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ON REVERSE SHRINKAGE EFFECTS AND SHRINKAGE OVERSHOOT

Pascal Jordan
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Given a squared Euclidean norm penalty, we examine some less well-known properties of shrinkage
estimates. In particular, we highlight that it is possible for some components of the shrinkage estimator to
be placed further away from the prior mean than the original estimate. An analysis of this effect is provided
within three different modeling settings—encompassing linear, logistic, and ordinal regression models.
Additional simulations show that the outlined effect is not a mathematical artefact, but likely to occur in
practice. As a byproduct, they also highlight the possibilities of sign reversals (“overshoots”) for shrinkage
estimates.We point out practical consequences and challenges, whichmight arise from the observed effects
with special emphasis on psychometrics.
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1. Introduction

The effect of shrinkage or of “pooling of prior and likelihood information” is an essential part
of hierarchical models (Gelman & Hill, Gelman and Hill (2007)). A traditional way to introduce
the concept of shrinkage in its simplest form is the prediction of an unknown random variable
based on data and prior knowledge (see chapter 7 of Searle, Casella, & McCulloch, 2006). For
instance, given IQ test scores (data y) of John, we might be interested in predicting John’s true
general IQ based on an underlying model and prior information. The model could consist of
assuming normally distributed test scores around the true score f and the prior would ideally
match with the distribution of the true scores in the population. Given this setup, the likelihood-
based inference f̂ (MLE) could potentially be improved in terms of expected squared error loss
by incorporating the prior information, see also the closely related topic of ridge regression (Hoerl
& Kennard, 1970a), or the general topic of best prediction, as outlined in Searle et al. (2006).
Moreover, the resulting estimate turns out to be a compromise between (respectively a weighted
average of) the likelihood-based estimate and the best a priori prediction (see p.233 in Lehmann
& Casella, 1998). This in turn justifies the use of the term “shrinkage” when discussing the effect
of applying this procedure. In addition, it is in line with our intuitive expectation. That is, by
incorporating the prior information we expect the estimate to tend toward the prior mean.

Now assume the following slightly altered framework: John solves the items of an IQ test
which is now supposed to measure two dimensions (say: numerical and verbal IQ). Based on
his performance he scores 112 and 104 on the numerical and verbal component, respectively.
As in the former unidimensional setup, we introduce a prior on the dimensions, which, for the
sake of simplicity, is independent normal and centered around 100. By the same token as in the
unidimensional case, we expect shrinkage of the likelihood-based estimates toward their prior
mean. However, the resulting estimates turn out to be 108 and 106, so that John’s estimated verbal
IQ is further away from the prior mean than the purely likelihood-based estimate. In other words,

Supplementary Information The online version contains supplementary material available at https://doi.org/10.
1007/s11336-022-09872-8.

Correspondence should be made to Pascal Jordan, University of Hamburg, Von-Melle-Park 5, 20146 Hamburg, Ger-
many. Email: pascal.jordan@uni-hamburg.de

274
© 2022 The Author(s)

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:19:06, subject to the Cambridge Core terms of use.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11336-022-09872-8&domain=pdf
http://orcid.org/0000-0001-6394-076X
https://doi.org/10.1007/s11336-022-09872-8
https://doi.org/10.1007/s11336-022-09872-8
https://www.cambridge.org/core


PASCAL JORDAN 275

rather than shrinkage, we observe amplification of the distance from the prior mean (“reverse
shrinkage”—see Sect. 2, case 1 for a theoretical and Sect. 4 Fig. 1 for a graphical explanation).
In fact, we may stretch this example as follows: Suppose Bob scored 105 and 99 in the numerical
and verbal IQ domain, respectively. After introducing the prior knowledge, i.e., abilities centered
around 100, we may end up with estimates of 103 and 101—placing Bob above average on the
verbal IQ domain despite the fact that the MLE indicated performance below average.

The aim of this paper is to highlight that the described reverse shrinkage pattern is not based
on an artificially constructed counterexample, but is likely to arise when using prior information in
a multidimensional setting. To this end, we will provide analytical results of the reverse shrinkage
effect in different modeling classes as well as some simulation results. Whereas the analytical
results (Sect. 2) point out the possibility of such a previously introduced “amplification” effect (i.e.,
the existence), they leave open the question as to whether the effect is likely to occur in practical
applications of shrinkage based models. To address the latter, some simulations (Sect. 3) are
included which highlight that the described “amplification” effect is not a mathematical artefact.
In conjunction with this, we will also point out the possibility of “sign reversals” (“shrinkage
overshoot”—see Sect. 3 for examples and Fig. 2 in Sect. 4 for a graphical explanation), i.e., the
possibility that the likelihood-based estimate may be below the prior mean, yet, the corresponding
“shrinkage” estimate lies above the prior mean—like in the example of Bob. Finally, a graphical
explanation of these counterintuitive effects will be given (Sect. 4) and practical problems which
arise from the effect(s) will be outlined in Sect. 5.

2. Theoretical Analysis

In this section, we point out various conditions under which the previously described phe-
nomenon of amplification can be established. We first examine a model which underlies the IQ
test scoring example—namely a linear model with offset (Case 1). Subsequently, we analyze
the effect in the context of ridge regression (Case 2). We then aim at broadening the scope by
analyzing the effect within a more general class of models—including logistic regression (Case
3). In all cases, we focus on a formulation of the shrinkage effect via a sum of squares penalty
function, i.e., if β denotes the model parameter vector, the penalty term will always be of the type
t
∑

i β
2
i for some fixed shrinkage parameter t . However, we also include a discussion of partially

flat priors—that is, we examine the effect of a partial penalty of the type t
∑

i∈I β2
i , wherein the

summation does not extend over all coefficients (which in a Bayesian setup is interpretable in
terms of using a flat prior for those components not appearing in the summation). Finally, although
our paper primarily deals with the analysis of the impact of shrinkage on the latent ability estimate
of an individual test taker, we also highlight connections to the predictions of group-level effects
in a linear mixed model framework.

2.1. Case 1: Linear Model with Offset

Historically (e.g., Spearman, 1904; Thomson, 1951; Steiger, 1979) and contemporarily (see,
e.g., Canivez & Watkins, 2010), IQ tests have been closely linked to the linear factor analysis
model. The latter model resembles a linear regression model (see ch. 9 of Mardia, Kent & Bibby,
1979)when it comes to the estimation of the person parameters (factors) assuming itemparameters
(e.g., loadings) are known1 from a previous test calibration with a sufficiently large sample size.
Hence, a linear model with offset is the natural starting point to analyze the IQ-test framework.

1This is not to be confused with the estimation of the factor loadings and error variances, which generally rests on
treating the factors as random variables rather than as parameters.
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276 PSYCHOMETRIKA

More specifically, given known item difficulties μi (for i = 1, . . . , k) and a known k × p full
column rank matrix � of factor loadings, the linear model type decomposition

y = μ + � f + ε

is assumed, wherein the p × 1 vector of factors f entails the unknown person parameters which
are to be estimated from observing the data y. The i-th component of y denotes the score of the
test taker in a particular subtest, for instance, his/her score in a number division task which is part
of the overall numerical IQ scale. The usual modeling assumptions presume normally distributed
error terms with zero means and zero covariances (conditional on f ).

Although this represents a commonly used notation in the psychometric framework, we prefer
to use the standard regression notation in order to unify the notation with the one that will be used
in later sections. Therefore, we will in the following use the regression design matrix X in place
of� and the vector of unknown regression coefficients β in place of f . Without loss of generality,
we will further also assume offsets μi = 0 in order to simplify the formulas. Hence, we write

y = Xβ + ε, ε|β ∼ N (0, diag(σ 2
i )i=1,...,k),

wherein in the IQ testing example β contains two components, one numerical and one verbal IQ
component. For the subsequent derivations we also fix the error variances to a common value
σ 2
i = σ 2. The remarks following the derivations will, however, clarify that the results also hold

for the general case of unequal measurement error variances.
The maximum a posteriori estimate (MAP) using independent normal priors with common

precision, i.e., assuming β ∼ N (0, σ 2

t I ), is given by the expression:

β̂(t) := (XT X + t I )−1XT y. (1)

Note that the MLE is contained in this expression via setting t = 0. More generally, the posterior
distribution of the regression parameter β is given by (see Hsiang, 1975)

β|y ∼ N

(

(XT X + t I )−1XT y, σ 2
(
XT X + t I

)−1
)

showing that all of the traditionally used Bayesian estimators (e.g., the expected a-posteriori
estimator) coincide with the MAP.

As wewill be concerned with analyzing the behavior of the components of theMAPwhenwe
change the level of shrinkage via t , we need the derivative of β̂(t), which (with A(t) := XT X+t I )
is given by:

β̂ ′(t) = −A(t)−1 ∂A

∂t
(t)A(t)−1XT y = −(XT X + t I )−1 I (XT X + t I )−1XT y

= −(XT X + t I )−2XT y. (2)

As in the example of John, assume now that the person scored such that the estimated factor
scores, using a specific level of shrinkage t (in the example t = 0), are above (ormore precisely: not
below) the prior mean, i.e., assume that each component of β̂(t) is nonnegative. Then, depending
on the response pattern y, we will show that it is possible for John to “gain" additional points on
some dimension—hence placing him even further away from the population mean—by using a
stronger prior precision, that is, a higher level of shrinkage.
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Let ei denote the i-th unit vector. Ifwe can prove that there is a response y such that eTj (X
T X+

t I )−1XT y ≥ 0 holds for j = 1, . . . , p and with the additional property g0(y) = eTi (XT X +
t I )−2XT y < 0 for some component i , then the first property will ensure that the MAP estimates
are above (not below) the prior mean, while the second property will ensure via (2) that the i-th
component increases with increasing level of shrinkage.

Theorem 1. Let X denote a (k × p) matrix of full column rank. Let t ≥ 0 denote a penalty
parameter. If the i-th column of the matrix (XT X + t I )−1 contains a negative entry, then there is
a response vector y∗ such that the following holds

(a) β̂(t) := (XT X + t I )−1XT y∗ consists of nonnegative entries.
(b) There exists a t ′ > t such that β̂i (t ′) > β̂i (t) ≥ 0.

Remark. In the educational testing framework, (a) and (b) imply that there is a response vector
such that the test taker’s inferred abilities are not below average on each dimension, and, such
that increasing the shrinkage toward t ′ further increases the distance between the inferred ability
on the i-th dimension and the population mean.

Proof. It needs to be shown that there is a response vector y such that (1) is (componentwise)
nonnegative while the i-th component of (2) is positive. To this end, we examine conditions under
which for every response vector with

eTj (X
T X + t I )−1XT y ≥ 0 ∀ j

we also have

eTi (XT X + t I )−2XT y ≥ 0.

In more technical terms, we examine conditions under which the inequality

eTi (XT X + t I )−2XT y ≥ 0 (3)

is a consequence2 of the system of inequalities

eTj (X
T X + t I )−1XT y ≥ 0 ∀ j. (4)

According toFarkas’Lemma (see appendix), (3) is a consequence of the systemof inequalities
(4) if and only if the vector eTi (XT X + t I )−2XT can be expressed as a nonnegative linear
combination of the set of vectors (eTj (X

T X + t I )−1XT ) j=1,...p The latter condition means that
there is a nonnegative vector λ such that

X (XT X + t I )−2ei = X (XT X + t I )−1λ

holds, or, equivalently:

X (XT X + t I )−1
(
(XT X + t I )−1ei − λ

)
= 0.

Due to the assumption of a design matrix X of full column rank the above equation may be
rewritten as

2In general, an inequality of type aT0 y ≤ 0 is said to be a consequence of a system (aTi y ≤ 0)i=1,...I of inequalities

if and only if every vector y satisfying the system of inequalities also satisfies the inequality aT0 y ≤ 0.
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(XT X + t I )−1ei = λ

To conclude, we have arrived at the following: If the i-th column of the matrix (XT X + t I )−1

contains at least one negative entry, then the inequality (3) is not a consequence of the system of
inequalities (4). The latter then implies that there has to exist a response vector y∗such that the
system of inequalities (4) holds, but the inequality (3) is violated. This response vector can then
be characterized as a response vector ensuring nonnegative estimates (i.e., each component is not
below the prior mean of zero) while exhibiting a higher estimate for the i-th component when
increasing the shrinkage level. 	


As i in the statement of Theorem (1) was arbitrary, we can conclude the following: If the
matrix (XT X + t I )−1 has at least one negative entry, then the corresponding column index
provides a component for which there exists a response vector y∗ which is scored above the prior
mean and with the claimed amplification property on some dimension. Hence, it all boils down to
examine when the matrix (XT X + t I )−1 consists of only nonnegative entries. We will examine
this in the two-dimensional setting of the example and then provide some results for the general
case. Before, however, further discussing these issues, we note some important generalizations
of the above analysis.

Generalizations:

• Unequal error variancesThe same analysis applies in case of unequal variance for the error
terms. The formulas still hold if the terms XTW X and XTWy are substituted for XT X and
XT y, respectively. To explicitly state the result: For the existence of a response vector with
the amplification property, it is necessary and sufficient that the matrix (XTW X + t I )−1

contains at least one negative entry.
• Prior correlations We can further generalize the result by introducing prior dependencies

between the latent factors. That is, if we substitute a known prior covariancematrix� (up to
a common precision factor t) for the identity matrix I , we get the following result: In order
that there exists a response vector with the amplification property (on some dimension), it
is necessary and sufficient that the matrix �−1(XTW X + t�−1)−1 contains at least one
negative entry.
Note that if we use this prior specification, i.e., β ∼ N (0, σ 2

t �), then the posterior (see
also Hsiang, 1975) becomes:

β|y ∼ N

(

(XTW X + t�−1)−1XTWy, σ 2
(
XTW X + t�−1

)−1
)

• Bayesian estimates The computed estimate is identical with a Bayesian maximum a-
posterior (MAP) estimate. However, due to the symmetry of the involved distributional
(here: normality) assumptions, the posterior is symmetric. Hence, the expected a-posterior
estimate is identical to the MAP. Therefore, the analyzed effect is also deducible in the
integration (EAP) domain and not confined to the maximization-based setup. Furthermore,
using the rationale that the skewness of a posterior distribution tends to decrease with the
amount of sample data, we may arrive at the conjecture that in a large sample size setting,
the EAP will always behave qualitatively as the MAP (which will be relevant when we
change the setup of analysis in Case 3).

• Relaxing the nonnegativity restrictionNote that wemight have an amplification effect even
if (XT X + t I )−1 consists of nonnegative entries. Although this seems to contradict the
theorem, note that we required nonnegative estimates on each component in the theorem.
Therefore, if (XT X+t I )−1 is nonnegative, thenwemay only infer that there is no response
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leading to nonnegative estimates on each component and showing the amplification prop-
erty. However, if we relax this condition, then we may generalize the effect in an important
way. The statement and proof of this generalization is given below.

Theorem 2. Let X denote a (k × p) matrix of full column rank. Let t ≥ 0 denote a penalty
parameter. If the i-th column of the matrix (XT X + t I )−1 is not a (positive) multiple of the i-th
unit vector ei , then there is a response vector y∗ such that the following holds:

(a) β̂i (t) := eTi (XT X + t I )−1XT y∗ ≥ 0.
(b) There exists a t ′ > t such that β̂i (t ′) > β̂i (t) ≥ 0.

Proof. We may again resort to Farkas’ Lemma. The inequality eTi (XT X + t I )−2XT y ≥ 0 is a
consequence of the “system” of inequalities eTi (XT X + t I )−1XT y ≥ 0 if and only if there is a
nonnegative scalar λ such that

X (XT X + t I )−2ei = X (XT X + t I )−1eiλ.

Using the same arguments as in the proof of Theorem 1 this may be reduced to having

(XT X + t I )−1ei = λei

which means that the i-th column is a multiple of the i-th unit vector. 	

Remark. Again, this result allows for a generalization (with straightforward changes in the proof)
by introducing prior dependencies between the latent factors and by also considering unequal
measurement error variances. If the i-th column of the matrix �−1(XTW X + t�−1)−1 is not a
positive multiple of the i-th unit vector, then it is possible to deduce amplification.

The Two-Dimensional Educational Testing Example Assume the test is two-dimensional and that
each ability contributes positively to the solving of the items, i.e., assume a matrix of positive
factor loadings. Then, the cross product matrix XT X contains only positive entries a, b, d and
we have

XT X + t I =
(
a + t b
b d + t

)

with the inverse given by

(XT X + t I )−1 = 1

det(XT X + t I )

(
d + t −b
−b a + t

)

.

Clearly, each column contains a negative entry and we may therefore conclude that for each
(intelligence) factor there is always a response vector leading to estimates not below average on
each dimension and such that increasing the shrinkage parameter increases the distance from
the prior mean on the specific factor. In the simulation (see Sect. 3), it is shown that the set of
responses y with such a property is not a negligible small set.

If we allow for prior correlations, the analysis becomes more complicated. According to the
remarks on generalizations following Theorem 1, we need to examine the matrix �−1(XT X +
t�−1) in place of the former expression (XT X + t I )−1. Using the equality

�−1(XT X + t�−1)−1 = (XT X� + t I )−1
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and the abbreviations σi, j for the (i, j)-th entry of the matrix �, we can write:

(XT X� + t I )−1 =
(
bσ1,2 + dσ2,2 + t −(aσ1,2 + bσ2,2)
−(bσ1,1 + dσ12) aσ1,1 + bσ1,2 + t

)

As an illustrative example, we assume simple structure, i.e., an orthogonal designmatrix such
that b = 0 holds. It can then be seen that any positive prior correlation leads to a negative entry in
each column. Hence, under positive prior correlation, we can always find a response vector that
is scored not below average on each dimension and such that increasing the shrinkage parameter
increases the estimate of the first (or second) dimension. Further, if we restrict ourselves to the
effect underlying Theorem 2, then we may deduce the following: Any nonzero prior correlation
(we still assume simple structure) leads to a shrinkage effect as described in Theorem 2. That is,
we can find a response vector that is scored not below average on the i-th dimension and such
that increasing the shrinkage level increases the estimate on the i-th dimension further.

The examination of the general case, i.e., not requiring simple structure, is more compli-
cated for the effect described in Theorem 1. However, the effect depicted in Theorem 2 is still
straightforward to detect: Unless the first (second) row of the crossproduct matrix is orthogonal
to the second (first) row of the prior correlation matrix, the shrinkage effect of the type stated in
Theorem 2 can be deduced for the second (first) dimension.

A General result for Nonnegative Factor Matrices It is impossible to construct a response vector
with paradoxical shrinkage behavior (as stated in Theorem 1) if and only if the inverse of the
matrix (XT X + t I )−1 contains only nonnegative entries. Given nonnegative factor loadings, the
latter will, however, only be the case if and only if (see, e.g., Lemma 12 in Jordan and Spiess,
2012) the matrix of factor loadings is of simple structure, i.e., contains no cross-loadings.

Corollary 1. If the columns of X are orthogonal and if the normal prior specifies independence
between the components of β (as assumed in Theorem 1), then the model is not prone to reverse
shrinkage effects.

Hence, within every factor analysis model with nonnegative factor loadings and not of simple
structure, the existence of a response vector which gives rise to the amplification phenomenon is
guaranteed. Again, the simulation results in Sect. 3 provide the additional information that these
types of response vectors do not form a thin set, but may emerge with substantial probability.

With respect to Corollary 1, we emphasize the necessity of an independence prior. That is, if
we introduce correlations in the prior, then reverse shrinkage effects can occur even in a simple
structure model—see the analysis depicted in the previous subsection.

Response Vectors Leading to Amplification Until now, we discussed conditions under which the
amplification property occurs. Yet, the theorems did not provide direct clues on how to find a
response vector y∗ which leads to the amplification phenomenon. Here we provide an informal
interpretation of the properties of such a response vector. We restrict our discussion to an ampli-
fication on the first dimension with the simultaneous requirement that all estimates are not below
the prior mean. Other cases can be deduced accordingly. To this end, we look at the requirement
of amplification on the first dimension, namely the inequality

eT1 (XT X + t I )−2XT y < 0

which guarantees amplification of the first component—provided we also have a nonnegative
estimate in the i-the component. We may rewrite the above inequality as
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eT1 (XT X + t I )−1β̂(y) < 0, β̂(y) = (XT X + t I )−1XT y

For the special case of the MLE, which we will examine first, we have

eT1 (XT X)−1β̂(y) < 0, β̂(y) = (XT X)−1XT y

According to standard results in the linear model, the matrix (XT X)−1 contains the estimated
variances and covariances of the regression parameter estimates, that is, the entry in the j-th row
and l-th column is equal to the covariance of β̂ j and β̂l . Further, suppose we are interested in the
estimated covariance between cT1 β̂ and cT2 β̂. Then this covariance may be computed as follows:

cT1 (XT X)−1c2. (5)

With this inmind, let now D denote the set of vectors c2 which give rise to linear combinations
with a negative covariance with β̂1, i.e., let D := {c2 ∈ R

p| eT1 (XT X)−1c2 < 0}. Geometrically,
this set of vectors may be described by the set of vectors which lie in the corresponding open
half-space determined by a hyperplane (through the origin) with normal vector eT1 (XT X)−1. As
such, this set is a convex cone, i.e., it is closed under addition and positive scalar multiplication.

With this terminology, wemay now characterize the set of response vectors which give rise to
the amplification property as follows: A response vector which gives rise to nonnegative estimates
(β̂(y) ≥ 0) shows amplification on the first component if and only if the estimate, when viewed
as weights for a linear combination, corresponds to a vector of D. If such an element of D were
used a-priori, then it would correspond to a linear combination of the regression parameters with
negative covariance with the estimate of the first component. Note that we used the term “a-priori,”
because it is not true that the covariance of β̂1 with the linear combination given by setting c2 := β̂

is computable via formula (5). The reason is that in (5) c2 (and c1) is supposed to be a vector of
weights which are independent of the data y, whereas by choosing a vector of weights of the form
c2 := β̂(y) we introduce dependency on the data. Therefore our rather contrived formulation
above.

Overall, this provides an informal argument characterizing response vectors which introduce
local amplification around the MLE.

We may apply the same reasoning around a nonzero initial value of t , i.e., for the MAP.
However, the interpretation of (XT X + t I )−1 has to change. This matrix does not provide the
estimated covariance matrix of the regression parameters anymore. However, it corresponds to the
covariance matrix of the posterior distribution of the regression parameters in the corresponding
Bayesian model. Except for this change in interpretation, the same reasoning as above can now
be applied to this Bayesian setting.

2.2. Case 2: Linear Model with Centered Predictors

If instead of a linearmodelwith offset, a linearmodelwith interceptβ0 and centered predictors
is given, then, assuming priors β ∼ N (0, σ 2

t I ), f (σ 2) ∝ 1
σ 2 and an (improper) flat prior for the

intercept, i.e., β0 ∼ U (−∞,∞), the MAP of the regression coefficients for the predictors may
be written as

β̂(t) = (XT X + t I )−1XT yc,

wherein yc refers to the centering of the dependent variable. In order to adapt the approach of case
1, we have to account for the fact that the response vector y is now centered, i.e., has to satisfy
yT 1 = 0 (with “1” denoting a vector of ones).
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Theorem 3. Let X denote a (k × p) matrix of full column rank and with centered columns, i.e.,
satisfying XT 1 = 0. Let t ≥ 0 denote a penalty parameter. If the i-th column of the matrix
(XT X + t I )−1 is not a (positive) multiple of the i-th unit vector ei , then there is a response vector
y∗ such that the following holds:

(a) β̂i (t) := eTi (XT X + t I )−1XT y∗ ≥ 0.
(b) There exists a t ′ > t such that β̂i (t ′) > β̂i (t) ≥ 0.
(c) y∗ is centered: y∗T 1 = 0.

Proof. We will examine conditions under which every centered response vector yc with corre-
sponding i-th component of β̂ not below prior mean, i.e., with eTi (XT X + t I )−1XT yc ≥ 0,
also satisfies eTi (XT X + t I )−2XT yc ≥ 0 (derivative of the i-th component with respect to t
is nonpositive). Stated in terms of the terminology underlying Farkas’ Lemma, we examine the
following: Under which conditions is the inequality eTi (XT X + t I )−2XT y ≥ 0 a consequence
of the system of inequalities

eTi (XT X + t I )−1XT y ≥ 0, 1T y ≥ 0, −1T y ≥ 0 ?

According to Farkas’ Lemma, the existence of nonnegative scalars λ, δ1, δ2 such that

eTi (XT X + t I )−2XT = λeTi (XT X + t I )−1XT + δ11 + δ2(−1)

is a necessary and sufficient condition for the above implication. Transposing both sides and
defining δ := δ1 − δ2, the above equation reduces to:

X (XT X + t I )−2ei = λX (XT X + t I )−1ei + δ1.

Premultiplying with XT , and using the fact that the predictors are centered, we deduce:

XT X (XT X + t I )−2ei = λXT X (XT X + t I )−1ei ,

from which the claim follows analogous to the proof of Theorem 2. 	

Note that the above setup includes the classical ridge regression as a special case (using

scaled predictor variables, in which case XT X reduces to the correlation matrix; see Hoerl &
Kennard, 1970a; 1970b). Moreover, in the simulation presented in Sect. 3 we use a classical ridge
regression example to highlight the prevalence of the amplification property.

2.3. Case 3: Log-Concave Likelihood Model with Positive Predictors

We nowmove away from the linear model and examine a type of model that includes various
prominent regression models for categorical variables (e.g., logistic regression and cumulative
logit-type ordinal regression). We will only specify the type of log-likelihood we are dealing with.
To this end, assume that the log-likelihood3 may be written as

l(β) :=
k∑

i=1

li (x
T
i β) (6)

3In the psychometric literature, this type of models, when supplemented with the assumption of nonnegative xi
vectors, is also known as the class of linearly compensatory models—see, e.g., Hooker, Finkelman and Schwartzman
(2009).
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for some twice continuously differentiable functions li : R → R satisfying l ′′i < 0 throughout
R. For the sake of concreteness, we note that, for a linear model with known variances and
offsets, we have li (z) = − 1

2σ 2
i
(yi − μi − z)2, and for a logistic regression model we have

li (z) := μi + z− log(1+ eμi+z) or li (z) := − log(1+ eμi+z) depending on whether the response
yi was correct or incorrect. If we assume in addition a design matrix (with i-th row given by xi )
of full rank, then the above log-likelihood function is strictly concave—implying the uniqueness
of the MLE (and also the uniqueness of the following MAP-extension).

We now add some normal prior knowledge controlled by a shrinkage/scaling parameter t ,
i.e., we assume that the log prior is (up to an additive constant independent of the parameter)
given by

γ p(β) := −1

2
(β − β0)

T t�−1
p (β − β0),

wherein the nonsingular matrix �p is fixed, and, wherein t acts as the analogue of the shrinkage
parameter in cases 1 and 2. The corresponding log-posterior therefore equals l(β) + γ p(β). In
order to derive the MAP, the derivative of l(β)+γ p(β) needs to be computed. Using the notation
u(t, β) to denote this derivative and to indicate at the same time the dependency on the shrinkage
parameter t , we get:

u(t, β) =
k∑

i=1

l ′i (xTi β)xi − t�−1
p (β − β0). (7)

Setting u = 0 implicitly defines the MAP as the solution of this equation. Using the implicit
function theorem (e.g., Dontchev & Rockafellar, 2009, theorem 1B.1), the rate of change of the
solution β̂(t) may be computed as (D denoting the differential):

Dβ̂(t) = −
(

∑

i

xi x
T
i l

′′
i (xTi β̂) − t�−1

p

)−1

�−1
p (β̂ − β0). (8)

If all predictors are positive and if �p = I , then the inverse appearing in (8) must contain
a negative entry, say in the first row and second column. It is then possible for the dot product
of that row with the vector (β̂ − β0) to become negative, provided the second component of
(β̂ − β0) is sufficiently large positive. In that case, it follows that the first component of the MAP
is increasing with increasing level of shrinkage. Of course, Eq. (8) shows that we may also have
the same effect in the presence of nonzero correlations and not necessarily positive predictors.
Again, the simulation in Sect. 3 provides various illustrations of this effect. Note, however, that
the above reasoning does not provide a strict proof, as β̂ cannot vary freely, but may be restricted
in a complicated way. For example, in a logistic regression type model, β̂ may take on at most
2k different values. Nevertheless, the reasoning clearly depicts a similarity to the linear model
and therefore suggests that we may expect qualitatively the same shrinkage effects as already
deduced for the linear model. Finally, it should also be noted that we may further enlarge the
modeling class by removing the assumption of positive predictors and by arguing via (8)—using
the assumption that the matrix contains nonzero off-diagonal elements.

2.4. Flat Priors

The previous cases demonstrated a reverse shrinkage effect for different multiparameter
models. In one-parameter models, i.e., within the unidimensional setup, it is, however, clear
that the effect of introducing the (normal) prior is always a shrinkage effect (e.g., Lehmann &
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Casella, 1998, p.233) and that reverse shrinkage cannot occur. Hence, it might be speculated that
using a normal prior for a single parameter—say β1—and otherwise (improper) flat priors for the
remaining parameters could potentially avoid the reverse shrinkage effect in the multidimensional
setting. Surprisingly, quite the opposite is true, as will be shown using results from Hooker et
al. (2009) and Jordan and Spiess (2018). On a purely technical level, the following derivation
resembles the derivation given in Jordan and Spiess (2018). However, as the content underlying
the derivation is different—i.e., in Jordan and Spiess (2018) the focus is on the impact of changes
in the responses on the MLE, whereas herein we focus on the effect of inducing penalties while
keeping responses fixed—we provide the full argument adapted to our case of studying properties
of shrinkage estimates.

We note in advance that in the following we always implicitly assume the existence of
the MLE—although conditions ensuring the existence can be obtained via standard results in
convex/variational analysis (e.g., using theorems 1.9 and 3.26 in Rockafellar and Wets 2009).
We assume4 p = 2 (two-dimensional setting) and the scenario of case 3 (strictly log-concave
likelihood with positive predictor variables). Then, the corresponding log-posterior can be written
up to an additive constant as

k∑

i=1

li (x
T
i β) − 1

2
tβ2

1 ,

wherein the term − 1
2 tβ

2
1 equals the penalty which is obtained by using the prior β1 ∼ N (0, 1

t )

and an improper,5 flat prior for β2, i.e., β2 ∝ 1. The gradient of the log-posterior has to vanish at
the optimal solution. That is, if βs = (βs

1, β
s
2) denotes the Bayesian MAP, then we must have:

∑

i

l ′i (xTi βs)xi − t (βs
1, 0)

T = 0. (9)

Likewise, the MLE, denoted as βl = (βl
1, β

l
2), has to satisfy

∑

i

l ′i (xTi βl)xi = 0. (10)

In the following we assume that both components of the MLE are above the prior mean of
zero.

Subtracting (10) from (9) leads to the requirement

∑

i

(
l ′i (xTi βs) − l ′i (xTi βl)

)
xi − t (βs

1, 0)
T = 0. (11)

The key observation to note here is that if we had a shrinkage effect on both components,
then the two vectors βs and βl would have to be ordered in the sense of the partial ordering inR2.
However, from Eq. (11) we can rule out the possibility that βs and βl are ordered. For the latter
we can argue by contradiction: Assume that βs and βl are ordered. More specifically, assume that

4The derivation for the case p > 2 follows along the same lines.
5In fact, it is immaterial as to whether we use an improper prior or a proper uniform prior, provided the support of

the latter contains a sufficiently large interval centered around zero.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:19:06, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


PASCAL JORDAN 285

βs < βl holds, wherein the ordering refers to the partial ordering in R2 (the case βs > βl can be
treated similarly). As every predictor xi is positive, we then have xTi βs < xTi βl for all i and as l ′i
is a strictly decreasing function (recall the assumption l ′′i < 0), we conclude that each term of the
sum appearing in (11) is positive. The latter contradicts the fact that the second component of the
left hand side of (11) must vanish. Hence, the initial assumption of ordered parameter estimates
was false and we arrive at the result that this setting (positive predictors, flat priors) always entails
a reverse shrinkage effect. Thus, for every response pattern (such that the MLE exists), we can
conclude that some component of the MLE is closer to zero than the corresponding component
of the shrinkage estimate.

2.5. Shrinkage Overshoot

Up to now we have primarily examined the case of amplification on some component, i.e.,
we presupposed β̂i ≥ 0 on all (or some) dimensions and examined under which conditions an
increase in the shrinkage parameter places the estimate on a chosen dimension i further away
from the prior mean of zero. However, we may also arrive at a second phenomenon which was
introduced in the example of Bob in Sect. 1. In this case, we observed a performance below
the prior mean and no amplification when applying shrinkage. Yet “improper” shrinkage was
observed, as the estimate of Bob’s latent ability was placed above the prior mean after applying
shrinkage.

We now turn to an analysis of this phenomenon:

Theorem 4. Let X denote a (k × p) matrix of full column rank. Let t ≥ 0 denote a penalty
parameter. If the i-th column of the matrix (XT X + t I )−1 is not a (positive) multiple of the i-th
unit vector ei , then for every penalty t ′ > t there is a response vector y∗ such that the following
holds

(a) β̂i (t ′) := eTi (XT X + t ′ I )−1XT y∗ < 0.
(b) β̂i (t) := eTi (XT X + t I )−1XT y∗ ≥ 0.

Proof. We examine under which condition the inequality eTi (XT X + t ′ I )−1XT y ≥ 0 is a conse-
quence of the inequality eTi (XT X + t I )−1XT y ≥ 0. According to Farkas’ Lemma, this holds if
and only if there is a nonnegative scalar λ such that

X (XT X + t ′ I )−1ei = λX (XT X + t I )−1ei

As X has full column-rank, this reduces to

(XT X + t ′ I )−1ei = λ(XT X + t I )−1ei .

Using the notation v := (XT X + t I )−1ei , v′ := (XT X + t ′ I )−1ei , note that v may be
characterized as the solution to’

(XT X + t I )v = ei . (12)

Now, due to the above reasoning, in order that the inequality eTi (XT X + t ′ I )−1XT y ≥ 0 is a
consequence of the inequality eTi (XT X + t I )−1XT y ≥ 0, v′ must be a nonnegative multiple of
v (v′ := λv). Further, v′ is characterized as the solution of the equation:

(XT X + t ′ I )v′ = ei .
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Expanding the left side and using v′ = λv and property (12), we arrive at:

(XT X + t ′ I )v′ = (XT X + t I + (t ′ − t)I )λv = λ(ei + (t ′ − t)v) = ei (13)

Hence, v needs to be a multiple of ei in order for the above equation to hold. Using the
definition of v, i.e., v := (XT X + t I )−1ei , we therefore arrive at the condition that the i-th
column of (XT X + t I )−1 must be zero except for its i-th entry. 	


2.6. Outlook: Predicting Random Effects in a Linear Mixed Model

Interestingly, we can transfer some results on the amplification effect to a discussion of the
prediction of random effects in a Linear MixedModel (LMM). To this end, we follow the notation
in Searle, Casella and McCulloch (2006) and write the basic equation of the LMM according to:

y = Xβ + Zu + ε (14)

with Z denoting a fixed design matrix for the random effects and with u denoting the vector of all
random effects. It is assumed that the vector of errors ε is independent of the random effects and
that its covariance matrix is given by �ε = σ 2 I . Further, for the vector of random effects u we
denote its covariance matrix as �u . All covariance matrices are assumed to be positive definite.

Given this setup, the best linear prediction of the random vector u based on data y can be
computed by the following formula6 (see ch. 7 of Searle, Casella and McCulloch, 2006):

BLP(u)(y) = μu + �u,y�
−1
y,y(y − μy) (15)

We have μu = 0 and we may further, without loss of generality, assume μy = 0 (i.e., β = 0)
in the following. According to the model equation (14), we may compute the two key quantities
appearing in (15) as follows:

�u,y = �u Z
T , �y,y = Z�u Z

T + σ 2 I.

We now parametrize �u = 1
t � and examine the impact of increasing t on the prediction of

the random effects.

BLP(u)(y) = t−1�ZT (t−1Z�ZT + σ 2 I )−1y (16)

= �ZT (Z�ZT + tσ 2 I )−1y (17)

We want to examine as to whether eTi �ZT (Z�ZT + tσ 2 I )−1y ≥ 0, i.e., the i-th component
of the BLP is scored above the mean, implies that the derivative (w.r.t t) of this expression is
negative (ensuring that the BLP shrinks with increasing t).

The derivative of eTi �ZT (Z�ZT + tσ 2 I )−1y is given by:

−σ 2eTi �ZT (Z�ZT + tσ 2 I )−2y.

With these preliminary remarks, we may now formalize the following result:

6In practice, there is oftentimes a two-stage approach: At first, estimates of the unknown components of �u and σ 2

are derived according to ML-equations. In the following, these estimates are then plugged into the equation determining
the BLP .
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Theorem 5. If Z�ei is nonzero and not an eigenvector of the matrix (Z�ZT + tσ 2 I ), then there
is a response vector y with the following properties:

(a) The i-th component of the BLP is scored not below 0, i.e.,

eTi �ZT (Z�ZT + tσ 2 I )−1y ≥ 0.

(b) There is a t ′ > t such that the i-th component of the BLP is placed further away from
zero under t ′, i.e., we have

eTi �ZT (Z�ZT + t ′σ 2 I )−1y > eTi �ZT (Z�ZT + tσ 2 I )−1y ≥ 0.

Proof. According to the preliminary remarks, we may examine conditions under which the
inequality eTi �ZT (Z�ZT + tσ 2 I )−2y ≥ 0 (ensuring a nonpositive derivative at t) is a con-
sequence of the inequality eTi �ZT (Z�ZT + tσ 2 I )−1y ≥ 0. According to Farkas’ Lemma, this
holds if and only if there is a nonnegative scalar λ such that

eTi �ZT (Z�ZT + tσ 2 I )−2 = λeTi �ZT (Z�ZT + tσ 2 I )−1

or equivalently (transposing both sides and canceling one inverse)

λZ�ei = (Z�ZT + tσ 2 I )−1Z�ei

The latter equation means that Z�ei is an eigenvector corresponding to a nonnegative eigen-
value λ of (Z�ZT + tσ 2 I )−1. As (Z�ZT + tσ 2 I )−1 and (Z�ZT + tσ 2 I ) have the same
eigenvectors (and reciprocal eigenvalues) the result follows. 	


Remark.

• Due to the symmetry of the involved expressions in (t, σ 2), we may derive the same results
for a fixed t while increasing σ 2. The result depicted in (a) and (b)may then be interpreted
as an increase in the measurement error which amplifies the distance of the BLP from its
mean.

• By noting that there is a one-to-one correspondence between eigenvectors of (Z�ZT +
tσ 2 I ) and those of Z�ZT , we may replace the condition underlying Theorem 5 by simply
demanding that Z�ei is not an eigenvector of the matrix Z�ZT .

3. Simulations Based on Real Data Examples

Though the previous analysis pointed out the existence of responses which imply reverse
shrinkage effects, it is by no means clear if the described effect is likely to occur in practical
applications of the models. To address this question, we provide for each of the three discussed
cases a simulation which is based on parameter estimates obtained within real data settings. The
R-code underlying the simulations is provided as supplementary material. Here we focus on
describing the most important aspects of the simulation.
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3.1. Case 1: Linear Model with Offset

We use the working memory test battery described in Oberauer, Süß, Schulze, Wilhelm,
and Wittmann (2000) to illustrate and quantify the described amplification phenomenon. The test
battery consists of 25 tasks (items) which serve as themanifest variables of a factor analysis model
that is described in table 4 of Oberauer et al. The model contains three orthogonal factors (for an
example with correlated factors see case 3 below) labeled as “verbal-numerical,” “spatial,” and
“speed” and a (predominantly) nonnegativematrix of factor loadings. The reported communalities
allow for the computation of themeasurement error variances. These (unequal)measurement error
variances are incorporated in the analysis via theweightmatrixW asmentioned in the generalizing
remarks following the discussion of case 1 in the previous section. More specifically, if ci denotes
the communality of the i-th item, then (W )i i := 1/(1 − ci ) holds. Furthermore, without loss of
generality all offsets were set to zero.

In order to gain an impression on the prevalence andmagnitude of the described amplification
effect we conducted a small simulation using the given factor analysis setup. More specifically,
we simulated responses according to the model

y = Xβ + ε

with X denoting the (25×3)matrix of factor loadings, ε denoting the vector of normally distributed
measurement error variables with variances σ 2

εi
= 1 − ci . We repeatedly simulated a draw of a

test taker from the population via drawing β ∼ N (0, I ) and then sampling a realization for her
responses according to the above equation—via a draw from the specified distribution for the
measurement error variables. For the shrinkage penalty we specified a term of the form t�−1,
with � = I matching the orthogonality of the factor model. For the shrinkage parameter, three
levels t = 0 (MLE, WLS), t = 1 and t = 2 were compared. We then quantified the proportion
of trials wherein the shrinkage estimate

(
(XTW X + t I )−1XTWy

)
contained an entry that is

further apart from the prior mean than the corresponding entry of the weighted least-squares
estimate ((XTW X)−1XTWy). Roughly 38% of the simulated responses showed such a behavior,
i.e., contained at least one component wherein the amplification effect could be observed. The
magnitude of the effect seemed to depend on the exact level of shrinkage. For t = 1 (t = 2),

the relative magnitude, i.e., 1 − |β̂i |
|β̂s

i |
(with β̂s denoting the shrinkage estimate and β̂ denoting

the weighted least-squares estimator), was 23% (30%), whereas the absolute magnitude, i.e.,
|β̂s

i | − |β̂i |, was .035 (.06), i.e., 3.5% (6%) of one standard deviation (σβ j = 1 for all j according
to the simulation setup) of the population factor score distribution. In rare cases, the absolute
magnitude was as large as 17% (28%) of the standard deviation. Moreover, decreasing the number
of manifest variables (i.e., the information provided by the data) increased the magnitude and the
prevalence of the amplification effect further.

The conducted simulation study also allowed for the quantification of the shrinkage overshoot
effect (Sect. 2.5) by examining sign reversals. Within 6% (10%) of all trials, there was some
component i with respect to which the estimates differed in sign. The latter means that the
shrinkage did not stop “properly” at the prior mean, but extended beyond that mean (see also the
introductory example of Bob in Sect. 1).

We close this simulation case by noting that similar results on the prevalence of the ampli-
fication effect were observed when comparing only slightly differing shrinkage levels. That is,
when we compare the levels t and t + ε with ε very small (ε = 0.001 was used in the simulation),
then again a prevalence estimate of 38% was computed. The supplementary material contains the
full R code for reproducibility.
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3.2. Case 2: Linear Model with Centered Predictors

As an illustration for the amplification effect in the second case, we use the classical ridge
regression setup. The data are reported in Gorman and Toman (1966) and have been part of the
classical ridge regression analysis by Hoerl and Kennard (1970a; 1970b). Our focus is, however,
not on statistical properties of the estimates, but rather on the outlined shrinkage and amplification
effects.

The data include a correlation matrix for a multiple regression with 10 predictors as well as
the correlation of each predictor with the dependent variable. For the simulation, we repeatedly
generated data according to a multivariate normal distribution (centered at zero and with unit
variances) with the given correlations. That is, we (repeatedly) sample n = 100 observations from
a 11-dimensional joint normal distribution with the given correlation matrix.We then centered the
dependent variable and compared the MLE ((XT X)−1XT yc) with the corresponding shrinkage
estimate. The computed estimates (MLE and ridge estimate) were then compared with respect to
the amplification property and in addition with respect to any occurrences of sign reversals.

Of course, the results are dependent on the choice of the shrinkage parameter and the size of
the data set. The choice n = 100 and t = .5 (within the range of values examined by Hoerl and
Kennard) led to roughly 3% sign reversals and 100% amplification cases.7 That is, within every
simulated data set there was at least one predictor (generally more than one) for which the inferred
regression coefficient was larger (in absolute magnitude) under the shrinkage method than under
the least-squares method. Moreover, in 3% of all simulated data sets the sign of the inferred
regression coefficients differed. For a sketch of the behavior of estimates, when the shrinkage
level is continuously increased, we refer the reader to Figure 1 of Hoerl and Kennard (1970b).

3.3. Case 3: Normal Ogive Ordinal Regression Model

As an example of a log-concave likelihood with nonnegative predictors, we use a multidi-
mensional graded response model (MGRM) from item response theory (IRT). In this model, the
probability of obtaining score j on the i-th item for a test taker with latent abilities β is given by

P(Yi = j |β) = �(xTi β − μi, j ) − �(xTi β − μi, j+1), (18)

wherein the parametersμi, j constitute ordered thresholds on the latent continuum (μi, j < μi, j+1;
see, e.g., ch. 6 in Lee, 2007). It can be deduced that the log-likelihood function, which results
from observing the data on k items (y1, . . . , yk) is concave (see example 2.6 in Jordan & Spiess,
2012) and that each term li of the log-likelihood satisfies l ′′i < 0.

We use the parameter estimates displayed in Petersen, Groenvold, Aaronson, Fayers,
Sprangers and Bjorner (2006) for our simulations. More specifically, Petersen et al. (2006) report
the results of fitting a three-dimensionalMGRMwith the factors “physical functioning,” “fatigue,”
and “emotional functioning” to 12 items of a health-related quality of life item pool. The estimated
item discrimination vectors xi are nonnegative and the latent dimensions exhibit strong correla-
tions with each other. Hence, this example provides the opportunity to examine the previously
described effects within a different setting that includes correlations in the prior. The following
matrix of factor correlations was therefore used:

R :=
⎛

⎝
1 0.8 0.45
0.8 1 0.56
0.45 0.56 1

⎞

⎠

7We note that a breakdown according to the variables showed that there was a large variation, in that some variables
were rarely affected by the effect, whereas on other variables the effect occurred very frequently.
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The simulation proceeded as follows: We defined the loglikelihood using the log of Eq. (18)
in place of the quantity li (xTi β) appearing in Eq. (6). The penalty was specified according to
the expression −tβT�−1β with � := R matching the reported correlation matrix of the latent
abilities.We then first drew a vector of latent abilities from the population using the reported factor
correlation matrix (which equals the factor covariance matrix as all factors are standardized with
unit variance). We then simulated a response according to the MRGM and evaluated the effect of
inducing shrinkage. The simulation of a response was accomplished via Eq. (18) by computing
the response probabilities for each category and then sampling a category using the response
probability as a sampling weight. In contrast to the previous cases, to evaluate the shrinkage
effect, we did not compare the shrinkage estimate with the MLE. Instead, we decided to compare
two shrinkage estimators with different levels of shrinkage. This change is due to the fact that
the MLE may not exist for a variety of response patterns (this problem becomes less severe with
a large number of items though), which may impede the examination of the shrinkage effect. In
contrast, the shrinkage estimator exists for any possible response pattern. Hence, by comparing
two different levels of shrinkage, the problem of the nonexistence of estimates is alleviated and
a comparison is then straightforward. The results of the simulation—using t = 0.5 and t = 1
as levels of the shrinkage parameter—are comparable to case 1: In 47% of all simulation trials,
we observed an amplification effect (“reverse shrinkage”) on at least one dimension. In addition,
approximately 4% of all trials showed a sign reversal, that is, the two shrinkage estimates differed
in the sign for some latent dimension.

4. Graphical Explanation

The described “amplification effect” may at first sight seem counterintuitive. However, we
argue that the counterintuitive aspect is solely invoked by the oftentimes inappropriately applied
label of “shrinkage.” In fact, if one subsumes under the label “shrinkage” just the implicit under-
standing that the length of the parameter vector shrinks, then there is nothing odd about the notion
that some component might increase in magnitude (though this by no means implies that this
behavior does not cause any problems in some applied settings—see the discussion in Sect. 5).
However, our experience is that practitioners as well as some researchers expect the shrinkage
effect to appear on each component. To provide a graphical explanation of why the latter is not
true, it is useful to recast the Bayesian MAP in a Lagrange multiplier framework, which will
then furnish a simple geometrical explanation (see also chapter 17 in Draper & Smith, 1998).
To this end, suppose that within the linear regression framework we want to minimize the log-
likelihood l(β) (which basically equals a least-squares problem) under the additional constraint
that the length of the regression parameter β is bounded by c, i.e., under the constraint expressed
by f (β) ≤ 0 with f (β) := βTβ − c2. Then, the estimator under this constraint can be derived
by solving the unconstraint optimization problem

l p(β) := l(β) + λ f (β) = l(β) + λβTβ − λc2,

wherein λ is a nonnegative Lagrange multiplier. The resulting estimator of β in this problem
equals the Bayesian MAP using the parameter t = λ as shrinkage parameter. Hence, shrinkage
estimators might be viewed as originating from a constraint optimization problem, wherein the
constraint provides a sharp bound on the length of the regression parameter vector. Figure 1
illustrates the amplification effect within this modified, Lagrangian framework: The ellipsoids
represent contour lines of the log-likelihood with the MLE (marked in red) in the center of the
highest contour. By introducing a sharp constraint βTβ − c2 ≤ 0, we effectively search for the
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Figure 1.
Illustration of the “reverse shrinkage” effect in a contour plot corresponding to a normal linear model likelihood. Shown
are the MLE (in red) as well as the Bayesian MAP (in yellow) using independent priors with a common precision
parameter. The second component (y-coordinate) of the MAP is larger in magnitude than the respective MLE component
(amplification effect) (Color figure online).

intersection of the circle (black) with the highest possible contour. This optimal point is marked in
yellow in the figure and it can be seen that the y-coordinate of this point is further away from the
priormean (zero) than the respectiveMLE-coordinate. In fact, when castedwithin this framework,
no expectations on (componentwise) shrinkage would arise in the first place, because a circle can
clearly intersect the highest contour at a point which lies below themaximal contour (consisting of
a single point—the MLE). Note that this reasoning has already been given in the context of ridge
regression by, for instance, Draper and Smith (1998). However, the potential problem resulting
from the amplification effect has—at least to the author’s knowledge—not been noted.

Likewise, using the same rationale, Fig. 2 illustrates the possibility of sign reversals (“shrink-
age overshoot”): Whereas the second component (y-coordinate) of the MLE is negative (i.e.,
Bob’s verbal IQ is estimated below the prior mean), the second component of the corresponding
shrinkage estimator is positive (i.e., Bob’s verbal IQ is estimated above the prior mean when
we account for the population distribution). Again, from the geometrical viewpoint there is no
problem in understanding this effect. Yet, it poses practical challenges (Sect. 5).

5. Discussion

In this paper, we demonstrated some less well-known properties of shrinkage estimates—
namely “reverse shrinkage” and “shrinkage overshoot”—on both, an analytical level and within
simulations based on real data examples. The purpose of the paper was not, however, to cast doubt
on the usefulness and statistical properties of shrinkage estimators. Rather, the aimwas to a) depict
various misconceptions about the (anticipated) effect of shrinkage and b) to highlight that certain
by-products of shrinkage estimators, like the amplification effect on some dimensions, might
cause problems in (some) applied research settings (these setting are further depicted below).
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Figure 2.
Illustration of the “shrinkage overshoot” effect in a contour plot corresponding to a normal linear model likelihood.
Shown are the MLE (in red) as well as the Bayesian MAP (in yellow) using independent priors with a common precision
parameter. The signs of the second components (y-coordinates) of the MAP and the MLE differ (sign reversal effect)
(Color figure online).

For instance, though we might just accept the amplification effect as a by-product of a
statistically reasonable estimate, the notion that a test taker is placed further away from the
population mean when using the estimator might be hard to convey to the practitioner. This holds
for high- and low-stakes testing situations, for achievement aswell as for personality tests. Further,
as the effect depends on the particular observed response pattern, it might very well be the case
that the ordering of two test takers is swapped when applying the shrinkage estimator. That is,
Bob might score lower on the verbal IQ than John when using the MLE, yet this ordering might
be reversed when introducing shrinkage. Hence, the ordering of subjects may differ according
to the specific paradigm of factor score estimation. Note that this is true even in the presence of
independent priors for the latent dimensions.

Additional problems are caused by the effect of “shrinkage overshoot”: Using the MLE,
Bob’s verbal IQ is estimated below average (say 99). Yet, introducing the prior (with mean 100),
we end up with a shrinkage estimate above average (101), which might be difficult to justify from
an applied viewpoint. In general, however, the simulations showed that the size of “shrinkage
overshoot” was relatively small, so that it might cause only problems in specific practical cases,
wherein the qualitative movement needs some justification.

It canbeuseful to cast these phenomena inBayesian terms (following theBayesianperspective
on ridge regression as, for example, described in Hsiang, 1975). In these terms, the amplification
effect may be described as follows: Our prior knowledge specifies unrelated factors and abilities
drawn from a population with mean zero. Yet, regardless how strict our knowledge is (determined
via setting the common prior precision), there will always be some response vector such that some
of the test taker’s abilities is inferred larger under this prior than under a flat (improper) prior.
Further, shrinkage overshoot may be described as follows: If we have a test taker with an estimate
(assuming a flat prior) above average, then introducing the prior knowledge, i.e., assuming the
test taker was drawn from a population with mean zero, lowers his/her estimate toward a value
below average. Hence, it can be seen that the described effects are somewhat difficult to convey in
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terms of the usual Bayesian interpretation. We therefore think that the constrained optimization
formulation given in Sect. 4 provides a clearer explanation for the described shrinkage effects.

However, the interpretation of the estimate as a conditional expectation entails that the esti-
mate is optimal in terms of mean square error. This implies that, on average, the accuracy is
improved by using the shrinkage estimator (naively assuming the shrinkage term is based on the
true prior distribution with no misspecification). The prove of this classical result is given in ch.
7 of Searle, Casella, & McCulloch (2006). Hence, in terms of statistical accuracy, the shrinkage
estimator should be the preferred way of estimating the person parameter(s). We note that in
the unidimensional case they are valid types of estimates. In fact, they are free from paradoxi-
cal scoring (i.e., correct answers are always rewarded) and there is also no implied reversal in
the ordering of subjects. However, this changes in the multidimensional setup: Firstly, paradox-
ical scoring issues may arise, whereby correct answers are penalized on some latent dimensions
(Hooker et al., 2009; Hooker, 2010). However, note that this would not provide a valid argument
to avoid these types of estimates in all cases because the existence of such paradoxical scoring pat-
terns is dependent on the particular type of prior distribution. That is, for some type of priors (see
Hooker, 2010) paradoxical scorings do not occur regardless of the observed scoring pattern. If the
true prior coincides with one of these types of priors, then, by the same argument as stated above,
optimal and valid estimates are obtained by using the shrinkage estimator. Secondly though, the
results presented in this paper clearly show that there is yet another important property which
should be taken into account before adopting these types of estimates into practice—namely the
reverse shrinkage effect. As already explained, this can cause a further challenge in test score
interpretation and justification.

It should, however, be emphasized that the above statement on the statistical efficiency must
be treated with great care. That is, only in the case of a correct prior specification (i.e., the prior
coincideswith the true distribution of the latent abilities in the population), the results on optimality
hold.Hence, twonecessary conditions for the proper application of theEAPestimates immediately
arise. Firstly, the proposed model should fit the data of the test construction (calibration) well. If
this is the case, then there is also some evidence that the presumed normality distribution of the
latent abilities holds, because otherwise the test calibration data would already highlight some
misfit. This owes to the fact that for the fit of an IRTmodel not only the correct specification of the
item response functions is necessary, but—with the rare expectation of Rasch models—also the
distribution of the latent variables has to be specified correctly. Therefore, given a decent model
fit during test construction, a second prerequisite for the application of the EAP demands that the
population with respect to which the test is applied does only show minor differences from the
population with respect to which the test was constructed.

However, even in the benevolent case of a correct specification, the EAP estimates usually
introduce (additional) statistical bias, which only vanishes in very long tests. Although there
are methods to reduce the bias (Bock & Mislevy, 1982), the general issue remains. This sort of
bias is different from the bias that results from paradoxical scoring, but it may likewise entail
problems with the fairness of the scoring—due to the non-uniformity of the bias across the ability
levels. There are therefore multiple objections for the adoption of these estimates in the scoring
of individual test takers which underscore their rare usage for the purpose of psychological and
educational diagnostics. This limits the applicability of the results of the paper to (i) research cases
(examples are given below); to (i i) practical applications of multidimensional adaptive testing,
where there is a prime emphasis on obtaining statistical optimal estimates and (i i i) subscore
reporting as addressed by Haberman and Sinharay (2010). The latter paper also outlines some
interesting applications of the (EAP-based) subscore reporting:

“Failing candidates want to know their strengths and weaknesses in different content
areas to plan for future remedial work. States and academic institutions such as col-
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leges and universities often want a profile of performance for their graduates to better
evaluate their training and focus on areas that need instructional improvement” (p.
209 in Haberman & Sinharay, 2010)

In general the outlined problems only arise when shrinkage estimators are applied in practice
and when the test is multidimensional. Many tests in practice are constructed with the specific
aim to achieve unidimensionality or simple structure. These tests are then scored in terms of
monotone scores (in most cases: simple sum scores on each dimension), even if they do not
adhere to unidimensionality in a strict sense, i.e., there may exist some nonzero cross-loadings in
the matrix of factor loadings. They are therefore not prone to any of the described phenomena.
However, there are at least two unsatisfactory issues with this common practice. Firstly, we
construct scales according to psychometric theory to which the efficient estimation of a test taker’s
latent ability is of prime concern (in fact, this is the main point underlying the psychometric
theory of adaptive testing). Yet, the last stage in this process—namely the estimation of the
person parameters—seems to differ from the strict adherence to statistical methodology in that
oftentimes practitioners refrain from applying a textbook statistical estimate (MLE/Bayes) based
on a complete model. By the latter, we specifically mean that any realistic test battery, will
show some cross-loadings (even if constructed with a specific focus on unidimensionality) and—
perhaps evenmore importantly—will also consist of correlated latent dimensions.Hence, common
statistical reasoning would suggest that (a) incorporating the cross-loadings in the model8 and (b)
taking into account the statistical association between the latent dimensions could only improve
the accuracy of the estimates (this can be made rigorous via examining the area of confidence
regions and via examining the MSE). Thus, from the perspective of statistical efficiency, it may
very well be deduced that the common practice should move toward the incorporation of the full
factor loading structure and of factor correlations. This ultimately means that the test would be
scored as a multidimensional test with prior information (on the factor correlations) to which all
the results on the shrinkage effects apply. In fact, arguments for the incorporation of shrinkage
estimator in the tailored testing framework based on considerations of optimality were already
given by Owen (1969).

We also note that, as psychometric theory advances, a trend toward more complex models is
occurring. For example, the topic of MIRT is a relatively new one (Reckase, 1997), yet significant
research interest has been devoted to the advancement of MIRT models. Additionally, topics like
multidimensional adaptive testing (Segall, 1996) clearly show that these models aim at improving
the classification and diagnoses of test takers. In some cases, direct (multiple hurdle) rules based
on multidimensional scores are considered (Segall, 2000). In other cases, the scores derived from
multidimensional models are used to derive performance profiles. For example, Luecht (1996)
discusses the use of multidimensional scores in the context of a medical certification test. For the
university and educational context, Haberman and Sinharay (2010) point out that multidimen-
sional (EAP based) scores may be used to evaluate the training of students and to identify areas
which need improvement. A trend toward the incorporation of the more realistic multidimen-
sional models can also be seen in refinements of previously unidimensionally scored scales. A
good example is the Law School Admission Test (LSAT). As already noted by Bock and Lieber-
man (1970), for some subtests of the LSAT7, the hypothesis of unidimensionality is questionable.
Wainer (1994) provided the testlet model as an improvement over the simple unidimensional
model. As the latter boils down to a multidimensional model with correlated latent dimensions,
we have an example of a test within a high-stakes testing framework which was not intentionally
designed multidimensional, but upon closer examination turns out to be multidimensional. A

8Or stated differently: Scoring a test with cross-loadings via ignoring the loadings can in statistical terms be viewed
as applying an estimate corresponding to a misspecified model—namely a model wherein the nonzero loadings are set to
zero.
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similar example of a high-stakes testing framework is provided by the Armed Services Vocational
Aptitude Battery, wherein the correlations among the latent dimensions are given in Table 2 of
Segall (2001). Further, the scoring algorithm described by Segall (2001) employs unidimensional
shrinkage—and a rationale for the incorporation of the significant correlations between the latent
dimensions is provided in Segall (1996).

Further, many testing setups naturally require multidimensionality. The simultaneous mod-
eling of accuracy and speed in tests with a speed component either requires a model wherein the
latent parameters may not be seperated (e.g., a drift-diffusion model; see van der Maas et al.,
2011), or a hierarchical response time model (van der Linden, 2007) which requires specification
of a joint prior for the latent variables with nonzero correlations. Likewise, the measurement of
change in a longitudinal setup requires the specification of a joint (prior) distribution of the ability
and the change parameter(s). As an alternative, the inference of the latent abilities on the first time
point might be treated as prior knowledge for the inference on the subsequent time point.

In conclusion, this sketches a multitude of test settings wherein the behavior of multidi-
mensional shrinkage estimators is of interest. The counterintuitive results on shrinkage in the
multivariate case as outlined in this paper provide a novel perspective with respect to which these
more complex models should be evaluated in future research—especially when these models are
ultimately used for diagnostic and classification purposes. Additionally, extensions of the outlined
results toward other types of shrinkage penalties (e.g., L1 loss) can be of interest and the graphical
interplay of the penalty term with the likelihood contours, as sketched in Sect. 4, can furnish a
useful approach in the analysis of these extensions.

Finally, there is another subtle (but important) by-product of the introduction of the
penalty/prior term, which has not been the focus of this paper, but which has been previously
discussed in the context of paradoxical scoring effects in multidimensional item response theory
models (see Hooker et al., 2009; Hooker, 2010): The scoring direction of each individual itemmay
change. That is, if, for example, higher scores on item 1 increase the numerical IQ estimate when
using MLE scoring, it might very well be the case that higher scores on the very same item lead to
decreases in the numerical IQ estimate when using the shrinkage estimator (of course, the reverse
is also possible, hence this should not be read as an argument in favor of using MLE instead of
MAP estimates). Thus, whether a test taker is penalized or rewarded for a better performance on
an item depends on the applied type of ability estimation (MLE or Bayes). For a more detailed
discussion of this topic, we refer the reader to the appendix, wherein we describe the analysis of
this effect in a two-dimensional setting.

Therefore,wewant to point out that statistically reasonable estimates can (still) pose problems
and challenges when considered under additional criteria (e.g., test fairness in the domain of
educational testing) which may be highly relevant for the application at hand. Moreover, we view
the described effects as providing yet another example, wherein the intuition developed from
one-dimensional models leads us astray in higher dimensional models. That is, we may very
well have a reasonable explanation for a statistical effect in the one-dimensional setting (e.g., the
explanation of the shrinkage effect in the IQ testing example with a single dimension), yet the
very same method of explanation seems questionable and not applicable when used within two-
or higher dimensional settings.

Overall we do not want to overemphasize the potential problems of the outlined effects.
There may very well be a multitude of multidimensional tests wherein the described phenomena
do either not pose any threats (because of the way the scores are used) or are diminished in their
magnitude due to a long test length. We have sketched three areas (see (i), (i i), (i i i) above),
wherein we think it is very helpful to be aware of the problems posed by applying shrinkage
estimators. The existence of these effects in conjunction with the already established results
on paradoxical scoring behavior point to the necessity to formulate explicit requirements for
the behavior of person parameter estimates in terms of non-statistical properties. That is, for
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reasons of fairness one may require monotonicity of the scoring in each item. Likewise, one may
safeguard against the effects discussed in this paper by requiring “similar” scoring behavior across
the multiple dimensions when introducing prior knowledge. Taken together with other important
notions (such as, for example, the sensitivity to extreme responses) these requirements may serve
as an additional checklist which adds additional aspects to the (usually predominantly statistically
driven) choice of estimates for the inference of the latent abilities.
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A Farkas’ Lemma

The statement of the following Lemma can be found in many textbooks on convex analysis. As it
is frequently used in the proofs, we restate it here. To introduce the central notation, let (ai )i=0,...m
denote fixed vectors in R

n . By definition, we say that an inequality aT0 x ≤ 0 is a consequence
of the system of inequalities (aTi x ≤ 0)i=1,...m if and only if every x satisfying aTi x ≤ 0 for
i = 1, . . .m also satisfies aT0 x ≤ 0. With this terminology in mind, Farkas’ Lemma can be stated
as follows (adapted from Corollary 22.3.1 in Rockafellar, 1970):

Lemma 1. (Farkas’ Lemma) An inequality aT0 x ≤ 0 is a consequence of the system

aTi x ≤ 0, i = 1, . . .m

if and only if there exist non-negative real numbers λ1, . . . λm such that

m∑

i=1

λi ai = a0.

Note that the equation appearing in Farkas’ Lemma is equivalent to stating that the vector a0 is
expressible as a non-negative linear combination of the set of vectors (ai )i=1,...m .

B Dependency of the Scoring Direction on the Shrinkage Parameter—the Two-Dimensional
Case

In the discussion, we raised a question concerning the influence of the penalty parameter t on the
scoring direction of an item. In this appendix, we provide an analytic view on the topic. More
specifically, given a two-dimensional test of the linear model type (i.e., modeling assumptions
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in accordance with case 1) with positive predictors, we examine as to whether there exist two
different shrinkage levels, t ′ �= t , such that an item is scored in different directions under these
shrinkage levels. That is, increasing the item score increases the latent ability estimate when the
shrinkage level t ′ is used, the same increase lowers the corresponding estimate when the shrinkage
level t is used.
To this end, recall the expression for the shrinkage estimator:

β̂(t) = (XT X + t I )−1XT y.

Without loss of generality, we will restrict the following discussion to the first component of
β̂(t). We will further restrict ourselves to the discussion of a compensatory test pattern, that is,
we will assume an entry-wise positive design matrix. In the psychometric framework, the latter
corresponds to the notion that each latent ability contributes positively to the solving of each item.
The scoring direction of item j with respect to the first dimension is determined by the sign of

eT1 (XT X + t I )−1XT e j = eT1 (XT X + t I )−1x j ,

wherein x j denotes the j-th row of the design matrix (considered as a column vector).
For the two-dimensional setting we further have

XT X =
(
a b
b d

)

, XT X + t I =
(
a + t b
b d + t

)

,

from which an expression for the inverse (XT X + t I )−1 may directly be deduced as

(XT X + t I )−1 = f (t)

(
d + t −b
−b a + t

)

,

with f (t) denoting a strictly positive function—only depending on the determinant of the matrix
XT X + t I . As f (t) is strictly positive, we may drop it for the sake of analyzing the sign of the
expression eT1 (XT X + t I )−1x j . Hence, the sign is determined by the formula

eT1

(
d + t −b
−b a + t

)

x j = (
d + t −b

)
(
x j1
x j2

)

= dx j1 + t x j1 − bx j2.

Accordingly, as x j1 > 0, we have

eT1 (XT X + t0 I )
−1x j = 0

for the choice

t0 := bx j2 − dx j1
x j1

. (19)

Note that choosing t according to Eq. (19) leads to an estimate which is insensitive to changes
of the score on the j-th item. Further, choices t ′ > t0 > t lead to different scoring directions.
That is, assuming x j1 > 0, higher scores on the j-th item are rewarded when the level t ′ is used,
whereas higher scores are penalized when the level t is used. However, currently this just refers
to a hypothetical scenario as the value t0 computed in (19) may be negative and may thus not
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correspond to a valid choice of a (necessarily positive) penalty parameter. We therefore need to
examine the sign of t0 more closely.
To this end, note first that for a valid choice of t0 wemust have bx j2−dx j1 > 0.Wewill show that
there is at least one item j fulfilling this condition. We argue by contradiction. Therefore, assume
that bx j2 − dx j1 ≤ 0 holds for all choices of j . Multiplying both sides by x j2 and summing over
j then leads to:

b
∑

j

x2j2 ≤ d
∑

j

x j1x j2.

According to the definitions (recall that b and d are defined via inner products of columns of X ),
we further have b = ∑

j x j1x j2 and d = ∑
j x

2
j2. Hence, it follows that

bd ≤ db

which can only be true if all inequalities aren’t strict, i.e., if bx j2 − dx j1 = 0 for all j . The latter
implies bx j2 = dx j1 for all j . Assuming b �= 0 (which is implied by the assumption of a positive
design matrix), we therefore have derived a linear dependence between the columns of X . This
result contradicts the assumption of a design matrix of full column rank. Therefore, it follows that
there exists at least one j such that bx j2 − dx j1 > 0 holds. Moreover, for this j we can obtain a
valid t0 via (19) with all the implications that were outlined in the previous paragraph.

Theorem 6. Let X denote a (k×2)matrix with rank 2 and strictly positive entries. Let δ1, j (t) :=
eT1 (XT X+t I )−1XT e j denote the scoring direction of scoring the j-th itemwith respect to the first
dimension. Then there is an item j∗ and a positive penalty parameter t0 such that for t ′ > t0 > t

δ1, j∗(t
′) > 0, δ1, j∗(t0) = 0, δ1, j∗(t) < 0

holds.

Stated in Bayesian terms: There is some level of prior knowledge such that the score on the item
is irrelevant with respect to the estimate of the first component. For stronger priors, the item is
scored positively, whereas for weaker priors (controlled by the magnitude of t) the item is scored
negatively.

Remark. For the related topic of the discussion on different prior specifications on (paradoxical)
scoring directions of items, i.e., for the examination ofwhich choices of prior correlations� enable
paradoxical scoring, we refer the reader to Hooker (2010). Note that the analysis of Hooker is
concerned with the deduction of paradoxical scoring given a fixed � (not necessarily diagonal),
whereby paradoxical scoring means that increases in the item score lead to decreased estimates
for some latent dimension. In contrast, the previous analysis was concerned with changes in the
scoring direction when the precision of prior information is changed.

C Relation to Results on Paradoxical Scoring in Multidimensional Latent Variable Models

Readers familiar with the paradoxical scoring effect in multidimensional IRT models (Hooker,
Finkelman&Schwartzman, 2009)might wonder as towhether there is a close connection between
the outlined results on “paradoxical shrinkage” and the paradoxical scoring effect. In this appendix,
we clarify similarities and differences of these two phenomenons.
We thereby need to distinguish between two levels: A semantic level, referring to the meaning
of these effects, and a technical level which “only” deals with similarities in the mathematical
approach to deduce these effects.
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Semantic Level

It will be helpful to recall first the main parameters of the underlying mathematical model. In a
very broad way, the responses of a test taker to the items of a multidimensional test determine a
loglikelihood function l(β|y). The latter is composed of individual item contributions li , that is,
(due to the local independence assumption) we have the decomposition l(β|y) = ∑k

i=1 li (β|y).
Depending on the type of inference (i.e., Bayesian vs. Likelihood), we also incorporate a log-
prior with the strength of prior information controlled by a (scalar) shrinkage parameter t . The
resulting function, which forms the basis for statistical inference, is denoted f (β, y, t) with
the corresponding maximizer denoted by β̂(y, t). The purely loglikelihood-based inference is
included in this definition via the relation f (β, y, 0) = l(β|y) with MLE given by β̂(y, 0).
The paradoxical scoring effect describes the phenomenon that increasing the score on an item
decreases the estimate of at least one latent ability—despite the assumption that each latent
dimension contributes positively to the solving of each item. Within the factor analysis model
used in Sect. 2, the latter may be formalized by a loading matrix containing solely nonnegative
entries (Jordan and Spiess, 2012). We emphasize that in the study of paradoxical scoring the
shrinkage parameter, if present at all, is fixed.9 The interest focuses on studying changes of the
response yi on the estimates for the latent abilities. Formally, for ordered response vectors y′ > y
(i.e., y′

i ≥ yi ∀i and y′
j > y j for some j) we compare β̂(y′, t) − β̂(y, t) and conclude that

this difference contains some negative component. The latter implies that the test taker with a
“worse” performance (y) obtains a higher ability estimate on some dimension. Of course this
raises questions on test fairness which are further described in Hooker et al. (2009) and which
were also discussed in later generalizations of the effect (Jordan & Spiess, 2012; van der Linden,
2012; van Rijn & Rijmen, 2015).
To summarize some key aspects of the paradoxical scoring effect:

• The comparison focuses on response changes.
• With respect to the estimates, the magnitude of β̂ is of no concern in the derivations. The

qualitative comparison as to whether we have β̂i (y′, t)− β̂i (y, t) < 0 for some component
i matters.

• The shrinkage parameter is absent in most derivations of the effect. If the shrinkage param-
eter is present, then it is fixed.

• In order for the effect to be labelled as paradoxical, some notion of nonnegative item
discrimination is paramount. In most modeling classes, the latter boils down to requiring a
model with a nonnegative loadingmatrix (or the IRT counterpart of amatrix of nonnegative
item discrimination vectors).

• Typically, the paradoxical effect holds irrespective of the specific response pattern. That
is, solely based on the loading matrix X , items can be identified which are always scored
paradoxically (see Jordan & Spiess, 2018).

• The effect describes a potential practical fairness issue, which arises when comparing the
performance of two test takers.

On the other hand, the examinations of the paradoxical shrinkage effects described in this paper
do not study changes in y, but rather are focused on studying changes in the shrinkage parameter
on the magnitude of latent ability estimates. Formally, we examine β̂(y, t ′) and β̂(y, t) for t ′ > t .
More specifically, we primarily compare the magnitude of each component of β̂(y, ·) under both
shrinkage levels and derive an amplification effect, if some component exhibits a lower magnitude
under the lower shrinkage level. Note that there is no intend on comparing two test takers with
different performances (the central aspect underlying the paradoxical scoring effect) and also no

9In fact, with the exception of the publication by Hooker (2010), almost all papers on paradoxical scoring focus on
the maximum likelihood framework.
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reason to impose restrictions on the modeling class via postulating a nonnegative loading matrix
(as the generalization in Theorem 2 highlights).
To summarize some key aspects of the paradoxical shrinkage effect(s) (i.e., primarily the ampli-
fication effect, but most comments are also valid for the “shrinkage overshoot” effect)

• The comparison focuses on changes of the penalty term t—responses y are fixed.
• With respect to the estimates, the comparison of the magnitudes of β̂i is of prime concern

in the derivations (except for the “shrinkage overshoot” phenomenon).
• In order for the effect to be labeled as paradoxical, we do not need themodeling assumption

of compensation in the latent abilities, i.e., it is not required that each item discriminates
positively on each dimension.

• The paradoxical shrinkage effect typically can only be deduced for some specific responses
y.

• The effect describes a potential practical issue when comparing the dependency of a test
taker’s latent ability estimate on the prior knowledge (i.e., stronger prior knowledge is
reflected by a higher choice of the shrinkage parameter).

Technical Level

The derivations underlying the shrinkage effects, as described in Sect. 2, are based on Farkas’
Lemma (or more generally: on results referring to separations of convex sets). On the other hand,
the derivations of paradoxical scoring results, make use of the condition of negative mixed second
derivatives of the loglikelihood function (or variants thereof—like depicted in Jordan & Spiess,
2012) and of the presence of an itemmeasuring a single dimension (Hooker et al., 2009). As such,
there is no direct mathematical connections between these approaches.
However, one may attempt to artificially embed our shrinkage scenario in the paradoxical scoring
scenario as follows (we will highlight below, that at some point, this approach fails): In a purely
formal way, we may view the penalty term −t

∑
i β

2
i as the loglikelihood contribution of an

additional item. That is,we compare a test takerwith corresponding loglikelihood l(β|y)−t
∑

i β
2
i

with another test taker with corresponding loglikelihood l(β|y) − t ′
∑

i β
2
i . Now, if we impose

the restriction of a positive loading matrix, then it can be shown that each loglikelihood function
satisfies the fundamental condition of negative mixed second derivatives. However, in order that
the proof of the results on paradoxical scoring carries over10 to the present context, it would also
be necessary that the difference of the two log-likelihood functions depends on a single latent
dimension only—which is not the case as we have: l(β|y)− t ′

∑
i β

2
i −(l(β|y)− t

∑
i β

2
i ) = (t−

t ′)
∑

i β
2
i . The latter is a function of all components of β. Therefore, to the best of our knowledge,

the potential of applying known results on paradoxical scoring to the study of shrinkage effects
is confined to a very small special case—namely the special case in which this function reduces
to a function of a single component (see Sect. 2.4 on flat priors). Finally, we also note that the
mere dependency of the shrinkage effect on the response pattern also points toward this limited
transferability. For suppose we could apply the reasoning underlying the derivation of paradoxical
scoring. Then, we would have to conclude that the effect holds irrespective of the response pattern
y which apparently is not true.
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