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Deep Neural Network Enabled Space Group Identification in EBSD
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Abstract

Electron backscatter diffraction (EBSD) is one of the primary tools in materials development and analysis. The technique can perform
simultaneous analyses at multiple length scales, providing local sub-micron information mapped globally to centimeter scale. Recently, a
series of technological revolutions simultaneously increased diffraction pattern quality and collection rate. After collection, current
EBSD pattern indexing techniques (whether Hough-based or dictionary pattern matching based) are capable of reliably differentiating
between a “user selected” set of phases, if those phases contain sufficiently different crystal structures. EBSD is currently less well suited
for the problem of phase identification where the phases in the sample are unknown. A pattern analysis technique capable of phase iden-
tification, utilizing the information-rich diffraction patterns potentially coupled with other data, such as EDS-derived chemistry, would
enable EBSD to become a high-throughput technique replacing many slower (X-ray diffraction) or more expensive (neutron diffraction)
methods. We utilize a machine learning technique to develop a general methodology for the space group classification of diffraction pat-
terns; this is demonstrated within the (4/m, �3, 2/m) point group. We evaluate the machine learning algorithm’s performance in real-world
situations using materials outside the training set, simultaneously elucidating the role of atomic scattering factors, orientation, and pattern
quality on classification accuracy.
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Introduction

Conventional electron backscatter diffraction (EBSD) is a stan-
dard scanning electron microscope (SEM)-based technique used
to determine the three-dimensional orientation of individual
grains in crystalline materials. Phase differentiation is a necessary
component of this technique for the analysis of multi-phase sam-
ples and has been of particular interest in the community (Britton
et al., 2010; Foden et al., 2019, 2019; Hielscher et al., 2019).
However, determining the underlying structure of unknown
materials (phase identification) has remained a challenge in
EBSD. Currently, Hough- or dictionary-based pattern matching
approaches require a “user-defined” set of phases at the onset
of analysis (Chen et al., 2015; Nolze et al., 2017; Singh & De
Graef, 2017; Singh et al., 2018; Tong et al., 2019). The Hough
transform-based method is the most common approach to
pattern matching used in commercial systems. Hough-based
indexing looks for the diffraction maxima and creates a sparse
representation of the diffraction pattern (Lassen et al., 1994).
The sparse representation is used with a look-up table of interpla-
nar angles constructed from the set of selected reflectors for
phases specified by the user. Beyond requiring the user to have
sufficient knowledge of the sample before beginning analysis,
the process remains susceptible to structural misclassification

(McLaren & Reddy, 2008; Chen & Thomson, 2010; Karthikeyan
et al., 2013). Potential phase identification solutions leveraging
energy-dispersive X-ray spectroscopy (EDS) or wavelength-
dispersive X-ray spectroscopy (WDS) have been previously dem-
onstrated and adopted commercially (Goehner & Michael, 1996;
Nowell & Wright, 2004; Dingley & Wright, 2009). These strategies
are effective for single-point identification of crystal structure sub-
ject to an expert user’s ability to select the correct phase from the
potential matches. Methods utilizing hand-drawn lines overlaid
on individual Kikuchi diffraction patterns have been developed
for determining the Bravais lattice or point group (Baba-Kishi
& Dingley, 1989; Goehner & Michael, 1996; Michael & Eades,
2000; Li & Han, 2015). These represent important milestones
for phase identification from EBSD patterns; however, they
remain limited by at least one of the following: analysis time
per pattern, the need for an expert crystallographer, or necessitat-
ing multiples of the same diffraction pattern with different SEM
settings (Li & Han, 2015).

Going beyond Bravais lattice and point group identification to
determine the space group of the crystal phases is, in general, a
challenging task. X-ray diffraction (XRD) and transmission elec-
tron microscopy (TEM)-based convergent beam electron diffrac-
tion (CBED) are the most common solutions (Post & Veblen,
1990; Ollivier et al., 1997). X-ray diffraction becomes challenging
in multi-phase samples owing to overlapping peaks, texture
effects, large numbers of peaks for low-symmetry phases, and
pattern refinement. Moreover, the information in XRD patterns
does not provide detailed microstructure information, such as
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morphology, location, or grain statistics that can be observed
using EBSD’s better spatial resolution. However, with careful
analysis, it is possible to extract crystal symmetry, phase fractions,
average grain size, and dimensionality from XRD (Garnier, 2009).
On the other hand, CBED is limited by intense sample prepara-
tion, small areas of analysis, and substantial operator experience
(Vecchio & Williams, 1987, 1988; Williams et al., 1991). In com-
parison, EBSD can be performed on large samples (Bernard et al.,
2019; Hufford et al., 2019; Wang et al., 2019; Zhu et al., 2020),
including three-dimensional EBSD (Calcagnotto et al., 2010),
with high precision (∼2°), high misorientation resolution (0.2°)
and high spatial resolution (∼40 nm) (Chen et al., 2011).
Furthermore, the diffraction patterns collected in EBSD contain
many of the same features observed in CBED, including excess
and deficiency lines and higher-order Laue zone (HOLZ) rings
(Michael & Eades, 2000; Winkelmann, 2008). Identification of a
space group-dependent property (chirality) was recently demon-
strated in quartz using single experimental EBSD patterns
(Winkelmann & Nolze, 2015). However, state of the art EBSD
software cannot currently classify the collected diffraction pat-
terns to their space group and can misidentify the Bravais lattice.
Common examples encountered in EBSD include the difficulty
distinguishing L12 (space group 221) from FCC (space group
225) or B2 (space group 221) from BCC (space group 229)
(Gao et al., 2016; Li et al., 2018; Wang et al., 2018). Inspired by
the similarities between CBED and EBSD patterns (Vecchio &
Williams, 1987; Cowley, 1990; Michael & Eades, 2000), we pro-
pose applying an image recognition technique from the machine
learning field to provide an opportunity for real-time space group
recognition in EBSD. Given that CBED patterns contain sufficient
3-D structural diffraction detail to allow structure symmetry
determination to the space group level (Vecchio and Williams,
1987), and given the considerable similarity between CBED and
EBSD patterns, along with the much larger angular view captured
in EBSD patterns, and the demonstration of chirality determination
in experimental patterns (Winkelmann & Nolze, 2015), it is reason-
able to consider space group differentiation in EBSD patterns.

The recent advent of deep neural networks, such as the convo-
lutional neural network (CNN) designed for image data, offer an
opportunity to address many of the challenges to autonomously
extracting information from diffraction data (Ziletti et al., 2018;
Oviedo et al., 2019). CNNs are of particular interest owing to
multiple advantages over classical computer vision techniques,
which require a multitude of heuristics (Wang et al., 2005;
Alegre et al., 2006; Lombaert et al., 2014; DeCost & Holm,
2015; Zhu et al., 2020)—such as detecting Kikuchi bands,
accounting for orientation changes, determining band width,
etc.,—and carrying the burden of developing the logic that defines
these abstract qualities. Instead, this deep learning technique (e.g.,
CNNs) determines its own internal representation of the data, via
backpropagation (Rumelhart et al., 1986), such that it maximizes
performance at the discrimination task. This is the underlying
principle behind deep representation learning (i.e., deep neural
networks) (LeCun et al., 2015). CNNs operate by convolving
learnable filters across the image, and the scalar product between
the filter and the input at every position, or “patch”, is computed
to form a feature map. The units in a convolutional layer are orga-
nized as feature maps, and each feature map is connected to local
patches in the previous layer through a set of weights called a filter
bank. All units in a feature map share the same filter banks, while
different feature maps in a convolutional layer use different filter
banks. Pooling layers are placed after convolutional layers to down

sample the feature maps and produce coarse grain representations
and spatial information about the features in the data. The key
aspect of deep learning is that these layers of feature detection
nodes are not programmed into lengthy scripts or hand-designed
feature extractors, but instead are “learned” from the training
data. CNNs are further advantageous over other machine learning
models since they can operate on the unprocessed image data and
the same architectures are applicable to diverse problems. For
example, a similar methodology was recently demonstrated to
identify the Bravais lattice of an experimental EBSD pattern
(Kaufmann et al., 2020). Another recent example has applied a
CNN to simulated EBSD patterns from eight materials that are
typically confused in conventional analyses (Foden et al., 2019)
with exceptional success.

In the present work, it is demonstrated that convolutional neu-
ral networks can be constructed to rapidly classify the space group
of singular EBSD patterns. This process is capable of being uti-
lized in a real-time analysis and high-throughput manner in
line with recent advancements in EBSD technology (Goulden
et al., 2018). The method is described in detail and demonstrated
on a dataset of samples within the (4/m, �3, 2/m) point group.
The dataset utilized further allows for studying the impact that
scattering intensity factors (Hanson et al., 1964; Wright &
Nowell, 2006) have on classification accuracy. Heavier materials
tend to have higher atomic scattering factors in electron diffrac-
tion, resulting in more visible reflectors for a diffraction pattern
from the same space group and three-dimensional orientation.
Training on only low or high atomic number materials is found
to reduce future classification accuracy. Increasing the range of
atomic scattering factors utilized in the training set, even if the
minimum and maximum �Z materials within the space group
are not both included, alleviates the effects of this physical phe-
nomenon on the neural network’s classification abilities.
Furthermore, this work provides a brief analysis regarding the
effect of two common pattern quality metrics and train/test orien-
tation differences on classification accuracy. The inner workings
of this deep neural network-based method are studied using
visual feature importance analysis. By allowing a machine learn-
ing algorithm to perform EBSD pattern classification to the
space group level, a significant advancement in the utilization
and accuracy of phase identification by EBSD can be achieved.
When combined with chemical information on phases, for exam-
ple, from energy-dispersive X-ray spectroscopy, this approach can
lead to automated phase identification.

Materials and Methods

Materials

Eighteen different single-phase materials, comprising 6 of the 10
space groups within the (4/m, �3, 2/m) point group, were selected
for demonstrating the proposed space group classification meth-
odology. Suitable samples for the remaining four space groups
could not be obtained. This point group was chosen as it contains
space groups that are very similar structurally and represent a sig-
nificant classification challenge for conventional EBSD. The
method of fabrication and homogenization (if applicable) for
each sample is listed in Supplementary Table A1. The homogeni-
zation heat treatments were performed for three weeks in an inert
atmosphere at temperatures guided by each phase diagram.
Samples were mounted, polished to 0.05 μm colloidal silica, and
then vibratory polished with 0.05 μm alumina for several hours.
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Electron Backscatter Diffraction Pattern Collection

EBSD patterns (EBSPs) were collected in a Thermo-Fisher (for-
merly FEI) Apreo scanning electron microscope (SEM) equipped
with an Oxford Symmetry EBSD detector. The Oxford Symmetry
EBSD detector was utilized in high resolution (1244 × 1024)
mode. The geometry of the set-up was held constant for each
experiment. The working distance was 18.1 mm ± 0.1 mm.
Aztec was used to set the detector insertion distance to 160.2
and the detector tilt to −3.1. The imaging parameters were
20 kV accelerating voltage, 51 nA beam current, 0.8 ms ± 0.1 ms
dwell time, and 30 pattern averaging.

After collecting high-resolution EBSPs from each material, all
patterns collected were exported as tiff images. Supplementary
Figure A1 in the Appendix shows example images of the high-
resolution diffraction patterns collected from the materials uti-
lized in this study, organized by space group. All collected data
for each material were individually assessed by the neural net-
work, and the collection of images for each sample may contain
partial or low-quality diffraction patterns, which will decrease the
accuracy of their identification. See Supplementary Figure A2 for
the inverse pole figures (IPFs) for each material. The IPFs were
constructed using the MTEX software package (Bachmann et al.,
2010). The data in Supplementary Figure A2 were first plotted
using the scale bars set automatically by MTEX to show the fine
distribution of the data, and then with the scale bar fixed from 0
to 5 times random for the purpose of demonstrating the data
does not approach medium texture levels. Analysis shows the
experimental datasets have very low texture, typically in the range
of two to three multiples of uniform distribution (M.U.D.) also
referred to as times random. Typically, 5–10 is considered medium
texture and greater than 10 is considered strong texture.

See Supplementary Figure A3 for histograms of mean angular
deviation (MAD) and band contrast (BC) to compare pattern
quality for each material. Each plot is also annotated with the
mean (μ) and standard deviation (σ). The purpose of not filtering
the test data was to assess the model as it would be applied in
practice. Only the training sets were visually inspected to confirm
high-quality diffraction patterns (no partial patterns) were utilized
in fitting the neural network.

Neural Network Architecture

The well-studied convolutional neural network architecture
Xception (Chollet, 2017) was selected as the basis architecture
for fitting a model that determines which space group a diffrac-
tion pattern originated from. Supplementary Figure A4 in the
appendix details a schematic of the convolutional neural network
operating on an EBSP. For a complete description of the Xception
architecture, please refer to Figure 5 in (Chollet, 2017).

Neural Network Training

Training was performed using 400 diffraction patterns per space
group, evenly divided between the number of materials the
model had access to during training. For example, if the model
was given two materials during training, 200 diffraction patterns
per material were made available. The validation set contained
100 diffraction patterns per space group, equivalent to the stan-
dard 80:20 train/validation split. The test set contains the rest of
the patterns that were not used for training or validation. Model
hyperparameters were selected or tuned as follows. Adam

optimization with a learning rate of 0.001 (Kingma & Ba, 2014),
and a minimum delta of 0.001 as the validation loss were employed
for stopping criteria. The weight decay was set to 1e−5 following
previous optimization work (Chollet, 2017). The CNNs were
implemented with TensorFlow (Abadi et al., 2016) and Keras
(Chollet, 2015). The code for implementing these models can be
found at https://github.com/krkaufma/Electron-Diffraction-CNN
or Zenodo (DOI: 10.5281/zenodo.3564937).

Diffraction Pattern Classification

Each diffraction pattern collected, but not used in training
(>140,000 images), was evaluated in a random order by the cor-
responding trained CNN model without further information. The
output classification of each diffraction pattern was recorded and
saved in a (.csv) file and are tabulated in the Appendix. All cor-
responding bar plots of these data were generated with
MATLAB. Precision and recall were calculated for each material
and each space group using Scikit-learn (Pedregosa et al., 2011).
Precision (equation 1) for each class (e.g., 225) is defined as the
number of correctly predicted images out of all patterns predicted
to belong to that class (e.g., 225). Recall is the number of correctly
predicted patterns for each class divided by the actual number of
patterns for the class (equation 2).

Precision = true positives
true positives+ false positives

(1)

Recall = true positives
true positives+ false negatives

(2)

Neural Network Interpretability

Gradient-weighted class activation mapping (Grad-CAM) was
employed to provide insight into the deep neural network
(Selvaraju et al., 2017). This method computes the importance
of local regions in the diffraction image, normalizes them from
0 to 1, and is overlaid as a localization heatmap highlighting
the important regions in the image. The “guided” backpropaga-
tion modifier was used to achieve pixel-space gradient visualiza-
tions and filter out information that suppresses the neurons.
This information can be safely filtered out since we are only inter-
ested in what image features the neuron detects with respect to the
target space group. The gradients flowing into the final convolu-
tion layer were targeted for two reasons: (i) convolutional layers
naturally retain spatial information unlike the fully-connected lay-
ers and (ii) previous works have asserted that with increasing
depth of a CNN, higher-level visual constructs are captured
(Bengio et al., 2013; Mahendran & Vedaldi, 2016).

Results and Discussion

The model is first trained on one material from each of six space
groups in the (4/m, �3, 2/m) point group; there are 10 space
groups within the (4/m, �3, 2/m) point group, but suitable sam-
ples for 4 of these space groups could not be obtained. The first
iteration uses the material with the largest formula weighted
atomic number (�Z) (i.e., atomic scattering factor) in order to
establish a baseline performance. Ta was used as the training
material for space group 229 instead of W since training would
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require nearly 50% of the available W diffraction patterns. Since
W and Ta only differ by one atomic number, Ta will serve as a
good baseline measurement and provide information about
small steps in �Z. This baseline will be compared to models trained
using materials with a reduced number of visible reflectors result-
ing from lower atomic scattering factors. Figure 1 demonstrates
this effect using a similarly oriented experimental diffraction pat-
tern from Al and Ni with the same four zone axes labeled. The
diffraction pattern from Ni has significantly more observable
information (Kikuchi bands) since the atomic scattering factor
is modulating their intensity. Using a limited number of materials
(e.g., one) to represent the entire population of the space group
when the neural network is learning the filters that maximize clas-
sification accuracy is likely to yield representations that are not as

effective when Kikuchi bands are more or less visible based on
diffraction intensity.

Figure 2 shows the normalized accuracy of the first iteration of
the model at classifying each of the 18 materials to the correct
space group after learning from one material per class. Using
only one material during training creates a significant opportunity
for the neural network to “invent” representations that are not
based on space group symmetry. The number of patterns from
a given material that were classified to each space group is
given in Appendix Supplementary Table A1. As shown in
Figure 2, the model performs significantly better than random
guessing (the dashed line at 16.7%) on multiple materials, includ-
ing 6 of the 12 materials that were not in the training set. Of those
6, it achieves better than 45% accuracy on 4 of them: (Ni3Al,

Fig. 1. Effect of atomic scattering factors on observable Kikuchi bands. Al (Z = 13) and Ni (Z = 28). Despite belonging to the same space group, the symmetry infor-
mation visible for the lower atomic number Al is noticeably reduced compared with Ni.

Fig. 2. Plots of normalized classification accuracy after fitting the model with the high atomic number materials. (a) Space group 221; trained on FeNi3. (b) Space
group 223; trained on Mo3Si. (c) Space group 225; trained on TaC. (d) Space group 227; trained on Ge. (e) Space group 229; trained on Ta. (f) Space group 230;
trained on Al4CoNi2. The dashed line represents the chance of randomly guessing the correct space group. The formula weighted atomic number is located below
each material.
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Cr3Si, W, and Al4Ni3). This is a good indicator that the model is
learning useful features for differentiating the space groups,
instead of trivial ones that only work during the training process.
Furthermore, analysis of the IPFs in Supplementary Figure A2
shows that these materials can have distinctly different orientation
distributions. As an example, the Al4Ni3 sample has a greater dis-
tribution of data with orientations near [001] in X, Y, and Z than
the material used in training (Al4CoNi2). Yet, the model achieves
95% accuracy on Al4Ni3. From Supplementary Table A1, the over-
all accuracy of the model is 51.2%, well above the 16.7% chance of
guessing correctly. It is observed that new materials with similar
atomic scattering factors to the training material tend to have
higher classification accuracy. Mo3Si and Cr3Si demonstrate that
large differences in atomic scattering factor is not the penultimate
factor and does not prevent accurate classification when evaluat-
ing new materials. There are also several materials with similar
average Z that are rarely misclassified as one another. These
include NiAl (�Z = 20.5), FeAl (�Z = 19.5), and Cr3Si (�Z = 21.5)
as well as Ni3Al (�Z = 24.25) and NbC (�Z = 23.5).

Studying the misclassification events in Supplementary
Table A1 provides further valuable insight. For example, the FeAl
and NiAl samples are both B2, an ordered derivative of the BCC
lattice, and the highest number of misclassifications for these two
materials belong to space group 229 and 230. Figure 3 shows the
difficulty of distinguishing these two space groups, a common
problem in the literature (Gao et al., 2016; Li et al., 2018).

Using the previous model as a baseline, the next three itera-
tions study the effect of swapping the material used to represent
a space group with the lowest average atomic number material in
the dataset. First, TaC was replaced with Al in space group 225.
The results of the exchange is shown in Figure 4 and
Supplementary Table A2 in the Appendix. The plots in Figure 4
look largely unchanged except for space group 225 (Fig. 4c), for
which materials with the lowest atomic scattering factors are now
the most accurately classified. Furthermore, Supplementary
Table A2 shows that the incorrect classifications for all other
space groups are now primarily space group 225.

In order to confirm the effects observed by exchanging Al for
TaC in space group 225 previously, Si is exchanged with Ge in
space group 227 (Fig. 5 and Supplementary Table A3). The train-
ing set for space group 225 is returned to TaC. The two space
groups most affected by this change are 225 and 227, which
both have FCC symmetry elements. For both space groups, as
well as Fe, the use of Si as the training material causes diffraction

patterns to be primarily misclassified as space group 221. The sub-
stitution of Si does result in the beneficial effect of increasing the
classification accuracy of materials belonging to space group 221.

The last swap studied was the lower atomic number Fe in place
of Ta (Fig. 6). Similar to what was observed when Al was used in
space group 225, the increased correct classifications have shifted
toward the low atomic number materials within space group 229.
Furthermore, the B2 materials are now primarily misclassified as
belonging to the BCC symmetry space group 229 (Supplementary
Table A4). In comparison to Supplementary Table A1, almost half
of the NiAl diffraction patterns were classified as 229 instead of
230. These three examples confirm that providing the neural net-
work with only the lightest or heaviest materials will result in
avoidable misclassification events.

Previously, the model has only been supplied with information
from one material to learn from. It should not be surprising that
the limited data representing the population of all materials in
each class results in misclassification events when extrapolating
further away from the training data. To demonstrate the increased
accuracy of the technique when the data begins to better represent
the population, we add a second material to the training set for
space groups 221, 225, 227, and 229. Materials were not added
to space group 223 and 230 since performance on those two
groups was already well above the probability of the neural net-
work guessing correctly by chance (16.7%) for the second mate-
rial. The total number of diffraction patterns available to the
neural network during training remained fixed as described in
the Methods section. Supplementary Figures A5, A6 display the
IPFs and histograms, respectively, for the training data used in
this model. As evidenced by the low M.U.D. and wide range of
pattern quality, the data provided to the model during training
is quite diverse. The classification results with new diffraction pat-
terns are shown in Figure 7 and Supplementary Table A5 in the
Appendix. Compared to the neural networks trained with only
one material, this model has 29% higher accuracy (now 80% cor-
rect) and demonstrates significantly improved accuracy on mate-
rials not utilized in the training set. For example, diffraction
patterns from Ni3Al, FeAl, Cr3Si, NbC, TiC, and Al4CoNi2 are
correctly classified significantly more than random guessing
even though the neural network was not provided diffraction pat-
terns from these materials from which to learn. Moreover, signifi-
cantly increasing the range of atomic scattering factors, such as in
Figures 7a, 7c, improves the neural network’s performance on
materials with scattering factors further outside the range.

Fig. 3. Comparison of diffraction patterns from B2 FeAl (space group 221) and BCC Fe (space group 229). B2 FeAl and BCC Fe can produce nearly identical dif-
fraction patterns despite belonging to two different space groups.
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Fig. 4. Plots of normalized classification accuracy after fitting the model with a single low atomic number material. (a) Space group 221; trained on FeNi3. (b) Space
group 223; trained on Mo3Si. (c) Space group 225; trained on Al. (d) Space group 227; trained on Ge. (e) Space group 229; trained on Ta. (f) Space group 230; trained
on Al4CoNi2. The dashed line represents the chance of randomly guessing the correct space group. The formula weighted atomic number is located below each
material.

Fig. 5. Plots of normalized classification accuracy after fitting the model with a single low atomic number material. (a) Space group 221; trained on FeNi3. (b) Space
group 223; trained on Mo3Si. (c) Space group 225; trained on TaC. (d) Space group 227; trained on Si. (e) Space group 229; trained on Ta. (f) Space group 230;
trained on Al4CoNi2. The dashed line represents the chance of randomly guessing the correct space group. The formula weighted atomic number is located below
each material.
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Fig. 6. Plots of normalized classification accuracy after fitting the model with a single low atomic number material. (a) Space group 221; trained on FeNi3. (b) Space
group 223; trained on Mo3Si. (c) Space group 225; trained on TaC. (d) Space group 227; trained on Ge. (e) Space group 229; trained on Fe. (f) Space group 230;
trained on Al4CoNi2. The dashed line represents the chance of randomly guessing the correct space group. The formula weighted atomic number is located below
each material.

Fig. 7. Plots of normalized classification accuracy after fitting the model. (a) Space group 221; trained on FeNi3 and NiAl. (b) Space group 223; trained on Mo3Si. (c)
Space group 225; trained on TaC and Ni. (d) Space group 227; trained on Ge and Si. (e) Space group 229; trained on Ta and Fe. (f) Space group 230; trained on
Al4CoNi2. The dashed line represents the chance of randomly guessing the correct space group. The formula weighted atomic number is located below each
material.
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Aluminum and tungsten are the only two materials where the
neural network’s classification accuracy is below the probability
of randomly guessing the correct answer. An analysis of the orien-
tations and pattern quality for patterns that were correctly identi-
fied and misclassified was performed on several materials outside
the training set. NbC, Al, and W were selected in order to make
a number of comparisons including materials with varying classifi-
cation accuracy or within the same space group. Supplementary
Figure A7 shows that for each material, the IPFs for the correctly
classified patterns resembles the IPFs for patterns that were misclas-
sified. In other words, specific orientations do not seem to be more
likely to be classified correctly. Supplementary Figure A8 shows the
corresponding MAD and BC histograms. While the plots and asso-
ciated statistics for NbC show patterns with lower band contrast or
higher MAD have a slight tendency to be misclassified, there does
not appear to be a strong relationship between these pattern quality
metrics and classification accuracy.

The excellent overall performance of the neural network in
correctly identifying the space group necessitates an understand-
able interpretation of what information is important to the model,
since orientation and pattern quality are not seemingly biasing the
results of this study. Figure 8 is a set of “visual explanations” for
the decisions made by the Hough-based method and the trained
CNN from Figure 7. The selected diffraction patterns (Fig. 8 left-
side) from NbC and Ni3Al are of nearly the same orientation and
average atomic number but are from space group 225 and 221,
respectively. Importantly, the model had not trained on any
EBSPs from these two materials at this point. The Hough-based
method produces the “butterfly peak” (Christian et al., 1994) rep-
resentation (Fig. 8 middle) for matching the interplanar angles to

user selected libraries. The resulting Hough-transforms are nearly
identical for both NbC and Ni3Al, save for minor differences
owing to the small orientation shift. Furthermore, the
Hough-based method creates a sparse representation that does
not capture the finer detail found within the EBSPs. For example,
the [111] and [112] zone axes are each encircled by a discernable
HOLZ ring (Michael & Eades, 2000) as well as excess and defi-
ciency features (Winkelmann, 2008). In comparison to the
Hough method, the convolutional neural network can learn
these features, or lack of them, and associate them with the correct
space group. Using gradient-weighted class activation mapping
(Grad-CAM) (Selvaraju et al., 2017), we produce a localization
heatmap highlighting the important regions for predicting the
target class (Fig. 8 right-side). When visually inspecting the
importance of local regions to the neural network, it is immedi-
ately observed that the neural network finds each of the labeled
zone axes to be of high importance (orange in color) in both
EBSPs. In fact, the heatmaps look remarkably similar and are con-
centrated about the same features a crystallographer would use.
These features clearly include the zone axes and HOLZ rings.
To investigate this further, a diffraction pattern is simulated for
each material using EMSoft (Callahan & De Graef, 2013). In
Figure 9, it is first observed that many of the features of the pat-
terns are similar, such as Kikuchi bands and diffraction maxima.
These similarities explain why the Hough transform-based
method cannot distinguish the two. However, it is also immedi-
ately noticeable that equivalent zone axes and surrounding
regions have very different appearances. As examples, two sets
of equivalent zone axes have been marked with either a red trian-
gle or blue hexagon. The red triangle is the equivalent to the [111]

Fig. 8. Comparison of feature detection with Hough-based EBSD and the trained CNN. (Top row from left to right) Experimental EBSP from NbC (space group 225;
FCC structure), Hough-based feature detection, and gradient-weighted class activated map. (Bottom row from left to right) Experimental EBSP from Ni3Al (space
group 221; L12 structure), Hough-based feature detection, and gradient-weighted class activated map. The importance scale for the heatmaps goes from dark blue
(low) to dark red (high).

454 Kevin Kaufmann et al.

https://doi.org/10.1017/S1431927620001506 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927620001506


zone axis studied in Figure 8. While the fidelity of the simulated
patterns with experimental patterns is not perfect, the existence of
the discussed features can be confirmed by comparing them with
the experimental patterns previously discussed. For example,

compare the red and blue labeled zone axes in Figure 9 for Ni
and Mo3Si with the experimental NbC (Fig. 8) and Cr3Si
(Supplementary Fig. A1) diffraction patterns. The structure and
features visible are clearly well correlated.

Fig. 9. Dynamically simulated EBSPs. One diffraction pattern per space group was simulated to study the expected differences and assess the feature importance
observed in experimental patterns. The observed reflectors are similar for each space group; however, attributes nearby the zone axes can vary significantly. Two
sets of equivalent zone axes have been indicated with either a red triangle or blue hexagon.

Fig. 10. Plots of normalized classification accuracy after fitting the model with data from each material. (a) Space group 221. (b) Space group 223. (c) Space group
225. (d) Space group 227. (e) Space group 229. (f) Space group 230. The dashed line represents the chance of randomly guessing the correct space group. The
formula weighted atomic number is located below each material.
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Supplementary Figure A9 helps to elucidate the failure mech-
anism of this model by studying the activations of the current
model, which incorrectly identified the pattern, compared to the
activations in the first model, which had correctly identified the
same EBSP. In each case, the heatmaps for space group 229 are over-
laid onto the diffraction pattern. When correctly identified as
belonging to space group 229 (Supplementary Fig. A9, center), sig-
nificantly more zone axes are given higher importance scores than
when misclassified to space group 225 (Supplementary Fig. A9,
right). The same is observed with features within the HOLZ rings,
such as near the [001] and [101] axis. It is important to note, the
similarity between the activations at zone axes, such as [001],
[012], and [102], should not be surprising since the activations for
class 229 are being studied. Failures such as this can potentially be
alleviated as the number of samples, experimental or simulated,
used in fitting these models continues to grow. Previous works
using experimental (Kaufmann et al., 2020) and simulated (Foden
et al., 2019) patterns have further demonstrated the attentiveness
of the last layers of the model on the zone axes and surrounding fea-
tures. The study using simulated patterns also elucidated each con-
volutional layer’s attention to specific aspects of EBSPs including
edges and major Kikuchi bands. These studies into the “visual” per-
ception of the model suggest that the network has learned relevant
and intuitive features for identifying space groups.

By providing the neural network with diffraction patterns from
many materials, the neural network can improve its resiliency to
small changes within a space group, simultaneously developing a
better understanding of what elements in the image are most use-
ful and learning filters that better capture the information.
Figure 10 demonstrates this by supplying the same number of dif-
fraction patterns to learn from as used previously, but evenly
divided between all available materials in each space group.
Supplementary Table A6 shows the number of images classified
to each space group from individual materials. The classification
accuracy has increased to 93%, compared to 40–65% for the mod-
els that were only provided with one training material per space
group (Figs. 2, 4–7) and 80% when using two materials for
some of the classes (Fig. 8).

Conclusion

In this paper, a high-throughput CNN-based approach to classi-
fying electron backscatter diffraction patterns at the space group
level is developed and demonstrated. In each study, the CNN is
shown to be able to classify at least several materials outside the
training set with much better probability than random guessing.
Several investigations are conducted to explore the potential for
biases owing to crystallographic orientation, pattern quality, or
physical phenomena. The number of visible reflectors, directly
correlated with atomic scattering factors, is found to have an
impact classification accuracy when only low or high atomic
number materials are used to fit the model. Increasing the
range of atomic scattering factors used in training each class is
found to reduce the number of misclassification events caused
by large differences in the number of visible reflectors. The dataset
for each material and space group were of very low texture and
good distributions of pattern quality metrics. Continued inclusion
of data, particularly from more materials, will likely increase the
robustness of the model when presented with new data.
Investigation of the convolutional neural network’s inner work-
ings, through visualization of feature importance, strongly indi-
cates the network is using the same features a crystallographer

would use to manually identify the structure, particularly the
information within the HOLZ rings. This analysis, combined
with IPFs, suggests there is minimal orientation bias present.
We believe this method can be expanded to the remaining
space groups and implemented as part of a multi-tiered model
for determining the complete crystal structure. There are no algo-
rithmic challenges to extending this framework to all 230 space
groups, it is only currently limited by the lack of data, which sim-
ulated EBSD patterns may help to resolve. This technique should
benefit from continued advancements in detectors, such as direct
electron detectors, and the framework is expected to be immedi-
ately applicable to similar techniques such as electron channeling
patterns and CBED. A wide range of other research areas includ-
ing pharmacology, structural biology, and geology are expected to
benefit by using similar automated algorithms to reduce the
amount of time required for structural identification.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S1431927620001506
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