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Abstract
In this work, we study foliations of arbitrary codimension F with integrable normal bundles on complete
Riemannian manifolds. We obtain a necessary and sufficient condition for F to be totally geodesic. For this, we
introduce a special number Gα

F that measures when the foliation ceases to be totally geodesic. Furthermore, apply-
ing some maximum principle we deduce geometric properties for F. We conclude with a geometrical version of
Novikov’s theorem (Trans. Moscow Math. Soc. (1965), 268–304), for Riemannian compact manifolds of arbitrary
dimension.

1. Introduction

The study of foliations by codimension one hypersurfaces on Riemannian or Lorentzian manifolds has
been carried out by many authors. For the purpose of this paper, we point out [1, 3, 7, 10, 14, 9]. These
works are focused on the geometry of the leaves in order to answer if they are totally geodesic, umbilical,
or stable hypersurfaces, among other results. The totally geodesic foliations were studied in [1, 3, 10].
The analysis of umbilicity can be found in [7, 14].

The interest in foliations of arbitrary codimension on a Riemannian manifold is well known at works
[12, 19, 21, 17]. In 1986, Brito and Walczak [4], studied totally geodesic foliations with integrable nor-
mal bundles on Riemannian manifolds. They showed that the manifold ambient is locally a Riemannian
product of orthogonal leaves, provided that each leaf is totally geodesic. In 1994, Rovenski in [18] also
studied the relation between the curvature and topology of totally geodesic foliations. Almeida et al.
[2], in 2017, have given a characterization of totally umbilical foliations on a constant curvature space.
They proved that on odd-dimensional unit spheres, there is no umbilical foliation with integrable normal
bundle and divergence free mean curvature vector.

Based on the above discussion, the following questions arise naturally:

(1) For a given arbitrary codimension foliation with integrable normal bundle on a Riemannian
manifold, which conditions should be imposed on the leaves to be totally geodesic?

(2) Are there obstructions for the existence of a totally geodesic foliation on a Riemannian
manifold?

In this work, we analyze and answer the questions above.
In Section 2, we state some preliminaries.
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In Section 3, we use a key equation that relates the principal curvatures of the leaves and the curvature
of the ambient space. We define the number Gα

F, for all α ∈ {n + 1, · · · , n + p} by

Gα

F = inf
M

{
1

n

n∑
i=1

Hi
F⊥
(
eα, ∇⊥

ei
eα − [eα, ei]

⊥)+ 1

n
tr
(
Kα

ij

)− 1

n
divF

(∇eα
eα

)}
,

where {e1, · · · , en, en+1, · · · , en+p} is an adapted frame in a neighborhood of a point. By using the method
of matrix Riccati ODE, we answer Question (1). That is, with this number we estimate the mean cur-
vature function and we characterize totally geodesic foliations with the integrable normal bundle on
Riemannian manifolds. More precisely, we prove the following result.

Let F and F⊥ be orthogonal foliations of complementary dimensions on a complete Riemannian
manifold M. If F⊥ is parallelizable, then for all α

Gα

F ≤ 0,

(Hα

F

)2 ≤ −Gα

F,

and

F is totally geodesic ⇔Gα

F = 0.

The following corollary gives us a result of obstruction to the existence of umbilical foliations on
Riemannian manifolds of positive curvature. Precisely,

Let F and F⊥ be orthogonal foliations of complementary dimensions on a complete Riemannian
manifold M with constant sectional curvature c. Assume that F⊥ is parallelizable and totally umbilical.
If the vector fields ∇eα

eα are divergence free, then

(1) c ≤ 0;
(2) (Hα

F)2 ≤ c.

In Section 4, we create a differential equation that is crucial for answering Question (2) and other
related questions. Assuming that Gα

F is finite, and using a maximum principle due to Yau, we prove the
following result.

Let F be a foliation on a manifold M of codimension p with integrable parallelizable normal bundle.
If M has Ricci curvature bounded from below, then there exists a sequence of points {pk} ∈ M such that

(1) lim
k→∞

Hα

F(pk) = sup
M

Hα

F;

(2) lim
k→∞

‖∇Hα

F(pk)‖ = 0;
(3) lim

k→∞
�Hα

F(pk) ≤ 0.

Furthermore, we give a sufficient condition for an umbilical foliation with integrable normal bundle
on an orientable Riemannian manifold to be totally geodesic.

Let F and F⊥ be two orthogonal foliations of complementary dimensions on a complete Riemannian
manifold M. Suppose that F⊥ is parallelizable and totally umbilical. If F has a complete leaf L such that
tr
(
Kα

ij

)≥ 0 on L and the mean curvature of L is constant and satisfies

Hα

L = (−Gα

F

) 1
2 ,

then F is totally geodesic.
Let M be a compact 3-manifold such that the fundamental group π1(M) is finite. It follows from

classical Novikov’s theorem [16] that there is no foliation on M by closed curves with integrable normal
bundle. In particular, there is no foliation of S3 by circles with integrable normal bundle (for more details,
see [2]).

However, this theorem does not apply to S2k+1, k ≥ 2. In [2], the authors prove that on odd-dimensional
unit spheres there is no umbilical foliation with integrable normal bundle and divergence free mean
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curvature vector. In Section 5, we conclude this paper with a geometric version of the Novikov’s theorem
and a generalization of [2] for compact manifolds and arbitrary dimensions.

On a compact manifold M, there is no umbilical foliation with an integrable and parallelizable normal
bundle, condition tr(Kα

ij ) > 0 and a divergence free mean curvature vector field.

2. Preliminaries

We shall now present the main tools we use in this work.
Let M be a (n + p)-dimensional manifold equipped with a Riemannian metric 〈 , 〉. Denote by ∇

the Levi-Civita connection and by R the curvature tensor of M. Let F be a foliation of codimension p
on M and F⊥ be an orthogonal foliation to F. Consider an adapted frame {e1, ..., en, en+1, ..., en+p} in a
neighborhood of a point x ∈ M. We shall make use of the following convention on the range of indices

1 ≤ A, B, C ≤ n + p,

1 ≤ i, j, k ≤ n,

n + 1 ≤ α, β, γ ≤ n + p.

Let L be a submanifold of M and let Aν be the shape operator of L defined by an arbitrary normal
vector ν. Note that Aν and II are related by

〈II(v, w), ν〉 = 〈Aν(v), w〉.
The submanifold L is said to be totally umbilical if the second fundamental form is II = �h〈·, ·〉 which
is equivalent to say that the shape operators are always multiple of the identity I . In this case, for each
normal vector ν, Aν = ξνI, where ξν = 〈�h, ν〉.

We define the second fundamental form of F in the direction eα by

Hα

F(ei, ej) = 〈−∇ei eα, ej〉.
Analogously, we define the second fundamental form of F⊥ in the direction of ei by

Hi
F⊥ (eα, eβ) = 〈−∇eα

ei, eβ〉.
The Weingarten operators of Hα

F and Hi
F⊥ are given, respectively, by

Aeα
(ei) = − (∇ei eα

)� and Aeα
(ei) = − (∇eα

ei

)⊥
.

We define the mean curvature vector of F and F⊥, respectively, by

�h =
∑

i

(∇ei ei

)⊥ and �h⊥ =
∑

α

(∇eα
eα

)�
,

and finally, the mean curvature function in direction eα is defined by

Hα

F = 1

n
〈�h, eα〉.

We define the norms of the second fundamental form Hα
F and Hi

F⊥ of F and F⊥, respectively, by

‖Hα

F‖ =
(∑

i,j

〈−∇ei eα, ej〉2

)1/2

and

‖Hi
F⊥‖ =

(∑
α,β

〈−∇eα
ei, eβ〉2

)1/2

.
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We say that F⊥ is totally umbilical if the mean vector field �h⊥ is

�h⊥ =
∑

i

λ(x, ei)ei,

where λ : TF⊥ →R is the eigenvalue of the Weingarten operator

Av : TF⊥ → TF⊥

defined in the smooth field TF⊥ of p-planes tangent to the leaves of TF⊥. Note that λ(x, v) = 〈�h⊥, v〉.
For each fixed α, we denote by (Kα

ij ) the n × n matrix with entries given by R(eα, ei, ej, eα). The trace
of the matrix (Kα

ij ) is then given by

tr(Kα

ij ) =
∑

i

R(eα, ei, ei, eα).

The following theorem was proved in [11] where the authors find an differential equation that relates the
foliations with the ambient manifold.

Proposition 2.1. Let F and F⊥ be complementary foliations of dimensions n and p, respectively, on a
(n + p)-dimensional Riemannian manifold. Then, for all α

eα

〈�h, eα

〉
− ∥∥Hα

F

∥∥2 − tr
(
Kα

ij

)=
n∑

i=1

Hi
F⊥
(
eα, ∇⊥

ei
eα − [eα, ei]

⊥)− divF

(∇eα
eα

)
where

(i) �h represents the mean curvature vector of F;
(ii) ‖Hα

F‖ is the norm of the second fundamental form of F;
(iii) divF(∇eα

eα) =∑n
i=1〈ei, ∇ei∇eα

eα〉.

Corollary 2.1. Let F and F⊥ be two orthogonal foliations of complementary dimensions on a
Riemannian manifold M. Suppose that F⊥ is totally umbilical. Then,

n
〈
∇eα

�h, eα

〉
− ∥∥Hα

F

∥∥2 − tr
(
Kα

ij

)−
∥∥∥�h⊥

∥∥∥2 + divF
�h⊥ = 0.

Using the Cauchy-Schwarz inequality, it follows that:

Proposition 2.2. Let F and F⊥ be complementary foliations of dimensions n and p, respectively, on a
(n + p)-dimensional Riemannian manifold. Then,

eα

(Hα

F

) ≥ 1

n

n∑
i=1

Hi
F⊥
(
eα, ∇⊥

ei
eα − [eα, ei]

⊥)+ 1

n
tr
(
Kα

ij

)

−1

n
divF

(∇eα
eα

)+ (Hα

F

)2
,

where n + 1 ≤ α ≤ n + p.

3. Characterization of totally geodesic foliations

Let us analyze orthogonal foliations of complementary dimensions, F and F⊥ defined on a complete
Riemannian manifold M. We say that F is transversely parallelizable (or F⊥ is parallelizable) if its
normal bundle is trivial, that is, there is a global frame {en+1, · · · , en+p} on M (for more details see [13]).
Now define the number Gα

F for all α ∈ {n + 1, · · · , n + p} by
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Gα

F = inf
M

{
1

n

n∑
i=1

Hi
F⊥
(
eα, ∇⊥

ei
eα − [eα, ei]

⊥)+ 1

n
tr
(
Kα

ij

)− 1

n
divF

(∇eα
eα

)}
,

where {e1, · · · , en, en+1, · · · , en+p} is an adapted frame in a neighborhood of a point. With this number,
we will estimate the mean curvature function and give a characterization of the totally geodesic folia-
tions of complementary dimensions on a complete Riemannian manifold M. In fact, we generalize for
arbitrary codimension, Theorem 4.2 in [7] and Theorem 2.4 in [10], following the steps of the proof of
the latter and using Gα

F.

Theorem 3.1. Let F and F⊥ be orthogonal foliations of complementary dimensions on a complete
Riemannian manifolds M. If F⊥ is parallelizable then, for all α

Gα

F ≤ 0, (3.1)

(Hα

F

)2 ≤ −Gα

F, (3.2)

and

F is totally geodesic ⇔Gα

F = 0.

Proof. We will use a proof by contradiction. So we assume that

1

n

n∑
i=1

Hi
F⊥
(
eα, ∇⊥

ei
eα − [eα, ei]

⊥)+ 1

n

n∑
i=1

R(eα, ei, ei, eα) − 1

n
divF

(∇eα
eα

)
> 0,

on M. By Proposition 2.2, we have that dHα
F(eα) >

(Hα
F

)2 holds on M. Let γ (s) be an integral curve
of the unit vector field eα. Since M is complete, γ may be extended to all R. Thus, along γ , the above
inequality has the form (Hα

γ (s)

)′
>
(Hα

γ (s)

)2 ∀s ∈R.

We can choose the field eα of such a way that Hγ (0) ≥ 0. Note that such choose does not change the
expression

1

n

n∑
i=1

Hi
F⊥
(
eα, ∇⊥

ei
eα − [eα, ei]

⊥)+ 1

n

n∑
i=1

R(eα, ei, ei, eα) − 1

n
divF

(∇eα
eα

)
.

Therefore, the following inequalities are valid for every s > 0,

(Hα

γ (s)

)′
>
(Hα

γ (s)

)2
> 0 and

(Hα
γ (s)

)′
(Hα

γ (s)

)2 > 1. (3.3)

Now consider the real function G given by

G(s) = − 1

Hα
γ (s)

, s > 0.

Take a fixed b > 0 and apply the Mean Value Theorem for the function G on the interval [b, s], we
obtain

− 1

Hα
γ (s)

+ 1

Hα
γ (b)

=
(Hα

γ (ξ )

)′
(Hα

γ (ξ )

)2 (s − b),

where ξ ∈ (b, s). Consequently, for all s > b, we have

− 1

Hα
γ (s)

+ 1

Hα
γ (b)

> s − b.
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As s tends to infinity, the right side of this inequality is unlimited, while the left side is limited, which
is a contradiction. This Proves (3.1).

To prove (3.2), suppose by contradiction that there exists a point p ∈ M such that,(Hα

p

)2
> −Gα

F.

If Gα
F = −∞, then there is nothing to be proved. By (3.1), for some a ≥ 0 we have

Gα

F = −a2,

where a = 0 or a > 0. If a > 0, we have by hypothesis that,
(Hα

p

)2 − a2 > 0. Let γ be an integral curve
of eα such that γ (0) = p. As previously we can choose a direction, eα such that Hα

p =Hα
γ (0) ≥ 0 and

then,

Hα

p =Hα

γ (0) > a.

By continuity, there exists a maximal interval [0, b) where(Hα

p

)2 − a2 > 0 ∀s ∈ [0, b).

We claim that b = +∞.
In fact, if b < +∞, by continuity we should have (Hα

γ (b))
2 = a2. But, from proposition (2.2), we

have: (Hα

γ (s)

)′ ≥ (Hα

γ (s)

)2 − a2 > 0, ∀s ∈ [0, b).

Thus, we conclude that Hα
γ (s) is a strictly increasing function in [0, b], contradiction. Therefore, the

following inequality are valid for every s > 0,

Hα

γ (s) > 0,
(Hα

γ (s)

)′ ≥ (Hα

γ (s)

)2 − a2 > 0 and
(Hα

γ (s)

)′
(Hα

γ (s)

)2 − a2
≥ 1.

Considering the function G defined by

G(s) = 1

2a
ln

(Hα
γ (s) − a

Hα
γ (s) + a

)
, s > 0.

For b > 0 fixed and by the Mean Value Theorem, we have that there exists c ∈ [b, s] such that

1

2a
ln

(Hα
γ (s) − a

Hα
γ (s) + a

)
− 1

2a
ln

(Hα
γ (b) − a

Hα
γ (b) + a

)
=

(Hα
γ (c)

)′
(Hα

γ (c)

)2 − a2
(s − b).

Consequently, for all s > b, we have

1

2a
ln

(Hα
γ (s) − a

Hα
γ (s) + a

)
− 1

2a
ln

(Hα
γ (b) − a

Hα
γ (b) + a

)
≥ s − b.

Letting s −→ +∞ we have a contradiction, because the left side is limited while the right side is
unlimited. The case a = 0 is similar.

Finally, suppose

Gα

F = 0.

It follows from Theorem 3.1 that (Hα

F

)2 ≤ −Gα

F = 0.
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Therefore, Hα
F ≡ 0. By Proposition 2.2,

0 ≥ 1

n

n∑
i=1

Hi
F⊥
(
eα, ∇⊥

ei
eα − [eα, ei]

⊥)+ 1

n

n∑
i=1

R(eα, ei, ei, eα) − 1

n
divF

(∇eα
eα

)
.

Thus,

0 = 1

n

n∑
i=1

Hi
F⊥
(
eα, ∇⊥

ei
eα − [eα, ei]

⊥)+ 1

n

n∑
i=1

R(eα, ei, ei, eα) − 1

n
divF

(∇eα
eα

)
,

on M. By using the Proposition 2.1, we conclude that
∥∥Hα

F

∥∥= 0, i.e., F is a totally geodesic foliation.
The converse follows from Proposition 2.1.

Corollary 3.1. Let F and F⊥ be orthogonal foliations of complementary dimensions on a complete
Riemannian manifold M with constant sectional curvature c. Assume that F⊥ is parallelizable and totally
umbilical. If the vector fields ∇eα

eα are divergence free, then

(1) c ≤ 0;
(2) (Hα

F)2 ≤ c.

Proof. Since M has constant sectional curvature, it follows that tr(Kα
ij ) = nc for all n + 1 ≤ α ≤ n + p.

Then,

k ≤ 1

n

n∑
i=1

{
(λ(x, ei))

2 + 1

n
tr
(
Kα

ij

)− 1

n
divF

(∇eα
eα

)}
,

where in the last identity we use the fact that F⊥ is umbilical and the vector field ∇eα
eα is free divergent.

Consequently k ≤Gα
F.

4. Some Applications of the maximum principle on umbilical and minimal foliations

Suppose that one of the foliation is totally umbilical, as in [11] and [2] on a complete Riemannian
manifold M.

From now on, we assume that Gα
F is finite. Then, we use some well-known results of the geometric

analysis to get further results for umbilical foliations with integrable normal bundle. First, let us apply
the maximum principle due to Yau [22].

Corollary 4.1. Let F be a foliation on a manifold M of codimension p with integrable parallelizable
normal bundle. If M has Ricci curvature bounded from below, then there exists a sequence of points
{pk} ∈ M such that

(1) lim
k→∞

Hα

F(pk) = sup
M

Hα

F;

(2) lim
k→∞

‖∇Hα

F(pk)‖ = 0;
(3) lim

k→∞
�Hα

F(pk) ≤ 0.

Proof. From Theorem 3.1, it follows that
(Hα

F

)2 is bounded, since GF is finite. By Yau [22], we finish
the proof.

Denote by L1(N) the space of Lebesgue integrable functions on a manifold N . In [7], the authors give
the definition of Lebesgue integrable vector fields on foliations. Precisely, a vector field X is Lebesque
integrable on a foliation F, if and only if ‖X�‖ ∈L1(L) for each leaf L of F, where X� means the tangent
projection of X, on L. In this case, we will denote ‖X‖ ∈L1(F).
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The following result gives a sufficient condition for an umbilical foliation with integrable normal
bundle on an orientable Riemannian manifold to be totally geodesic.

Theorem 4.1. Let F and F⊥ be two orthogonal foliations of complementary dimensions on a complete
Riemannian manifold M. Suppose that F⊥ is parallelizable and totally umbilical. If F has a complete
leaf L such that tr(Kα

ij ) ≥ 0 on L and the mean curvature of L is constant and satisfies

Hα

L = (−Gα

F

) 1
2 ,

then F is totally geodesic.

Proof. We will do the proof into two steps: the compact case and the complete non-compact case.
Compact case: Let p ∈ M and {e1, ..., en, en+1, ..., en+p} be a orthonormal adapted frame, in a neigh-

borhood of p. If �h(p) �= 0, choose eα as the mean curvature vector normalized, that is, eα = �h
‖�h‖ .

By Theorem 3.1 the mean curvature function Hα
F attains a maximum on L. Therefore, dHα

L(eα) = 0
on L. Therefore by Corollary 2.1 we have

divL
�h⊥ = ∥∥Hα

L

∥∥2 + tr
(
Kα

ij

)+ ∥∥�h⊥∥∥2
.

on L. By the Stokes Theorem and from the fact that tr(Kα
ij ) ≥ 0 on L, we conclude Hα

L = 0 on L. Therefore,
L is totally geodesic and

Gα

F = 0.

By Theorem 3.1 we conclude the result.
Now if p is a singularity of the field �h⊥, using the same equation (2.1), we get the equation for the

leaf that passes through p say Lp and the same argument is valid.
Complete and non-compact case: Let p ∈ M and {e1, . . . , en, en+1, . . . , en+p} be a orthonormal adapted

frame, in a neighborhood of p. If �h(p) �= 0 choose eα as the mean curvature vector normalized, that is,

eα = �h
‖�h‖ .

By Theorem 3.1, the mean curvature function of L attains its maximum on L. Thus, dHα
L(eα) = 0 on

L. By Corollary 2.1 we have the equation

divL
�h⊥ = ∥∥Hα

L

∥∥2 + tr(Kα

ij ) + ∥∥�h⊥∥∥2
,

on L. Since L is a complete non-compact and oriented leaf of F and divL
�h⊥ does not change signal on

L, we can apply Proposition 1 in [6] to obtain

0 = divL
�h⊥ = ∥∥Hα

L

∥∥2 + tr(Kα

ij ) + ∥∥�h⊥∥∥2
.

By the same argument above, we conclude that H
α

L = 0 on L. Therefore, L is totally geodesic and

Gα

F = 0.

Again by Theorem 3.1, the result follows.

Corollary 4.2. Let F and F⊥ be two orthogonal foliations of complementary dimensions on a complete
Riemannian manifold M. Suppose that F⊥ is parallelizable and totally umbilical. If Hα

F is subharmonic
and there is p ∈ M such that Hα

F(p) = (−Gα
F

) 1
2, then F has constant mean curvature. Furthermore, the

leaves have the same mean curvature.

Proof. The proof follows directly from Hopf-Calabi’s maximum principle in [5] and the fact that
Hα

F(p) = (−Gα
F

) 1
2 .
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5. Umbilical foliations with integrable normal bundle

Lemma 5.1. Let F be a foliation of codimension p on a compact Riemannian manifold M and f : M −→
R be a continuous function, non-constant on M, and constant along the leaves of F . Then, the set
A = {x ∈ M : f (x) = maxM{f (x)} has at least one leaf L of F .

Proof. Since f : M −→R is continuous defined on a compact Riemannian manifold M, then, there is
a maximum and a minimum point. Let x ∈ M be a point of maximum of f . Denote by Lx the leaf through
x. As f is constant along Lx, we have that f (y) = maxM{f (x)} for any y ∈ Lx. Therefore, Lx ⊂ A.

Theorem 5.1. Let F and F⊥ be orthogonal foliations of complementary dimensions on a compact
Riemannian manifold M with tr(Kα

ij ) ≥ 0. If F has constant mean curvature and divFh⊥ ≤ tr
(
Kα

ij

)
for

each α, then F is totally geodesic foliation.

Proof. Let p ∈ M and {e1, ..., en, en+1, ..., en+p} an orthonormal adapted frame in a neighborhood of
p. If �h(p) �= 0 choose eα as the normalized mean curvature vector, that is, eα = �h

‖�h‖ . The mean curvature
function Hα

F : M →R is constant on M or there exists a leaf L ∈ F having the property that

Hα

L = max
M

Hα

F(x). (5.1)

First, assume that Hα
F is not constant on M. This implies that eα(Hα

L) = 0 along L. Then, it follows from
Corollary 2.1 that

neα(Hα

L) = ∥∥Hα

L

∥∥2 + tr(Kα

ij ) + ∥∥�h⊥∥∥2 − divL
�h⊥. (5.2)

Since tr(Kα
ij ) − divF�h⊥ ≥ 0, we have: ∥∥Hα

L

∥∥2 ≤ 0.

Therefore, L is totally geodesic, in particular, Hα
L = 0. From (5.1), we conclude that Hα

F ≤ 0.
Similarly, considering the function ( −Hα

F) we conclude Hα
F ≥ 0. Therefore, Hα

F = 0. Contradiction.
Hence, Hα

F is constant along M. Since eα(Hα
F) = 0, it follows from (5.2) that

divF
�h⊥ = ∥∥Hα

F

∥∥2 + tr(Kα

ij ) + ∥∥�h⊥∥∥2
. (5.3)

If L is compact, applying Stokes’ theorem we obtain

Hα

F ≡ 0, tr(Kα

ij ) ≡ 0 and �h⊥ ≡ 0.

If L is complete and non-compact, note that divL
�h⊥ does not change sign and since

∥∥�h⊥∥∥ ∈L1(F) then
divL

�h⊥ = 0. Therefore by equation (5.3), we have

Hα

F ≡ 0.

Finally if p is a singularity of the field �h⊥, using (2.1) we get the equation for the leaf that passes
through p and the same argument is valid.

As an immediate consequence of our results, we obtain a geometric version of Novikov’s
theorem [16].

Corollary 5.1. On a compact manifold M, there is no umbilical foliation with an integrable and
parallelizable normal bundle, condition tr

(
Kα

ij

)
> 0 and a divergence free mean curvature vector field.

Since this holds for compact manifolds with no restriction on dimension, the above is a generalization
of the result for odd-dimensional unit spheres, proved in [2].
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