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AN AVERAGING ESTIMATOR FOR
TWO-STEP M-ESTIMATION IN
SEMIPARAMETRIC MODELS

RUOYAO SHI

University of California, Riverside

In a two-step extremum estimation (M-estimation) framework with a finite-
dimensional parameter of interest and a potentially infinite-dimensional first-step
nuisance parameter, this paper proposes an averaging estimator that combines a
semiparametric estimator based on a nonparametric first step and a parametric
estimator which imposes parametric restrictions on the first step. The averaging
weight is an easy-to-compute sample analog of an infeasible optimal weight
that minimizes the asymptotic quadratic risk. Under Stein-type conditions, the
asymptotic lower bound of the truncated quadratic risk difference between the
averaging estimator and the semiparametric estimator is strictly less than zero for a
class of data generating processes that includes both correct specification and varied
degrees of misspecification of the parametric restrictions, and the asymptotic upper
bound is weakly less than zero. The averaging estimator, along with an easy-to-
implement inference method, is demonstrated in an example.

1. INTRODUCTION

Semiparametric models, consisting of a parametric component and a nonpara-
metric component, have gained popularity in economics. Being approximations
of complex economic activities, they harmoniously deliver two advantages at the
same time: parsimonious modeling of parameters of interest and robustness against
misspecification of arbitrary parametric restrictions on activities that are not central
for the research question at hand. One disadvantage of associated semiparametric
estimators, however, is that they are typically less efficient than their parametric
counterparts which result from imposing certain parametric restrictions on the
nonparametric components of semiparametric models.1 This efficiency defect of
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semiparametric estimators often renders relatively imprecise estimates and low
test power, especially when the parametric restrictions are correct or only mildly
misspecified.

Recognizing such tension between robustness and efficiency, researchers have
utilized various specification tests to choose between semiparametric and paramet-
ric estimators in practice. Neither parametric estimators nor the resulting pre-test
estimators, however, are robust to misspecification of the parametric restrictions,
since whether they are more accurate than the semiparametric estimators depends
on the unknown degree of misspecification.

This paper aims to solve this tension between robustness and efficiency in
semiparametric models by developing an estimator whose improvement on the
accuracy over semiparametric estimators (used as benchmark) is robust against
varied degrees of misspecification of the parametric restrictions. First, this paper
proposes an averaging estimator that is a simple weighted average between the
semiparametric estimator and the parametric estimator with a data-driven weight.
Second, under mild Stein-type conditions, the proposed averaging estimator is
proven to have (weakly) smaller asymptotic quadratic risks—a general class of
measures of accuracy that includes mean squared error (MSE) as a special case—
than the semiparametric benchmark regardless of whether the parametric restric-
tions are correct or misspecified, and regardless of the degree of misspecification.
Third, an inference method that is valid regardless of the unknown degree of
misspecification is recommended.

Let β denote the unknown parameter of interest, and let β̂n,SP and β̂n,P denote the
semiparametric and parametric estimators, respectively. The averaging estimator
β̂n,ŵn takes the form

β̂n,ŵn ≡ (1− ŵn)β̂n,SP + ŵnβ̂n,P, (1.1)

where n is the sample size and ŵn is a data-driven averaging weight elaborated
in (2.2). Intuitively, the weight quantifies the asymptotic efficiency gain achieved
by imposing the parametric restrictions and the possible asymptotic misspeci-
fication bias incurred by deviating from the robust semiparametric benchmark.
It then balances the two to reduce asymptotic quadratic risks compared to the
semiparametric estimator.

This paper employs a uniform asymptotic theory to approximate the upper and
lower bounds of the finite sample truncated quadratic risk difference between the
averaging estimator and the semiparametric estimator over a large class of data
generating processes (DGPs).2 Extending the subsequence argument developed
in Cheng, Liao, and Shi (2019) for generalized method of moments (GMM)
estimators, this paper shows that the sufficient conditions for the lower bound to be
strictly less than zero and for the upper bound to be weakly less than zero are mild.
Since this class of DGPs includes those under which the parametric restrictions
are correctly specified, mildly misspecified and severely misspecified, the uniform

2The loss function and the truncated loss function are defined in (2.1) and (3.10), respectively.
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dominance result here asserts that the averaging estimator achieves improvement in
accuracy over the semiparametric estimator in a way that is robust against varied
degrees of misspecification. Unlike Cheng et al. (2019), which focuses on one-
step GMM estimators, this paper considers a two-step M-estimation framework for
semiparametric models as it encompasses maximum likelihood estimator (MLE),
GMM, many kernel-based and sieve estimators, and so forth, as well as regular
one-step M-estimators, as special cases.

The semiparametric models considered in this paper are flexible enough to
include many popular models as special examples—such as single-index models
(Ahn, Ichimura, and Powell, 1996), transformation models (Han, 1987; Sherman,
1993), censored and truncated regression models (Powell, 1986), control function
approaches (Blundell and Powell, 2003, 2004), nonlinear panel data models
(Honoré, 1992), and dynamic discrete choice models (Hotz and Miller, 1993;
Keane and Wolpin, 1997; Buchholz, Shum, and Xu, 2021), among others.

The proposed averaging estimator is demonstrated using a carefully curated
partially linear model example. A point worth emphasizing here is that although
the estimation error of the nonparametric component does not affect the asymp-
totic properties of the parametric component estimator in partially linear models
(Robinson, 1988), the presence of the nonparametric component and how it is
modeled still generally inflict critical impacts on the latter. This point will become
clearer in Section 4.

This paper has a few obvious limitations. First, the uniform asymptotic
dominance result in this paper does not guarantee that the averaging estimator
outperforms the semiparametric benchmark in finite samples, even though the
uniform asymptotic analysis employed here provides better approximation of
the estimators’ finite sample properties than the usual pointwise asymptotic
framework. Second, inference based on the proposed averaging estimator, like
most cases (if not all) of post-averaging inference, is more challenging than that
based on standard estimators. The two-step method proposed by Claeskens and
Hjort (2008) is used to construct an asymptotically valid confidence interval
in this paper (see also, e.g., Kitagawa and Muris, 2016, for its application),
but its coverage probability can be conservative. Third, this paper focuses on
averaging between one semiparametric estimator and one parametric estimator,
excluding estimators that average the semiparametric estimator with more than one
parametric estimator and potentially outperform the one proposed in this paper.
These limitations all point out important directions for future research.

1.1. Related Literature

This paper belongs to the growing literature on frequentist shrinkage and model
averaging estimators, which are weighted averages of other estimators.3 Shrinkage

3Such names as combined or ensemble estimators are also used by different authors to refer to weighted averages of
other estimators with different goals and approaches.
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estimators date back to the James–Stein estimator in Gaussian models (James and
Stein, 1961), and are comprehensively reviewed by Fourdrinier, Strawderman, and
Wells (2018). Recent years have seen development of frequentist model averaging
estimators in many contexts. Hjort and Claeskens (2003) and Hansen (2016) con-
sider likelihood-based estimators in parametric models. In least-squares regression
models, various model averaging estimators are developed and their properties
are carefully examined by Judge and Mittelhammer (2004), Mittelhammer and
Judge (2005), Hansen (2007), Wan, Zhang, and Zou (2010), Hansen and Racine
(2012), Hansen (2014), Liu (2015), and Hansen (2017), just to name a few. Lu
and Su (2015) study quantile regression models. For semiparametric models,
Judge and Mittelhammer (2007) and DiTraglia (2016) consider averaging GMM
estimators, and Kitagawa and Muris (2016) analyze averaging semiparametric
estimators of the treatment effects on the treated based on different parametric
propensity score models. Averaging estimators in nonparametric models are also
discussed, for example, by Fan and Ullah (1999), Yang (2001, 2003), Wasserman
(2006), and Peng and Yang (2022). Magnus, Powell, and Prüfer (2010) and
Fessler and Kasy (2019), among others, investigate Bayesian model averaging
estimators as well. Claeskens and Hjort (2008) provide an excellent review of both
frequentist and Bayesian model averaging estimators. This paper differs from this
literature in the following ways. First, the two-step semiparametric M-estimation
framework in this paper nests many familiar estimators (one-step or two-step)
in semiparametric (and parametric) models as special cases. Second, in contrast
to the literature on nonparametric models that deals with unknown functions
and averages among growing number of estimators, this paper focuses on finite-
dimensional parameters in semiparametric (and parametric) models and averages
between two estimators. The asymptotic theories of the two differ substantially.
Third, the averaging weight, when specialized to corresponding cases, differs from
those in the aforementioned papers. Fourth, the proposed averaging estimator is
shown to dominate the semiparametric benchmark with a uniform asymptotic
approach, instead of the pointwise local asymptotic approach (Le Cam, 1972;
Van der Vaart, 2000, Chap. 7) often taken in the literature. Finally, the Stein-type
condition for the uniform dominance of the averaging estimator in this paper is
stronger than some shrinkage estimators in the literature and weaker than others.4

This paper is particularly related to Cheng et al. (2019), but it generalizes
their uniform asymptotic approach and the subsequence technique from one-step
GMM estimators in moment condition models to two-step M-estimators in more
general semiparametric models.5 Moreover, the restricted estimator considered in
Cheng et al. (2019) is asymptotically efficient, but this paper allows the restricted
(parametric) estimator to be away from the efficiency bound. This relaxation is

4With a certain choice of the weighting matrix in the loss function, the main theorem of this paper (Theorem 1)
requires the dimension of the parameters of interest to be at least 4. See the discussion after Theorem 1 in Section 3
for details.
5Cheng et al. (2019) is in turn based on the uniform inference analysis in Andrews, Cheng, and Guggenberger (2020).
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useful in practice since in complex semiparametric models, the efficient estimators
under the parametric restrictions may be difficult to implement or may have certain
undesirable features, and the widely used ones may fall short of the efficiency
bound (e.g., the Heckman’s (1979) two-step Heckit estimator in sample selection
models).

The uniform asymptotic analysis in this paper is premised upon high-level
asymptotic distributions of β̂n,SP and β̂n,P, which can be justified under various
primitive conditions in different models, as shown in numerous previous studies on
the asymptotic properties of specific and general M-estimators—e.g., Lee (1982),
Gallant and Nychka (1987), Ahn and Powell (1993), Newey and Powell (1993),
Andrews (1994), Newey (1994), Newey and McFadden (1994), Powell (1994),
Pakes and Olley (1995), Powell (2001), Bickel and Ritov (2003), Chen, Linton, and
Van Keilegom (2003), Hirano, Imbens, and Ridder (2003), Firpo (2007), Newey
(2009), Ichimura and Lee (2010), Ackerberg, Chen, and Hahn (2012), Ackerberg
et al. (2014), and Ichimura and Newey (2017)—among others.

Averaging estimators can be regarded as a smoothed generalization of pre-test
estimators (or model selection estimators), since the latter restrict the averaging
weights to be either zero or one depending on the result of certain specification
tests or criteria. For models involving infinite-dimensional components, many
authors propose various specification tests, including Bierens (1990) using sieve
estimators and Robinson (1989) using kernel estimators. Model selection esti-
mators based on focused information criterion (FIC) in semiparametric models
are considered, for example, by Hjort and Claeskens (2006). Pre-test estimators
typically perform better than the unrestricted benchmark for certain degrees of
misspecification of the restrictions and worse for the others. Moreover, the liter-
ature has documented that in many settings, the maximal scaled quadratic risks
of pre-test estimators based on consistent tests grow unbounded as sample sizes
increase, despite promising properties suggested by pointwise asymptotic analysis.
A well-cited example is the Hodges’s estimator (e.g., Van der Vaart, 2000, Exam.
8.1), among others (Leeb and Pötscher, 2005; Yang, 2005; Leeb and Pötscher,
2008; Hansen, 2016; Cheng et al., 2019, etc.). In contrast, the uniform asymptotic
approach of this paper better approximates the finite sample properties of the
averaging estimator, so the resulting averaging estimator has (weakly) smaller
asymptotic quadratic risks than the semiparametric benchmark uniformly over the
degree of misspecification and avoids the common pitfalls of pre-test estimators.

This paper is related to but differs from the following strands of literature
as well. First, doubly robust estimators in statistics (e.g., Scharfstein, Rotnitzky,
and Robins, 1999; Bang and Robins, 2005; Rubin and van der Laan, 2008; Cao,
Tsiatis, and Davidian, 2009; Tsiatis, Davidian, and Cao, 2011) are robust against
misspecification, but they typically require that some components of the model
are correctly specified, whereas the averaging estimator in this paper exhibits
improved risk regardless of the degree of misspecification. Second, recent devel-
opment in locally robust estimators in semiparametric models (e.g., Chernozhukov
et al., 2018, 2022) removes impacts of the nuisance function estimation bias

https://doi.org/10.1017/S0266466622000548 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000548


TWO STEP SP AVERAGING ESTIMATOR 657

(brought by regularization of machine learning methods) on the influence function
of the parameter of interest by orthogonalization (Neyman, 1959). The approach
here is still useful, since how the nuisance function is modeled affects both variance
and bias even when it is known and needs no estimation. Third, among the literature
on sensitivity analysis (e.g., Rosenbaum and Rubin, 1983; Leamer, 1985; Imbens,
2003; Altonji, Elder, and Taber, 2005; Andrews, Gentzkow, and Shapiro, 2017;
Mukhin, 2018; Oster, 2019), Bonhomme and Weidner (2021) and Armstrong
and Kolesár (2021) are the closest to this paper. They take a restricted model
as benchmark and study the sensitivity of the results with respect to possible
local misspecification that deviates from it. This paper takes an opposite perspec-
tive by positing a robust unrestricted semiparametric model as benchmark and
pursuing uniform quadratic risk improvement with the help of added parametric
restrictions.

1.2. Plan of the Paper

The rest of this paper is organized as follows. Section 2 prescribes how to compute
the proposed averaging estimator in practice. Section 3 states and proves the main
uniform dominance result of the paper along with its conditions and an inference
method. Section 4 conducts Monte Carlo (MC) experiments using a partially
linear model example to investigate the finite sample performance of the proposed
averaging estimator. Section 5 concludes. The Appendix gives the proofs of the
results in Section 3. Appendix B provides the proofs of the intermediate lemmas
in the Appendix of this article. Appendix C presents an alternative method of
computing the averaging weight. Appendix D details additional theoretical and
MC results for the example in Section 4. Appendix E discusses the justification
for the high-level Condition 2. Appendixes B–E are available in the Supplementary
Material associated with this article.

2. COMPUTING THE AVERAGING ESTIMATOR

This section explains how to compute the averaging estimator in practice. Rigorous
conditions and the formal uniform asymptotic dominance result will be provided
in Section 3.

2.1. Averaging Weight

One is interested in the estimation of a finite-dimensional vector of parameters
β ∈ B, where B ⊂ R

k is compact. Let F denote the set of DGPs, and let F
denote one DGP from F . For any estimator β̂n of the parameter β and a chosen
symmetric positive semidefinite weighting matrix ϒ ,6 define the loss function to

6ϒ can be assumed to be symmetric without loss of generality, because for any asymmetric ϒ̃ there exists a symmetric
ϒ that gives rise to the same loss function.
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be the following quadratic form:7

�(β̂n,β) ≡ n(β̂n −β)′ϒ(β̂n −β). (2.1)

Here, the weighting matrix ϒ is chosen by the researcher and reflects how much
the researcher values the estimation accuracy of each coordinate of β. If the
researcher treats every coordinate equally, then they may choose ϒ = Ik (the
k × k identity matrix). If the researcher focuses on the prediction error in a linear
regression model, then they may choose ϒ = EF(XiX′

i), where EF(·) denotes the
expectation operator under DGP F and Xi denotes the regressors. If the researcher
focuses on only a subvector of β, then they may choose ϒ to be a diagonal matrix
with diagonal entries associated with the subvector being one and other diagonal
entries being zero. This last example shares the same spirit with the FIC model
averaging (Zhang and Liang, 2011), but the weighting matrix ϒ here affords
more flexibility. Note that both the loss function and the averaging weight (to be
introduced later) depend on ϒ , but such dependence is suppressed for notational
simplicity.

Given the loss function in (2.1), the semiparametric estimator β̂n,SP is preferred
in terms of robustness since it is consistent whether the parametric restrictions hold
or not. The parametric estimator β̂n,P is consistent only if those restrictions are
sufficiently close to holding, and if they do, β̂n,P will typically be asymptotically
more efficient than β̂n,SP. As a result, the potentially more efficient β̂n,P sometimes
has improved asymptotic quadratic risk over the robust β̂n,SP, but sometimes
does not. The optimal robustness-efficiency trade-off (i.e., bias-variance trade-off)
depends on the degree of misspecification of the parametric restrictions, a mea-
surement unknown to the researcher.

The main message of this paper is that with the proposed averaging weight, the
averaging estimator of the form in (1.1) always has no larger asymptotic risk than
the robust estimator β̂n,SP regardless of whether the parametric restrictions hold or
not and regardless of the degree of misspecification.

Under DGP F, let VF,SP and VF,P be the asymptotic variance–covariance
matrices of β̂n,SP and β̂n,P, respectively, and let CF be their asymptotic covariance
matrix. Let V̂n,SP, V̂n,P, and Ĉn be the consistent estimators. Then the data-driven
averaging weight is

ŵn ≡ tr[ϒ(V̂n,SP − Ĉn)]

tr[ϒ(V̂n,SP + V̂n,P −2Ĉn)]+n(β̂n,P − β̂n,SP)′ϒ(β̂n,P − β̂n,SP)
, (2.2)

7Hansen (2016) argues that the choice of loss function affects asymptotic performance of estimators only via its
local quadratic approximation, so considering a quadratic loss function is not as restrictive as it may appear. To be
precise, the loss function used in the asymptotic theory of this paper is a truncated version of (2.1), which is defined
in (3.10).
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where tr[·] indicates the trace of a square matrix.8 This weight falls in the interval
[0,1] with probability one, and the reason is detailed in Appendix C in the
Supplementary Material.9

Remark 1. If β̂n,P is an asymptotically efficient estimator under the parametric
restrictions, then CF = VF,P. In this case, the averaging weight can simplify to

ŵn ≡ tr[ϒ(V̂n,SP − V̂n,P)]

tr[ϒ(V̂n,SP − V̂n,P)]+n(β̂n,P − β̂n,SP)′ϒ(β̂n,P − β̂n,SP)
, (2.3)

which resembles the GMM averaging weight proposed by Cheng et al. (2019).

It is easier to see the intuition of the averaging weight from (2.3). If the asymp-
totic efficiency gain of imposing the first-step parametric restrictions, represented
by tr[ϒ(V̂F,SP − V̂F,P)], is large, then the averaging estimator ought to allocate
more weight to β̂n,P. If, on the other hand, the asymptotic bias of β̂n,P resulting
from misspecification of the restrictions, represented by β̂n,P − β̂n,SP (since β̂n,SP is
always consistent), is large, then the averaging estimator should assign less weight
to β̂n,P. The proposed weight in (2.3) operationalizes such intuition by striking a
balance between robustness and efficiency.

The weight in (2.2) generalizes (2.3) by allowing for averaging even when
β̂n,P is not asymptotically efficient. This generalization is especially important for
semiparametric models, because asymptotically efficient estimators do not always
exist in these models, and might be difficult to compute or possess undesirable
finite sample properties when they do. A salient example is the sample selection
model under the joint normality restriction, where the Heckman’s (1979) two-
step Heckit estimator is asymptotically inefficient but more widely used than the
efficient MLE, for a variety of reasons (see the discussion in Heckman, 1976;
Wales and Woodland, 1980; Nelson, 1984).

2.2. Bootstrapping Asymptotic Variance–Covariance Matrices

The key to the construction of the averaging weight ŵn, as (2.2) implies,
is the consistent variance–covariance matrix estimators V̂n,SP, V̂n,P, and Ĉn.
They can be computed by bootstrapping the asymptotic variance–covariance

matrix of
(
β̂ ′

n,SP,β̂
′
n,P

)′
.10

Because the consistency of the bootstrap distribution does not guarantee the
consistency of the bootstrap second moment (Hahn and Liao, 2021), one needs

8Note that in (2.2), Ĉn is in general an asymmetric matrix, i.e., Ĉn �= Ĉ′
n, but ϒĈn and ϒĈ′

n have the same trace due
to the symmetry of ϒ and properties of the trace operator. The same goes for CF and C′

F .
9In finite samples, however, it is possible that ŵn falls outside the interval [0,1]. One could add a restriction that
enforces ŵn ∈ [0,1], and this can be justified by minor changes (not detailed in this paper) in the proofs of the
theoretical results in Section 3. The author thanks an anonymous referee for pointing this out.
10The author thanks an anonymous referee for suggesting providing a bootstrap method for computing the averaging
weight.
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to use one of the consistent bootstrap variance–covariance estimators proposed in
the literature instead of the simple bootstrap second moment. Among them, the
following truncation method proposed by Shao (1992) and adapted to this paper
is both general and easy to implement.

(1) Let β̂ ≡
(
β̂ ′

n,SP,β̂
′
n,P

)′
, and let β̂j ( j = 1, . . . ,2k) denote its jth coordinate. For

a larger number B, randomly draw B bootstrap samples of size n and compute
the bootstrap estimate β̂b (b = 1, . . . ,B) for each sample.

(2) For fixed positive constants ν and small c0, define Tj ≡ max{ν|β̂j|,c0} for each
coordinate.11 For all b and all j, define

�b
j ≡

⎧⎪⎨⎪⎩
Tj, if β̂b

j − β̂j > Tj,

β̂b
j − β̂j, if |β̂b

j − β̂j| ≤ Tj,

−Tj, if β̂b
j − β̂j < −Tj,

and �b ≡ (
�b

1, . . . ,�
b
2k

)′
.

(3) Compute the 2k × 2k matrix V̂n ≡ n
B

∑B
b=1(�

b − �̄)(�b − �̄)′, where �̄ ≡
B−1 ∑B

b=1 �b. Then V̂n,SP is the upper left k × k block of V̂n, V̂n,P is the lower
right k × k block of V̂n, and Ĉn is the upper right k × k block of V̂n.

These bootstrapped asymptotic variance–covariance matrix estimates can then
be plugged into (2.2) to compute the averaging weight. Appendix C in the Sup-
plementary Material provides an alternative method of computing the asymptotic
variance–covariance matrices via the influence functions of β̂n,SP and β̂n,P, and
Section 4 will show that the finite sample performance of the averaging estimator
using the influence functions and that using the bootstrapping method are almost
identical to each other.

3. THEORETICAL RESULTS

This section proves and provides the conditions for the uniform dominance result
of the averaging estimator. An inference method is also suggested.

3.1. Uniform Dominance

Suppose βF, the true parameter value under DGP F, is identified as the unique
minimizer (assume it exists) of some objective function QF(β,hF); in other words,
the parameter of interest is

βF ≡ argmin
β∈B

QF(β,hF), (3.1)

where the objective function QF(β,h) depends on some potentially infinite-
dimensional nuisance parameter h. Since the objective function QF has h as an

11The validity of Shao’s (1992) method does not rely on any specific values of ν or c0. In his paper, ν = 1 and
c0 = 0.05 were used in the simulation study. These values will also be used in the MC experiments in Section 4 of
this paper.
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argument, the presence of h and how it is modeled generally affect the asymptotic
properties of β estimators through QF, even in the absence of estimation error of
h.12 Under DGP F, the true nuisance parameter value hF is identified as the unique
minimizer (assume it exists) of another objective function RF(h); that is,

hF ≡ argmin
h∈H

RF(h), (3.2)

where (H,‖·‖H) is some complete, separable space of square integrable functions
of data Z.

A general class of two-step M-estimators β̂n is as follows:

β̂n ≡ argmin
β∈B

Q̂n(β,ĥn), (3.3)

where Q̂n(β,ĥn) is some empirical objective function of β which depends on the
sample {Zi}n

i=1 and ĥn, a first-step estimator of the unknown nuisance parameter h.
Throughout this paper, the dependence of the empirical objective functions on the
sample {Zi}n

i=1 is suppressed for notational simplicity.
As stated in (1.1), this paper considers averaging two common two-step M-

estimators of β: the semiparametric estimator β̂n,SP and the parametric estimator
β̂n,P. The two differ in how h is modeled and estimated in the first step. The semi-
parametric estimator β̂n,SP does not impose specific functional form restrictions on
h, so ĥn results from common nonparametric estimation procedures. For example,
suppose ĥn is obtained from a first-step sieve M-estimation procedure as follows:

ĥn ≡ arg min
h∈Hn

R̂n(h), (3.4)

where R̂n(h) is some empirical objective function, and Hn are subspaces of
(H,‖ · ‖H) that become dense as n → ∞. Then the first step of the corresponding
β̂n,SP is (3.4) and the second step is (3.3).

On the other hand, the parametric estimator β̂n,P arises because economic
hypotheses often suggest a certain parametric form of h, or one may want to limit
the dimension of h to improve the efficiency. In these cases, one will model h
with a finite-dimensional subspace of (H,‖ · ‖H), denoted by Hg, where g is a
function that is known up to a finite-dimensional vector of unknown parameters γ .
Formally, let � ⊂ R

t be a compact subset of the t-dimensional Euclidean space,
then

Hg ≡ {h(·) : ∃ some γ ∈ � such that h(·) ∈ H and h(·) = gγ (·) ≡ g(·;γ )}. (3.5)

Let

γ̂n ≡ argmin
γ∈�

R̂n(gγ ), (3.6)

12Typically, the influence function of the estimator β̂n depends on the first and second derivatives of QF , which in
turn both depend on h generally (see, e.g. Newey, 1994; Ichimura and Lee, 2010; Ackerberg et al., 2014; Ichimura
and Newey, 2017).
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and let the restricted nuisance parameter estimate be written as ĥn = gγ̂n . Then the
first step of β̂n,P is (3.6) and the second step is (3.3).

For every DGP F ∈F and under the parametric restrictions, define the first-step
pseudo-true parameter vector γF as the unique minimizer (assume it exists) of the
following problem:

γF ≡ argmin
γ∈�

RF(gγ ), (3.7)

where the first-step objective function RF(·) is the same as in (3.2) and the first-step
nuisance function subspace Hg is defined in (3.5). Also define the second-step
pseudo-true parameter βF,P as the unique minimizer (assume it exists) of the
following problem:

βF,P ≡ argmin
β∈B

QF(β,gγF ), (3.8)

where QF(·,·) is the same as in (3.1). In general, the nuisance function gγF induced
by the pseudo-true parameter γF is different from the true nuisance function hF

identified in (3.2). In consequence, βF,P in general will be different from βF, the
true parameter of interest identified in (3.1). Let δF denote the bias caused by
imposing the parametric restrictions; that is,

δF ≡ βF,P −βF. (3.9)

The key to the uniform dominance is to determine the sign of the asymptotic risk
difference between the averaging estimator β̂n,ŵn and the semiparametric estimator
β̂n,SP under DGPs with varied degrees of misspecification. This paper utilizes
the uniform asymptotic approach and the subsequence technique in Cheng et al.
(2019), instead of Pitman sequences, which is frequently used when analyzing
the pointwise local asymptotic properties of estimators. Lower (infimum) and
upper (supremum) bounds of the risk differences between β̂n,ŵn and β̂n,SP for all
DGPs within a set F satisfying certain regularity conditions are considered before
rendering the sample size to infinity.

To formally state the dominance result, some notation is needed. For any
estimator β̂n of β and an arbitrary real number ζ , define the truncated loss function

�ζ (β̂n,β) ≡ min{�(β̂n,β),ζ }, (3.10)

where �(β̂n,β) is the quadratic loss function defined in (2.1). Compared to the loss
function in (2.1), the truncation does not restrict the applicability of the main result
much as ζ could be arbitrarily large. The bounds of the truncated risk differences
for finite sample size n are defined as

RDn(β̂n,ŵn,β̂n,SP;ζ ) ≡ inf
F∈F

EF[�ζ (β̂n,ŵn,βF)−�ζ (β̂n,SP,βF)], (3.11)

RDn(β̂n,ŵn,β̂n,SP;ζ ) ≡ sup
F∈F

EF[�ζ (β̂n,ŵn,βF)−�ζ (β̂n,SP,βF)]. (3.12)
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Then, define the following limits of the finite sample bounds:

AsyRD(β̂n,ŵn,β̂n,SP) ≡ lim
ζ→∞ liminf

n→∞ RDn(β̂n,ŵn,β̂n,SP;ζ ), (3.13)

AsyRD(β̂n,ŵn,β̂n,SP) ≡ lim
ζ→∞ limsup

n→∞
RDn(β̂n,ŵn,β̂n,SP;ζ ). (3.14)

The key difference between these bounds and the asymptotic risks that utilize
Pitman sequences in pointwise local analysis is that the truncated risk differences
in (3.11) and (3.12) are extrema over the entire DGP set F for each finite sample
size n, before n is sent to infinity to obtain the asymptotic bounds in (3.13) and
(3.14). The finite sample extrema may occur at different Pitman sequences for
different n, allowing the asymptotic bounds to be approached not along a single
Pitman sequence.

The averaging estimator is said to dominate the semiparametric estimator in
terms of asymptotic truncated risk uniformly over F if

AsyRD(β̂n,ŵn,β̂n,SP) < 0, (3.15)

and

AsyRD(β̂n,ŵn,β̂n,SP) ≤ 0. (3.16)

(3.15) and (3.16) will be shown to hold in Theorem 1 under the following
conditions and intermediate results.

Condition 1. Recall δF defined in (3.9). Suppose F is such that the following
holds.

(i) δF = 0 only if hF = gγF for some γF ∈ R
t.

(ii) 0k×1 ∈ int(�δ), where �δ ≡ {δF: F ∈ F}.

Condition 1(i) is a simple requirement that if the parametric restrictions on the
nuisance function h are misspecified, then the pseudo-true parameter value βF,P

will differ from the true value βF, which rules out the uninteresting special case
that βF may be consistently estimable even with severely misspecified parametric
restrictions. As a result, the degree of misspecification can be indexed by δF, the
bias introduced by imposing the parametric restrictions. Condition 1(ii) says that
the parametric restrictions may be misspecified with varied degrees, including the
correct specification case. Condition 1 does not impose any stringent restrictions
on the semiparametric models.

Use the following notation for the nuisance parameter vector that characterizes
the joint asymptotic distributions of β̂n,SP and β̂n,P under DGP F,

S̄(F) ≡ (
vech(VF,SP)′,vech(VF,P)′,vec(CF)′

)′
, and S(F) ≡ (

δ′
F,S̄(F)′

)′
, (3.17)

where δF is defined in (3.9), and vech(·) and vec(·) are vectorization of distinct
entries of a matrix. Let

S ≡ {S(F): F ∈ F}. (3.18)
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A sequence of DGPs {Fn}∞n=1 is said to be correctly specified if n1/2δFn → 0,
locally/mildly misspecified if n1/2δFn → d ∈ (0,∞), and severely misspecified if
n1/2δFn → ∞.

Condition 2. For any sequence of DGPs {Fn}∞n=1 such that S̄(Fn) → S̄(F) for
some F ∈ F and n1/2δFn → d ∈ R

k∞, suppose the estimators β̂n,SP and β̂n,P satisfy
the following conditions.

(i) If ‖d‖ < ∞, then[
n1/2(β̂n,SP −βFn)

n1/2(β̂n,P −βFn)

]
d.−→

[
ξF,SP

ξF,P +d

]
, (3.19)

where ξ̃F ∼ N (02k×1,ṼF), with ξ̃F ≡ (ξ ′
F,SP,ξ

′
F,P)′, VF,SP ≥ VF,P, and

ṼF ≡
[

VF,SP CF

C′
F VF,P

]
.

(ii) If ‖d‖ = ∞, then n1/2(β̂n,SP −βFn)
d.−→ ξF,SP and ‖n1/2(β̂n,P −βFn)‖ p.−→ ∞.

Condition 2(i) requires that both β̂n,SP and β̂n,P are locally regular estimators
(Ichimura and Newey, 2017, Def. 1), which means that n1/2((β̂ ′

n,SP,β̂
′
n,P)′ −

(β ′
Fn

,β ′
Fn,P

)′) has the same limiting distribution under any sequence of local
alternatives as it does when Fn = F for all n. As argued by Ichimura and Newey
(2017, Sect. 3, p. 14), this condition is a mild one and it allows one to bypass
imposing primitive conditions of asymptotic linearity and to focus on the main
dominance result of this paper. Note that in (3.19), β̂n,P is re-centered using δFn

and the presumption n1/2δFn → d. Moreover, VF,SP ≥ VF,P states the intuition
that imposing parametric restrictions generally leads to (weak) efficiency gain.13

Formal justification of Condition 2(i) is in Appendix E in the Supplementary
Material, and the following is only a brief explanation of how this intuitive
condition can be justified by Le Cam’s third lemma (e.g., Van der Vaart, 2000,
Exam. 6.7) and the definition of semiparametric efficiency bound (see Bickel
et al., 1993, Chap. 3). First, when ‖d‖ = 0, the parametric restrictions are
correctly specified, due to Condition 1(i). So, the restricted nuisance function
space Hg is a subspace of H that contains the true nuisance function hF. Using
an argument similar to that in the proof of Lemma 1 in Ackerberg et al. (2014),
one can show that the semiparametric efficiency bound of the restricted model
(with nuisance function space Hg) is smaller than that of the unrestricted model
(with nuisance function space H),14 because the latter is the supremum of all
parametric submodels that include the former. In consequence, it is natural to
require that VF,SP ≥ VF,P in this case.15 Second, when ‖d‖ < ∞ but ‖d‖ �= 0, the

13Condition 2(i) is easy to verify for a specific model. The direct verification of Condition 2(i) for the partially linear
model of Section 4 is in Appendix D in the Supplementary Material.
14That is, the difference between the two is a negative semidefinite matrix.
15Following the Ackerberg et al. (2014) approach, one needs to define another nuisance parameter η, which captures
the features of the distribution of data Z other than those determined by β and h, then characterize the tangent space
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asymptotic variance–covariance matrix of β̂n,P remains VF,P by the local regularity
and Le Cam’s third lemma. In addition, the asymptotic variance–covariance
matrix of β̂n,SP remains VF,SP regardless of the parametric restrictions. Therefore,
VF,SP ≥ VF,P still holds. Condition 2(ii) is also intuitive since it states that when
the parametric restrictions are severely misspecified, β̂n,P will have an infinitely
large asymptotic bias. Formal justification of Condition 2(ii) is also in Appendix
E in the Supplementary Material.

Condition 2 is a high-level condition that might be ensured by different primitive
conditions in specific semiparametric models, on which there have been many
important contributions (e.g., Robinson, 1988; Klein and Spady, 1993; Hirano
et al., 2003; Cheng et al., 2019). Condition 2 bypasses those conditions and focuses
on the common asymptotic properties in preparation for the discussion of the
averaging estimator. Also note that Condition 2 takes the consistency of β̂n,SP and
β̂n,P for respective (pseudo-)true values defined in (3.1) and (3.8) as presumption,
for which the primitive conditions have been studied extensively (e.g., Newey and
McFadden, 1994, Sect. 2).

Define

AF ≡ ϒ(VF,SP −CF) and BF ≡ ϒ(VF,SP +VF,P −2CF). (3.20)

Given the high-level Condition 2, the following lemma follows immediately.

Lemma 1. Suppose Conditions 1 and 2 hold. Also suppose that V̂n,SP, V̂n,P, and
Ĉn have finite probability limits.

(i) If ‖d‖ < ∞, then

ŵn
d.−→ wF ≡ tr(AF)

tr(BF)+ (ξF,P +d − ξF,SP)′ϒ(ξF,P +d − ξF,SP)
, (3.21)

which in turn implies that

n1/2(β̂n,ŵn −βF)
d.−→ ξ̄F,d ≡ (1−wF)ξF,SP +wF(ξF,P +d). (3.22)

(ii) If ‖d‖ = ∞, then ŵn
p.−→ 0 and n1/2(β̂n,ŵn −βF)

d.−→ ξF,SP.

Proof. See the Appendix. �

(see Newey, 1990; Bickel et al., 1993) for both the unrestricted and the restricted models. The efficient score function
of β in each model is therefore the projection residual of the score function of β onto the model’s tangent space. Since
the unrestricted models include the restricted models as a subspace, the tangent space of the former includes that of
the latter as a subspace as well. This implies that the efficient score function of β in the former has smaller norm than
that in the latter. This in turn implies that the semiparametric efficiency bound of the former, which is the inverse of
the squared norm of the efficient score function, is larger than that of the latter. Strictly speaking, it is still possible
that the two-step parametric estimator is asymptotically less efficient than the semiparametric estimator despite the
opposite relative magnitude of their efficiency bounds, but since Crepon, Kramarz, and Trognon (1997) and Newey
and Powell (1999) show in different models that the two-step estimators achieve the efficiency bounds if the first step
is exactly identified, the high-level condition VF,SP ≥ VF,P in Condition 2(i) does not go without justification.
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Remark 2. Condition 2(i) assumes VF,SP ≥ VF,P because it is the case in
which the averaging is meaningful (otherwise β̂n,SP dominates β̂n,P, and hence no
averaging is needed). Incorporating the possibility of VF,SP < VF,P can be done by
modifying the data-driven averaging weight in (2.2) to

w̃n ≡ tr[ϒ(V̂n,SP − Ĉn)] · I{V̂n,SP ≥ V̂n,P}
tr[ϒ(V̂n,SP + V̂n,P −2Ĉn)]+n(β̂n,P − β̂n,SP)′ϒ(β̂n,P − β̂n,SP)

. (3.23)

When VF,SP ≥ VF,P, the weights w̃n = ŵn with probability one, so the asymptotic
results in Lemma 1(i) still hold. When VF,SP < VF,P, on the other hand, it is easy
to see that the weight w̃n converges to zero in probability, so the results in Lemma
1(ii) hold regardless of ‖d‖ value. Since the uniform dominance theory (uniform
over ‖d‖ values but not VF,SP or VF,P) in Theorem 1 builds on these asymptotic
results, it will not be affected by such modification of the weight.

The practical implication of this remark is that if a researcher is uncertain
whether the condition VSP ≥ VP holds, then the weight (3.23) and the resulting
averaging estimator can be used.

Condition 3. Suppose F is such that the following holds.

(i) S is compact, with S defined in (3.18).
(ii) For any F ∈F such that δF = 0 with δF defined in (3.9), there exists a constant

εF > 0 such that for any δ̃ ∈ R
k with 0 ≤ ‖δ̃‖ < εF, there is F̃ ∈ F with δF̃ = δ̃

and ‖S̄(F̃)− S̄(F)‖ ≤ C‖δ̃‖κ for some C,κ > 0, where S̄(F) is defined in (3.17).

Condition 3(i) is necessary for applying the subsequence argument to show the
uniform dominance result. Recall that S defined in (3.18) is a subset of a finite-
dimensional Euclidean space, so Condition 3(i) is equivalent to S being bounded
and closed. vech(VF,SP), vech(VF,P), and vec(CF) are bounded if both β̂n,SP and
β̂n,P are locally regular estimators, which is implied by Condition 2(i) for ‖d‖ < ∞
(see the discussion after Condition 2 for details). S being closed is not restrictive
in the sense that if S is not closed, then one can define it to be the closure of S
and the main uniform dominance result still holds. Condition 3(ii) says that for any
F ∈ F satisfying the parametric restrictions, there are many DGPs F̃ ∈ F that are
close to F, where the closeness of two DGPs is measured by the distance between
S(F̃) and S(F).16 This condition will be used in the subsequence argument to show
the uniform dominance and is not restrictive, since it means that the DGP set F is
rich enough, which makes the uniform dominance result harder to hold.

Once a specific model is given, Conditions 1 and 3 can be verified directly, and
the literature often has developed primitive conditions for Condition 2. Appendix
D in the Supplementary Material details the primitive conditions of Condition 2

16Under Condition 3(ii), for any F ∈ F with δF = 0 and any sequence of DGPs {Fn}∞n=1 such that n1/2δFn → d
with ‖d‖ < ∞, there exists a sequence of DGPs {F̃n}∞n=1 satisfying the requirement of Condition 2(i), and hence
the convergence result in (3.19) holds. This interpretation is related to Assumptions A and B in Andrews and
Guggenberger (2010) and Assumptions A0 and B0 in Andrews and Guggenberger (2009). The author thanks the
Co-Editor for pointing this out.
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for the partially linear model in Section 4 and verifies Conditions 1–3 for the
parameterization used in the MC experiments in that section.

In order to state an important intermediate result and to explain its rationale,
some additional notation is needed. For any F ∈ F and any d ∈ R

k∞, define

uF,d ≡ (
d′,vech(VF,SP)′,vech(VF,P)′,vec(CF)′

)′
. (3.24)

Note that the subvector d of uF,d does not depend on F, and the rest of uF,d does
not depend on d. Let

U ≡ {uF,d: ‖d‖ < ∞, and F ∈ F with δF = 0}, (3.25)

and

U∞ ≡ {uF,d: ‖d‖ = ∞, and F ∈ F}. (3.26)

For any uF,d ∈ U ∪U∞, define

r(uF,d) ≡
{

EF
(
ξ̄ ′

F,dϒξ̄F,d − ξ ′
F,SPϒξF,SP

)
, if uF,d ∈ U,

0, if uF,d ∈ U∞,
(3.27)

where ξ̄F,d and ξF,SP are defined in (3.22) and (3.19), respectively. U and U∞
defined here may appear similar to the set S defined in (3.18), but they are
different. For any uF,d ∈ U ∪ U∞, the corresponding δ ≡ n−1/2d is a different
object from δF associated with F. S is the set of actual nuisance parameter vectors
that determine the asymptotic properties of β̂n,SP, β̂n,P, and β̂n,ŵn under DGPs
in F . In contrast, U is the set of all hypothetical nuisance parameter vectors
that would have prevailed had the asymptotic variance–covariance matrices
VF,SP, VF,P, and CF been the same as some DGP with zero bias (δF = 0)
from F and had the asymptotic bias d been finite. Note that if uF,d ∈ U
(i.e., ‖d‖ < ∞), the corresponding δ ranges from being zero to approaching to
zero at any rate that is not slower than n1/2, corresponding to correct specification
or mild misspecification of the parametric restrictions. Similarly, U∞ is the
set of all hypothetical nuisance parameter vectors that would have prevailed
had the asymptotic variance–covariance matrices VF,SP, VF,P, and CF been
the same as some DGP from F and had the asymptotic bias d been infinite.
Note that if uF,d ∈ U∞ (i.e., ‖d‖ = ∞), the corresponding δ explodes, is a
constant, or approaches to zero at slower than n1/2 rate, corresponding to severe
misspecification of the parametric restrictions. Together, U and U∞ are a device
that allows one to compare the asymptotic risk of β̂n,ŵn to that of β̂n,SP uniformly
over varied degrees of misspecification of the parametric restrictions.

To prove the main uniform dominance result, the following lemma implies that
one can first approximate the bounds of asymptotic risk difference using r(uF,d)

for uF,d ∈U and for uF,d ∈U∞ separately, and then combine the two cases together.
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Lemma 2. Suppose: (i) Conditions 1–3 hold; and (ii) tr(AF) > 0 and tr(BF) > 0,
where AF and BF are defined in (3.20).17 Then

AsyRD(β̂n,ŵn,β̂n,SP) =max

{
sup

uF,d∈U
r(uF,d),0

}
(3.28)

AsyRD(β̂n,ŵn,β̂n,SP) =min

{
inf

uF,d∈U
r(uF,d),0

}
. (3.29)

Proof. See the Appendix. �

If the parametric restrictions are severely misspecified, then one has uF,d ∈ U∞
(and hence ‖d‖ = ∞). In this case, Lemma 1(ii) states that the asymptotic distribu-
tions of β̂n,ŵn and β̂n,SP are the same, and therefore r(uF,d) = 0. The key message
of Lemma 2 is that the upper (or lower) bound of the asymptotic risk difference is
determined by the maximum between sup

uF,d∈U
r(uF,d) and sup

uF,d∈U∞
r(uF,d) = 0 (or the

minimum between inf
uF,d∈U

r(uF,d) and inf
uF,d∈U∞

r(uF,d) = 0).

By Lemma 2, showing that sup
uF,d∈U

r(uF,d) ≤ 0 and inf
uF,d∈U

r(uF,d) < 0 is sufficient

for the following uniform dominance theorem.

Theorem 1. Suppose Conditions 1–3 hold. Let AF and BF be those matrices
defined in (3.20), and let ρmax(·) denote the largest eigenvalue of a square matrix.
If tr(AF) > 0, tr(BF) > 0, and tr(AF) ≥ 4ρmax(AF) for any F ∈F with δF = 0, then
(3.15) and (3.16) hold; that is, the averaging estimator β̂n,ŵn uniformly dominates
the semiparametric estimator β̂n,SP.

Proof. See the Appendix. �

To give some intuition for the conditions of the uniform dominance result in
Theorem 1, consider the case where the researcher chooses ϒ = (VF,SP − CF)−1.
In this case, the presumption VF,SP ≥ VF,P and the invertibility of VF,SP − CF

require that VF,SP > CF, which is a necessary condition for VF,SP > VF,P. The
latter indicates that the parametric estimator should achieve strict efficiency gain
over the semiparametric estimator. In addition, the condition tr(AF) ≥ 4ρmax(AF)

becomes k ≥ 4, which requires the researcher to consider the overall risk of
multiple parameters of interest, but not a single coordinate. Such a dimension
condition is common for shrinkage estimators. For example, the condition here
is stronger than the condition k ≥ 3 for the estimators in James and Stein (1961)
and Hansen (2016), the same as k ≥ 4 for the estimator in Cheng et al. (2019),

17As shown in the Appendix (Lemmas A.3 and A.4), a weaker condition than (ii)—tr(AF) ≥ 0 and tr(BF) > 0—is
sufficient for proving Lemma 2. Due to the definitions of AF and BF , however, if VF,SP ≥ VF,P as postulated in
Condition 2(i), then tr(BF) > 0 implies tr(AF) > 0.
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and weaker than k ≥ 5 for the estimators in Judge and Mittelhammer (2004) and
Mittelhammer and Judge (2005).

The averaging weight ŵn in (2.2) is a sample analog of the infeasible optimal
weight under the quadratic loss function in (2.1). To see this, note that by
Condition 2(i), for any fixed weight w, the asymptotic distribution of β̂n,w when
‖d‖ < ∞ is obtained by the continuous mapping theorem:

n1/2(β̂n,w −βF)
d.−→ ξF,w ≡ (1−w)ξF,SP +w(ξF,P +d).

Since the asymptotic risk, defined in (2.1), is quadratic in w, the optimal weight
w∗ that minimizes the asymptotic risk under DGP F is

w∗ ≡ tr[ϒ(VF,SP −CF)]

tr[ϒ(VF,SP +VF,P −2CF)]+d′ϒd
.

If β̂n,P is asymptotically efficient under the parametric restrictions, then CF = VF,P

and the optimal weight simplifies to

w∗ = tr[ϒ(VF,SP −VF,P)]

tr[ϒ(VF,SP −VF,P)]+d′ϒd
.

Furthermore, note that n1/2(β̂n,P − β̂n,SP) is an asymptotically unbiased estimator
of d when ‖d‖ < ∞, so the averaging weight ŵn in (2.2) is a sample analog of w∗.

When ‖d‖ = ∞, the parametric estimator β̂n,P is so severely biased that a
sensible averaging estimator ought to assign it zero weight. This intuition is echoed
by Condition 2(ii) and Lemma 1(ii), which imply that the feasible averaging weight
given in (2.2) converges to zero.

It is worth pointing out that because n1/2(β̂n,P − β̂n,SP) is only asymptotically
unbiased for d but not consistent,18 and wF in (3.21) is a random variable and
in general not unbiased for w∗ in light of Jensen’s inequality, so ŵn is neither a
consistent nor an unbiased estimator for the infeasible optimal weight w∗. Proving
the uniform dominance of the averaging estimator is more challenging than it might
appear at first sight, since β̂n,SP, β̂n,P, and ŵn are mutually dependent random
variables and their randomness needs to be dealt with at the same time. The
subsequence technique in Cheng et al. (2019), therefore, is necessary for proving
Theorem 1.

3.2. Inference

The inference of averaging estimators generally differs from standard estimators
because the averaging weights often are random variables that correlate with the
candidate estimators, which renders the asymptotic distribution of β̂n,ŵn nonstan-
dard. Fortunately, inference can still be made here by adapting a conservative two-
step inference method proposed by Claeskens and Hjort (2008, Sect. 7.5.4).

18In fact, d is not root-n estimable, since its information bound is zero.
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To adapt Claeskens and Hjort’s (2008) two-step inference method to the averag-
ing estimator in this paper, first note that given any fixed finite d, Condition 2(i) and
Lemma 1(i) tell us that ξF,SP and ξF,P completely determine the joint asymptotic
distribution of β̂n,SP, β̂n,P, and ŵn. So, they also determine the asymptotic distribu-
tion of β̂n,ŵn , represented by ξ̄F,d in (3.22). As a result, for fixed finite d and any
confidence level 1 −α2, the confidence set of �n ≡ √

n(β̂n,ŵn −βF), denoted by
CI1−α2(�n|d,V̂), can be constructed by simulating (S number of random draws for
a given large number S) from the joint distribution of ξF,SP and ξF,P provided in
Condition 2(i) and picking the α2/2 and 1 −α2/2 quantiles of the simulated ξ̄F,d

values given in (3.22).19

To account for the fact that d is unknown, note that Condition 2(i) immediately

implies that n1/2(β̂n,P − β̂n,SP)
d.−→ N (d,VF,P + VF,SP − CF − C′

F). This enables
one to construct the following confidence set of d for any confidence level 1−α1:

CI1−α1(d|β̂,V̂) ≡ {d : n(β̂n,P − β̂n,SP −d)′V̂−1
d (β̂n,P − β̂n,SP −d) ≤ χ2

1−α1
(k)},

(3.30)

where V̂d ≡ V̂n,P + V̂n,SP − Ĉn − Ĉ′
n and χ2

1−α1
(k) is the 1 −α1 quantile of the χ2

distribution with degrees of freedom k.
In summary, the two-step inference method proceeds as follows:

(1) For any confidence level 1 − α, pick α1 and α2 such that α1 + α2 = α, and
construct the 1−α1 confidence set CI1−α1(d|β̂,V̂) of d, defined in (3.30).

(2) For each d ∈ CI1−α1(d|β̂,V̂), construct the 1 − α2 confidence set CI1−α2

(�n|d,V̂) of �n via simulation described above, then take the union
∪d∈CI1−α1 (d|β̂,V̂)CI1−α2(�n|d,V̂).

That is, for chosen α1 and α2 such that α1 +α2 = α, the 1−α confidence set of βF
is just

CI1−α(β|β̂,V̂) ≡ {β :
√

n(β̂n,ŵn
−β) ∈ CI1−α2(�n|d,V̂), for some d ∈ CI1−α1(d|β̂,V̂)}.

(3.31)

In practice, this union can be well approximated by taking a large number
of d values satisfying (3.30) and then taking the union of the resulting sets
CI1−α2(

√
n(β̂n,ŵn −βF)|d,V̂) over all such d values. Such a union set allows one

to make inference about βF based on the data.
The next lemma follows Claeskens and Hjort (2008, Sect. 7.5.4) and Kitagawa

and Muris (2016, Appendix A) to show that the confidence set CI1−α(βF|β̂,V̂) is
asymptotically valid. Note that the validity of (3.32) below does not depend on the
value d, so the confidence interval CI1−α(β|β̂,V̂) is uniformly valid regardless of
the degree of misspecification.

19In simulating from the joint distribution in Condition 2(i), one obviously needs to replace the unknown variance–
covariance matrices with their consistent estimators. Here and in the rest of this subsection, β̂ is a shorthand for β̂n,SP

and β̂n,P, and V̂ is a shorthand for V̂n,SP, V̂n,P, and Ĉn.
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Lemma 3. Suppose Conditions 1–3 hold. Let α1 and α2 be fixed nonnegative
numbers such that α1 +α2 = α, then

lim
n→∞PF

(
βF ∈ CI1−α(β|β̂,V̂)

)
≥ 1−α. (3.32)

Proof. See the Appendix. �

In contrast to this two-step method, a naive inference method based on the
averaging estimator β̂n,ŵn would treat the averaging weight ŵn as nonrandom and
compute the asymptotic variance–covariance matrix of the averaging estimator as
ŵ2

nV̂n,P + (1 − ŵn)
2V̂n,SP + ŵn(1 − ŵn)Ĉn + ŵn(1 − ŵn)Ĉ′

n. In addition, standard
inference based only on the semiparametric estimator β̂n,SP is always feasible.
Section 4 will compare the finite sample sizes and powers of the two-step method
with the naive method (two variations) and the standard β̂n,SP-based inference
method in a partially linear model example.

4. AN EXAMPLE WITH MONTE CARLO EXPERIMENTS

4.1. Example: Partially Linear Model

One is interested in estimating β in a partially linear model

Y = X′
1β + s(X1,X2)+U, (4.1)

where E(U|X1,X2) = 0, X1 is a k×1 vector, X2 is an l×1 vector, and X1 and X2 are
assumed not to overlap for simplicity. The identification of β requires that s(X1,X2)

and X1 are not perfectly collinear.20

The estimator of β that results from s(x1,x2) being approximated by a series
of basis functions (e.g., polynomials) that increases with the sample size is
one example of the semiparametric estimator β̂n,SP.21 If one imposes certain
parametric-form restriction on s(x1,x2)—for example, s(x1,x2) is a linear function
of x2 only—then the usual least squares estimator of β could serve as the parametric
estimator β̂n,P.22

Although the semiparametric models considered in this paper are flexible
enough to include many examples, this partially linear model is put in the spotlight
because it highlights a few distinct features of the averaging estimator in this

20To be precise, E{[X1 −E[X1|s(X1,X2)] · [X1 −E[X1|s(X1,X2)]′} is positive definite.
21Many semiparametric estimators of β in partially linear models have been proposed in the literature (e.g., Robinson,
1988; Donald and Newey, 1994). In particular, since partially linear models may arise as a “reduced form” of the
sample selection models (see the discussion on pages 5–8 of Ahn and Powell, 1993, and the references therein),
many semiparametric estimators of β in sample selection models (with potentially nonparametric selection equation)
have been proposed and examined under various identification conditions, such as Gallant and Nychka (1987), Newey,
Powell, and Walker (1990), Ahn and Powell (1993), and Newey (2009). They could all serve as the β̂n,SP in this paper,
provided that the conditions in Section 3 are satisfied.
22Least-squares estimator is generally considered as a semiparametric estimator, since the distribution of Ui is usually
left unspecified. If the distribution of Ui is parametrically specified, then the resulting least-squares estimator is truly
a parametric estimator. In this example, however, both are referred to as “parametric estimators” because they both
impose certain restrictions on the nuisance function s(x1,x2).
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paper. First, unlike in Cheng et al. (2019), the parametric estimator β̂n,P in this
paper (e.g., the least-squares estimator in this example) need not be asymptotically
efficient under the parametric restrictions. Second, the asymptotic distribution of a
two-step M-estimator generally depends on the presence of the first-step nuisance
parameter and how it is modeled (e.g., parametrically or nonparametrically), even
in the absence of first-step estimation error like the partially linear model.23

Third, the Stein-type condition amounts to a dimensionality condition (k ≥ 4) for
ϒ = (

VF,SP −VF,P
)−1

(discussed after Theorem 1) and it can be easily fulfilled in
this example.

4.2. Monte Carlo Experiments

In the MC experiments, the interest is to estimate β ≡ (β1,β2,β3,β4)
′ in the

following parameterization of the model in (4.1):

Y =
4∑

j=1

βjX1j +
4∑

j=1

θ1jX2j +ρ

⎛⎝ 4∑
j=1

θ2j exp(X2j)+
4∑

j=1

θ3jX1jX2j

⎞⎠+U, (4.2)

where X1j and X2j denote the jth coordinate of X1 and X2, respectively (k = 4 here).
The parametric estimator β̂n,P results from the following misspecified linear

regression:

Y = θ0 +
4∑

j=1

βjX1j +
4∑

j=1

θ1jX2j +V, (4.3)

whereas the semiparametric series estimator β̂n,SP results from a linear regression
of Y on X1 and polynomials of X1 and X2 which exclude linear functions of X1

(as proposed by Donald and Newey, 1994).24 When ρ �= 0, the parametric estimator
β̂n,P suffers from the familiar “omitted variable bias,” since the term in the bracket
in (4.2) generally correlates with both X1 and X2.

In the experiments, U is independent of (X′
1,X

′
2)

′ and randomly drawn from
N (0,0.52), and (X′

1,X
′
2)

′ is randomly drawn from N (2×�8,VX) with

VX =
[

0.52 × I4 0.05×L4×4

0.05×L4×4 0.52 × I4

]
, (4.4)

where �8 is an 8×1 vector of ones, I4 is the 4×4 identity matrix, and L4×4 is a 4×4
matrix of ones. The parameter values are β = (4,3,2,1)′, θ1 = (1,1,1,1)′, θ2 =
(1,2,3,4)′, and θ3 = (5,6,7,8)′. The value of ρ, which determines the degree of
misspecification of β̂n,P, varies from 0 to 1.3 with 0.05 step width. The sample size

23Appendix D in the Supplementary Material shows that for this partially linear model, the influence functions of
β̂n,P and β̂n,SP ((D.2) and (D.3), respectively) differ, although neither of them contains the correction term of the
first-step estimation error.
24Based on a leave-one-out cross-validation procedure performed on a preliminary sample, polynomials up to the
fourth order are used for β̂n,SP in the MC experiments.
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Figure 1. MC MSE, bias2, and variance of β̂n,SP, β̂n,P, and β̂n,ŵn for the partially linear model.
Notes: (1) Bootstrap results are based on R = 1,000 MC replications, n = 1,000 sample size, and
B = 200 bootstrap replications. (2) All other results are based on R = 10,000 MC replications and
n = 1,000 sample size. (3) MSEs are normalized by dividing those of the semiparametric estimator
β̂n,SP. (4) Squared biases and variances are not normalized by the MSEs of β̂n,SP. Var(β̂n,SP) is off the
chart and around 45. (5) See Section 4 for the details of the partially linear model example and the MC
experiments.

is n = 1,000, and the number of MC replications is R = 10,000.25 The weighting
matrix is ϒ = I4, so that the risk function is the MSE.

The MSEs, squared biases, and variances of β̂n,SP, β̂n,P, and β̂n,ŵn are plotted
against the degree of misspecification ρ in Figure 1. The MSEs are normalized
by those of β̂n,SP, which is represented by the thin solid black line at unity. So,
the MSEs of an estimator being below this unity benchmark means that this
estimator has smaller MSEs than β̂n,SP. The normalized MSEs of β̂n,ŵn with the
averaging weight ŵn computed using the influence-function-based asymptotic
variance–covariance matrix estimates (detailed in Appendix C in the Supplemen-
tary Material) are represented by the thick solid black line, whereas those using the
bootstrapped asymptotic variance–covariance matrix estimates (B = 200 bootstrap
replications) are represented by the dashed black line.26 The normalized MSEs
of β̂n,P are represented by the dash-dotted black line. The squared biases and
variances of β̂n,SP and β̂n,P, not normalized, are plotted as well to facilitate the
understanding of the performance of the estimators.27 The squared biases of β̂n,SP

are represented by the dashed yellow line with triangle markers, and those of β̂n,P

by the dashed blue line with round markers; the latter increases so quickly with ρ

and shoots outside the figure range before ρ reaches 0.1. The variances of β̂n,SP

are represented by the dotted yellow line with triangle markers, and those of β̂n,P

25Alternative sample sizes n = 100,250,500 are also considered, and the results are similar (not reported).
26To save time, the bootstrap averaging estimator is only computed for R = 1,000 replications with 0.1 step width of
ρ values.
27The author thanks an anonymous referee for suggesting plotting them and the distributions of the averaging weights.
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by the dotted blue line with round markers; the former remains stable around the
level of 45 and is outside the figure range.

Figure 2 plots the MC distributions (kernel densities) of the first coordinate of
the averaging estimator β̂n,ŵn (thick solid lines) for representative ρ values. In the
same figures, the normal distributions based on the naive inference method with the
common standard error are represented by the thick dashed lines (one randomly
chosen MC replication) and dotted lines (averaged over all MC replications). It
is obvious that the naive inference method miscalculates the randomness in the
averaging estimator β̂n,ŵn,1, since it treats the averaging weight ŵn as nonrandom.

Figure 3 plots the kernel densities of the averaging weight ŵn for representative
ρ values. The solid lines are based on the influence functions in Appendix C in the
Supplementary Material, and the dashed lines are based on the bootstrapping in
Section 2. The difference between the two is undiscernible. As ρ value increases,
both of them concentrate more and more toward one, confirming the results of
Lemma 1.

Table 1 reports for different ρ values the rejection rates of β̂n,SP with the common
standard error and those of β̂n,ŵn with both the naive and the two-step inference
methods (S = 1,000 random draws in the second step) for β1, the first coordinate
of β. Two variations of the naive inference method for β̂n,ŵn are considered.
The “Naive” one uses the common estimators of VF,P and CF when computing the
standard error, but they can be biased under misspecification (see the discussion
after (C.3)). The “Naive (robust SE)” one uses the robust influence function
(D.2) when computing the standard error (see Appendix D in the Supplementary
Material for details). For the “Size” columns, the test value is 4, the true value of
β1; for the “Power” columns, the test value is 0. Table 1 also reports the average
ratios between the lengths of the two-step confidence intervals of β̂n,ŵn,1 and of the
standard confidence intervals of β̂n,SP,1.

A few observations can be made about the MC results. First, regardless of the
degree of misspecification, β̂n,SP has almost zero bias but very large and stable
variance, whereas β̂n,P has much smaller variance but rapidly increasing bias.
Second and consequently, the normalized MSEs of β̂n,P, compared to those of
β̂n,SP, start from a negligible level and blow up quickly off the chart as ρ increases
beyond 0.6. Third, on the contrary, the normalized MSEs of β̂n,ŵn stay below
the unity benchmark regardless of the degree of misspecification, confirming the
uniform asymptotic dominance result in Theorem 1. Fourth, both the influence
function and the bootstrapping approaches lead to almost identical distributions of
the averaging weights in Figure 3. The normalized MSEs of the two averaging
estimators in Figure 1 differ, but to a very small extent. Fifth, the asymptotic
distributions based on the naive inference method in Figure 2 badly approximate
the actual MC distributions of the averaging estimator β̂n,ŵn,1 for all ρ values.
Sixth, both naive inference methods, with or without the robust standard error, lead
to almost identical sizes and powers in Table 1, exhibiting significant size distortion
(over-rejection). The two-step inference method, on the other hand, controls the
size well and possesses decent powers. Finally, although the confidence interval
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(a) Correct Specification (ρ = 0): (b) Misspecification (ρ = 0.2):

(c) Misspecification (ρ = 0.4): (d) Misspecification (ρ = 0.6):

(e) Misspecification (ρ = 0.8): (f) Misspecification (ρ = 1):

Figure 2. True versus naive distributions of β̂n,ŵn,1 for the partially linear model.
Notes: (1) All distributions are based on R = 10,000 MC replications and n = 1,000 sample
size. (2) The solid lines represent the MC distributions of β̂n,ŵn,1, the averaging estimator of β1. The
dashed and dotted lines both represent the asymptotic distribution of β̂n,ŵn,1 if the naive inference
method, which takes ŵn as fixed, is used. The former show a randomly chosen MC replication,
whereas the latter show the average over all MC replications. (3) See Section 4 for the details of the
partially linear model example and the MC experiments.

https://doi.org/10.1017/S0266466622000548 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000548


676 RUOYAO SHI

(a) Correct Specification (ρ = 0): (b) Misspecification (ρ = 0.2):

(c) Misspecification (ρ = 0.4): (d) Misspecification (ρ = 0.6):

(e) Misspecification (ρ = 0.8): (f) Misspecification (ρ = 1):

Figure 3. Distributions of ŵn for the partially linear model. Notes: (1) Bootstrap results are based on
R = 1,000 MC replications, n = 1,000 sample size, and B = 200 bootstrap replications. (2) All other
results are based on R = 10,000 MC replications and n = 1,000 sample size. (3) The distributions of
the averaging weight ŵn concentrate toward zero as ρ, the degree of misspecification, increases. (4)
See Section 4 for the details of the partially linear model example and the MC experiments.
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Table 1. Rejection rates for β̂n,ŵn,1 in the partially linear model (5% level)

ρ β̂n,SP,1 β̂n,ŵn,1 CI length

Naive Naive (robust SE) Two-step
CI(β̂n,ŵn,1)

CI(β̂n,SP,1)

Size Power Size Power Size Power Size Power

0.00 9.27% 34.14% 9.30% 76.25% 9.16% 76.19% 1.65% 21.60% 32.8575

0.05 9.44% 34.64% 11.82% 76.76% 11.63% 76.70% 1.87% 24.64% 32.8520

0.10 9.62% 34.05% 16.53% 75.50% 16.32% 75.45% 2.01% 28.56% 32.8761

0.15 9.61% 35.34% 19.23% 73.95% 19.10% 73.93% 2.00% 32.91% 32.9347

0.20 9.53% 35.15% 19.98% 71.49% 19.83% 71.42% 2.48% 35.41% 33.0424

0.25 9.70% 35.66% 18.85% 68.32% 18.79% 68.26% 3.00% 37.26% 33.1656

0.30 9.97% 34.94% 17.77% 63.83% 17.71% 63.80% 3.32% 37.64% 33.3325

0.35 9.25% 34.24% 16.04% 61.12% 16.01% 61.10% 3.64% 36.88% 33.4862

0.40 9.93% 34.98% 15.88% 59.04% 15.85% 59.05% 4.56% 37.23% 33.6567

0.45 9.64% 34.72% 14.43% 56.00% 14.42% 56.00% 4.80% 37.08% 33.8317

0.50 9.67% 35.08% 13.42% 53.69% 13.42% 53.70% 5.13% 36.88% 33.9892

0.55 9.51% 34.70% 12.85% 51.87% 12.81% 51.81% 5.19% 36.13% 34.1402

0.60 9.37% 34.89% 11.86% 50.27% 11.82% 50.25% 5.16% 35.60% 34.2658

0.65 9.72% 34.92% 12.02% 48.65% 11.99% 48.64% 5.63% 34.96% 34.4102

0.70 9.28% 34.93% 11.54% 47.40% 11.56% 47.38% 5.06% 34.69% 34.5394

0.75 10.08% 35.60% 12.12% 46.96% 12.08% 46.92% 6.05% 34.65% 34.6499

0.80 9.82% 34.53% 11.53% 45.71% 11.49% 45.71% 6.04% 33.21% 34.7484

0.85 9.61% 34.57% 10.94% 44.77% 10.94% 44.74% 5.96% 33.02% 34.8273

0.90 10.47% 34.77% 11.47% 43.99% 11.48% 43.96% 6.48% 32.98% 34.9176

0.95 10.23% 35.08% 11.15% 43.64% 11.14% 43.61% 6.42% 32.60% 34.9878

1.00 10.02% 34.44% 10.87% 42.77% 10.87% 42.75% 6.08% 32.15% 35.0498

1.05 9.89% 35.02% 10.79% 42.42% 10.79% 42.40% 5.75% 32.01% 35.1099

1.10 9.42% 33.73% 10.43% 41.29% 10.43% 41.20% 5.37% 30.17% 35.1653

1.15 10.18% 34.00% 10.58% 40.51% 10.58% 40.50% 6.44% 30.57% 35.2172

1.20 10.12% 34.70% 10.66% 41.01% 10.65% 41.02% 6.50% 31.02% 35.2588

1.25 9.44% 33.39% 9.93% 39.40% 9.94% 39.40% 5.86% 29.81% 35.3034

1.30 9.95% 35.33% 10.76% 41.24% 10.74% 41.25% 6.17% 31.11% 35.3382

Notes: (1) This table only reports the inference results for β̂n,ŵn,1, the averaging estimator of β1.
The results for the other three coordinates are reported in Tables D.1–D.3 of Appendix D in the
Supplementary Material.
(2) All results are based on R = 10,000 MC replications and n = 1,000 sample size. The two-step
inference method uses S = 1,000 random draws to simulate the distribution of ξ̄F,d ≡ (1−wF)ξF,SP +
wF(ξF,P +d) in (3.22).
(3) The naive inference methods treat the averaging weight ŵn as nonrandom, and hence underestimate
the randomness in β̂n,ŵn,1. Two naive methods are reported here: the first uses the common estimators
of VF,P and CF , which might be biased under misspecification (see the discussion after (C.3)); and the
second (robust SE) uses the robust influence function (D.2) when computing the standard error (see
Appendix D for details).
(4) The test value for the “Size” columns is 4, the true value of β1; the test value for the “Power”
columns is 0.
(5) See Section 4 for the details of the partially linear model example and the MC experiments.
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based on β̂n,ŵn with the two-step method is much longer than that based on β̂n,SP

with the common standard error, the two display comparable powers.
Figure 2 and Table 1 only present the MC results for β1, the first coordinate of

β. Similar results for the other three coordinates are reported in Figures D.1–D.3
and Tables D.1–D.3 in Appendix D in the Supplementary Material.

5. CONCLUSION

In a two-step M-estimation framework, this paper proposes a new estimator that
averages between a semiparametric robust estimator and another one obtained
under a restricted first step, allowing the specific information used in developing
the latter to complement the former. The subsequence technique employed in prov-
ing the uniform dominance of the averaging estimator is novel in the literature. The
generality of the theoretical framework and the easy-to-implement computation
and inference methods permit wide use of the proposed averaging estimator in
semiparametric models.

Inference based on the averaging estimator remains a challenging problem, as
sharper uniformly valid confidence sets are desirable. The possibility of averaging
the semiparametric estimator with more than one restricted estimator is also left
for future research.

APPENDIX. Proofs of the Theorems

A.1. Proof of Lemma 1

Proof. Part (i). Note that in this case, V̂n,SP, V̂n,P, and Ĉn are consistent estimators
of VF,SP, VF,P, and CF , respectively, then the result follows by Condition 2(i) and the
continuous mapping theorem.

Part (ii). Because the probability limits of V̂n,SP, V̂n,P, and Ĉn are finite and

‖n1/2(β̂n,P − β̂n,SP)‖ p.−→ ∞, one has ŵn
p.−→ 0 by the continuous mapping theorem.

This, combined with Slutsky’s theorem, implies that n1/2(β̂n,ŵn
−βF)

d.−→ ξF,SP. �

The following notation will be used in the proofs. Let C and κ be generic sym-
bols for positive constants that might take different values at each appearance. For any
uF,d ∈ U ∪U∞ (defined in (3.24)–(3.26)) and any positive finite ζ , define

Rζ (uF,d) ≡ EF

(
min

{
ξ ′

F,SPϒξF,SP,ζ
})

, (A.1)

R̄ζ (uF,d) ≡
⎧⎨⎩ EF

(
min

{
ξ̄ ′

F,dϒξ̄F,d,ζ
})

, if ‖d‖ < ∞ (i.e., uF,d ∈ U),

EF

(
min

{
ξ ′

F,SPϒξF,SP,ζ
})

, if ‖d‖ = ∞ (i.e., uF,d ∈ U∞),
(A.2)

rζ (uF,d) ≡ R̄ζ (uF,d)−Rζ (uF,d) (A.3)

=
{

EF

(
min{ξ̄ ′

F,dϒξ̄F,d,ζ }−min{ξ ′
F,SPϒξF,SP,ζ }

)
, if ‖d‖ < ∞ (i.e., uF,d ∈ U),

0, if ‖d‖ = ∞ (i.e., uF,d ∈ U∞),
(A.4)
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r(uF,d) ≡
{

EF

(
ξ̄ ′

F,dϒξ̄F,d − ξ ′
F,SPϒξF,SP

)
, if ‖d‖ < ∞ (i.e., uF,d ∈ U),

0, if ‖d‖ = ∞ (i.e., uF,d ∈ U∞).
(A.5)

Note that r(uF,d) in (A.5) is just what is defined in (3.27). For any positive finite ζ , define

AsyRDζ (β̂n,ŵn
,β̂n,SP) ≡ limsup

n→∞
RDn(β̂n,ŵn

,β̂n,SP;ζ )

= limsup
n→∞

sup
F∈F

EF[�ζ (β̂n,ŵn
,βF)−�ζ (β̂n,SP,βF)], (A.6)

AsyRDζ (β̂n,ŵn
,β̂n,SP) ≡ liminf

n→∞ RDn(β̂n,ŵn
,β̂n,SP;ζ )

= liminf
n→∞ inf

F∈F
EF[�ζ (β̂n,ŵn

,βF)−�ζ (β̂n,SP,βF)], (A.7)

where RDn(β̂n,ŵn
,β̂n,SP;ζ ) and RDn(β̂n,ŵn

,β̂n,SP;ζ ) are defined in (3.12) and (3.11).
The proofs of the following Lemmas A.1–A.4 can be found in Appendix B in the

Supplementary Material.

Lemma A.1. Suppose Conditions 1–3 hold. Then,

AsyRDζ (β̂n,ŵn
,β̂n,SP) ≤ max

{
sup

uF,d∈U
rζ (uF,d),0

}
, (A.8)

AsyRDζ (β̂n,ŵn
,β̂n,SP) ≥ min

{
inf

uF,d∈U
rζ (uF,d),0

}
. (A.9)

Lemma A.2. Suppose Conditions 1–3 hold. Then,

AsyRDζ (β̂n,ŵn
,β̂n,SP) ≥ max

{
sup

uF,d∈U
rζ (uF,d),0

}
, (A.10)

AsyRDζ (β̂n,ŵn
,β̂n,SP) ≤ min

{
inf

uF,d∈U
rζ (uF,d),0

}
. (A.11)

Lemma A.3. Suppose: (i) Conditions 1–3 hold; and (ii) tr(AF) > 0 and tr(BF) > 0, with
AF and BF defined in (3.20). Then,

sup
uF,d∈U

E

[(
ξ ′

F,SPϒξF,SP

)2
]

≤ C, (A.12)

sup
uF,d∈U

E

[(
ξ̄ ′

F,dϒξ̄F,d

)2
]

≤ C. (A.13)

Lemma A.4. Suppose: (i) Conditions 1–3 hold; and (ii) tr(AF) > 0 and tr(BF) > 0, with
AF and BF defined in (3.20). Then,

lim
ζ→∞ sup

uF,d∈U
∣∣rζ (uF,d)− r(uF,d)

∣∣ = 0. (A.14)
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A.2. Proof of Lemma 2

Proof. First, combining Lemmas A.1 and A.2 gives

AsyRDζ (β̂n,ŵn
,β̂n,SP) = max

{
sup

uF,d∈U
rζ (uF,d),0

}
, (A.15)

AsyRDζ (β̂n,ŵn
,β̂n,SP) = min

{
inf

uF,d∈U
rζ (uF,d),0

}
, (A.16)

for any finite ζ > 0. Then, note that Lemma A.4 implies28

lim
ζ→∞ sup

uF,d∈U
rζ (uF,d) = sup

uF,d∈U
r(uF,d), and lim

ζ→∞ inf
uF,d∈U

rζ (uF,d) = inf
uF,d∈U

r(uF,d).

(A.17)

Moreover, note that for uF,d ∈U∞ (defined in (3.26)), (A.4) and (A.5) imply that rζ (uF,d) =
r(uF,d) = 0. Furthermore, since max{x,0} and min{x,0} are both continuous functions of x,
the equalities in (A.17) remain valid after applying these continuous functions; that is,

lim
ζ→∞max

{
sup

uF,d∈U
rζ (uF,d),0

}
=max

{
sup

uF,d∈U
r(uF,d),0

}
, (A.18)

lim
ζ→∞min

{
inf

uF,d∈U
rζ (uF,d),0

}
=min

{
inf

uF,d∈U
r(uF,d),0

}
. (A.19)

Combining (A.15), (A.18), and the definitions of AsyRD(β̂n,ŵn
,β̂n,SP) in (3.14) and of

AsyRDζ (β̂n,ŵn
,β̂n,SP) in (A.6) gives the result in (3.28). Combining (A.16), (A.19), and

the definitions of AsyRD(β̂n,ŵn
,β̂n,SP) in (3.13) and of AsyRDζ (β̂n,ŵn

,β̂n,SP) in (A.7) gives
the result in (3.29). �

A.3. Proof of Theorem 1

Proof. By Lemma 2, it suffices to show that sup
uF,d∈U

r(uF,d) ≤ 0 and inf
uF,d∈U

r(uF,d) < 0.

By the definition of ξ̄F,d in (3.22), one gets

E(ξ̄ ′
F,dϒξ̄F,d) =E(ξ ′

F,SPϒξF,SP)+2E[wF(ξF,P +d − ξF,SP)′ϒξF,SP]

+E[w2
F(ξF,P +d − ξF,SP)′ϒ(ξF,P +d − ξF,SP)].

28This is because Lemma A.4 means that for ∀ε > 0, there exists a large enough number C such that for all
ζ ≥ C one has sup

uF,d∈U
∣∣rζ (uF,d)− r(uF,d)

∣∣ < ε. This implies that for ζ ≥ C and ∀uF,d ∈ U , one has r(uF,d) − ε <

rζ (uF,d) < r(uF,d)+ ε. The two inequalities here remain holding when the supreme operator is applied on the three
expressions, and note that ε does not vary with uF,d , so for ζ ≥ C, one gets sup

uF,d∈U
r(uF,d)− ε < sup

uF,d∈U
rζ (uF,d) <

sup
uF,d∈U

r(uF,d)+ε. This in turn immediately implies that for ζ ≥ C, one has

∣∣∣∣∣ sup
uF,d∈U

rζ (uF,d)− sup
uF,d∈U

r(uF,d)

∣∣∣∣∣ < ε; that

is, lim
ζ→∞ sup

uF,d∈U
rζ (uF,d) = sup

uF,d∈U
r(uF,d). Similar relationship for the infimum can be shown using the same argument.
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By the definitions of wF in (3.21) and of AF and BF in (3.20), this implies that for any
uF,d ∈ U (defined in (3.25)),

r(uF,d) = 2tr(AF)J1,F + [tr(AF)]2J2,F, (A.20)

where

J1,F ≡ E

[
(ξF,P +d − ξF,SP)′ϒξF,SP

tr(BF)+ (ξF,P +d − ξF,SP)′ϒ(ξF,P +d − ξF,SP)

]
,

J2,F ≡ E

[
(ξF,P +d − ξF,SP)′ϒ(ξF,P +d − ξF,SP)

[tr(BF)+ (ξF,P +d − ξF,SP)′ϒ(ξF,P +d − ξF,SP)]2

]
.

Define

D ≡ [−Ik Ik]′ ϒ [−Ik Ik] , d̃ ≡ (01×k,d
′)′, and E ≡ [−Ik Ik] ]′ϒ[ Ik 0k×k ],

(A.21)

then J1,F and J2,F can be rewritten as

J1,F = E

[
(ξ̃F + d̃)′E(ξ̃F + d̃)

tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)

]
,

J2,F = E

[
(ξ̃F + d̃)′D(ξ̃F + d̃)

[tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]
,

where ξ̃F is defined in Condition 2(i).
First, consider bounding J1,F . Define a function ηF(x) : R2k �→ R

2k for any x ∈ R
2k as

follows:

ηF(x) ≡ x

tr(BF)+ x′Dx
.

Its derivative (transposed) is then

∂

∂x
ηF(x)′ = I2k

tr(BF)+ x′Dx
− 2Dxx′

[tr(BF)+ x′Dx]2
.

Note that J1,F =E[ηF(ξ̃F + d̃)′E(ξ̃F + d̃)] and tr(EṼF) = −tr[ϒ(VF,SP −CF)] = −tr(AF),
where ṼF is defined in Condition 2(i). Applying Lemma 2 in Hansen (2016), which is a
matrix version of Stein’s lemma (Stein, 1956), to J1,F , one gets

J1,F = E

[
tr

(
∂

∂x
ηF(ξ̃F + d̃)′EṼF

)]
= E

[ −tr(AF)

tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)

]
−2E

[
tr[D(ξ̃F + d̃)(ξ̃F + d̃)′EṼF]

[tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]

= E

[ −tr(AF)

tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)

]
+2E

[
−(ξ̃F + d̃)′EṼFD(ξ̃F + d̃)

[tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]
.

(A.22)
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By the definitions of AF , D and E (in (3.20) and (A.21)), one has

− (ξ̃F + d̃)′EṼFD(ξ̃F + d̃)

= (ξ̃F + d̃)′ [−Ik Ik] ′
ϒ(VF,SP −CF)ϒ [−Ik Ik] (ξ̃F + d̃)

≤ ρmax[ϒ1/2(VF,SP −CF)ϒ1/2](ξ̃F + d̃)′ [−Ik Ik] ′
ϒ [−Ik Ik] (ξ̃F + d̃)

= ρmax(AF)(ξ̃F + d̃)′D(ξ̃F + d̃), (A.23)

where the last equality holds due to ρmax[ϒ1/2(VF,SP − CF)ϒ1/2] = ρmax[ϒ(VF,SP −
CF)] = ρmax(AF). Combining the results in (A.22) and (A.23) gives

J1,F ≤ E

[ −tr(AF)

tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)

]
+2E

[
ρmax(AF)(ξ̃F + d̃)′D(ξ̃F + d̃)

[tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]

= E

[
2ρmax(AF)− tr(AF)

tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)

]
−E

[
2ρmax(AF)tr(BF)

[tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]
.

(A.24)

Next consider J2,F . By applying some algebraic operations to J2,F , one gets

J2,F = E

[
tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)− tr(BF)

[tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]

= E

[
1

tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)

]
−E

[
tr(BF)

[tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]
.

(A.25)

Combining (A.20), (A.24), and (A.25) gives

r(uF,d) ≤ 2tr(AF)E

[
2ρmax(AF)− tr(AF)

tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)

]

−2tr(AF)E

[
2ρmax(AF)tr(BF)

[tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]

+ [tr(AF)]2
E

[
1

tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)

]

− [tr(AF)]2
E

[
tr(BF)

[tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]

= E

[
tr(AF)[4ρmax(AF)− tr(AF)]

tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)

]
−E

[
tr(AF)tr(BF)[4ρmax(AF)+ tr(AF)]

[tr(BF)+ (ξ̃F + d̃)′D(ξ̃F + d̃)]2

]
.

(A.26)

If tr(AF) ≥ 0 and tr(BF) ≥ 0, then ρmax(AF) ≥ 0, and then the second term in (A.26) will
be nonpositive. If, in addition, tr(AF) ≥ 4ρmax(AF), then the first term in (A.26) will be
nonpositive. Together they imply r(uF,d) ≤ 0 for any uF,d ∈ U , which in turn implies

sup
uF,d∈U

r(uF,d) ≤ 0. So, (3.16) holds in consequence.

https://doi.org/10.1017/S0266466622000548 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000548


TWO STEP SP AVERAGING ESTIMATOR 683

If, furthermore, tr(BF) > 0 for some F ∈ F , then tr(AF) > 0 and ρmax(AF) > 0, and
then the second term in (A.26) will be strictly negative. This implies r(uF,d) < 0 for some
uF,d ∈ U , which in turn implies inf

uF,d∈U
r(uF,d) < 0. So, (3.15) holds in consequence.

Note that the proof here relies on Lemma 2, which requires tr(AF) > 0 and tr(BF) > 0
as premises, so the effective conditions are those stated in the theorem. �

A.4. Proof of Lemma 3

Proof. For any given d, one has

1−α2 = lim
n→∞PF

(√
n(β̂n,ŵn

−βF) ∈ CI1−α2(�n|d,V̂)
)

≤ lim
n→∞PF

(√
n(β̂n,ŵn

−βF) ∈ CI1−α2(�n|d,V̂), d ∈ CI1−α1(d|β̂,V̂)
)

+ lim
n→∞PF

(
d /∈ CI1−α1(d|β̂,V̂)

)
≤ lim

n→∞PF

(
βF ∈ CI1−α(β|β̂,V̂)

)
+α1,

where the first equality holds by the way in which CI1−α2(�n|d,V̂) is constructed, and the

last inequality holds by the definitions of CI1−α(β|β̂,V̂) in (3.31) and of CI1−α1(d|β̂,V̂)

in (3.30). The last inequality in turn immediately implies the validity of (3.32) for
α1 +α2 = α. �

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit: https://doi.org/
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