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ON PSEUDO-LUCAS NUMBERS
OF THE FORM 2§°.

BY
A. ESWARATHASAN.

I [1] have shown that
u;=1 and u,,=225
are the only square pseudo-Lucas numbers in the set of pseudo-Lucas numbers
defined by
(1) u;=1, u,=6 and u,.,=u,,,+u, for n>0.

In this paper, it is shown that none of the pseudo-Lucas numbers are of the
form 252, where S is an integer.
The following congruence holds (See e.g. [1]):

@ Ups2,=(—1)""u, (mod L,27%),

where S=0 or 1.
We need the following tables of values:—

n 0123 4 5 6 7 8 9 10 11 12 13
u, 5 1 6 7 13 20 33 53 86 139 225 364 589 953
t 7

L 29

Let

3) 2x%2=u,,

where x is an integer.

The proof is now accomplished in fourteen stages:
(a) (3) is impossible if n=0 (mod 14).

For, using (2) we find that

u, = u, (mod L,).
Thus we find that

=17 (mod 29), since (2,29)=1

e
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17
(3)-
(3) is impossible.

(b) (3) is impossible if n=1 (mod 14).
For, using (2) we find that

and since

u, = u; (mod L,).
Thus,

Y
2

=15(mod 29), since (2,29)=1

15
—J=-1
(29) ’
(3) is impossible.

(c) (3) is impossible if n=2 (mod 14).
For, using (2) we find that

and since

u, = u, (mod L,).

Thus we find that

D F

=3 (mod 29), since (2,29)=1

3
(35)= -
(3) is impossible.
(d) (3) is impossible if n=3 (mod 14).
For, using (2) we find that

and since

U, = us (mod L,).
Thus,

=18 (mod 29), since (2,29)=1

0| F

and since
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(3) is impossible.
(e) (3) is impossible if n=4 (mod 14).
For, using (2) we find that

u, =u, (mod L,).
Thus

%s ~8(mod29), since (2,29)=1

-8
(5)
(3) is impossible.
(f) (3) is impossible if n=5 (mod 14).
For, using (2) we find that

and since

u, = us (mod L,).
Thus we find that

U

3

=10 (mod 29), since (2,29)=1

|

and since

10
(35) =
(3) is impossible.

(g) (3) is impossible if n=6 (mod 14).
For, using (2) we find that

u, = ug (mod L,).

Thus,

%EZ(mod 29), since (2,29)=1

and since

2
()
(3) is impossible.
(h) (3) is impossible if n= (mod 14).

https://doi.org/10.4153/CMB-1979-005-2 Published online by Cambridge University Press

31


https://doi.org/10.4153/CMB-1979-005-2

32 A. ESWARATHASAN [March
For, using (2) we find that
u, = u; (mod L,).
Thus,

0| &

=12 (mod 29), since (2,29)=1

12
(s)=1
(3) is impossible.

(i) (3) is impossible if n=8 (mod 14).
For, using (2) we find that

and since

u, = ug (mod L,).

Thus,

=43 (mod 29), since (2,29)=1

2| F

and since

43
(35)=1
(3) is impossible.

(G) (3) is impossible if n=9 (mod 14).
For, using (2) we find that

u, = ug (mod L,).
Thus,

=-3(mod 29), since (2,29)=1

-3
(5)= 1
(3) is impossible.

(k) (3) is impossible if n=10 (mod 14).
For, using (2) we find that

N F

and since

U, = u,o (mod L,).
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Thus,

=98 (mod 29), since (2,29)=1

98
(55)-1
(3) is impossible.

(D) (3) is impossible if n=11 (mod 14).
For, using (2) we find that

olE

and since

U, = Uy, (mod L,).
Thus,

D |F

=182 (mod 29), since (2,29)=1

and since

182
("2?>’_1’

(3) is impossible.
(m) (3) is impossible if n=12 (mod 14).
For, using (2) we find that

) U, = Uy (mOd L7)
Thus,

=280 (mod 29), since (2,29)=1

03

and since

280
(55)--

(3) is impossible.
(n) (3) is impossible if n=13 (mod 14).
For, using (2) we find that

U, =u,; (mod L,).

Thus,

(SIRS

Z=—2 (mod 29), since (2,29)=1
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-2
(35)=1
(3) is impossible.

Hence none of the pseudo-Lucas numbers are of the form 252, where S is an
integer.

and since
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