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Abstract. This paper summarizes the general theory and properties for Apodized Pupil Lyot
Coronagraphs which consist of a classical hard-edged Lyot coronagraph with an upstream pupil
apodization. The ideal apodization function can be determined from an integral eigenvalue prob-
lem which solutions are prolate spheroidal functions. Solutions exist for any geometrty, including
rectangular, circular, or elliptical. Formal solutions can be extended to the case of arbitrary aper-
tures, using generalized prolate spheroidal functions for centrally obstructed apertures, spiders,
or segmented telescopes. The properties of these coronagraphs enable the possibility of multiple
stage coronagraphy and achromatization. The new instrument Gemini Planet Imager (GPI) will
include such a coronagraph.

Keywords. instrumentation: high angular resolution, instrumentation: adaptive optics.

1. Introduction
Direct imaging and spectroscopy of extrasolar planets is an exciting and ambitious

goal, which requires advanced starlight cancellation techniques, including coronagraphy.
The Gemini Planet Imager (GPI), Macintosh et al. (2004), will aim at imaging and
spectroscopy of Extrasolar Giant Planets (EGP). Classical methods like the Lyot Coron-
agraph are not efficient enough to reach the necessary contrast for this science goal, Bur-
rows et al. (2004), and more advanced techniques have to be considered. The Apodized
Pupil Lyot Coronagraph has been selected for this new instrument. We summarize in
this communication the theory and properties of these coronagraphs detailed by Aime
et al. (2001); Aime et al. (2002); Soummer et al. (2003); Soummer (2005), we also include
the possibility of multiple stage APLC, Aime & Soummer (2004), achromatization, Aime
(2005) and discuss their fabrication.
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Figure 1. The basic layout of an APLC is similar to a classical Lyot coronagraph, but adding
an upstream apodized pupil in Plane A. A hard hedged focal maks is set in the focal plane
B, and a Lyot stop identical to the entrance pupil shape in plane C. A remarquable difference
between APLC and classical Lyot is that APLCs don’t require to undersize the Lyot stop.

2. Apodized Pupil Lyot Coronagraphy with arbitrary aperture
shapes

Following the notation of Aime et al. (2002) and Soummer et al. (2003), we briefly
recall the general formalism of coronagraphy with apodized pupils. The general layout of
an APLC is recalled in Fig. 1, and is similar to a classical Lyot coronagraph, but using
an upstream pupil apodization. The telescope aperture function with the position vector
r is denoted by P (r), and Φ(r) is the apodizer transmission (1 without apodization). At
the entrance aperture, the wavefront amplitude is:

ΨA (r) = P (r)Φ(r). (2.1)

A mask of transmission 1 − εM(r) is placed in the focal plane. M is a function that
describes the mask shape, equal to 1 inside the coronagraphic mask and 0 outside (ε = 1
for Lyot and ε = 2 for Roddier).

At the Lyot stop plane, the wavefront is then:

ΨC (r) = P (r)Φ(r) − ε

λ2f2

∫
P

Φ(u) M̂

(
r − u
λf

)
du, (2.2)

wherê is the Fourier Transform. This general relation is valid for any arbitrary aper-
ture shape (rectangular, circular or elliptical, with or without central obstruction and
secondary mirror supports), and any mask shape, Soummer (2005). In this equation we
assume that the focal lengths of the successive optical systems are identical (if not, an
appropriate change of variables leads to the same result), we re-orientate the axis in
the opposite direction and omit the -1 proportionality factor for better readability. The
formal problem is to find the mask M(r) and the apodizer Φ(r) that provide the best
cancellation possible inside the Lyot stop, identical to the entrance pupil in this case.

A perfect solution (total extinction) is obtained if the wave diffracted by the mask (the
convolution integral) is equal to the initial pupil amplitude. In more mathematical terms,
this means that Φ(r) must be the eigenfunction of the convolution integral in Eq.2.2. This
problem is equivalent to the generalization of the uncertainty principle, Papoulis (1968),
with the search of band-limited functions having the maximum encircled energy within
a given spatial domain. In coronagraphic terms, the solution is the pupil apodization
which produces the most concentrated star light behind a given focal plane mask (and
thus blocked). This formal problem has been solved analytically for rectangular and
circular unobstructed apertures, Aime et al. (2001), Aime et al. (2002), Soummer et al.
(2003), involving linear and circular prolate functions, Slepian & Pollak (1961), Frieden
(1971), Papoulis (1981). In the general case, formal solutions exist, Slepian (1964), Slepian
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Figure 2. A given telescope geometry defines an integral eigenvalue problem in which for any
mask size (eigenvalue), an apodization can be computed (eigenfunction). This figure illustrates
the apodization that can be obtained for a few telescope geometries varying the size of the
central obstruction (y-axis), and as a function of the maks size (x-axis).

(1965), Papoulis (1968), Soummer (2005), and are the eigenfunction of the 2-D integral
equation: ∫

P

Φ(t) M̂(r − t) dt = Λ Φ(r). (2.3)

The solution Φ(r) corresponds to the largest eigenvalue Λ0, and to the maximum encircled
energy behind the focal plane mask e = Λ0. The mask size is directly related to the
eigenvalue, and therefore, for a given mask size, a unique apodization function exists.
In Fig. 2, we show the apodizer as a function of the mask size and for a few telescope
geometries, varying the obstruction size.

The expression of the residual wavefront inside the Lyot stop for circular and rectan-
gular geometries is the same for the general case:

Ψ+
C (r) = ΨA (r)(1 − εΛ0), (2.4)

(the + signifies this is just after the Lyot stop). As detailed in previous work, and illus-
trated in Fig. 3, the wavefront is therefore simply proportional to the initial apodization
function, with a constant of proportionality (1 − εΛ0).

3. Mutiple Stage APLCs and achromatization
3.1. Multiple Stage

As described above, the Lyot stop wave amplitude is proportional to the entrance apodized
pupil amplitude. This enables the possibility for multiple stage coronagraphs described
by Aime et al. (2002) and Aime & Soummer (2004) (Fig. 4), which could help ambi-
tious projects such as TPF to reach their required extinction. A multiple stage APLC
only requires a single apodizer in the entrance pupil. The Lyot stop plane is naturally
apodized, and can be used as the entrance pupil of a second coronagraphic stage without
further loss of throughput due to apodization (Fig. 4). Eq.2.4 can be straightforwardly
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Figure 3. Examples of APLCs for two geometries: the Overwhelmingly Large Telescope (OWL)
(top) and the Terrestrial Planet Finder (TPF) (bottom). The left images correspond to the
entrance pupil apodization, and the right images to the Lyot stop plane (plane C) wave am-
plitude. The field amplitude inside the aperture domain is proportional to the initial entrance
pupil apodization, since the apodizer is the eigenfunction of the problem. This property enables
the possibility of multiple stage APLCs for any telescope geometry.

extrapolated to the multiple stage case, and the residual amplitude in the second Lyot
stop plane (plane E of Fig. 4) is:

Ψ+
E (r) = ΨA (r)(1 − εΛ0)2. (3.1)

In principle, several identical coronagraphs can be used in a cascading mode. Each coro-
nagraph produces the same reduction factor of the star light. Denoting Q the efficiency
of one coronagraph, the efficiency of N cascaded coronagraph should be QN .

3.2. Achromatization
The main limitation of APLCs comes from the chromaticity due to the PSF size, which
is proportional to the wavelength. In the simple case of a focal plane mask made by
means of a hole in a mirror, its size is identical at all wavelengths. Therefore, the mask is
too large at short wavelengths, and too small at long wavelengths, which translates into
a leak through the coronagraphs. Specific designs can accommodate these limitations,
such as the Dual-Zone coronagraph, Soummer et al. (2003). In the case of APLCs, a
mitigation of these chromatic effects can be obtained by optimizing the mask size for an
effective wavelength with optimum efficiency over the actual bandpass, Soummer (2005).

For a given physical mask, each wavelength corresponds to a different mask size in reso-
lution element units (λ/D). Therefore, it is possible to compute the required apodization
as a function of the wavelength since an apodization corresponds to a given mask size,
Aime (2005).

A perfect achromatic solution can be obtained with an apodizer producing this vari-
able apodization with wavelength. In this case the result is close to that of an achromatic
APLC at the shortest wavelength of the bandpass. Aime (2005) has proposed an inter-
ferometric method to produce such a wavelength-dependent apodizer, using dispersive
optics in the arms of an interferometer. Interferometric methods to produce apodizers
have been studied by Aime et al. (2001). The results of a laboratory experiment validating
this concept is given in this volume by El Azhari et al. (2005).
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Figure 4. Schematic representation of a multiple-Lyot coronagraph. The light goes from left to
right. The first square box, entitled PALC�1, for Prolate Apodized Lyot Coronagraph number
1 is the classical Lyot coronagraph with entrance aperture apodization. The successive planes
are denoted A, B, C and D. A is the entrance aperture (or image of the aperture) with the
prolate apodization, B denotes the focal plane with the first Lyot mask (LM�1), C is the image
of the aperture with the Lyot stop, and D is the image of the focal plane after the coronagraph
(D is the final focal plane in the case of a classical apodized coronagraph. The second stage
of the coronagraph consists of planes A′, B′, C ′ and D′. Planes A′ and B′ merge respectively
with plane C and D. A Lyot mask, identical to the one in plane B, is set in plane B′ (or D). A
Lyot stop in plane C ′, identical to the one in plane C , completes the second stage. The image
is observed in plane D′. The coronagraph PALC�2 produces the same starlight rejection as the
PALC�1, because the amplitude in C/A′ is proportional to the amplitude in A without the
need of another apodizer. For a perfect system, this rejection is obtained without loss of useful
light for the planet. The first part of a third coronagraph (PALC�3) is drawn in the figure.

A more simple method, though which might not be able to provide perfect achroma-
tization, is to manufacture an apodizer using an absorbing material which approximates
the required wavelength variation. First tests using High Energy Electron Beam Sensi-
tive glass (HEBS glass) have shown that this material improves the performance of the
APLC in the infrared by a factor of 5. This preliminary result can be further improved
by adjusting the chromaticity of the material itself (Soummer etal. in preparation).

4. Application to the Gemini ExAOC
Thanks to the recent results on the understanding of the theory of APLCs in the

presence of spiders and central obstruction, Soummer (2005), Sivaramakrishnan & Lloyd
(2005), and recent lab results on the fabrication of apodizers for the infrared using HEBS
glass, the APLC has been selected as the baseline concept for the Gemini Planet Imager.
As compared to a classical Lyot for similar mask size (4.5λ/D to 5..5λ/D) and because
APLCs do not require Lyot Stop size reduction, both the coronagraphic rejection and the
throughput can be improved compared to a classical Lyot (Fig. 5). This instrument will
include an Extreme Adaptive Optics system, an APLC, an Integral Field Spectrograph,
and an active calibration system. The predicted dynamic range limits at the 5-σ level
(Fig. 6) are compatible with the main goal of detecting Extrasolar Giant Planets around
nearby stars.
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Figure 5. From Left to right: AO-corrected PSF, Lyot Coronagraphic PSF, APLC corona-
graphic PSF. The square dark region corresponds to the area of the field corrected by the
spatially filtered AO system. The halo clearing is improved over the classical Lyot, using the
same mask size (4.7λ/D). Thanks to the properties of the APLC, its overall transmission (55%)
is higher than that of a comparable classical Lyot (50%), and for a better rejection.

Figure 6. Dynamic range simulation including speckle and photon noise for a 7th magnitude
star, in 1000s in Hband for the Gemini ExAOC. This type of dynamic range plots can be readily
used in Monte-Carlo simulations to study the completeness of the observations.
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