
Glasgow Mathematical Journal (2024), 1–22
doi:10.1017/S0017089524000284

RESEARCH ARTICLE

On the monodromy group of the family of smooth quintic
plane curves
Nick Salter

Department of Mathematics, University of Notre Dame, Notre Dame, IN, USA
Email: nsalter@nd.edu

Received: 9 May 2024; Revised: 1 October 2024; Accepted: 7 October 2024

Keywords: Plane curves; monodromy; mapping class group; r-spin structure

2020 Mathematics Subject Classification: Primary - 14D05; Secondary - 57K20

Abstract
We consider the space Pd of smooth complex projective plane curves of degree d. There is the tautological family
of plane curves defined over Pd, which has an associated monodromy representation ρd:π1(Pd) → Mod(�g) into the
mapping class group of the fiber. For d ≤ 4, classical algebraic geometry implies the surjectivity of ρd. For d ≥ 5,
the existence of a (d − 3)rd root of the canonical bundle implies that ρd cannot be surjective. The main result of this
paper is that for d = 5, the image of ρ5 is as large as possible, subject to this constraint. This requires combining the
algebro-geometric work of Lönne with Johnson’s theory of the Torelli subgroup of Mod(�g).

1. Introduction

Let1 Pd denote the moduli space of smooth degree d plane curves. The tautological family of plane
curves over Pd determines a monodromy representation

ρd:π1(Pd) → Mod(�g),

where g = (
d−1

2

)
and Mod(�g) is the mapping class group of the surface �g of genus g. This note concerns

the problem of computing the image of ρd.
The first step toward determining the image of ρd was carried out by A. Beauville in [4], building off

of earlier work of W. Janssen [18] and S. Chmutov [7]. Let �:Mod(�g) → Sp2g(Z) denote the symplectic
representation of Mod(�g) on H1(�g;Z). Beauville determined � ◦ ρd. He shows that for d even it is a
surjection, while for d odd it is the (finite-index) stabilizer of a certain spin structure. Naively, it is,
therefore, possible that ρd could surject onto Mod(�g) or onto a spin mapping class group, depending
on the parity of d.

It is a folklore result that in general, this does not happen. There is an invariant called an r-spin
structure that provides an obstruction for f ∈ Mod(�g) to be contained in Im(ρd). This r-spin structure is
constructed in a natural way from a (d − 3)rd root of the canonical bundle of a plane curve; see Section 2.2
for further discussion. It follows from work of Sipe [25] that for d ≥ 6, this obstruction is not detectable
on the level of homology, that is, that Beauville’s upper bound is not sharp. We formulate this as a
theorem, in the interest of giving a self-contained proof of a result which does not seem to be easily
accessible in the literature.

1 This paper originally appeared in 2016 and languished as a preprint for several years. Accordingly, the literature on this topic
has advanced considerably. In the interest of not being ahistorical, we leave the discussion of the introduction in its original form.
See the “Update” section in the introduction for the current state of the questions discussed here.
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2 Nick Salter

Theorem 1.1 (Folklore, Sipe [25]). For all d ≥ 4, there is a finite-index subgroup Mod(�g)[φd] ≤
Mod(�g) for which

Im(ρd) ⊆ Mod(�g)[φd].

For d ≥ 6, the containment

Mod(�g)[φd] ��−1(�(Mod(�g)[φd]))

is strict. Consequently, for d ≥ 6, the same is true for Im(ρd):

Im(ρd) ��−1(�(Im(ρd))).

In the statement of Theorem 1.1, φd ∈ H1(T∗,1�g;Z/(d − 3)Z), where T∗,1�g denotes the unit cotan-
gent bundle of �g, and Mod(�g)[φd] denotes the stabilizer of φd in the natural action of Mod(�g) on
H1(�g;Z/(d − 3)Z). The class φd is an instance of an r-spin structure for r = d − 3.

Our proof of Theorem 1.1 will be obtained by giving a construction of φd that makes the invariance
of φd under Im(ρd) transparent. Using a topological interpretation of r-spin structures based on the work
of S. Humphries and D. Johnson [17], it will then be possible to see how the invariance of φd provides
a strictly stronger constraint on Im(ρd) than that of Beauville.

The main original result of this paper concerns the problem of determining sufficient conditions for
an element f ∈ Mod(�g) to be contained in Im(ρd). For degrees d = 3, 4 (where g = 1, 3), it is known
that ρd is a surjection. This is ultimately a consequence of the fact that generic curves of genus g = 1, 3
admit planar embeddings, unique up to an automorphism ofCP2 (the only exceptions being hyperelliptic
curves in genus 3). The case d = 3 also follows immediately from Beauville’s computation, in light of
the fact that � is an isomorphism �:Mod(�1) → SL2(Z) for g = 1. This case is also closely related to the
work of I. Dolgachev and A. Libgober [12]. The case d = 4 was treated by Y. Kuno [20]. Theorem 1.2
thus treats the first case where planarity is an exceptional property for a curve to possess, and shows that
despite this, the monodromy of the family of plane curves of degree 5 is still as large as possible.

Theorem 1.2. Let d = 5. There is a (classical) spin structure of odd parity φ5 ∈ H1(T∗,1�6;Z/2Z) with
associated stabilizer Mod(�6)[φ5] ≤ Mod(�6) for which there is an equality

Im(ρ5) = Mod(�6)[φ5].

The methods of the paper are special to the case of d = 5 only in that a finite generating set for
Mod(�g)[φd] ∩ ker (�) is known only for d ≤ 5; we are able to produce large collections of Dehn twists
in Im(ρd) for all d. On the basis of this, we offer the following conjecture.

Conjecture 1.2 (Monodromy of the universal plane curve). For all d ≥ 4, there is an equality

Im(ρd) = Mod(�g)[φd].

A version of Conjecture 1.2 was also formulated by R. Crétois and L. Lang [8]. The paper [8] is
closely related to this one, treating the problem of monodromies of linear systems on toric surfaces.

Theorem 1.2 is obtained by a combination of techniques both from algebraic geometry and from the
theory of the mapping class group. The starting point is Beauville’s work, which allows one to restrict
attention to Im(ρ5) ∩ I6, where I6 is the Torelli group (see Section 4.3 for the definition of the Torelli
group).

The bridge between algebraic geometry and mapping class groups arises from the work of M. Lönne
[21]. The main theorem of [21] gives an explicit presentation for the fundamental group of the space Pn,d

of smooth hypersurfaces in CPn of degree d. Picard–Lefschetz theory allows one to recognize Lönne’s
generators as Dehn twists. Theorem 1.2 is then proved by carrying out a careful examination of the
configuration of vanishing cycles as simple closed curves on a surface of genus 6. This analysis is used
to exhibit the elements of Johnson’s generating set for the Torelli group inside Im(ρ5).
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In genus 6, Johnson’s generating set has 4470 elements. In order to make this computation tractable,
we find a new relation in Mod(�g) known as the “genus-g star relation”. Using this, we reduce the
problem to eight easily verified cases. An implicit corollary of the proof is a determination of a simple
finite set of Dehn twist generators for the spin mapping class group Mod(�6)[φ5]. An alternative set of
generators was obtained by S. Hirose [ [16], Theorem 6.1].

1.1. Update

As discussed in Footnote 1, this paper first appeared in 2016, and much has advanced in the interven-
ing years. We provide here an up-to-date account of the state of affairs. Conjecture 1.3 has now been
completely resolved, indeed in the broader setting of linear systems on smooth toric surfaces. The case
when the r-spin structure has r = 2 was treated by Crétois–Lang in [9]. The general case was resolved
by the author in [24] (only up to finite index, in the case of r even), and subsequently, the full conjecture
was obtained by the author and Calderon in [10]. As first observed by Calderon [6], r-spin mapping
class groups (and the refinements to “framed mapping class groups”) appear in a diverse array of other
monodromy problems, including strata of Abelian differentials [6, 10, 11] and versal deformations of
isolated plane curve singularities [23].

In [15], R. Harris investigates the kernel of the monodromy map, finding that for plane quartics, the
kernel is isomorphic to the product of a free group of infinite rank with Z/3Z. And in [3], Banerjee
finds that the fundamental group of the ambient algebraic surface provides a further constraint on the
monodromy of a linear system. This constraint is quite strong, forcing in some cases the monodromy
to be of infinite index. It would be interesting to investigate Conjecture 1.3 for any linear system on a
simply connected smooth algebraic surface.

1.2. Outline

Section 2 is devoted to the construction of φd. In Section 3, we recall some work of S. Humphries and
D. Johnson that relates H1(T∗,1�g;V) for an Abelian group V to the notion of a “generalized winding
number function”. We will use this perspective to prove that the invariance of φd under Im(ρd) provides
an obstruction to the surjectivity of ρd.

The proof of Theorem 1.2 is carried out in sections 4 through 7. Section 4 collects a number of results
from the theory of mapping class groups. Section 5 recalls Lönne’s presentation and establishes some
first properties of Im(ρd). Section 6 continues the analysis of Im(ρd). Finally, Section 7 collects these
results together to prove Theorem 1.2.

2. rth roots of the canonical bundle and generalized spin structures
2.1. Plane curves and Pd

A general reference for this paragraph is [ [12], Section 2].
By definition, a (projective) plane curve of degree d is the vanishing locus V(f ) in CP2 of a nonzero

homogeneous polynomial f (x, y, z) of degree d. The space of all plane curves is identified with CPN ,
where N = (

d+2
2

) − 1. A plane curve X of degree d is smooth if X ∼= �g with g = (
d−1

2

)
, and otherwise X

is said to be singular.
We define the discriminant as the set

Dd = {f ∈CPN | V(f ) is singular.}.
The discriminant Dd is the vanishing locus of a polynomial pd known as the discriminant polynomial
and is therefore a hypersurface in CPN . The space of smooth plane curves is then defined as

Pd =CPN \Dd.
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The universal family of plane curves is the space Xd ⊂Pd ×CP2 defined via

Xd = {(f , [x:y:z]) ∈Pd ×CP2 | f (x, y, z) = 0}.

The projection π :Xd →Pd is the projection map for a C∞ fiber bundle structure on Xd with fibers
diffeomorphic to �g.

2.2. r-spin structures

Let X be a smooth projective algebraic curve over C and let K ∈ Pic(X) denote the canonical bundle.2
Recall that a spin structure on X is an element L ∈ Pic(X) satisfying L⊗2 = K. This admits an obvious
generalization.

Definition 2.1. An r-spin structure is a line bundle L ∈ Pic(X) satisfying L⊗r = K.

Let T∗,1X denote the unit cotangent bundle of X, relative to an arbitrary Riemannian metric on X. Just
as ordinary spin structures are closely related to H1(T∗,1X;Z/2Z), there is an analogous picture of r-spin
structures.

Proposition 2.2. Let L be an r-spin structure on X. Associated to L are

1. a regular r-sheeted covering space T̃∗,1X → T∗,1X with deck group Z/nZ, and
2. a cohomology class φL ∈ H1(T∗,1X;Z/rZ) restricting to a generator of the cohomology

H1(S1;Z/rZ) of the fiber of T∗,1X → X.

Proof. In view of the equality L⊗r = K in Pic(X), taking rth powers in the fiber induces a map μ:L → K.
Let L◦ denote the complement of the zero section in L and define K◦ similarly. Then μ:L◦ → K◦ is an
r-sheeted covering space with deck group Z/rZ induced from the multiplicative action of the rth roots
of unity. The covering space T̃∗,1X → T∗,1X is obtained from L◦ → K◦ by restriction.

As T̃∗,1X → T∗,1X is a regular cover with deck group Z/rZ, the Galois correspondence for covering
spaces asserts that T̃∗,1X is associated to some homomorphism φL:π1(T∗,1X) →Z/rZ. This gives rise to
a class, also denoted φL, in H1(T1,∗X;Z/rZ). On a given fiber of T∗,1X → X, the covering T̃∗,1X → T∗,1X
restricts to an r-sheeted cover S1 → S1; this proves the assertion concerning the restriction of φL to
H1(S1;Z/rZ).

Our interest in r-spin structures arises from the fact that degree-d plane curves are equipped with a
canonical (d − 3)-spin structure.

Fact 2.3. Let X be a smooth degree-d plane curve, d ≥ 3. The canonical bundle K ∈ Pic(X) is induced
from the restriction of O(d − 3) ∈ Pic(CP2). Consequently, O(1) determines a (d − 3)-spin structure on
X for d ≥ 4.

Let � :Xd →CP2 denote the projection onto the second factor. Then � ∗(O(d − 3)) ∈ Pic(Xd)
restricts to the canonical bundle on each fiber, and � ∗(O(1)) determines a (d − 3)-spin structure. Let
T∗,1Xd denote the S1-bundle over Xd for which the fiber over (X, x) consists of the unit cotangent vectors
T∗,1

x X.

2 Recall that the canonical bundle is the line bundle whose underlying R2 bundle is T∗X, the cotangent bundle.
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Definition 2.4. The cohomology class

φd ∈ H1(T∗,1Xd;Z/(d − 3)Z)

is obtained by applying the construction of Proposition 2.2 to the pair of line bundles � ∗(O(1)),
� ∗(O(d − 3)) ∈ Pic(Xd).

3. Generalized winding numbers and obstructions to surjectivity

In this section, we prove that the existence of φd gives rise to an obstruction for a mapping class f ∈
Mod(�g) to be contained in Im(ρd). For any system of coefficients V , there is a natural action of Mod(�g)
on H1(T∗,1�g;V), which extends the action of Mod(�g) on H1(�g;V) via �. To prove Theorem 1.1, it
therefore suffices to prove that the stabilizer Mod(�g)[φd] of each nonzero element of H1(T∗,1�g;Z/(d −
3)Z) is not the full group �−1(�(Im(ρd))).

The natural setting for what follows is in the unit tangent bundle of a surface, which we write T1�.
Of course, a choice of Riemannian metric on � identifies T1� with T∗,1�, and a choice of metric in each
fiber identifies T∗,1Xd with the “vertical unit tangent bundle” T1Xd; we will make no further comment
on these matters.

The basis for our approach is the work of Humphries–Johnson [17], which gives an interpretation of
H1(T1�g;V) as the space of “V-valued generalized winding number functions”. A basic notion here is
that of a Johnson lift. For our purposes, a simple closed curve is a C1-embedded S1-submanifold.

Definition 3.1. Let a be a simple closed curve on the surface � given by a unit-speed C1 embedding
a:S1 → �. A choice of orientation on S1 induces an orientation on a, as well as providing a coherent
identification T1

x S1 = {−1, 1} for each x ∈ S1. The Johnson lift of a, written �a, is the map �a:S1 → T1�

given by

�a(t) = (a(t), Dta(1)).

That is, the Johnson lift of a is simply the curve in T1� induced from a by tracking the tangent vector.

The Johnson lift allows for the evaluation of elements of H1(T1�;V) on simple closed curves. Let � be
a surface, V an Abelian group, and α ∈ H1(T1�;V) a cohomology class. Let a be a simple closed curve.
By an abuse of notation, we write α(a) for the evaluation of α on the 1-cycle determined by the Johnson
lift �a. In this context, we call α a “generalized winding number function”.3 In [17], it is shown that this
pairing satisfies the following properties:

Theorem 3.2 (Humphries–Johnson).

(i) The evaluation α(a) ∈ V is well defined on the isotopy class of a.
(ii) (Twist-linearity) If b is another simple closed curve and Tb denotes the Dehn twist about b, then

α is “twist-linear” in the following sense:

α(Tb(a)) = α(a) + 〈a, b〉α(b), (1)
where 〈a, b〉 denotes the algebraic intersection pairing.

(iii) Let ζ be a curve enclosing a small null-homotopic disk on �, and let S ⊂ � be a subsurface
with boundary components b1, . . . , bk. If each bi is oriented so that S is on the left and ζ is
oriented similarly, then

α(b1) + · · · + α(bk) = χ (S)α(ζ ), (2)
where χ (S) is the Euler characteristic of S.

3 The terminology “generalized winding number” is inspired by the fact that the twist-linearity property was first encountered in
the context of computing winding numbers of curves on surfaces relative to a vector field.
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Remark 3.3. Humprhies–Johnson in fact establish much more: they prove that every V-valued
twist-linear function arises as a class α ∈ H1(T1�;V). For what follows we only need the results of
Theorem 3.2.

Proof of Theorem 1.1. Consider the class φd ∈ H1(T∗,1Xd;Z/(d − 3)Z). The above discussion implies
that on a given fiber X of Xd →Pd, the restriction of φd determines a generalized winding number
function; we write αd ∈ H1(T1X;Z/(d − 3)Z) for this class. Since αd is induced from the globally defined
form φd, it follows that αd is monodromy-invariant: if f ∈ Im(ρd), then for any simple closed curve a on
X, the equation

αd(f (a)) = αd(a) (3)

must hold. Consequently,

Im(ρd) ⊆ Mod(�g)[φd]

as claimed.
We wish to exhibit a nonseparating simple closed curve b for which αd(b) �= 0. Given such a b, there

is another simple closed curve a satisfying 〈a, b〉 = 1. Then the twist-linearity condition (1) will show
that

αd(Tb(a)) = αd(a) + αd(b) �= αd(a);

this contradicts (3). It follows that the Dehn twist Tb for such a curve cannot be contained in Mod(�g)[φd].
In the case when d is even, when �−1(�(Im(ρd))) = Mod(�g), this will prove Theorem 1.1. For d

odd, there is an additional complication. Here, the class d−3
2

φd ∈ H1(T∗,1Xd;Z/2Z) determines an ordi-
nary spin structure, and according to Beauville, the group �(Mod(�g)[φd]) is the stabilizer of d−3

2
φd in

Sp(2g, Z). We must, therefore, exhibit a curve b for which αd(b) is nonzero and d−3
2

-torsion. Equation (1)
shows that such a curve does stabilize the spin structure d−3

2
φd, but not the refinement to a (d − 3)-spin

structure φd.
It remains to exhibit a suitable curve b. It follows easily from the twist-linearity condition (1) that

given any subsurface S ⊂ X of genus 1 with one boundary component, there is some (necessarily non-
separating) curve c contained in S with αd(c) = 0. Let S1, S2, S3 be a collection of mutually disjoint
subsurfaces of genus 1 with one boundary component, and let c1, c2, c3 be curves satisfying αd(ci) = 0,
and for which ci is contained in Si (recall that d ≥ 6 and so the genus of X is g ≥ 10). Choose b disjoint
from all ci so that the collection of curves b, c1, c2, c3 encloses a subsurface � homeomorphic to a sphere
with 4 boundary components. From (2) and the construction of the ci, it follows that when b is suitably
oriented, it satisfies

αd(b) = χ (�)αd(ζ ) = −2αd(ζ ).

Recall that by Proposition 2.2.2, the element αd(ζ ) ∈Z/(d − 3)Z is primitive. Thus, αd(b) �= 0 for any
d, but is d−3

2
-torsion when d is odd, as required.

4. Results from the theory of the mapping class group

We turn now to the proof of Theorem 1.2. From this section onward, we adopt the conventions and
notations of the reference [13]. In particular, the left-handed Dehn twist about a curve c is written Tc,
and the geometric intersection number between curves a, b is written i(a, b). We pause briefly to establish
some further conventions. We will often refer to a simple closed curve as simply a “curve” and will often
confuse the distinction between a curve and its isotopy class. Unless otherwise specified, we will assume
that all intersections between curves are essential.
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4.1. The change-of-coordinates principle

The change-of-coordinates principle roughly asserts that if two configurations of simple closed curves
and arcs on a surface have the same intersection pattern, then there is a homeomorphism taking one
configuration to the other. There are many variants of the change-of-coordinates principle, all based on
the classification of surfaces. See the discussion in [ [13], Section 1.3.2].

4.1.1. Basic principle
Suppose c1, . . . , cn and d1, . . . , dn are configurations of curves on a surface S all meeting transversely.
The surface S \ {ci} has a labeling on segments of its boundary, corresponding to the segments of the
curves ci from which the boundary component arises. Suppose there is a homeomorphism

f :S \ {ci} → S \ {di}
taking every boundary segment labeled by ci to the corresponding di segment. Then f can be extended
to a homeomorphsim f :S → S taking the configuration ci to di.

We illustrate this in the case of chains.

Definition 4.1. Let S be a surface. A chain on S of length k is a collection of curves (c1, . . . , ck) for
which the geometric intersection number i(ci, cj) is 1 if |i − j| = 1 and 0 otherwise. If C = (c1, . . . , ck) is
a chain, the boundary of C, written ∂C, is defined to be the boundary of a small regular neighborhood
of c1 ∪ · · · ∪ ck. When k is even, ∂C is a single (necessarily separating) curve, and when k is odd, ∂C =
d1 ∪ d2 consists of two curves d1, d2 whose union separates S.

Lemma 4.2 (Change-of-coordinates for chains). Let (c1, . . . , ck) and (d1, . . . , dk) be chains of even
length k on a surface S. Then there is a homeomorphism f :S → S for which f (ci) = di, 1 ≤ i ≤ k.

Proof. See [ [13], Section 1.3.2].

4.2. Some relations in the mapping class group

Proposition 4.3 (Braid relation). Let S be a surface and a, b curves on S satisfying
i(a, b) = 1. Then

TaTbTa = TbTaTb. (4)

On the level of curves,

TaTb(a) = b.

Any such a, b are necessarily non-separating.
Conversely, if a, b are curves on S in distinct isotopy classes that satisfy the braid relation (4), then

i(a, b) = 1.

Proof. See [ [13], Proposition 3.11] for the proof of the first assertion and [ [13], Proposition 3.13]
for the second.

4.2.1. The chain relation
The chain relation relates Dehn twists about curves in a chain to Dehn twists around the boundary. We
will require a slightly less well known form of the chain relation for chains of odd length; see [ [13],
Section 4.4.1] for details.
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Figure 1. The genus-g star relation.

Proposition 4.4 (Chain relation). Let C = (c1, . . . , ck) be a chain with k odd. Let d1, d2 denote the
components of ∂C. Then the following relation holds:

(T2
c1

Tc2 . . . Tck )
k = Td1 Td2 .

4.2.2. The genus-g star relation
We will also need to make use of a novel4 relation generalizing the star relation (setting g = 1 below
recovers the classical star relation).

Proposition 4.5 (Genus-g star relation). With reference to the curves a1, a2, c1, . . . , c2g, d1, d2, d3 on the
surface �g,3 of Figure 1, the following relation holds in Mod(�g,3):

(Ta1 Ta2 Tc1 . . . Tc2g )2g+1 = Tg
d1

Td2 Td3 . (5)

Proof. We will derive the genus-g star relation from a more transparent relation in a braid group, mak-
ing use of the theory of the liftable mapping class group as developed by Birman–Hilden [5]. Figure 1
depicts a 2:1 covering �g,3 → �0,2 ramified at 2g + 1 points. Number the ramification points clockwise
p1, . . . , p2g+1 and consider the mapping class group Mod (�0,2,2g+1) relative to these points. The theory of
Birman–Hilden implies that there is a finite-index subgroup of Mod (�0,2,2g+1) (the “liftable subgroup”)
whose elements lift to mapping classes in Mod (�g,3). Such lifts are unique up to the action of the deck
group, and so there is a homomorphsim from the liftable subgroup into Mod (�g,3). Consequently, any
relation in the liftable subgroup induces a relation upstairs in Mod (�g,3); this is the underlying principle
of our argument.

Under the covering, the double-twist T2
δ1

lifts to Td1 ∈ Mod(�g,3), and the twist Tδ2 lifts to Td2 Td3 . The
twist Tα lifts to Ta1 Ta2 , and the half-twist σi lifts to Tci . Let f ∈ Mod (�0,2,2g+1) be the push map moving
each pi clockwise to pi+1, with subscripts interpreted mod 2g + 1. One verifies the equality

f = Tασ1 . . . σ2gT−1
δ1

.

It follows that

f 2g+1 = (Tασ1 . . . σ2g)
2g+1T−(2g+1)

δ1
,

since Tδ1 is central. As f 2g+1 is the push map around the core of the annulus, there is an equality

f 2g+1 = T−1
δ1

Tδ2 .

4 Added in 2024 revisions: In later work, I realized this is actually a relation induced from a homomorphism of an Artin group of
type D into the mapping class group, and that this was known to prior authors, e.g. [22].
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Figure 2. Curves involved in the Johnson generating set.

Combining these results,

Tδ2 T2g
δ1

= (Tασ1 . . . σ2g)2g+1. (6)

Under the lifting described above, the relation (6) in Mod (�0,2,2g+1) lifts to the relation (5) in
Mod(�g,3).

4.3. The Johnson generating set for Ig

There is a natural map

�:Mod(�g) → Sp2g(Z)

taking a mapping class f to the induced automorphism f∗ of H1(�g;Z). The Torelli group Ig is defined
to be the kernel of this map:

Ig = ker (�).

In [19], Johnson produced a finite set of generators for Ig, for all g ≥ 3. Elements of this generating set
are known as chain maps. Let C = (c1, . . . , ck) be a chain of odd length with boundary ∂C = d1 ∪ d2.
There are exactly two ways to orient the collection of curves c1, . . . , ck in such a way that the algebraic
intersection number ci · ci+1 = +1. Relative to such a choice, the chain map associated to C is then the
mapping class Td1 T−1

d2
, where d1 is distinguished as the boundary component to the left of the curves

c1, c3, . . . , ck. The mapping class Td1 T−1
d−2 is also called the bounding pair map for d1, d2.

While a complete description of Johnson’s generating set is quite tidy and elegant, it has the disad-
vantage of requiring several preliminary notions before it can be stated. We, therefore, content ourselves
with a distillation of his work that is more immediately applicable to our situation.

Theorem 4.6 (Johnson). For g ≥ 3, let � ≤ Mod(�g) be a subgroup that contains the Dehn twists about
the curves c1, . . . , c2g shown in Figure 2. Suppose that � contains all chain maps for the odd-length
chains of the form (c1, . . . , ck) and (β, c5, . . . , ck). Then Ig ≤ �.

Proof. The interested reader should have no trouble deducing Theorem 4.6 from the Main Theorem
and Lemma 1(f) of [19].

5. The Lönne presentation

In this section, we recall Lönne’s work [21] computing π1(Pd) and apply this to derive some first
properties of the monodromy map ρd:π1(Pd) → Mod(�g).
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5.1. Picard–Lefschetz theory

Picard–Lefschetz theory concerns the problem of computing monodromies attached to singular points
of holomorphic functions f :Cn →C. This then serves as the local theory underpinning more global
monodromy computations. Our reference is [1].

Let U ⊂C2 and V ⊂C be open sets for which 0 ∈ V . Let f (u, v):U → V be a holomorphic function.
Suppose f has an isolated critical value at z = 0, and that there is a single corresponding critical point
p ∈C2. Suppose that p is of Morse type in the sense that the Hessian

⎛
⎜⎜⎜⎝

∂2f

∂2x

∂2f

∂x∂y

∂2f

∂y∂x

∂2f

∂2y

⎞
⎟⎟⎟⎠

is non-singular at p. Equivalently, f is analytically equivalent to f (u, v) = uv, the union of two lines
crossing transversely.

In such a situation, the fiber f −1(z) for z �= 0 is diffeomorphic to an open annulus. The core curve of
such an annulus is called a vanishing cycle. Let γ be a small circle in C enclosing only the critical value
at z = 0. Let z1 ∈ γ be a basepoint with corresponding core curve c ⊂ f −1(z1). The Picard–Lefschetz
theorem describes the monodromy obtained by traversing γ .

More generally, an algebraic curve C is said to have a nodal singularity at p ∈ C if there is an analytic
local equation for C near p of the form f (u, v) = uv. Perturbing C slightly to a smooth C′, the intersection
of C′ with a small ball near p is again an annulus, and the core curve is again called a vanishing cycle.

Theorem 5.1 (Picard–Lefschetz for n = 2). With reference to the preceding discussion, the monodromy
μ ∈ Mod(f −1(z1)) attached to traversing γ counter-clockwise is given by a right-handed Dehn twist about
the vanishing cycle:

μ = T−1
c .

More generally, let D∗ denote the punctured unit disk

D∗ = {w ∈C | 0 < |w| ≤ 1},
and write D = {w ∈C | |w| ≤ 1} for the closed unit disk.

Let f (x, y, z) be a homogeneous polynomial of degree d with the following properties:

1. For c ∈ D, the plane curve czd − f (x, y, z) is singular only for c = 0.
2. The only critical point for f of the form (x, y, 0) is the point (0, 0, 0).
3. The function f (x, y, 1) has a single critical point of Morse type at (x, y) = (0, 0).

In this setting, the local theory of Theorem 5.1 can be used to analyze the monodromy of the family

E = {(c, [x:y:z]) | czd = f (x, y, z)} ⊂ D∗ ×CP2

around the boundary ∂D∗.

Theorem 5.2 (Picard–Lefschetz for plane curve families). Let f ∈CPN satisfy the properties (1), (2),
(3) listed above. Let X = V(zd − f (x, y, z)) denote the fiber above 1 ∈ D∗. Then there is a vanishing cycle
c ⊂ X so that the monodromy μ ∈ Mod(X) obtained by traversing ∂D∗ counter-clockwise is given by a
right-handed Dehn twist about the vanishing cycle:

μ = T−1
c .
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Figure 3. The Lönne graph �5.

Proof. Condition (2) asserts that the monodromy can be computed by restricting attention to the affine
subfamily obtained by setting z = 1. Define

E◦ = {(c, x, y) | c = f (x, y, 1)} ⊂ D∗ ×C2.

Define U = {(x, y) ∈C2 | |f (x, y, 1)| ≤ 1} and consider f (x, y, 1) as a holomorphic function f :U → D. The
monodromy of this family then corresponds to the monodromy of the original family E → D∗. The result
now follows from Condition (3) in combination with Theorem 5.1 as applied to f (x, y, 1).

5.2. Lönne’s theorem

There are some preliminary notions to establish before Lönne’s theorem can be stated. We begin by
introducing the Lönne graphs �d. Lönne obtains his presentation of π1(Pd) as a quotient a certain group
constructed from �d.

Definition 5.3. [Lönne graph] Let d ≥ 3 be given. The Lönne graph �d has vertex set

Id = {(a, b) | 1 ≤ a, b ≤ d − 1}.
Vertices (a1, b1) and (a2, b2) are connected by an edge if and only if both of the following conditions are
met:

1. |a1 − a2| ≤ 1 and |b1 − b2| ≤ 1.
2. (a1 − a2)(b1 − b2) ≤ 0.

The set of edges of �d is denoted Ed.

Vertices i, j, k ∈ �d are said to form a triangle when i, j, k are mutually adjacent. The triangles in the
Lönne graph are crucial to what follows. It will be necessary to endow them with orientations.

Definition 5.4 (Orientation of triangles). Let i, j, k determine a triangle in �d.

1. If

i = (a, b), j = (a, b + 1), k = (a + 1, b),

then the triangle i, j, k is positively-oriented by traversing the boundary clockwise.
2. If

i = (a, b), j = (a, b + 1), k = (a − 1, b + 1),

then the triangle i, j, k is positively oriented by traversing the boundary counterclockwise.

We say that the ordered triple (i, j, k) of vertices determining a triangle is positively oriented if traversing
the boundary from i to j to k agrees with the orientation specified above.
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Definition 5.5 (Artin group). Let � be a graph with vertex set V and edge set E. The Artin group A(�)
is defined to be the group with generators

σi, i ∈ V ,

subject to the following relations:

1. σiσj = σjσi for all (i, j) �∈ E.
2. σiσjσi = σjσiσj for all (i, j) ∈ E.

Theorem 5.6 (Lönne). For d ≥ 3, the group π1(Pd) is isomorphic to a quotient of the Artin group A(�d),
subject to the following additional relations:

3. σiσjσkσi = σjσkσiσj if (i, j, k) forms a positively-oriented triangle in �d.
4. An additional family of relations Ri, i ∈ Id.
5. An additional relation R̃.

Remark 5.7. Define the group B(�d) as the quotient of the Artin group A(�d) by the family of relations
(3) in Theorem 5.6. As our statement of Lönne’s theorem indicates, the additional relations will be of
no use to us, and our theorem really concerns the lift of the monodromy representation ρ̃d:B(�d) →
Mod(�g).

For the analysis to follow, it is essential to understand the mapping classes ρd(σi), i ∈ Id.

Proposition 5.8. For each generator σi of Theorem 5.6, the image

ρd(σi) = T−1
ci

is a right-handed Dehn twist about some vanishing cycle ci on a fiber X ∈Pd.

Proof. The result will follow from Theorem 5.2, once certain aspects of Lönne’s proof are recalled.

The generators σi of Theorem 5.6 correspond to specific loops in Pd known as geometric elements.

Definition 5.9 (Geometric element). Let D = V(p) be a hypersurface in Cn defined by some polynomial
p. An element x ∈ π1(Cn \ D) that can be represented by a path isotopic to the boundary of a small
disk transversal to D is called a geometric element. If D̃ is a projective hypersurface, an element x ∈
π1(CPn \ D̃) is said to be a geometric element if it can be represented by a geometric element in some
affine chart.

In Lönne’s terminology, the generators σi, i ∈ Id arise as a “Hefez-Lazzeri basis”—this will require some
explanation. Consider the linearly perturbed Fermat polynomial

f (x, y, z) = xd + yd + νxxzd−1 + νyyzd−1

for well-chosen constants νx, νy. Such an f satisfies the conditions (1)–(3) of Theorem 5.2 near each
critical point. Moreover, there is a bijection between the critical points of f (x, y, 1) and the set Id of
Definition 5.3. If νx, νy are chosen carefully, each critical point lies above a distinct critical value - in
this way we embed Id ⊂C.

Each c ∈C determines a plane curve V(czd − f ). The values of c for which V(czd − f ) is not smooth
are exactly the critical values of f (x, y, 1). The family

H = {V(czd − f ) | V(czd − f ) is smooth}
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is a subfamily of Pd defined over C \ Id. The Hefez–Lazzeri basis {σi | i ∈ Id} is a carefully chosen
set of paths in C \ Id with each σi encircling an individual i ∈ Id. Lönne shows that the inclusions of
these paths into Pd via the family H generates π1(Pd). The result now follows from an application of
Theorem 5.2.

5.3. First properties of ρd

Proposition 5.8 establishes the existence of a collection ci, i ∈ Id of vanishing cycles on X. In this section,
we derive some basic topological properties of this configuration arising from the fact that the Dehn
twists T−1

ci
must satisfy the relations (1)-(3) of Lönne’s presentation.

Lemma 5.10.

1. If the vertices vi, vj are adjacent, then the curves ci, cj satisfy i(ci, cj) = 1.
2. For d ≥ 4, the curves ci, i ∈ Id are pairwise distinct, and all ci are non-separating.
3. If the vertices vi, vj in �d are non-adjacent, then the curves ci and cj are disjoint.
4. For d ≥ 4, if the vertices vi, vj, vk form a triangle in �d, then the curves ci, cj, ck are supported on

an essential subsurface5 Sijk ⊂ X homeomorphic to �1,2. Moreover, if the triangle determined
by vi, vj, vk is positively oriented, then i(ci, T−1

cj
(ck)) = 0.

Proof. (1): If vi and vj are adjacent, then the Dehn twists T−1
ci

and T−1
cj

satisfy the braid relation. It
follows from Proposition 4.3 that i(ci, cj) = 1.
(2): Suppose vi and vj are distinct vertices. For d ≥ 4, no two vertices have the same set of adjacent
vertices, so that there is some vk adjacent to vi and not vj. By (1) above, it follows that T−1

ci
and T−1

ck
satisfy

the braid relation, while T−1
cj

and T−1
ck

do not, showing that the isotopy classes of ci and cj are distinct.
Since each ci satisfies a braid relation with some other cj, Proposition 4.3 shows that ci is non-separating.
(3): If vi and vj are non-adjacent, then the Dehn twists T−1

ci
and T−1

cj
commute. According to [ [13], Section

3.5.2], this implies that either ci = cj or else ci and cj are disjoint. By (2), the former possibility cannot
hold.
(4): Via the change-of-coordinates principle, it can be checked that if ci, cj, ck are curves that pairwise
intersect once, then ci ∪ cj ∪ ck is supported on an essential subsurface of the form �1,b for 1 ≤ b ≤ 3.
In the case b = 1, the curve ck must be of the form ck = T±1

ci
(cj). It follows that if d is a curve such that

i(d, ck) �= 0, then at least one of i(d, ci) and i(d, cj) must also be nonzero. However, as d ≥ 4, there is
always some vertex vl adjacent to exactly one of ci, cj, ck. The corresponding curve cl would violate the
condition required of d above (possibly after permuting the indices i, j, k).

It remains to eliminate the possibility b = 3. In this case, the change-of-coordinates principle implies
that up to homeomorphism, the curves ci, cj, ck must be arranged as in Figure 4. It can be checked directly
(e.g., by examining the action on H1(�1,3)) that for this configuration, the relation

T−1
ci

T−1
cj

T−1
ck

T−1
ci

= T−1
cj

T−1
ck

T−1
ci

T−1
cj

does not hold. This violates relation (3) in Lönne’s presentation of π1(Pd). We conclude that necessarily
b = 2.

Having shown that b = 2, it remains to show the condition i(ci, T−1
cj

(ck)) = 0 for a positively oriented
triangle. Let (x, y, z) denote a 3-chain on �1,2. The change-of-coordinates principle implies that without
loss of generality, ci = x, cj = y, and ck = T±1

y (z). We wish to show that necessarily ck = Ty(z). It can be
checked directly (e.g., by considering the action on H1(�1,2)) that only in the case ck = Ty(z) does relation
(3) in the Lönne presentation hold.

5 A subsurface S′ ⊂ S is essential if every component of ∂S′ is not null-homotopic.
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Figure 4. Lemma 5.10.4: the configuration of ci, cj, ck in the b = 3 case.

Figure 5. The curves of Lemma 6.1. The bottom halves of curves b, x, y, z, and ci for i odd have been
omitted for clarity; on the bottom half, each curve follows its mirror image on the top.

6. Configurations of vanishing cycles

The goal of this section is to derive an explicit picture of the configuration of vanishing cycles on a plane
curve of degree 5. The main result of the section is Lemma 6.1.

Lemma 6.1. There is a homeomorphism f :X → �6 such that with reference to Figure 5,

1. The curves c1, . . . , c12 are vanishing cycles; that is, Tci ∈ Im(ρ5) for 1 ≤ i ≤ 12. The curves x, y, z
are also vanishing cycles.

2. The curve b satisfies T2
b ∈ Im(ρ5).
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Figure 6. If a2i,j cannot be isotoped onto a single arc inside Ai, then the curve enclosed by the inner
strip (shaded) is essential in �g, causing a2i,j ∪ a2i−1,j ∪ a2i−1,j+1 to be supported on a surface �1,3.

Proof. Lemma 6.1 will be proved in three steps.

Step 1: Uniqueness of Lönne configurations

Lemma 6.2. Suppose d ≥ 5 is odd. Up to homeomorphism, there is a unique configuration of curves
ci, i ∈ Id on �g whose intersection pattern is prescribed by �d and such that the twists T−1

ci
satisfy the

relations (1),(2),(3) given by Lönne’s presentation.

A configuration of curves ci, i ∈ Id as in Lemma 6.2 will be referred to as a Lönne configuration.

Proof. Let a1,1, . . . , ad−1,d−1 determine a Lönne configuration on �g. We will exhibit a homeomor-
phism of �g taking each ai,j to a corresponding bi,j in a “reference” configuration {bi,j} to be constructed
in the course of the proof. This will require three steps.

Step 1: A collection of disjoint chains
Each row in the Lönne graph determines a chain of length d − 1. The change of coordinates principle

for chains of even length (Lemma 4.2) asserts that any two chains of length d − 1 are equivalent up to
homeomorphism. Considering the odd-numbered rows of �d, it follows that there is a homeomorphism
f1 of �g that takes each a2i−1,j for 1 ≤ i ≤ d − 1 to a curve b2i−1,j in a standard picture of a chain. We
denote the subsurface of �g determined by the chain a2i−1,1, . . . , a2i−1,d−1 as Ai, and similarly we define
the subsurfaces Bi of the reference configuration. Each Ai, Bi is homeomorphic to �(d−1)/2,1.

Step 2: Arcs on Ai

The next step is to show that up to homeomorphism, there is a unique picture of what the intersection
of the remaining curves a2i,j with

⋃
Ai looks like. Consider a curve a2i,j. Up to isotopy, a2i,j intersects

only the subsurfaces Ai and Ai+1. We claim that a2i,j can be isotoped so that its intersection with Ai

is a single arc, and similarly for Ai+1. If j = d − 1, then a2i,d−1 intersects only the curve a2i−1,d−1, and
i(a2i,d−1, a2i−1,d−1) = 1. It follows that if a2i,d−1 ∩ Ai has multiple components, exactly one is essential, and
the remaining components can be isotoped off of Ai.

In the general case, where a2i,j intersects both a2i−1,j and a2i−1,j+1, an analogous argument shows that
a2i,j ∩ Ai consists of one or two essential arcs. Consider the triangle in the Lönne graph determined
by a2i,j, a2i−1,j, a2i−1,j+1. According to Lemma 5.10.4, the union a2i,j ∪ a2i−1,j ∪ a2i−1,j+1 is supported on an
essential subsurface of the form �1,2. Figure 6 shows that if a2i,j ∩ Ai consists of two essential arcs, then
a2i,j ∪ a2i−1,j ∪ a2i−1,j+1 is supported on an essential subsurface of the form �1,3, in contradiction with
Lemma 5.10.4. Similar arguments establish that a2i−2,j ∩ Ai is a single essential arc as well.

We next show that all points of intersection a2i,j ∩ a2i,j+1 can be isotoped to occur on both Ai and Ai+1.
This also follows from Lemma 5.10.4. If some point of intersection a2i,j ∩ a2i,j+1 could not be isotoped
onto Ai, then the union a2i,j ∪ a2i,j+1 ∪ a2i−1,j+1 could not be supported on a subsurface homeomorphic to
�1,2. An analogous argument applies with Ai+1 in place of Ai. This is explained in Figure 7.

It follows from this analysis that all crossings between curves in row 2i can be isotoped to occur in a
collar neighborhood of ∂Ai. We define A+

i to be a slight enlargement of Ai along such a neighborhood,
so that all crossings between curves in row 2i occur in A+

i \ Ai.
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Figure 7. If the intersection a2i,j ∩ a2i,j+1 cannot be isotoped to occur on Ai, then both curves indicated
by the shaded regions are essential in �g, causing a2i,j ∪ a2i,j+1 ∪ a2i−1,j+1 to be supported on a surface
�1,3.

We can now understand what the collection of arcs a2i,1 ∩ A+
i , . . . , a2i,d−1 ∩ A+

i looks like. To begin
with, the change-of-coordinates principle asserts that up to a homeomorphism of Ai fixing the curves
{a2i−1,j}, the arc a2i,1 ∩ Ai can be drawn in one of two ways. The first possibility is shown in Figure 8(a),
and the second is its mirror-image obtained by reflection through the plane of the page (i.e., the
curve with the dotted and solid portions exchanged). In fact, a2i,1 ∩ Ai must look as shown. This fol-
lows from Lemma 5.10.4. The vertices (a2i−1,1, a2i−1,2, a2i,1) form a positively oriented triangle, and so
i(a2i−1,1, T−1

a2i−1,2
(a2i,1)) = 0. This condition precludes the other possibility.

The pictures for a2i,2, . . . , a2i,d−1 are obtained by proceeding inductively. In each case, there are exactly
two ways to draw an arc satisfying the requisite intersection properties, and Lemma 5.10.4 precludes
one of these possibilities. The result is shown in Figure 8(b).

It remains to understand how the crossings between curves in row 2i are organized on A+
i . As shown,

the arcs a2i,j ∩ Ai and a2i,j+1 ∩ Ai intersect ∂Ai twice each, and in both instances, the intersections are
adjacent relative to the other arcs. There are thus apparently two possibilities for where the crossing can
occur. However, one can see from Figure 8(c) that once a choice is made for one crossing, this enforces
choices for the remaining crossings. Moreover, the two apparently distinct configurations are in fact
equivalent: the cyclic ordering of the arcs along ∂A+

i is the same in either case, and the combinatorial
type of the cut-up surface

A◦
i : = A+

i \
⋃

{ak,j | 2i − 1 ≤ k ≤ 2i, 1 ≤ j ≤ d − 1}
is the same in either situation. The change-of-coordinates principle then asserts the existence of a
homeomorphism of A+

i sending each a2i−1,j to itself and taking one configuration of arcs to the other.
Having seen that the arcs a2i,j ∩ A+

i can be put into standard form, it remains to examine the other
collection of arcs on A+

i , namely those of the form a2i−2,j. It is easy to see by induction on d that the
cut-up surface A◦

i is a union of polyhedral disks for which the edges correspond to portions of the curves
a2i−1,j, the arcs a2i,j ∩ A+

i , or else the boundary ∂A+
i . It follows that the isotopy class of an arc a2i−2,j ∩ A+

I

is uniquely determined by its intersection data with the curves a2i−1,j and a2i,j.
For j ≥ 2, the curve a2i−2,j intersects a2i−1,j−1 and a2i−1,j and is disjoint from all curves a2i,k. As a2i,j−1

has the same set of intersections as a2i−2,j, it follows that a2i−2,j ∩ A+
i must run parallel to a2i,j−1. The

curve a2i−2,1 intersects only a2i,1; consequently, a2i−2,1 ∩ A+
i is uniquely determined. As can be seen from

Figure 8(c), this forces each subsequent a2i−2,j onto a particular side of a2i,j−1.
Step 3: Arcs on the remainder of �g

Consider now the subsurface

�◦
g : = �g \

⋃
Ai.

This has (d − 1)/2 boundary components ∂k, indexed by the corresponding Ak. The intersection a2i,j ∩(
�g \ ⋃

Ai

)
consists of two arcs, each connecting ∂i with ∂i+1. The strategy for the remainder of the

proof is to argue that when all these arcs are deleted from �◦
g , the result is a union of disks. The change-

of-coordinates principle will then assert the uniqueness of such a configuration of arcs, completing the
proof.
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(a) (b)

(c)

Figure 8. The surface A+
i . (a): The correct choice for a2i,1 ∩ Ai. (b): The configuration a2i,j ∩ Ai. (c) The

configuration a2i,j ∩ A+
i .

For what follows, it will be convenient to refer to a product neighborhood [0, 1] × [0, 1] ⊂ �◦
g of

some arc a2i,j ∩ �◦
g as a strip. Our first objective is to compute the Euler characteristic χ of the surface

�◦◦
g obtained by deleting strips for all arcs from �◦

g . Then an analysis of the pattern by which strips are
attached will determine the number of components of this surface.

To begin, we return to the setting of Figure 7. Above, it was argued that for 2i < (d − 1)/2, the inter-
section a2i,j ∩ a2i,j+1 can be isotoped onto either Ai or Ai+1. This means that there is a strip that contains
both a2i,j ∩ �◦

g and a2i,j+1 ∩ �◦
g . Grouping such strips together, it can be seen that for 1 ≤ i ≤ (d − 3)/2,

the 2ith row of the Lönne graph gives rise to d strips. In the last row, there are d − 1 strips. So in total
there are 1/2(d + 1)(d − 2) strips, and each strip contributes −1 to the Euler characteristic.

Recall the relation g = (d − 1)(d − 2)/2: this means that

χ (�g) = 2 − (d − 1)(d − 2).

Each Ai has Euler characteristic χ (Ai) = 2 − d. It follows that

χ (�◦
g) = χ (�g) −

(d−1)/2∑
i=1

χ (Ai) = 2 − (d − 1)(d − 2) + (d − 1)(d − 2)/2

= 2 − (d − 1)(d − 2)/2.

Therefore,

χ (�◦◦
g ) = χ (�◦

g) + 1/2(d + 1)(d − 2)

= d.

We claim that �◦◦
g has d boundary components. This will finish the proof, as a surface of Euler char-

acteristic d and b = d boundary components must be a union of d disks. The claim can easily be checked
directly in the case d = 5 of immediate relevance. For general d, this follows from a straightforward, if
notationally tedious, verification, proceeding by an analysis of the cyclic ordering of the arcs ai,j around
the boundary components ∂A+

k .

Step 2: A convenient configuration

Figure 9 presents a picture of a Lönne configuration in the case of interest d = 5. This was obtained by
“building the surface” curve by curve, attaching one-handles in the sequence indicated by the numbering
of the curves a1, . . . , a16. There are other, more uniform depictions of Lönne configurations which arise
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Figure 9. A Lönne configuration on �6. Only a portion of the figure has been drawn: the omitted curves
are obtained by applying the involution ι to the depicted curves.

from Akbulut–Kirby’s picture of a plane curve of degree d derived from a Seifert surface of the (d, d)
torus link (see [2] or [ [14], Section 6.2.7]), but the analysis to follow is easier to carry out using the
model of Figure 9.

Step 3: Producing vanishing cycles

The bulk of this step will establish claim (1); claim (2) follows as an immediate porism. The set of
vanishing cycles is invariant under the action of the monodromy group, since acting by a monodromy
element on a nodal degeneration amounts to changing the path along which the nodal degeneration
is performed. In particular, if a and b are vanishing cycles, then so is Ta(b). To begin with, curves
c1, c2, c4, c8, and c12 are elements of the Lönne configuration and so are already vanishing cycles. The
curve c3 is obtained as

c3 = T−1
a2

(a3);

similarly,

c13 = T−1
a2

(a4).

Curve c10 is obtained as

c10 = Ta15 (a13);

c6 is obtained from a14 and a16 analogously.
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Figure 10. The sequence of twists used to obtain x.

The curve c9 is obtained as

c9 = Tc10 T−1
a10

(a11);

c7 is obtained from a10, a12, and c6 analogously.
To obtain c5, twist a13 along the chain c6, . . . , c10:

c5 = T−1
c6

T−1
c7

T−1
c8

T−1
c9

T−1
c10

(a13).

c11 is obtained by an analogous procedure on a14.
The sequence of twists used to exhibit x as a vanishing cycle is illustrated in Figure 10. Symbolically,

x = T−1
c6

T−1
c7

T−1
c8

T−1
c9

Tc5 Tc4 T−1
c6

T−1
c7

T−1
c8

T−1
a9

(a7).

y is produced in an analogous fashion, starting with a8 in place of a6.
To produce z, we appeal to the genus-2 star relation. Applied to the surface bounded by b, y, z, it shows

that T2
b TyTz ∈ Im(ρ5), and hence T2

b Tz ∈ Im(ρ5) since Ty ∈ Im(ρ5) by above. Observe that i(c10, z) = 1, and
that Tc10 ∈ Im(ρ5). Making use of the fact that b is disjoint from both z and c10, the braid relation gives

Tc10 T2
b Tz(c10) = Tc10 Tz(c10) = z.

This exhibits z as a vanishing cycle, establishing claim (1) of Lemma 6.1. As T2
b Tz and Tz are now both

known to be elements of Im(ρ5), it follows that T2
b ∈ Im(ρ5) as well, completing claim (2).

7. Proof of Theorem 1.2

In this final section, we assemble the work we have done so far in order to prove Theorem 1.2.

7.1. Step 1: Reduction to the Torelli group

The first step is to reduce the problem of determining Im(ρ5) to the determination of Im(ρ5) ∩ I6. This
will follow from [4]. Recall that Beauville establishes that Im(� ◦ ρ5) is the entire stabilizer of an odd-
parity spin structure on H1(�6;Z). This spin structure was identified as φ5 in Section 2. Therefore, Im(� ◦

https://doi.org/10.1017/S0017089524000284 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089524000284


20 Nick Salter

Figure 11. The cases of step 2.

ρ5) = Im(� ◦ Mod (�6)[φ5]). It, therefore, suffices to show that

Im(ρ5) ∩ ker � = Mod (�6)[φ5] ∩ ker � = I6. (7)

7.2. Step 2: Enumeration of cases

Equation (7) will be derived as a consequence of Theorem 4.6. Lemma 6.1.1 asserts that the curves
c1, . . . , c12 in the Johnson generating set are contained in Im(ρ5), so that the first hypothesis of
Theorem 4.6 is satisfied. There are then eight cases to check: the four straight chain maps of the form
(c1, . . . , ck) for k = 3, 5, 7, 9 and the four β-chain maps of the form (β, c5, . . . , ck) for k = 6, 8, 10, 12.
See Figure 11.

The verification of the β-chain cases will be easier to accomplish after conjugating by the class g =
TxT−1

c5
T−1

c4
∈ Im(ρ5). This has the following effect on the curves in the β-chains (the curve γ is indicated

in Figure 11 in the picture for k = 6):

g(β) = b, g(c5) = c4, g(c6) = γ , g(ck) = ck for k ≥ 7.
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7.3. Step 3: Producing bounding-pair maps

In this step, we explain the method by which we will obtain the necessary bounding-pair maps. This is
an easy consequence of the chain relation.

Lemma 7.1. Let C = (c1, . . . , ck) be a chain of odd length k and boundary ∂C = d1 ∪ d2. Suppose that
the mapping classes

T2
c1

, Tc2 , . . . , Tck , T2
d1

are all contained in some subgroup � ≤ Mod(�g). Then the chain map associated to C (i.e., the bounding
pair map Td1 T−1

d2
) is also contained in �.

Proof. The chain relation (Proposition 4.4) implies that Td1 Td2 ∈ �. By hypothesis, T2
d1

∈ �, so the
bounding pair map Td1 T−1

d2
∈ � as well.

7.4. Step 4: Verification of cases

Lemma 6.1 asserts that the classes Tci , 1 ≤ i ≤ 12, as well as T2
b are all contained in Im(ρ5). The class

γ is obtained from c6 by the element g ∈ Im(ρ5), so γ is a vanishing cycle as well. Via Lemma 7.1, it
remains only to show that in each of the cases in Step 2, one of the boundary components d1 satisfies
T2

d1
∈ Im(ρ5).
The straight chain maps are depicted in the left-hand column of Figure 11. For k = 3, one boundary

component is b; we have already remarked how T2
b ∈ Im(ρ5). For k = 5, one of the boundary components

is x. For k = 7, one uses the methods of Lemma 6.1 to show that the right-hand boundary compo-
nent c satisfies T2

c ∈ Im(ρ5) (the proof is identical to that for b). Finally, for k = 9, one of the boundary
components is y.

We turn to the β-chains. The images of the β-chains under the map g are depicted in the right-hand
column of Figure 11. For k = 6, 8, 10, 12, let dk denote the boundary component depicted there for the
chain (b, c4, γ , c7, . . . , ck). Observe that dk is also a boundary component of the chain map for (c6, . . . , ck)
(in the case k = 6, the boundary component d6 is just c6). Moreover, the chain map for (c6, . . . , ck) is
conjugate to the chain map for (c1, . . . , ck−5) by an element of Im(ρ5) (this is easy to see using the
isomorphism between the group generated by c1, . . . , c12 and the braid group B13 on 13 strands). Via the
verification of the straight-chain cases, it follows that T2

dk
∈ Im(ρ5), and so by Lemma 7.1, the β-chain

maps are also contained in Im(ρ5).
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