to 1. That is, a larger aspect ratio means the easier
it is for the prolate spheroid to maintain the CC equilibrium position. Compared with the
curves at (Wi, Re) = (0.5, 100), (0.5, 50) and (1, 100), it is found that the role of Re is
smaller than that of Wi.

For the CO equilibrium position, as shown in figure 15(c), the change in the equilibrium
position can be divided by the value of the spherical particle. The equilibrium position first
lowers to the lowest point and then raises upwards, and the CO equilibrium position is close
to the wall under a small elastic number. Due to the rotational motion of the spheroids, as
shown in figure 8(i), the oblate spheroid with small aspect ratio (α = 0.4, 0.5) migrates
near the wall with the LR mode, which is the closest to the wall. The oblate spheroid
(0.5 <α < 1) maintains a stable CO equilibrium position with kayaking mode, the length
corresponding to the rotational axis of the particles increases as the aspect ratio increases,
and the equilibrium position begins to move away from the corners. The prolate spheroid
begin to approach the corners with the TUD, VILR and ILR modes with increasing α.
The cross-sectional length corresponding to the rotation axis of the prolate spheroid is
decreased, the wall effect on the particles is weakened and thus the equilibrium position
of the particles is close to the corners.

We further analyse the effect of the elastic number and aspect ratio on the travel distance
when particles migrate to the final equilibrium position. When Wi = 1 and Re = 100, the
travel distance of the oblate spheroid in figure 16(a) changes little and it cannot migrate to
the CC equilibrium position. The fluctuating amplitude of the particle trajectory decreases
as the aspect ratio decreases. The prolate spheroid cannot migrate to the CC equilibrium
position until the aspect ratio is large enough, and a slenderer prolate spheroid means
the faster it migrates to the CC equilibrium position. When El is large (Wi = 2, Re = 1),
as shown in figure 16(b), the particles migrate to the CC (first row) or CO (second
row) equilibrium positions, and the aspect ratio of the spheroids has an impact. When
0.6 ≤α ≤ 1.75, the spheroid maintains the CO equilibrium position and the travel distance
of the oblate spheroid does not change with the aspect ratio. However, a larger aspect
ratio of the prolate spheroid means the greater the travel distance is to the CO equilibrium
position. Spheroids with slender (α = 0.4, 0.5) or flatter (α = 2, 3) shapes can migrate
towards the CC equilibrium position, and the particle shape does not influence the travel
distance.
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Figure 16. Effect of the aspect ratio on the change in the travel distance when (Wi, Re, El) = (a) (1, 100,
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Figure 17. Effect of elastic number on the velocity contours and the streamlines on the cross-section that is
ahead of the prolate (first line, α = 2) and oblate (second line, α = 0.5) spheroid centres by a distance of the
major axis. The particle moves into the paper. The particle maintains the CSM equilibrium position with (Wi,
Re, El) = (a, f ) (0, 100, 0), (b,g) (0.01, 100, 0.0001); the CO equilibrium position with (Wi, Re, El) = (c,h) (0.01,
10, 0.001); (i) (0.1, 10, 0.01); ( j) (1, 100, 0.01); and the CC equilibrium position with (Wi, Re, El) = (d) (0.1,
10, 0.01), (e) (1, 100, 0.01). The prolate spheroid maintains the TU, TU, TUD, LR and LR modes from left to
right. The oblate spheroid maintains the LR, LR, ILR, kayaking and kayaking modes from left to right.

After the particles migrated to the equilibrium position, we further analyse the
interaction between the particles and the flow field. In figure 17, the velocity contours
along the y-axis and the flow streamlines are plotted on the typical cross-section in front
of the particle centre by one sphere diameter or major axis length of the spheroids. In a
Newtonian fluid with Wi = 0 and Re = 100, both the prolate spheroid and oblate spheroid
can migrate to the CSM equilibrium position, and maintain the TU mode and LR mode,
respectively. When the orientation of the prolate spheroid is parallel to the cross-section,
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its shape is consistent with that of an oblate spheroid. Thus, two recirculation areas induced
by the prolate spheroid and oblate spheroid in figure 17(a, f ) are similar.

For the Oldroyd-B viscoelastic fluid, as shown in figure 17(b,g) with (Wi, Re, El) = (0.01,
100, 0.0001), the particles migrate to the CSM equilibrium position. The particle-induced
secondary flow is closer to the channel centre, which is quite different from the results
in figure 17(a, f ). When increasing the elastic number as (Wi, Re, El) = (0.01, 10, 0.001),
the prolate spheroid and oblate spheroid in figure 17(c,h) maintain the stable TUD and
ILR modes at the DL equilibrium position, respectively. At this time, the particles induce
two diagonally symmetrical recirculation areas near the corners, while three corners far
from the particles generate symmetrical streamlines along the diagonal line and point
towards the particles, prompting the particles to migrate towards the corners. When the
elastic number is further increased to the critical values, i.e. (Wi, Re, El) = (0.1, 10, 0.01)
(figure 17d,i) or (Wi, Re, El) = (1, 100, 0.01) (figure 17e, j), the prolate spheroid can
migrate to the CC equilibrium position and the velocity contour is smaller than that of
the prolate spheroid at the DL or CSM equilibrium positions (figure 17a–c). The oblate
spheroid migrates to the DL equilibrium position with kayaking mode and induces two
recirculation areas near the corners, as shown in figure 17(i, j). Three corners away from
the oblate spheroid generate flows directed towards the particles, the streamlines are no
longer symmetrical along the diagonal line due to kayaking rotational motion.

By comprehensively comparing figure 17, it is found that the particle-induced migration
velocity is mainly affected by Wi, and the Re has a small effect. The inertia effect on the
oblate spheroid is greater than that of the prolate spheroid, and a higher particle-induced
migration velocity is obtained in figure 17. Therefore, the equilibrium position of the oblate
spheroid is more likely to change and the travel distance to the final equilibrium position
is shorter than the prolate spheroid.

3.5. Effect of the initial orientation angle
In the above general initial positions, the initial orientation of the spheroid has a negligible
effect. Due to the geometric symmetry of the square channel, there are two special
initial positions in figure 1, i.e. the wall bisector (xin, yin) = (0, 0.395) and corner (xin,
yin) = (0.395, 0.395). When the particles are initially located at the corner or wall bisector,
some special initial orientations have an impact on the final equilibrium position and
rotational mode. In the present work, the typical initial Euler angles are chosen as n = (π/2,
π/2, 0), (0, 0, 0), (π/2, 0, 0), (π/4, π/4, 0) and (π/2, π/4, 0). The effect of the initial
orientation on the rotational behaviour at two special positions (corner and wall bisector)
and the general position (xin, yin) = (0.2, 0.395) are analysed in this section. Through
numerous numerical simulations, the phase diagram of the rotational behaviours for the
prolate spheroid with α = 2 (grey half-circle) and oblate spheroid with α = 0.5 (pink
half-circle) is shown in figure 18.

Under different parameters, the prolate (oblate) spheroid has six (five) rotational modes.
When (Wi, Re, El) = (1, 1, 1), as shown in figure 18, the spheroids mainly maintained
the LR mode. Only when the spheroid is placed at the corners will it migrate to the CO
equilibrium position, and the initial orientation and particle shape have an impact on the
rotational mode. The prolate spheroids (oblate spheroids) maintain the VILR and TUD
(LR and ILR) rotational modes at the corners. When the elastic number is near the critical
value, such as (Wi, Re, El) = (1, 100, 0.01) and (0.5, 100, 0.005), the rotational modes of the
spheroids are complex and depend on the particle shape, initial position and orientation.
When the elastic number is further reduced, such as (Wi, Re, El) = (0.1, 100, 0.001), the
fluid inertia plays a dominant role, and the types of rotational modes of the spheroids are
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Figure 18. Phase diagram of the rotational behaviours for the prolate spheroid with α = 2 (grey half-circle)
and oblate spheroid with α = 0.5 (pink half-circle). The parameters are changed from the inner circle to the
outer circle as (Wi, Re, El) = (0.1, 100, 0.001), (0.5, 100, 0.005), (1, 100, 0.01), (1, 10, 0.1) and (1, 1, 1).

reduced. The prolate spheroid located at a corner (wall bisector) maintains the TUD (TU)
mode, and the initial orientation has no effect. The oblate spheroid at the wall bisector
maintains the LR mode, and the initial orientation also has no impact. When the oblate
spheroid is initially placed at a corner, it maintains the ILR and LR modes, and the effect
of the orientation is small.

In the following section, we further analyse in detail the effect of the initial orientation
on the migration of spheroids at two special positions and analyse whether the rotational
modes of the spheroids change at four types of equilibrium positions.

3.5.1. CC equilibrium position
When the fluid inertia is low and the elastic number is large (Wi, Re, El) = (1, 1, 1),
as shown in figure 19(a), regardless of the initial orientation, both the prolate spheroid
and oblate spheroid at the initial position (xin, yin) = (0, 0.395) migrate towards the CC
equilibrium position and finally maintain the LR mode, and the initial orientation does not
affect the final CC equilibrium position. Thus, the conclusions on the particle equilibrium
position in the above sections are applicable to most situations.

The effect of the initial orientation on the trajectories and rotational modes of the
prolate and oblate spheroids is slightly different. When the particles start to migrate,
the first normal stress difference is shown in figures 19(b) and 20(a–c). The prolate and
oblate spheroids affect the first normal stress difference of the flow field. When the initial
Euler angle n = (π/2, π/2, 0), as shown at the top of figures 19(b) and 20(b), the prolate
spheroid has a weak effect on the first normal stress difference of the flow field. The prolate
spheroid always maintains the LR mode without tumbling and migrates the fastest to the
CC equilibrium position in figure 19(a). When n = (π/4, π/4, 0), as shown in figure 20(c),
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Figure 19. Effect of the initial orientation on the migration and rotational behaviours when Re = 1 and Wi = 1.
(a) Changes in the trajectory in the ZOY plane with (xin, yin) = (0, 0.395). When the initial orientation is
changed from top to bottom, the long-time evolution of the orientation angle for the (b) prolate spheroid and
(c) oblate spheroid changes from other rotational modes into the LR mode.
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Figure 20. Contour of the first normal stress difference on the cross-section. When the spheroids are released
at (xin, yin) = (0, 0.395), the prolate and oblate spheroids maintain the (a,e) TU mode with n = (0, 0, 0),
(b, f ) LR mode with n = (π/2, π/2, 0) and (c,g) kayaking mode with n = (π/4, π/4, 0). When (xin, yin) = (0.395,
0.395), (d,h) the initial Euler angle n = (0, 0, 0).

the particles are initially in the kayaking mode, and the travel distance to the final CC
equilibrium position in figure 19(a) is the second largest. For n = (0, 0, 0), as shown at the
bottom of figures 19(b) and 20(a), since the prolate spheroid is initially in the TU mode,
the rotational motion causes the largest travel distance to the CC equilibrium position in
figure 19(a). In general, the initial orientation has a small influence on the travel distance
of prolate spheroids.

For an oblate spheroid, as shown at the bottom of figure 19(a), the trajectories with
different orientations almost overlap, and the initial orientations have no effect on the
trajectory and the final rotational mode. Combining figure 19(c) with figure 20(e, f,g), the
oblate spheroid turns from the TU mode and kayaking mode into LR mode when n = (0,
0, 0), (π/2, π/2, 0) and (π/4, π/4, 0). Thus, the particle trajectory and travel distance are
not affected by the initial orientations.
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Figure 21. Effect of the initial orientation on the migration and rotational behaviours when the prolate
(first line, α = 2) and oblate (second line, α = 0.5) spheroids are released at (xin, yin) = (0.395, 0.395) with
Re = 1, Wi = 1. The trajectories in the channel cross-section with (a) α = 2 and (d) α = 0.5; the corresponding
trajectories in the XOZ and YOZ planes for the (b) prolate spheroid and (e) oblate spheroid in the TUD mode.
When the initial orientation is changed from top to bottom, long-time evolution of the orientation for the
(c) prolate spheroid in the VILR, VILR and TUD modes, ( f ) oblate spheroid in the LR, LR and TUD modes.

3.5.2. CO equilibrium position
When the particles are initially placed at the corner with (Wi, Re, El) = (1, 1, 1), the initial
orientation affects the equilibrium position and rotational modes. For the prolate spheroid
with different initial orientations, although it migrates to the CO equilibrium position, the
motion trajectories and rotational modes are quite different. When n = (0, 0, 0) or (π/2,
0, 0), as shown in figure 20(d), figure 21(a,b) and the bottom of figure 21(c), the prolate
spheroid always migrates diagonally with the TUD mode in the XOY plane. The final
equilibrium position is closer to the corner than the other initial Euler angles (n = (π/2,
π/2, 0), (π/4, π/4, 0), (π/2, π/4, 0)). For other initial Euler angles (n = (π/2, π/2, 0),
(π/4, π/4, 0), (π/2, π/4, 0)), the prolate spheroid maintains the VILR mode, as shown in
figure 21(c), which is consistent with the curve in the middle of figure 4(a).

In figure 21(d), oblate spheroids migrate to the CO equilibrium position, and spheroids
with almost orientations eventually keep the LR mode (as shown in figures 6i and 21f ).
Only when n = (0, 0, 0) or (π/2, 0, 0), as shown in figure 20(h) and at the bottom of
figure 21( f ), does the oblate spheroid rotate around the long axis and maintain the stable
TUD mode on the diagonal line, which is similar to the prolate spheroid in figure 21(a,b).
Although the prolate and oblate spheroids all maintain the TUD mode when n = (0, 0, 0) or
(π/2, 0, 0), as shown in figure 21(b,e), the oblate spheroid migrates to the CO equilibrium
position with shorter travel distance than the prolate spheroid.

3.5.3. DL equilibrium position
As shown in § 3.4, the equilibrium position and rotational mode of the spheroids change
when the fluid inertia is increased, especially at the critical elastic number. When the
elastic number is near the critical value (Wi, Re, El) = (1, 100, 0.01), the prolate (oblate)
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Figure 22. Long-time evolution of the orientation for the (a) prolate spheroid in the LR, kayaking and TU
modes and (b) oblate spheroid in the LR mode when (Re, Wi) = (100, 0.5).

spheroid at a corner with different initial orientations can migrate to the CC (DL)
equilibrium position and maintain the LR (kayaking) mode, as shown in figures 11(c)
and 12(a) (in figures 11e and 12b), and the initial orientation has no effect. When the
elastic number is reduced as (Wi, Re, El) = (0.5, 100, 0.005), the prolate spheroid (oblate
spheroid) at a corner maintains the TUD mode (ILR mode) at the DL equilibrium position,
and the initial orientation also has no effect. Therefore, the results for these two cases
are not presented. In this section, we further analyse whether the spheroids with (xin,
yin) = (0, 0.395) can migrate to the DL equilibrium position and whether there is an initial
orientation in which the spheroids can maintain a stable CSM equilibrium position when
(Wi, Re, El) = (0.5, 100, 0.005).

When the particle is initially placed at the wall bisector with (xin, yin) = (0, 0.395), the
prolate spheroids with different orientations migrate to the CSM equilibrium position. As
shown in figure 22(a), when n = (π/2, π/2, 0), (π/4, π/4, 0) and (0, 0, 0), three rotational
modes are found as the LR, kayaking and TU modes, respectively. The oblate spheroid
with n = (π/2, π/2, 0) keeps the stable LR mode at the CSM equilibrium position. The
oblate spheroid with n = (π/4, π/4, 0) and (0, 0, 0) initially maintains the TU mode, as
shown in figures 23(g) and 22(b), it eventually transforms into the LR mode and stabilizes
at the CSM equilibrium position. Thus, the effect of the initial orientation on the rotational
mode of the oblate spheroid is negligible.

As shown in figures 17 and 23, the particle-induced secondary flow on the cross-section
is relatively strong as Re increases. When the spheroids are initially released at the wall
bisector, as shown in figures 23(a,b) and 23( f,g), both the prolate and oblate spheroids
induce obvious secondary flows that are symmetrical along the wall bisector (x = 0), in
which the two recirculation areas close to the spheroid are small. Since the interaction
between the oblate spheroid (in figure 23f,g with LR mode and TU mode) and the fluid
near the wall is more obvious than that of the prolate spheroid, two recirculation areas away
from the oblate spheroid are closer to the walls than that of the prolate spheroid. Therefore,
the oblate spheroid deviates from the initial rotational mode and eventually maintains
the LR mode. When the prolate spheroid maintains a stable kayaking mode at the CSM
equilibrium position, as shown in figure 23(c), the particle-induced secondary flow is no
longer symmetrical and two obvious recirculation areas are generated on the particle side.
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Figure 23. Effect of initial orientation on the velocity contours and the streamlines on the cross-section that is
ahead of the spheroid centre by the distance of the major axis. The particle moves into the paper. When (Wi, Re,
El, xin, yin) = (0.5, 100, 0.005, 0, 0.395), the prolate (first line, α = 2) and oblate (second line, α = 0.5) spheroids
initially maintain the (a, f ) LR mode, (b,g) TU mode and (c) the prolate spheroid maintains the kayaking mode.
When (Wi, Re, El, xin, yin) = (0.5, 100, 0.005, 0.395, 0.395), the prolate (α = 2) and oblate (α = 0.5) spheroids
at DL equilibrium position maintain the (d) TUD mode and (h) ILR mode, respectively. When (Wi, Re, El, xin,
yin) = (0.1, 100, 0.001, 0.395, 0.395), (e) the prolate spheroid (α = 2) maintains the stable TUD mode, (i) the
oblate spheroid (α = 0.5) maintains the stable ILR mode, ( j) the typical process of transitioning from the ILR
to LR mode for the oblate spheroid.

As shown in figure 23(d,h) with (xin, yin) = (0.395, 0.395), the obvious recirculation areas
along the diagonal line are induced near the short axis of the spheroid, another two new
recirculation areas are formed away from the spheroids, and the streamlines point towards
the spheroids and push the prolate spheroid (in TUD mode) and oblate (in ILR mode)
spheroid to stabilize at the DL equilibrium position.

Overall, for different initial orientations in figure 23(a–d, f –i), the particle-induced
lateral migration velocity of the oblate spheroid on the cross-section is greater than that of
the prolate spheroid. Therefore, the oblate spheroid migrates to the equilibrium position
faster than the prolate spheroid.

3.5.4. CSM equilibrium position
Further reducing the elastic number as (Wi, Re, El) = (0.1, 100, 0.001), the particles
initially released from the wall bisector stabilize at the CSM equilibrium position. Prolate
(oblate) spheroids with different orientations maintain the TUD (LR) mode, and the initial
orientation has no effect. Therefore, those results are not presented in this section. When
the spheroid is initially placed at the corner, we mainly analyse the conditions under which
spheroids can migrate to the CSM equilibrium position and stabilize at the CO equilibrium
position.

The prolate spheroid, as shown in figures 24(a) and 23(e), eventually stabilizes at the DL
equilibrium position and maintains the TUD mode when it is released at the corners, and
the effect of initial orientation is negligible. Different from the streamlines in figure 23(d),
the elastic number at this time is small, the two recirculation areas are positioned away
from the diagonal line and the region in which the streamlines point to the corners becomes
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Figure 24. Effect of the initial orientation on the long-time evolution of the orientation for the (a) prolate
spheroid (α = 2) in the TUD mode and (b) oblate spheroid (α = 0.5) in the LR, ILR and ILR modes with
(Wi, Re, El, xin, yin) = (0.1, 100, 0.001, 0.395, 0.395).

large. Thus, the effect of particles on the surrounding streamlines is weakened and the
particles migrate slowly towards the DL equilibrium position when the elastic number is
low.

The oblate spheroid, as shown at the top of figure 24(b), cannot be stabilized at the DL
equilibrium position when n = (π/2, π/2, 0). The typical migration process is shown in
figure 23( j), where an asymmetric secondary flow is formed. The particles slowly migrate
to the CSM equilibrium position, and the final flow field is shown in figure 17(g), where a
symmetrical secondary flow along the wall bisector (x = 0) is formed. For n = (π/4, π/4,
0) and (0, 0, 0), as shown in the middle and bottom of figure 24(b), the oblate spheroid
can maintain a stable DL equilibrium position with ILR mode, and the corresponding
flow field is shown in figure 23(i). The oblate spheroid produces a secondary flow that is
symmetrical along the diagonal line, which is similar to the prolate spheroid (figure 23e).

4. Summary

The elasto-inertial focusing and rotating characteristics of a spheroid in a square channel
flow of Oldroyd-B viscoelastic fluids are studied by the direct forcing/fictitious domain
(DF/FD) method. The effect of the fluid elastic number, the aspect ratio, initial orientation
angle and position of the particle on the equilibrium position, rotational behaviour and
travel distance are explored. Within the present simulated parameters (1 ≤ Re ≤ 100,
0 ≤ Wi ≤ 2, 0.4 ≤ α ≤3), the main conclusions are summarized below.

(1) The results show that there are four kinds of equilibrium positions and six (five)
kinds of rotational behaviours for the elasto-inertial focusing of prolate (oblate)
spheroids in a square channel flow of Oldroyd-B viscoelastic fluids. The prolate and
oblate spheroids both undergo the TU, TUD, LR, ILR and kayaking modes. This
work is the first to identify the VILR mode, which is a special case for the migration
of the prolate spheroid.

(2) When the fluid inertia is small, the spheroids migrate towards the CC or CO
equilibrium positions. While the particles whose initial position far from the corners
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migrate to the CC equilibrium position, the larger the Weissenberg number is,
the faster the particles migrate to the CC equilibrium position. When 0.4 ≤α ≤ 1
(1 ≤ α ≤ 3), the travel distance decreases (increases) as the aspect ratio increases.
With increasing Wi, the maximum first normal stress difference is increased, and the
particle shape and the Weissenberg number affect the CO equilibrium position and
rotational mode when the particles are initially located near a corner.

(3) For a higher Reynolds number, the effect of the fluid elastic number on the migration
and rotational behaviour is complex. The equilibrium position of the spheroid
gradually changes from the CO, CC, DL to CSM equilibrium positions as El
increases, depending on the particle shape, elastic number and rotational behaviour.
The CSM equilibrium position increases nonlinearly with increasing α. Near the
critical elastic number, DL and CC equilibrium positions arise depending on the
particle shape. The prolate spheroid cannot migrate to the CC equilibrium position
until the aspect ratio is large enough, and a slenderer the prolate spheroid means the
faster it migrates to the CC equilibrium position. The CO equilibrium position first
lowers to the lowest point and then raises with increasing particle aspect ratio.

(4) Only when the particles are initially located at two special locations (corner and wall
bisector) do some initial orientations and particle shape have an impact on the final
equilibrium position and rotational mode. When the elastic number is reduced to the
critical value, the rotational modes of the spheroids are complex and depend on the
particle shape, initial position and orientation. When the elastic number is further
reduced, the fluid inertia plays a dominant role, the types of rotational modes of the
spheroids are reduced.

Overall, abundant phenomena on the elasto-inertial focusing and the rotational
behaviour of spheroids in the square channel flow of an Oldroyd-B viscoelastic fluid are
found in this work. By controlling the elastic number near the critical value, spheroids
with different aspect ratios can be efficiently separated. The results are helpful for quickly
predicting the migration of spheroidal particles, which is useful for designing microfluidic
devices with high efficiency.
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Appendix A. Validation

A.1. Motion of a spheroidal particle in Couette flow of Newtonian fluid
A comparison of the present orientation of spheroidal particles in Couette flow with
the analytical results is shown in figure 25. The parameters used in the computation
are Re = 0.1, �t = 5×10−4, ϕ = π/2, θ =π/4, α = 2, k = 0.2 and L = H = W = 1. The
numerical simulation results are in good agreement with the analytical results.
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Figure 25. Comparison of particle orientation between the present result and analytical result (Jeffery 1922).
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Figure 26. Comparison of angular velocities of spherical particles freely rotating in an Oldroyd-B
viscoelastic fluid with different Weissenberg numbers.

A.2. Change in angular velocity of a sphere in an Oldroyd-B fluid
In this work, we further verify the feasibility of the present numerical method by
comparing the rotation of a spherical particle in a three-dimensional shear flow of an
Oldroyd-B viscoelastic fluid with the numerical and experimental results (Snijkers et al.
2011). The parameters used in the computation are Re = 0.1, time step �t = 5 × 10−4,
radius of the particle is 0.1 and initial mass centre is (0, 0, 0). The computational
domain spans [−L/2, L/2] × [−H/2, H/2] × [−H/2, H/2]. The angular velocities of the
particles are shown in figure 26, where the present results are consistent with the previous
experiments.
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