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Uniqueness Implies Existence and
Uniqueness Conditions for a Class of
(k + j)-Point Boundary Value Problems for
n-th Order Differential Equations

Paul W. Eloe, Johnny Henderson, and Rahmat Ali Khan

Abstract. For the n-th order nonlinear differential equation, y(n)
= f (x, y, y ′, . . . , y(n−1)), we con-

sider uniqueness implies uniqueness and existence results for solutions satisfying certain (k + j)-point

boundary conditions for 1 ≤ j ≤ n − 1 and 1 ≤ k ≤ n − j. We define (k; j)-point unique solvabil-

ity in analogy to k-point disconjugacy and we show that (n − j0; j0)-point unique solvability implies

(k; j)-point unique solvability for 1 ≤ j ≤ j0, and 1 ≤ k ≤ n − j. This result is analogous to n-point

disconjugacy implies k-point disconjugacy for 2 ≤ k ≤ n − 1.

1 Introduction

In this paper we are concerned with uniqueness and existence of solutions for a class

of boundary value problems for the n-th order ordinary differential equation, n ≥ 3,

(1.1) y(n)
= f (x, y, y ′, . . . , y(n−1)), a < x < b,

subject to n − j conjugate boundary conditions followed by j nonlocal boundary

conditions. In particular, given 1 ≤ j ≤ n − 1, 1 ≤ k ≤ n − j, positive integers

m1, . . . ,mk such that m1 + · · · + mk = n − j, points a < x1 < x2 < · · · < xk <
xk+1 < · · · < xk+2 j < b, real values yil, 1 ≤ i ≤ ml, 1 ≤ l ≤ k, and real values

yn, yn−1, yn−( j−1), we are concerned with uniqueness implies uniqueness and exis-

tence questions for solutions of (1.1) satisfying the conjugate and nonlocal boundary

conditions of the type,

y(i−1)(xl) = yil, 1 ≤ i ≤ ml, 1 ≤ l ≤ k, conjugate conditions,(1.2)

(a1 y(xk+1) − a2 y(xk+2), . . . , a2 j−1 y(xk+2 j−1) − a2 j y(xk+2 j))

= (yn, yn−1, . . . , yn−( j−1)), nonlocal conditions,

where a1, a2, . . . , a2 j are positive real numbers. We shall refer to the boundary con-

ditions, (1.2), as (k; j)-point boundary conditions. The boundary conditions (k; 0)

are referred to as conjugate type boundary conditions [15].
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We shall also refer to the (k; j)-point unique solvability of (1.1) on (a, b) where

(1.1) is (k; j)-point uniquely solvable on (a, b) if given 1 ≤ j ≤ n − 1 and 1 ≤
k ≤ n − j, positive integers m1, . . . ,mk such that m1 + · · · + mk = n − j, points

a < x1 < · · · < xk < xk+1 < · · · < xk+2 j < b, real values yil, 1 ≤ i ≤ ml, 1 ≤ l ≤ k,

real values yn− j+l, 1 ≤ l ≤ j, and positive real numbers a1, a2, . . . , a2 j , then the

boundary value problem, (1.1), (1.2), is uniquely solvable.

Questions of the types with which we deal in this paper have been considered for

solutions of (1.1) satisfying α-point conjugate boundary conditions. In particular,

for boundary value problems for (1.1) satisfying, for 2 ≤ α ≤ n, conjugate boundary

conditions of the form,

(1.3) y(i−1)(tl) = ril, 1 ≤ i ≤ pl, 1 ≤ l ≤ α,

where p1, . . . , pα are positive integers such that p1 + · · · + pα = n, a < t1 < · · · <
tα < b, and ri j ∈ R, 1 ≤ i ≤ p j , 1 ≤ j ≤ α. These questions have involved:

(i) whether uniqueness of solutions of (1.1), (1.3) for α = n implies uniqueness of

solutions of (1.1), (1.3) for 2 ≤ α ≤ n − 1,

(ii) whether uniqueness of solutions of (1.1), (1.3) for α = n implies existence of

solutions of (1.1), (1.3) for 2 ≤ α ≤ n.

Of course, a primary reason for considering question (i) would be to resolve ques-

tion (ii).

Hypothesis 1.1 With respect to equation (1.1), we assume throughout that

(A) f (t, s1, . . . , sn) : (a, b) × R
n → R is continuous;

(B) solutions of initial problems for (1.1) are unique and extend to (a, b).

Given Hypothesis 1.1, Jackson [15] established that (i) is true. In independent

works, Hartman [6, 7] and Klaasen [18] provided a positive answer to question (ii).

Several other papers have been devoted to uniqueness questions of these types as

well as uniqueness implies existence questions for boundary value problems. These

works have dealt not only with ordinary differential equations [2, 8, 9, 16, 19, 20],

but also with boundary value problems for finite difference equations [10, 11], and

recently with dynamic equations on time scales [5,14]. Some questions of these types

have also received recent attention for nonlocal boundary value problems for (1.1),

for the cases of n = 2, 3, 4; see [1, 4, 12, 13]. Recently, the case of nonlocal conditions

for equations of arbitrary order n with j = 1 has been addressed [3, 17].

2 Uniqueness of Solutions

Let j0 ∈ {1, . . . , n − 1}. Under Hypothesis 1.1, we establish in this section that

uniqueness of solutions for the (n − j0, j0)-point boundary value problem implies

uniqueness of solutions for the (k, j)-point boundary value problem for 0 ≤ j ≤ j0,

1 ≤ k ≤ n − j.

First we first shall obtain continuous dependence of solutions of (1.1) on bound-

ary conditions.
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Theorem 2.1 Let j ∈ {1, . . . , n − 1}. Assume that for some 1 ≤ k ≤ n − j,

and positive integers m1, . . . ,mk such that m1 + · · · + mk = n − j, solutions of the

corresponding boundary value problem (1.1), (1.2) are unique when they exist. Given a

solution y(x) of (1.1), an interval [c, d], points c < x1 < · · · < xk < · · · < xk+2 j < d,

and an ǫ > 0, there exists δ(ǫ, [c, d]) > 0 such that, if |xi − ξi | < δ, 1 ≤ i ≤ k + 2 j,

and c < ξ1 < · · · < ξk < · · · < ξk+2 j < d, and if |y(i−1)(xl) − zil| < δ, 1 ≤ i ≤ ml,

1 ≤ l ≤ k, and

|a2i−1 y(xk+2i−1) − a2i y(xk+2i) − zn−(i−1)| < δ, 1 ≤ i ≤ j,

then there exists a solution z(x) of (1.1) satisfying z(i−1)(ξl) = zil for 1 ≤ i ≤ ml, 1 ≤
l ≤ k,

(a1z(ξk+l) − a2z(ξk+2), . . . , a2 j−1z(ξk+2 j−1) − a2 jz(ξk+2 j)) = (zn, . . . , zn−( j−1)),

and |y(i−1)(x) − z(i−1)(x)| < ǫ on [c, d], 1 ≤ i ≤ n.

Proof Fix a point p0 ∈ (c, d) and define the set

G = {(s1, . . . , sk+2 j , c1, . . . , cn) | c < s1 < · · · < sk+2 j < d, c1, . . . , cn ∈ R}.

Then G is an open subset of R
k+2 j+n. Let u(x) be a solution of the initial value prob-

lem for (1.1) satisfying the initial conditions u(i−1)(p0) = ci , 1 ≤ i ≤ n. Define a

mapping φ : G → R
k+1+n by

φ(s1, . . . , sk+2 j , c1, . . . , cn) =
(

s1, . . . , sk+2 j , u(s1), . . . , u(m1−1)(s1), . . . , u(sk), . . . , u(mk−1)(sk),

a1u(sk+1) − a2u(sk+2), . . . , a2 j−1u(sk+2 j−1) − a2 ju(sk+2 j)
)

.

Condition (B) in Hypothesis 1.1 implies the continuity of solutions of initial value

problems for (1.1) with respect to initial conditions, from which we have the conti-

nuity of φ. In addition, the uniqueness assumption on solutions of (1.1) and (1.2)

for the given k and m1, . . . ,mk in the present context implies that φ is one-to-one. It

follows from the Brouwer theorem on invariance of domain [22] that φ(G) is an open

subset of R
k+2 j+n and that φ is a homeomorphism from G to φ(G). The statement

of the theorem follows directly from the continuity of φ−1 and the fact that φ(G) is

open.

We now establish that for k = n− j, uniqueness of solutions of the (n− j; j)-point

BVP (1.1), (1.2), implies uniqueness of solutions of the (n − j + i; j − i)-point BVP

(1.1), (1.2), for i = 1, 2, . . . , j.

Theorem 2.2 Assume that for k = n − j, solutions of the (n − j; j)-point BVP

(1.1), (1.2) are unique when they exist. Then for each i = 1, 2, . . . , j, solutions of the

(n − j + i; j − i)-point BVP (1.1), (1.2) are unique when they exist.
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Proof Assume uniqueness of solutions of the (n − j; j)-point BVP (1.1), (1.2). The

proof is by induction on i, and we begin by showing that solutions of the

(n − j + 1; j − 1)-point BVP are unique. Assume the conclusion is not true and

there exist points a < x1 < · · · < xn− j+1 < · · · < xn+ j−1 < b for which there exist

distinct solutions y(x) and z(x) of the (n − j + 1; j − 1)-point BVP such that

y(xl) = z(xl), 1 ≤ l ≤ n − j + 1,
a1 y(xn− j+1+1) − a2 y(xn− j+1+2) = a1z(xn− j+1+1) − a2z(xn− j+1+2),

...

a2 j−3 y(xn− j+1+2 j−3) − a2 j−2 y(xn− j+1+2 j−2)

= a2 j−3z(xn− j+1+2 j−3) − a2 j−2z(xn− j+1+2 j−2).

Define w = y − z; then we obtain

w(xl) = 0, 1 ≤ l ≤ n − j + 1,
a1w(xn− j+1+1) − a2w(xn− j+1+2) = 0,

...

a2 j−3w(xn− j+1+2 j−3) − a2 j−2 y(xn− j+1+2 j−2) = 0.

If there exists some t1 ∈ (xn− j+1, xn− j+2) such that w(t1) = 0, then we have

aw(xn− j+1) − bw(t1) = 0, a, b ∈ R.

This implies that y(x) and z(x) are distinct solutions of the (n − j; j)-point BVP at

the points x1, . . . , xn− j , xn− j+1, t1, xn− j+2, xn− j+2, . . . , xn+ j−2, xn+ j−1, which is a con-

tradiction. Hence, w(t) 6= 0 on (xn− j+1, xn− j+2). Let w(t) > 0 on (xn− j+1, xn− j+2).

The case w(t) < 0 on (xn− j+1, xn− j+2) can be dealt with similarly. Then there exists

τ ∈ [xn− j+1, (xn− j+1 + xn− j+2)/2] such that

max
{

w(t) : t ∈
[

xn− j+1,
xn− j+1 + xn− j+2

2

]}

= w(τ ) > 0.

Define

v(t) =

{

aw(t) − bw(τ ) if a > b,

bw(t) − aw(τ ) if a ≤ b.

Then v(τ ) ≥ 0 and v(xn− j+1) < 0. By the intermediate value theorem, there exists

t ′ ∈ (xn− j+1, τ ) such that v(t ′) = 0 which implies that aw(t ′) − bw(τ ) = 0. Hence,

there are distinct solutions of the (n − j; j)-point BVP at the points

x1, . . . , xn− j , t ′, τ , xn− j+2, xn− j+2, . . . , xn+ j−2, xn+ j−1,

which is again a contradiction. Hence solutions of the (n − j + 1; j − 1)-point BVP

(1.1), (1.2) are unique. Now the theorem is proved inductively.

Corollary 2.3 Assume that for k = n − j, solutions of the (n − j; j)-point BVP are

unique when they exist. Then solutions of the (n; 0)-point conjugate BVP are unique

when they exist.
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In view of the uniqueness implies existence results due to Hartman [6, 7] and

Klassen [18] as discussed in regard to question (ii), we have an immediate corollary

concerning existence of solutions for (l; 0)-point conjugate boundary value problems

for (1.1).

Corollary 2.4 Assume that for k = n − j, solutions of the (n − j; j)-point BVP are

unique when they exist. Then for 2 ≤ l ≤ n, solutions of the (l; 0)-point conjugate BVP

(1.3) are unique when they exist.

We now establish that uniqueness of solutions of the (n− j; j)-point BVP implies

uniqueness of solutions of the (k; j)-point BVP, when 1 ≤ k ≤ n − j − 1.

Theorem 2.5 Assume that for k = n − j, solutions of the (n − j; j)-point BVP are

unique when they exist. Then for each 1 ≤ k ≤ n − j − 1, solutions of the (k; j)-point

BVP are unique when they exist.

Proof Assume that solutions of the (n − j; j)-point BVP are unique. Assume that,

for some 1 ≤ k ≤ n − j − 1, some (k; j)-point BVP has distinct solutions. Let

h = max{k = 1, . . . , n − j − 1 | (k; j)-point BVP has distinct solutions}.

Then there are positive integers m1, . . . ,mh such that m1+· · ·+mh = n− j, points a <
x1 < · · · < xh < · · · < xh+2 j < b, and positive reals, a1, . . . , a2 j , for which there exist

distinct solutions y(x) and z(x) of the corresponding (h; j)-point boundary value

problem (1.1), (1.2). In particular,

y(i−1)(xl) = z(i−1)(xl), 1 ≤ i ≤ ml, 1 ≤ l ≤ h,
a1 y(xh+1) − a2 y(xh+2) = a1z(xh+1) − a2z(xh+2), . . .

. . . , a2 j−1 y(xh+2 j−1) − a2 j y(xh+2 j) = a2 j−1z(xh+2 j−1) − a2 jz(xh+2 j).

Since h ≤ n − j − 1, some ml ≥ 2. Let

ml0 = max{ml | 1 ≤ l ≤ h} ≥ 2.

At this point, we need to argue that each xl is a zero of y − z of exact multiplicity

ml, 1 ≤ l ≤ h. This argument is done by induction on j, and in fact the proof of this

theorem is truly completed by induction on j. For j = 1, if any of the next higher

order derivatives vanish at xl, then y and z are distinct solutions of an (h; 0)-point

conjugate boundary value problem. Complete the proof of this theorem below for

j = 1. Now for j > 1, if any of the next higher order derivatives vanish at xl, then y

and z are distinct solutions of an (h; j − 1)-point BVP. So, we complete this proof by

assuming that each xl, is a zero of y − z of exact multiplicity ml, 1 ≤ l ≤ h.

Thus, we assume, with no loss of generality, that

y(ml0
)(xl0 ) > z(ml0

)(xl0 ).

Now fix a < τ < x1. By the maximality of h, solutions of the (h+1; j) problems (1.1),

(1.2) at the points τ , x1, . . . xh, · · · xh+2 j are unique. Hence, it follows from Theorem
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2.1 that for each ǫ > 0, there is a δ > 0 and there is a solution zδ(x) of the (h + 1; j)

problem (1.1), (1.2), satisfying the conditions,

zδ(τ ) = z(τ ),

z(i−1)
δ (xl) = z(i−1)(xl) = y(i−1)(xl), 1 ≤ i ≤ ml, 1 ≤ l ≤ h, l 6= l0,

z(i−1)
δ (xl0 ) = z(i−1)(xl0 ) = y(i−1)(xl0 ), 1 ≤ i ≤ ml0 − 2, (if ml0 > 2),

z
(ml0

−2)

δ (xl0 ) = z(ml0
−2)(xl0 ) + δ = y(ml0

−2)(xl0 ) + δ,
a1zδ(xh+1) − a2zδ(xh+2) = a1z(xh+1) − a2z(xh+2) = a1 y(xh+1) − a2 y(xh+2),

...

a2 j−1zδ(xh+2 j−1) − a2 jzδ(xh+2 j) = a2 j−1z(xh+2 j−1) − a2 jz(xh+2 j)

= a2 j−1 y(xh+2 j−1) − a2 j y(xh+2 j),

and |zδ(x) − z(x)| < ǫ on [τ , xh+2 j]. For ǫ > 0, sufficiently small, there exist points

xl0−1 < ρ1 < xl0 < ρ2 < xl0+1 such that

z(i−1)
δ (xl) = y(i−1)(xl), 1 ≤ i ≤ ml, 1 ≤ l ≤ l0 − 1,

zδ(ρ1) = y(ρ1),

z(i−1)
δ (xl0 ) = y(i−1)(xl0 ), 1 ≤ i ≤ ml0 − 2, (if ml0 > 2),

zδ(ρ2) = y(ρ2),

z(i−1)
δ (xl) = y(i−1)(xl), 1 ≤ i ≤ ml, l0 + 1 ≤ l ≤ h,

a1zδ(xh+1) − a2zδ(xh+2) = a1 y(xh+1) − a2 y(xh+2),
...

a2 j−1zδ(xh+2 j−1) − a2 jzδ(xh+2 j) = a2 j−1 y(xh+2 j−1) − a2 j y(xh+2 j).

If ml0 > 2, zδ(x) and y(x) are distinct solutions of the (h + 2; j)-point boundary

value problem at the points x1, . . . , xl0−1, ρ1, xl0 , ρ2, xl0+1, . . . , xh, . . . , xh+2 j , which is

a contradiction, because of the maximality of h. If ml0 = 2, then zδ(x) and y(x) are

distinct solutions of the (h + 1; j)-point boundary value problem at the points

x1, . . . , xl0−1, ρ1, ρ2, xl0+1, . . . , xh, . . . , xh+2 j ,

which is again a contradiction.

In view of Theorem 2.2 and Theorem 2.5, we have the following corollary.

Corollary 2.6 Let j0 ∈ {0, . . . , n − 1}. Assume that solutions of (1.1), (1.2), when

k = n − j0, j = j0, are unique. Then for each 1 ≤ j ≤ j0, 1 ≤ k ≤ n − j, solutions of

the (k; j)-point BVP are unique when they exist.

3 Existence of Solutions

Having established in the previous section that uniqueness of solutions of (1.1), (1.2)

when k = n − j0, j = j0, implies uniqueness of solutions of (1.1), (1.2) for 1 ≤
j ≤ j0 and 1 ≤ k ≤ n − j, we now deal with uniqueness implies existence for

these problems. For such existence results, continuous dependence as in Theorem

2.1 plays a role. In addition, we shall make use of a Schrader [21] precompactness

result on bounded sequences of solutions of (1.1). We begin by stating the Schrader

[21] precompactness result.
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Theorem 3.1 Assume the uniqueness of solutions for (1.1), (1.3) when ℓ = n. If

{yν(x)} is a sequence of solutions of (1.1) that is uniformly bounded on a nonde-

generate compact subinterval [c, d] ⊂ (a, b), then there is a subsequence {yνl
(x)}

such that {y(i)
νl

(x)} converges uniformly on each compact subinterval of (a, b), for each

i = 0, . . . , n − 1.

In view of the Corollary 2.3, we have, as a corollary, a precompactness condition

in terms of (1.1), (1.2) when k = n − j.

Corollary 3.2 Let j0 ∈ {1, . . . , n − 1}. Assume that solutions of the (n − j0; j0)-

point BVP (1.1), (1.2) are unique. If {yν(x)} is a sequence of solutions of (1.1) that

is uniformly bounded on a nondegenerate compact subinterval [c, d] ⊂ (a, b), then

there is a subsequence {yνl
(x)} such that {y(i)

νl
(x)} converges uniformly on each compact

subinterval of (a, b), for each i = 0, . . . , n − 1.

We now present our uniqueness implies existence result for the (k; j)-point

boundary value problems.

Theorem 3.3 Let j0 ∈ {0, . . . , n−1}. Assume that solutions of (1.1), (1.2) when k =

n − j0, j = j0, are unique. Then for each 1 ≤ j ≤ j0, 1 ≤ k ≤ n − j, positive integers

m1, . . . ,mk such that m1 + · · · + mk = n − j, points a < x1 < · · · < xk+2 j < b, real

values yil, 1 ≤ i ≤ ml, 1 ≤ l ≤ k, yn, yn−1, . . . , yn−( j−1) ∈ R, and a1, a2, . . . , a2 j ,

positive real numbers, there exists a unique solution of the (k; j)-point BVP, (1.1), (1.2).

Proof Let 1 ≤ j ≤ j0, 1 ≤ k ≤ n − j, positive integers m1, . . . ,mk such that

m1 + · · · + mk = n − j, points a < x1 < · · · < xk+2 j < b, real values yil, 1 ≤ i ≤
ml, 1 ≤ l ≤ k, yn, yn−1, . . . , yn−( j−1) ∈ R, and a1, a2, . . . , a2 j , positive real numbers,

be given.

Since solutions of the (n − j0; j0)-point BVP (1.1), (1.2) are unique, it follows

from Corollary 2.4 that solutions of the (l; 0)-point conjugate BVP for 2 ≤ l ≤ n are

unique; thus, solutions of the (l; 0)-point conjugate BVP for 2 ≤ l ≤ n exist [6,7,18].

Let 1 ≤ j ≤ j0 and 1 ≤ k ≤ n − j. Let z(x) be the unique solution of (1.1)

satisfying (k + j + 1; 0)-point conjugate boundary conditions

z(i−1)(x1) = yi1, 1 ≤ i ≤ m1 − 1,
z(i−1)(xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k,
z(xk+1) =

yn

a1
,

z(xk+3) =
yn−1

a3
,

...

z(xk+2 j−1) =
yn−( j−1)

a2 j−1
,

z(xk+2 j) = 0.

Note that in the case m1 = 1, z satisfies a (k + j; 0)-point problem with boundary

conditions beginning at x2. From the last two conditions

z(xk+2 j) = 0, z(xk+2 j−1) =
yn−( j−1)

a2 j−1

,
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we obtain

a2 j−1z(xk+ j) − a2 jz(t1) = yn−( j−1).

Define the set

S =

{

u(m1−1)(x1)
∣

∣

∣
u is a solution of (1.1) satisfying

u(i−1)(x1) = yi1, 1 ≤ i ≤ m1 − 1,

u(i−1)(xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k,

u(xk+1) =
yn

a1

, u(xk+3) =
yn−1

a3

, . . . , u(xk+2 j−3) =
yn−( j−2)

a2 j−3

,

a2 j−1u(xk+2 j−1) − a2 ju(xk+2 j) = yn−( j−1)

}

.

Clearly, z(m1−1)(x1) ∈ S, and so S is a nonempty subset of R.

Next, choose s0 ∈ S. Then there is a solution u0(x) of (1.1) satisfying

u(i−1)
0 (x1) = yi1, 1 ≤ i ≤ m1 − 1,

u(m1−1)
0 (x1) = s0,

u(i−1)
0 (xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k,

u0(xk+1) =
yn

a1
, u0(xk+3) =

yn−1

a3
,

...

u0(xk+2 j−3) =
yn−( j−2)

a2 j−3
, a2 j−1u0(xk+2 j−1) − a2 ju0(xk+2 j) = yn−( j−1).

By the uniqueness of solutions of the (k + j − 1; 1)-point BVP (Corollary 2.6), and in

view of Theorem 2.1, there exists a δ > 0 such that, for each 0 ≤ |s − s0| < δ, there

is a solution us(x) of (1.1) satisfying

u(i−1)
s (x1) = yi1, 1 ≤ i ≤ m1 − 1,

u(m1−1)
s (x1) = s,

u(i−1)
s (xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k,

us(xk+1) =
yn

a1
, us(xk+3) =

yn−1

a3
,

...

us(xk+2 j−3) =
yn−( j−2)

a2 j−3
, a2 j−1us(xk+2 j−1) − a2 jus(xk+2 j) = yn−( j−1),

which implies that u(m1−1)
s (x1) ∈ S, that is, s ∈ S. Hence, (s0 − δ, s0 + δ) ⊂ S and S is

an open subset of R.

Now we show that S is also a closed subset of R. To do this, assume that S is not

closed and there exists an r0 ∈ S \ S and a strictly monotone sequence {rν} ⊂ S such

that limν→∞ rν = r0. We may assume, without loss of generality, that rν ↑ r0. By the
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definition of S, for each ν ∈ N, there exists a unique solution uν(x) of (1.1) satisfying

u(i−1)
ν (x1) = yi1, 1 ≤ i ≤ m1 − 1,

u(m1−1)
ν (x1) = rν ,

u(i−1)
ν (xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k,

uν(xk+1) =
yn

a1
, uν(xk+3) =

yn−1

a3
,

...

uν(xk+2 j−3) =
yn−( j−2)

a2 j−3
, a2 j−1uν(xk+2 j−1) − a2 juν(xk+2 j) = yn−( j−1).

Set v = uν − uν+1. Then

v(i−1)(x1) = 0, 1 ≤ i ≤ m1 − 1,
v(m1−1)(x1) = rν − rν+1 < 0,
v(i−1)(xl) = 0, 1 ≤ i ≤ ml, 2 ≤ l ≤ k,
v(xk+1) = 0, v(xk+3) = 0,

...

v(xk+2 j−3) = 0,
a2 j−1v(xk+2 j−1) − a2 jv(xk+2 j) = yn−( j−1) = 0.

By the uniqueness of solution of the (k + j − 1; 1)-point BVP, we have one of

(i) uν(x) < uν+1(x) on (a, x2) \ {x1}, if m1 is odd,

(ii) uν(x) > uν+1(x) on (a, x1) and uν(x) < uν+1(x) on (x1, x2), if m1 is even.

We consider only case (i), with case (ii) being completely analogous. So, for case

(i), from Corollary 3.2 and the fact that r0 6∈ S, we can conclude that {uν(x)} is not

uniformly bounded above on each compact subinterval of each of (a, x1) and (x1, x2).

Now let w(x) be the solution of (1.1) satisfying (k+ j; 0)-point conjugate boundary

conditions (1.3) at the points x1, . . . , xk, xk+1, xk+3, . . . , xk+2 j−1,

w(i−1)(x1) = yi1, 1 ≤ i ≤ m1 − 1, (if m1 > 1),
w(m1−1)(x1) = r0,
w(i−1)(xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k,
w(xk+1) =

yn

a1
,w(xk+3) =

yn−1

a3
,

...

w(xk+2 j−1) =
yn−( j−1)

a2 j−1
.

From the monotonicity and unboundedness property of the sequence {uν(x)}, it

follows that, for some large ν0, there exist a solution uν0
of (1.1) and points a < τ1 <

x1 < τ2 < x2 such that uν0
(τ1) = w(τ1), uν0

(τ2) = w(τ2). Hence,

uν0
(τ1) = w(τ1),

u(i−1)
ν0

(x1) = yi1 = w(i−1)(x1), 1 ≤ i ≤ m1 − 1,
uν0

(τ2) = w(τ2),
u(i−1)
ν0

(xl) = yil = w(i−1)(xl), 1 ≤ i ≤ ml, 2 ≤ l ≤ k

uν0
(xk+1) =

yn

a1
= w(xk+1), uν0

(xk+3) =
yn−1

a3
= w(xk+3),

...

uν0
(xk+2 j−3) =

yn−( j−2)

a2 j−3
= w(xk+2 j−3).

https://doi.org/10.4153/CMB-2011-117-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-117-0


294 P. W. Eloe, J. Henderson, and R. A. Khan

Thus, uν0
(x) and w(x) are distinct solutions of the same (k + j + 1; 0)-point (or if

m1 = 1, the same (k + j; 0)-point) conjugate boundary value problem (1.1), (1.3).

This contradicts Corollary 2.4. Thus, S is also a closed subset of R.

As a consequence of S being a nonempty subset of R that is both open and closed,

we have S ≡ R. By choosing ym11 ∈ S, there is a corresponding solution y(x) of (1.1)

such that

y(i−1)(x1) = yi1, 1 ≤ i ≤ m1 − 1,
y(m1−1)(x1) = ym11,
y(i−1)(xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k,
y(xk+1) =

yn

a1
, y(xk+3) =

yn−1

a3
,

...

y(xk+2 j−3) =
yn−( j−2)

a2 j−3
, a2 j−1 y(xk+2 j−1) − a2 j y(xk+2 j) = yn−( j−1),

which is the desired solution of the (k + j − 1; 1)-point BVP.

Since 1 ≤ j ≤ j0 and 1 ≤ k ≤ n − j0 implies 1 ≤ k + j − 1 ≤ n − 1, we have

shown existence for each of the (k; 1)-point BVPs, 1 ≤ k ≤ n − 1.

If j0 = 1, then the proof is complete. If j0 > 1, let k + j ≤ n − 1 and let z1(x) be

the unique solution of the (k + j; 1)-point boundary value problem,

z(i−1)
1 (x1) = yi1, 1 ≤ i ≤ m1 − 1,

z(i−1)
1 (xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k,

z1(xk+1) =
yn

a1
,

...

z1(xk+2 j−3) =
yn−( j−2)

a2 j−3
,

z1(xk+2 j−2) = 0,
a2 j−1z1(xk+2 j−1) − a2 jz1(xk+2 j) = yn−( j−1).

From the two conditions

z(xk+2 j−2) = 0, z(xk+2 j−3) =
yn−( j−2)

a2 j−3

,

we obtain

a2 j−3z(xk+2 j−3) − a2 j−2z(xk+2 j−2) = yn−( j−1).

Define the set

S1 =

{

u(m1−1)(x1) | u is a solution of (1.1) satisfying

u(i−1)(x1) = yi1, 1 ≤ i ≤ m1 − 1,

u(i−1)(xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k,

u(xk+1) =
yn

a1

, u(xk+2) =
yn−1

a2

, . . . , u(xk+2 j−5) =
yn−( j−3)

a2 j−5

,

a2 j−3u(xk+2 j−3) − a2 j−2u(xk+2 j−2) = yn−( j−2),

a2 j−1u(xk+2 j−1) − a2 ju(xk+2 j) = yn−( j−1)

}

.
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Clearly, z(m1−1)
1 (x1) ∈ S1, and so S1 is a nonempty subset of R. A construction,

completely analogous to the above argument implies S1 = R. Hence, ym11 ∈ S1, and

there is a corresponding solution, y(x) of (1.1) such that

y(i−1)(x1) = yi1, 1 ≤ i ≤ m1 − 1,
y(m1−1)(x1) = ym11,
y(i−1)(xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k,
y(xk+1) =

yn

a1
,

...

y(xk+2 j−5) =
yn−( j−3)

a2 j−5
,

a2 j−3 y(xk+2 j−3) − a2 j−2 y(xk+2 j−2) = yn−( j−2)

a2 j−1 y(xk+2 j−1) − a2 j y(xk+2 j) = yn−( j−1),

which is the desired solution of the (k + j − 2; 2)-point BVP.

The proof of Theorem 3.3 is then completed by induction.

We restate Theorem 3.3 in the terminology introduced in the Introduction.

Corollary 3.4 Let j0 ∈ {0, . . . , n − 1}. Assume that solutions of the (n − j0; j0)-

point BVP, are unique. Then for each 1 ≤ j ≤ j0, 1 ≤ k ≤ n − j0, (1.1) is (k; j)-point

uniquely solvable.

References

[1] S. Clark and J. Henderson, Uniqueness implies existence and uniqueness criterion for nonlocal
boundary value problems for third order differential equations. Proc. Amer. Math. Soc. 134(2006),
3363–3372. http://dx.doi.org/10.1090/S0002-9939-06-08368-7

[2] J. Ehme and D. Hankerson, Existence of solutions for right focal boundary value problems. Nonlinear
Anal. 18(1992), no. 2, 191–197. http://dx.doi.org/10.1016/0362-546X(92)90093-T

[3] P. W. Eloe and J. Henderson, Uniqueness implies existence and uniqueness conditions for nonlocal
boundary value problems for nth order differential equations. J. Math. Anal. Appl. 331(2007), no. 1,
240–247. http://dx.doi.org/10.1016/j.jmaa.2006.08.087

[4] M. Gray, Uniqueness implies uniqueness and existence for nonlocal boundary value problems for third
order ordinary differential equations. Comm. Appl. Nonlinear Anal. 13(2006), no. 4, 19–30.

[5] G. A. Harris, J. Henderson, A. Lanz, and W. K. C. Yin, Third order right focal boundary value
problems on a time scale. J. Difference Equ. Appl. 12(2006), no. 6, 525–533.
http://dx.doi.org/10.1080/10236190500539212

[6] P. Hartman, Unrestricted n-parameter families. Rend. Circ. Mat. Palermo 7(1958), 123–142.
http://dx.doi.org/10.1007/BF02854523

[7] , On N-parameter families and interpolation problems for nonlinear differential equations.
Trans. Amer. Math. Soc. 154(1971), 201–226.

[8] J. Henderson, Uniqueness of solutions of right focal point boundary value problems. J. Differential
Equations 41(1981), no. 2, 218–227. http://dx.doi.org/10.1016/0022-0396(81)90058-9

[9] , Existence of solutions of right focal point boundary value problems for ordinary differential
equations. Nonlinear Anal. 5(1981), no. 9, 989–1002.
http://dx.doi.org/10.1016/0362-546X(81)90058-4

[10] , Existence theorems for boundary value problems for nth order nonlinear difference equations.
SIAM J. Math. Anal. 20(1989), no. 2, 468–478. http://dx.doi.org/10.1137/0520032

[11] , Focal boundary value problems for nonlinear difference equations. I, II. J. Math. Anal. Appl.
141(1989), 559–567, 568-579. http://dx.doi.org/10.1016/0022-247X(89)90197-2

[12] J. Henderson, B. Karna, and C. C. Tisdell, Existence of solutions for three-point boundary value
problems for second order equations. Proc. Amer. Math. Soc. 133(2005), no. 5, 1365–1369.
http://dx.doi.org/10.1090/S0002-9939-04-07647-6

https://doi.org/10.4153/CMB-2011-117-0 Published online by Cambridge University Press

http://dx.doi.org/10.1090/S0002-9939-06-08368-7
http://dx.doi.org/10.1016/0362-546X(92)90093-T
http://dx.doi.org/10.1016/j.jmaa.2006.08.087
http://dx.doi.org/10.1080/10236190500539212
http://dx.doi.org/10.1007/BF02854523
http://dx.doi.org/10.1016/0022-0396(81)90058-9
http://dx.doi.org/10.1016/0362-546X(81)90058-4
http://dx.doi.org/10.1137/0520032
http://dx.doi.org/10.1016/0022-247X(89)90197-2
http://dx.doi.org/10.1090/S0002-9939-04-07647-6
https://doi.org/10.4153/CMB-2011-117-0


296 P. W. Eloe, J. Henderson, and R. A. Khan

[13] J. Henderson and D. Ma, Uniqueness of solutions for fourth order nonlocal boundary value problems.
Bound. Value Probl. 2006, Art. ID 23875.

[14] J. Henderson and W. K. C. Yin, Existence of solutions for fourth order boundary value problems on a
time scale. J. Difference Equ. Appl. 9(2003), no. 1, 15–28.

[15] L. K. Jackson, Uniqueness of solutions of boundary value problems for ordinary differential equations.
SIAM J. Appl. Math. 24(1973), 525–538. http://dx.doi.org/10.1137/0124054

[16] , Existence and uniqueness of solutions for third order differential equations. J. Differential
Equations 13(1973), 432–437. http://dx.doi.org/10.1016/0022-0396(73)90002-8

[17] G. D. Jones, Existence of solutions of multipoint boundary value problems for a second order
differential equation. Dynam. Systems Appl. 16(2007), no. 4, 709–711.

[18] G. Klaasen, Existence theorems for boundary value problems of nth order ordinary differential
equations. Rocky Mtn. J. Math. 3(1973), 457–472. http://dx.doi.org/10.1216/RMJ-1973-3-3-457

[19] A. Lasota and Z. Opial, On the existence and uniqueness of solutions of a boundary value problem for
an ordinary second order differential equation. Colloq. Math. 18(1967), 1–5.

[20] A. C. Peterson, Existence-uniqueness for focal-point boundary value problems. SIAM J. Math. Anal.
12(1982), no. 2, 173–185. http://dx.doi.org/10.1137/0512018

[21] K. Schrader, Uniqueness implies existence for solutions of nonlinear boundary value problems.
Abstracts Amer. Math. Soc. 6(1985), 235.

[22] E. H. Spanier, Algebraic Topology. McGraw-Hill, New York, 1966.

Department of Mathematics, University of Dayton, Dayton, OH, 45469-2316, USA
e-mail: Paul.Eloe@notes.udayton.edu

Department of Mathematics, Baylor University, Waco, TX, 76798-7328, USA
e-mail: Johnny Henderson@baylor.edu

Centre for Advanced Mathematics and Physics, National University of Sciences and Technology(NUST), Cam-
pus of College of Electrical and Mechanical Engineering, Peshawar Road, Rawalpindi, Pakistan
e-mail: rahmat alipk@yahoo.com

https://doi.org/10.4153/CMB-2011-117-0 Published online by Cambridge University Press

http://dx.doi.org/10.1137/0124054
http://dx.doi.org/10.1016/0022-0396(73)90002-8
http://dx.doi.org/10.1216/RMJ-1973-3-3-457
http://dx.doi.org/10.1137/0512018
https://doi.org/10.4153/CMB-2011-117-0

