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This paper investigates the nonlinear evolution and acoustic radiation of coherent
structures (CS) in the near-nozzle region of a subsonic turbulent circular jet. A CS
is taken to be a wavepacket consisting of multiple ring/helical modes, which are
considered to be inviscid instability waves supported by the mean-flow profile. As the
three-dimensionality of helical modes is weak in the near-nozzle region, the ring and
helical modes with the same frequency have nearly the same growth rates and critical
levels. They coexist and interact with each other in their common critical layer at high
Reynolds numbers. The self and mutual quadratic interactions generate a mean-flow
distortion and streaks, which act back on the fundamental components through the
cubic interaction. The amplitude of the CS is governed by an integro-partial-differential
equation, a significant feature of which is that differentiations with respect to the azimuthal
coordinate appear in the history-dependent nonlinear terms. The non-parallelism of
the mean flow as well as the impact of fine-scale turbulence on CS are taken
into account and found to affect the nonlinear terms. By solving the amplitude
equation, the development of the constituting modes, streamwise vortices and streaks
are described. For CS consisting of frequency sideband, low-frequency components
are excited nonlinearly and amplify to reach a considerable level. By analysing the
large-distance asymptote of the perturbation, the low-frequency acoustic waves are found
to be emitted by the temporally–spatially varying mean-flow distortion and streaks
generated by the nonlinear interactions of the CS, and are thereby determined on the
basis of first principles. Interestingly, the energetic part of the streaky structure that
contributes to the nonlinear dynamics does not radiate directly, and instead the Reynolds
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stresses driving the subdominant radiating components represent the true physical
sources.

Key words: jet noise, nonlinear instability, critical layers

1. Introduction

Exhaust-gas noise, or jet noise, generated by the turbulent flow, constitutes a substantial
portion of aircraft noise. It has long been recognised that turbulent flows such as a circular
jet consist of temporally and spatially ordered coherent structures (CS), and the latter may
act as importance sources of sound (Crow & Champagne 1971; Liu 1974). There has been
a resurgence of interest in CS and their role in the emission of sound waves (Jordan &
Colonius 2013; Cavalieri, Jordan & Lesshafft 2019). The majority of the theoretical work
on noise generation by CS has been pursued in the framework of the acoustic analogy
(Lighthill 1952) and its generalisation (Lilley 1974; Goldstein 2001, 2003). This approach
seeks to relate the acoustic field quantitatively to the characteristics of the near-field
turbulence, and it relies upon a predesignation of ‘apparent sources’, made according to
rearrangements of the Navier–Stokes (N–S) equations into wave or wave-like equations.
The precise physical process of acoustic radiation, vortical near-field fluctuations evolving
to acquire at large distances the character of sound waves, is not described. The present
paper continues our efforts towards advancing the alternative, asymptotic approach that
describes, on the basis of first principles, acoustic radiation of nonlinearly evolving CS
on turbulent jets, following our recent work (Zhang & Wu 2020 and Zhang & Wu 2022,
hereafter referred to as ‘[I]’ and ‘[II]’), which investigated the evolution and radiation of
two-dimensional (planar) and ring-mode (axisymmetric) CS on a subsonic mixing layer
and a circular jet, respectively. The latter has been generalised to a unified theory for the
ring-mode CS in the very near nozzle and developed regions of a circular jet (Zhang & Wu
2023b). Since detailed introductions to CS, jet noise and approaches to aeroacoustics as
well as a fairly comprehensive review of relevant previous studies can be found in [I] and
[II], the literature survey in the following will focus on multi helical modes representing
CS in the near-nozzle region.

As in previous investigations, we adopt the viewpoint that CS correspond to instability
modes that are supported by the mean-flow profile. On a circular jet, there exist
several Rayleigh or Kelvin–Helmholtz (K–H) instability modes, distinguished by their
azimuthal wavenumbers m ∈ Z, including the (axisymmetric) ring mode (m = 0) and
(three-dimensional) helical modes (m /= 0) (Batchelor & Gill 1962), which are similar
to the planar and oblique counterparts in a planar shear flow respectively.

For a jet, there are two characteristic lengths, the local shear-layer thickness δ∗ and the
shear-layer central position R∗

0. Although R∗
0 varies slowly in the axial direction, it remains

comparable to the exhaust-nozzle diameter D∗, i.e. R∗
0 ∼ D∗, unlike δ∗, which changes

substantially. A (Favre) time-averaged turbulent jet can be divided into two regions, the
near-nozzle region with an obvious potential core zone, and the developed region. The
hydrodynamics and the radiation characteristics in these two regions are quite different.
Mathematically, these regions are distinguished by the ratio δ∗/R∗

0 (Michalke 1984; Cohen
& Wygnanski 1987b; Churilov & Shukhman 1994), which characterises the circularity
of the flow, and furthermore measures the three-dimensionality of helical modes. In the
near-nozzle region, where (|m|δ∗/D∗) � 1, the three-dimensionality of a helical mode is
weak for a finite m, which means that its linear growth rate is close to that of the ring
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mode with the same frequency. The length and time scales of the CS or instability waves
are much smaller than the nozzle diameter D∗ and D∗/UJ , respectively, a feature that
makes direct numerical simulations (DNS) and large-eddy simulations (LES) challenging.
Nevertheless, CS in the near-nozzle region are still referred to as ‘large-scale structures’
to distinguish them from ‘fine-scale turbulence’.

Linear stability analyses for mean-flow profiles pertinent to different regions have been
performed by numerous researchers (Mattingly & Chang 1974; Plaschko 1979; Strange &
Crighton 1983; Cohen & Wygnanski 1987b), and it is found that, in the region within one
diameter from the nozzle, modes with m = 0,±1,±2,±3 have nearly the same growth
rates and phase speeds (Long & Petersen 1992; Churilov & Shukhman 1994). It follows
that an arbitrary number of ring/helical modes can coexist and interact with each other
therein. Modes of different m but nearly the same frequencies may be considered as
being in the same sideband so that ‘sideband resonance’ may take place among them.
Near the nozzle the ring mode is somewhat more unstable, but as the jet develops
downstream, the ring and helical modes with larger |m| would attenuate while those
with smaller |m| undergo amplification for larger axial distances, and ultimately modes
with m = ±1 survive in the fully developed self-similar regime (Batchelor & Gill 1962).
The predicted wavelengths, growth rates and radial distribution were found to be in good
agreement with measurements. Coexisting ring and helical modes have been revealed by
flow visualisations (Liepmann & Gharib 1992; Paschereit et al. 1992) as well as being
educed by a phase-averaging technique (Tso & Hussain 1989). Ring and helical modes
can be generated independently using controlled excitation (Cohen & Wygnanski 1987a,b;
Long & Petersen 1992).

For fully turbulent jets, the proper orthogonal decomposition (POD) has been applied
to experimental data to extract the so-called POD modes, which represent the forms of the
disturbances carrying most of the kinetic energy and are thus considered as main ‘building
blocks’ of CS. A POD mode is characterised by its frequency, azimuthal wavenumber
and an eigenfunction describing its radial shape. A POD analysis showed that, in the
region x∗/D∗ < 3, the ring and helical POD modes up to |m| = 10 carry an appreciable
fraction of the energy (Arndt, Long & Glauser 1997; Citriniti & George 2000; Sasaki
et al. 2017). With the increase of the axial distance, the disturbance energy gradually
transfers to modes with smaller |m| and lower frequencies (Jung, Gamard & George
2004). In the region far downstream (15 � x∗/D∗ � 69), the energy is carried primarily
by modes with m = ±1, 0 and 2. The above experiments were performed in the practically
incompressible regime. Similar results were obtained for a high-Mach-number (M = 0.85)
subsonic jet (Tinney, Glauser & Ukeiley 2008a). Extracted from postprocessing the
data, POD modes are fundamentally different from instability eigenmodes, which are
operator based and determined by the mean flow. A one-to-one correspondence does
not exist. Interestingly, a leading POD mode with its frequency in the instability band
turned out to resemble the unstable mode of the same frequency in terms of radial
distribution, axial wavelength and amplification. The general trend of the leading POD
modes with respect to the axial distance is consistent with the predictions by local
instability analysis. Far downstream, the m = ±1 POD modes appear to be the only
instability modes possible, while m = 0 and 2 modes are likely to be mean-flow distortion
and streaks generated by nonlinear interactions of the m = ±1 modes (as will be discussed
below).

Recently, CS have been investigated in the frameworks of global stability analysis and
global resolvent analysis, in which the axial and radial variations of the mean flow are
treated on the same footing so that the non-parallel-flow effect is included at leading order.
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Linear global stability analysis for a M = 0.9 jet (Schmidt et al. 2017) showed that global
modes are all damped in time, but their radial and axial structures exhibit the signature
of local K–H instability modes with 0 � |m| � 4, in addition to which another prominent
constituting part of a global mode is ‘trapped acoustic modes’ residing in the potential
core. Resolvent analysis treats the nonlinear terms in the N–S equations as forcing on
the linear operator, and seeks the so-called optimal forcing and response such that the
gain, measured by the ratio of the latter to the former, is the largest. The resulting optimal
responses or ‘modes’ are viewed as characteristics of CS. Such optimal modes with
0 � |m| � 3 were calculated by Schmidt et al. (2018) for subsonic jets, and compared
with the POD modes extracted from resolved LES data. Good agreement was noted,
and furthermore the optimal modes are reminiscent of local instability waves when their
frequency and azimuthal wavenumber are in the K–H instability band.

While CS are composed primarily of K–H like components, also present prominently
are components having very low (including zero) frequencies and long wavelengths with
either finite m or m = 0. The former constitute streaks, while the latter correspond to
the axisymmetric mean-flow distortion, both being slowly modulated in time and space
(the axial distance). These components were observed in experiments using controlled
excitation, and were shown to be driven by nonlinear interactions of the seeded modes
(Cohen & Wygnanski 1987a; Long & Petersen 1992); POD analyses of experimental
data revealed such streaks with m = 2 in the downstream well-developed region of
incompressible and M = 0.85 jets (Jung et al. 2004; Tinney et al. 2008a). The radial
structure of streaks was found to be captured by the leading local resolvent mode
(Nogueira et al. 2019). Recently, POD analysis of LES data showed that streaks are present
from the near-nozzle region all way to the fully developed regime, and the azimuthal
wavenumber of dominant streaks decreases with the axial distance (Pickering et al.
2020).

Streaks (and streamwise vortices) may be excited externally, e.g. by microjets and
chevrons deployed at the nozzle (Alkislar, Krothapalli & Butler 2007; Uzun & Hussaini
2009), and their dynamics and role in acoustic radiation are of interest but are deemed
beyond the scope of the present paper. Our attention will be restricted to streaks which are
an intrinsic part of CS on conventional turbulent jets.

While certain characteristics of CS can be described by linear theories as a first
approximation, nonlinear effects play a crucial role in the amplification/attenuation of
CS as well as in generating and sustaining important structures. Since POD modes are
extracted from the data of the flow field, they are inherently coupled nonlinearly rather
than being independent. For example, interactions between a ring mode (m = 0) and
helical modes lead to ‘volcano-like’ eruptions (Jung et al. 2004) as well as the formation
of streamwise vortices and radial organisation (Davoust, Jacquin & Leclaire 2012). The
consequences of the interactions depend on the magnitudes of the ring and helical modes
(Kantharaju et al. 2020). As we shall elaborate below, low-frequency streaky structures
and axisymmetric mean-flow distortion are generated by nonlinear interactions of modes
with nearly the same frequencies.

It has been suggested that the mixing noise of turbulent supersonic and subsonic jets
may be attributed to two distinct sources: CS and fine-scale fluctuations, respectively
(Tam, Golebiowski & Seiner 1996; Viswanathan 2004; Tam 2019). Dominant components
in the acoustic far field turned out to be in the fairly low or moderate frequency band
compared with the peak frequency of turbulent fluctuations within the jet (Tam et al. 2008;
Viswanathan 2008; Brès et al. 2016). This frequency disparity in the spectra suggests that
the direct emitters of the dominant noise may actually be ‘large-scale’ and ‘low-frequency’
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CS rather than fine-scale turbulence. The sources of low-frequency sound waves are
generally located at downstream regions whilst those of high-frequency noise are close to
the exhaust nozzle (Narayanan, Barber & Polak 2002). Since CS in the latter region could
have Strouhal numbers as large as 4 (Sasaki et al. 2017), they may actually contribute to
the noise that has normally been attributed to fine-scale turbulence.

Measurements of azimuthal correlation of the acoustic pressure indicate that far-field
sound waves consist of axisymmetric and helical components with m = 0–±3 with
the m = ±2 modes being most dominant in directions close to 90◦ (Fuchs & Michel
1978; Juvé, Sunyach & Comte-Bellot 1979). These features are well predicted by Ffowcs
Williams and Hawkings method using the LES data for the hydrodynamic field (Lorteau,
Cléro & Vuillot 2015; Brès et al. 2018). The results also indicate that approaching 90◦, the
spectral peak of the far-field acoustics shifts to higher frequencies. The radiation to these
directions is attributed to CS in the shear layer near the nozzle, where CS are of small scale
and high frequency. Considerable efforts have been made to seek possible causal relations
between acoustic radiation and the temporal–spatial dynamics of CS, with particular
references to wavepackets of ring and helical modes. Emission of sound waves was found
to be associated with interactions and breakdown of CS (Bridges & Hussain 1987, 1992;
Hileman et al. 2005; Crawley et al. 2018), in which intermittent events render the emission
efficient (Juvé, Sunyach & Comte-Bellot 1980; Cavalieri et al. 2011; Kearney-Fischer,
Sinha & Samimy 2013). It has long been known that harmonic excitation could suppress
or enhance jet noise (Bechert & Pfizenmaier 1975; Moore 1977; Hussain & Hasan 1985;
Cavalieri et al. 2013). A recent experiment, in which helical m = 2 mode was excited,
attributed the observed suppression/enhancement of the emission to a rather complex
process: the excited mode modulates fine-scale turbulence, and the Reynolds stresses of
the latter modify the mean flow to a state on which helical modes are inhibited/promoted
(Kœnig et al. 2016).

Coherent structures as represented by wavepackets of ring and helical modes have been
employed to model the acoustic field theoretically. Such wavepackets have been used to
approximate the ’linear sources’ (Cavalieri et al. 2012) and ‘nonlinear sources’ (Sandham
& Salgado 2008; Wan et al. 2016) in the acoustic analogy of Lighthill and Lilley-Goldstein
forms. Instead of instability modes, Tinney, Ukeiley & Glauser (2008b) evaluate the
‘nonlinear sources’ in the Lighthill analogy using ring and helical POD modes. The
resulting inhomogeneous wave equations are solved to predict sound waves. For supersonic
and subsonic jets respectively, Sinha et al. (2014) and Zhang, Wan & Sun (2021) took
linear instability modes and POD modes to represent CS in the near field, which are then
propagated directly to the acoustic far field by using Kirchhoff method.

The effect of jittering or intermittency was investigated by modelling CS, on a purely
phenomenological basis, as wavepackets with its envelope length scale being modulated
in time (Ffowcs Williams & Kempton 1978; Cavalieri et al. 2011). The model predicts
enhanced radiation as observed.

While modelling the (apparent) ‘sources’ in acoustic analogy in terms of CS allows
for a simplified prediction of sound waves, the methodology of this kind is subject to
the same inherent limitations of acoustic analogy framework, which are discussed in our
previous work ([I] and [II]). The fundamental questions of why and how CS emit sound
waves have been addressed by developing asymptotic approach to aeroacoustics. Its key
idea, introduced first by Crow (1970), is to treat far-field acoustic waves as ‘ripples’ of the
near-field hydrodynamic/aerodynamic fluctuations, and thus the large-distance asymptotic
behaviour of the latter is analysed to determine the true physical sources. This amounts to
probing into the precise process of acoustic radiation; a review was recently given by Wu
& Zhang (2019). With CS being represented by a wavepacket of K–H instability modes,
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the radial structure of the latter can be obtained analytically at high Reynolds numbers.
The CS enters a nonlinear evolution stage near the neutral position of the mode as it has
acquired a sizable amplitude due to the accumulated amplification in the linear phase.
Since the disturbance vorticity and temperature concentrate in the critical layer, a thin
region surrounding the radial position (i.e. critical level) at which the mean-flow velocity
is equal to the phase speed, the dominant nonlinear interactions take place in this layer.
The nonlinear development of the CS can be described by adapting the well-developed
nonlinear critical-layer theory, a review of which was given by Wu (2019) recently. Based
on the analytical results for the near-field hydrodynamics, first-principles asymptotic
descriptions of acoustic radiation become possible. Analyses using this approach showed
that supersonic instability modes or CS on a supersonic jet emit, during their amplification
and attenuation, strong sound waves directly in the form of Mach-wave beams (Tam &
Burton 1984; Wu 2005). In a subsonic jet, a sinusoidal subsonic mode does not radiate
directly, but a subsonic-mode wavepacket undergoing spatial growth and decay does emit
a sound wave with the same frequency as that of the carrier wave (Tam & Morris 1980). For
wavepackets of both supersonic and subsonic modes, the mechanism of radiation itself is
linear, but nonlinear effects modulate the amplitude of CS thereby influencing the intensity
of the radiated sound waves, and in particular the induced jittering may enhance radiation
(Zhang & Wu 2023a). Therefore, in practice, the mechanism is likely to be important
(and referred to as ‘Mach-wave radiation’) as well for CS of subsonic modes (Tam
2019).

In subsonic shear flows including jets, a nonlinear radiation mechanism operates, and
could be at least as important as the linear ‘Mach-wave radiation’ mechanism. The detailed
radiation process and mechanism depend on the region in which CS reside and their
composition. In the developed region, modes with different azimuthal wavenumber |m|
(including m = 0) have different phase speeds, and so effective nonlinear interactions
take place between a pair of helical modes ±m. A temporally and spatially modulated
wavepacket of such modes was considered (Wu & Huerre 2009). While each mode
is trapped within the jet, their mutual interaction in the critical layer drives a strong
azimuthally dependent mean-flow distortion in the main shear flow, a fairly general feature
which was identified in planar cases (Wu, Lee & Cowley 1993; Leib & Lee 1995).
This mean-flow distortion manifests as streaks being modulated slowly in both time and
space, and more importantly emits low-frequency sound waves with long wavelengths
comparable to the length scale of the wavepacket envelope (Wu & Huerre 2009). A
similar nonlinear radiation mechanism was studied by Suponitsky, Sandham & Morfey
(2010) using DNS. For a CS represented by a wavepacket of subsonic ring modes, or
two-dimensional modes on a planar shear layer, nonlinear interactions in the main shear
flow as well as in the critical layer generate a slowly breathing mean-flow distortion, which
emits sound waves, as has been shown in [I] and [II] respectively. Two differences from
wavepackets of pairs of helical modes are worth noting: the critical-layer dynamics is
strongly nonlinear as opposed to being weakly nonlinear, and sound waves are emitted by
the subdominant mean-flow distortion while the energy in the leading mean-flow distortion
remains trapped.

It should be pointed out that, although the Reynolds stresses of the CS which drive
the radiating mean-flow distortion resemble the apparent ‘nonlinear sources’ in acoustic
analogy, the operators governing the energy transfer from the CS to the low-frequency
radiating components contain viscous and nonlinear effects, different from the linear and
purely inviscid wave-like equations in acoustic analogy. This distinction prompted and
justifies our efforts of developing an asymptotic approach.
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The CS in the thin shear layer near the nozzle have frequencies higher than those in
the developed region, and a length scale comparable to the shear-layer thickness δ∗, much
smaller than the nozzle diameter D∗. We will focus on the nonlinear dynamics of CS
represented by wavepackets of co-existing ring and helical modes, whose frequencies are
allowed to differ slightly. Different from the developed region of a jet (Wu & Huerre
2009), in the near-nozzle region the three-dimensionality of helical modes is weak so that
its effect on the dynamics can be included as an azimuthal modulation. The interactions
are thus of ‘sideband resonance’ type, and can be described by adapting the idea in the
work on near-planar Rayleigh instability waves (Wu 1993), where an amplitude equation
governing simultaneous streamwise evolution and spanwise modulation was derived. We
will then investigate further radiation of ‘low-frequency’ sound waves by the nonlinearly
generated slowly breathing mean-flow distortion and streaks. The term ‘low-frequency
sound waves’ here needs clarification. The spectrum of the ring and helical modes near
the nozzle extends up to StD = 8, where StD is the Strouhal number based on the nozzle
diameter and exhaust velocity. If the frequency bandwidth of the wavepacket is taken to
be 20 % of the carrier-wave frequency, CS may radiate ‘low-frequency sound waves’ in
the band StD = 0.1–1.4, which contains the fundamental frequency of the dominant CS,
the ‘preferred mode’, in the developed region; the latter was found to be in the range of
StD = 0.3–0.35 with artificial forcing and StD = 0.2–0.8 without (Mair et al. 2020).

The rest of the present paper is organised as follows. In § 2, CS are defined, as in our
previous studies ([I]; [II]), through the triple decomposition of the instantaneous flow
field introduced by Hussain & Reynolds (1972). For a CS in the form of a wavepacket
consisting of ring and multiple helical modes in the near-nozzle region of a jet, the
asymptotic scalings in both the axial and radial directions are specified so as to include
key physical effects in a systematic manner. In § 3, the asymptotic analysis is performed
for perturbations in the main shear layer and the critical layer, where non-equilibrium,
viscosity and non-parallelism all appear at leading order, while modal interactions are of
weakly nonlinear type. By asymptotic matching of the solutions in the two regions, we
derive the amplitude equation governing the nonlinear axial evolution, azimuthal as well
as temporal modulation of the CS. Salient features of the nonlinear amplitude equation
are discussed in § 4. The amplitude equation is solved numerically, and the results are
presented in § 5 for CS without and with sideband components. In § 6, we analyse the
far-field asymptotic behaviour of the hydrodynamic fluctuations of the CS to identify the
emitter and physical sources of sound waves. The low-frequency sound waves are then
determined on the basis of first principles, and numerical solutions are presented to show
representative directivity and spectrum of the acoustic far field. Finally, conclusions and
discussions are given in § 7.

2. Formulation

2.1. Basic equations and flow decomposition
We consider a typical axisymmetric jet, formed by a jet flow and a coflow separated
by a circular nozzle. A cylindrical coordinate system is introduced, in which a point xxx
is represented by (x, r, θ), and the velocity at xxx by uuu = (u, v,w). The axial and radial
components (x∗, r∗) and time t∗ are non-dimensionalised by reference length δ∗0 and time
δ∗0/U

∗
0 , respectively, where the superscript ‘∗’ signifies a dimensional quantity, δ∗0 denotes

the shear-layer thickness at a typical position and U∗
0 is a reference velocity. The velocity

UUU∗, density ρ∗, temperature T∗ and viscosity μ∗ are normalised respectively by

U∗
0 = (U∗

I − U∗
O)/2, ρ∗

0 = ρ∗
I , T∗

0 = T∗
I , μ∗

0 = μ∗
I , (2.1a–d)
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where the subscripts ‘I’ and ‘O’ denote the quantities of the jet flow and the coflow,
respectively. The dimensionless pressure p is introduced by writing

p∗ = p∗
0 + ρ∗

0 U∗2
0 p. (2.2)

The resulting dimensionless parameters, including the Mach number Ma, the Reynolds
number Re and the Prandtl number Pr, are defined as

Ma = U∗
0/
√
γR∗

gT∗
0 , Re = ρ∗

0 U∗
0δ

∗
0/μ

∗
0, Pr = μ∗

0C∗
p/k

∗
0, (2.3a–c)

where R∗
g is the universal gas constant, k∗

0 thermal conductivity and γ the
specific-heat-capacity ratio.

The CS on a circular jet are defined by adopting the triple decomposition (Hussain
& Reynolds 1972) as in previous studies (Wu & Zhuang 2016; [I]; [II]), namely,
the instantaneous field (uuu, T, p, ρ) is composed of the mean flow (ŪUU, T̄, P̄, ρ̄), the
quasi-periodic coherent motion (ũuu, T̃, p̃, ρ̃) and the small-scale turbulence (uuu′, T ′, p′, ρ′),
that is,

(uuu, T, p, ρ) = (ŪUU, T̄, P̄, ρ̄)+ (ũuu, T̃, p̃, ρ̃)+ (uuu′, T ′, p′, ρ′), (2.4)

where the signature of CS f̃ is obtained by f̃ ≡ 〈 f 〉 − f̄ , in which the right-hand side terms
are found by (Favre) phase and (Favre) time averages, respectively (see [I] for detail).

The time-averaged mean flow is driven by the Reynolds stresses contributed by both
the CS and small-scale fluctuations. Unlike the conventional treatment, we adopt take
the mean-flow distortion generated by CS to be also part of CS, which means that the
time-averaged mean flow is driven only by the Reynolds stresses from small-scale eddies
(Wu & Zhuang 2016). Here, we also introduce the simple gradient models for the Reynolds
stresses, as represented by (2.19)–(2.20) and (2.22) in [I], and the coherent Reynolds
stresses of fine-scale turbulence, given by (2.30) and (2.33) in [I] with time delays τ̂1
and τ̂2 between the coherent Reynolds stresses and the stain rates of the CS. It should be
noted that ∂x3 in those models should be understood as r−1∂θ . From this closure model
follows a set of questions, referred to as the CS equations, which govern the coherent
motion (ũuu, T̃, p̃, ρ̃).

2.2. Asymptotic scalings

The (Favre) time-averaged mean flow (Ū,R−1
T V̄, T̄, P̄) is function of

x̃ = R−1
T x, (2.5)

where RT � 1 is the turbulent Reynolds number. Since RT � Re, the turbulent mean flow
spreads faster than its laminar counterpart.

With CS on a turbulent flow being viewed as instability modes supported by the (Favre)
time-averaged mean flow, and their evolution is similar to that of instability waves on
a laminar flow. As a seeded mode propagates downstream, its local linear growth rate
gradually decreases due to the spreading of the mean flow and becomes diminished at a
certain axial position, termed the neutral position, close to which nonlinear effects become
significant (Wu 2019). In this section, we derive first the scalings pertinent to the regime
that nonlinearity comes into play.

The nonlinear evolution of the CS is described by introducing an amplitude function,
which evolves slowly with respect to both time and space. The leading-order CS can be
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Evolution and radiation of multi-mode coherent structures

expressed as

q ∼ εq̂(r)A†
m(τ, x̄) exp(i(αx + mθ − ωt))+ c.c. , (2.6)

where ε � 1 measures the initial amplitude of the CS; q̂(r), representing any of the
velocity, pressure, temperature and density of CS, characterises the radial distribution of
the CS at the neutral position, x̃N say; α and m are the axial and azimuthal wavenumbers,
respectively; ω is the frequency and c = ω/α the phase speed of the neutral mode; A† is
the evolving amplitude function of the slow temporal and spatial variables

τ = lγ t, x̄ = lγ (x − RTx̃N)/c; (2.7a,b)

here, lγ � 1 is the rate of modulation and thus gives rise to non-equilibrium effect. It is
noted that m ∈ Z, owing to the periodicity in θ , with m = 0 representing the ring mode
and m = ±1,±2, . . . helical modes. As was pointed out in earlier studies (Wu & Huerre
2009; [I]; [II]), a wavepacket with a temporally–spatially modulated envelope includes as
a special case a disturbance consisting of two modes with their frequencies being different
by a small amount, of order O(lγ ). Experiments showed that when such two waves are
seeded upstream, the interaction between them excite a difference-frequency component,
which can amplify to reach a significant level (Miksad 1973), and emits a sound wave with
the difference frequency (Ronneberger & Ackermann 1979). Interactions of this kind is
the resonance of frequency sideband (cf. Wu & Tian 2012). The resulting axisymmetric
and helical difference-frequency components form the mean-flow distortion and streaks,
respectively, and by analysing their large-distance asymptotic behaviour, the acoustic field
is then predicted (cf. [I]; [II]).

According to hydrodynamic stability theory, the linear inviscid approximation breaks
down for a neutral mode at the ‘critical level’, r = rc, where the mean-flow velocity equals
the phase speed of the mode, i.e. Ū(rc) = c. For the present subsonic mode, the critical
level necessarily coincides with the generalised inflection point on the mean-flow profile
(Tam & Morris 1980; Tam & Burton 1984). A simple-pole singularity arises in the axial
and azimuthal velocities of helical modes at rc. The singularity is removed by considering
the critical layer (i.e. a thin layer centred at rc), where effects of nonlinearity, viscosity,
non-equilibrium and non-parallelism are taken into account. A local radial variable, or ‘an
inner variable’,

Y = (r − rc)/lμ, (2.8)

is introduced, where the critical-layer thickness lμ � 1 is to be determined next.
The three-dimensionality of a helical mode is measured by the dimensionless parameter

(m/rc), which plays the role of the spanwise wavenumber in the planar case (cf. Wu 1993).
Recall that rc is ratio of the dimensional critical level r∗

c to the shear-layer thickness δ∗,
and r∗

c = O(R∗
0). Since δ∗ � R∗

0 in the near-nozzle region, it follows that m/rc = O(lβ)
with lβ � 1, indicating weak three-dimensionality. Similar to weakly oblique modes
on a planar shear layer discussed by Wu (1993), the leading-order axial velocity in
the critical layer is of u(0) = O(εl2β l−1

μ ) (as will become clearer in § 3.2) and the main
nonlinear term in the momentum equation is v∂ru. The nonlinear interaction produces
a forcing of O(ε2l2β l−2

μ ), which generates a mean-flow distortion and a first harmonic,
u(1) = O(ε2l2β l−3

μ ). Similarly, the fundamental interacts with this mean-flow distortion to
regenerate a fundamental with axial velocity u(2) = O(ε3l2β l−5

μ ).
In the near-nozzle region, an arbitrary number of helical modes with finite m coexists

with the ring mode. Multiple-mode CS can be characterised by an azimuthal-dependent
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amplitude function, A†(τ, x̄, θ), instead of A†
m(τ, x̄) in (2.6). To include the azimuthal

dependence along with the non-equilibrium and nonlinear effects, we set

lμ = lγ , l2β = lγ , ε3l2β l−5
μ = εlγ , (2.9a–c)

from which we obtain

lμ = lγ = ε2/5, lβ = ε1/5. (2.10a,b)

Coincidentally, these scalings are appropriate whether the critical layer is located
at a generalised inflection point or not, i.e. regular or singular (Wu 2019; Zhang
2022). Though there only exists a sole regular critical layer on a subsonic jet, the
generalised-inflection-point condition is relaxed in the analysis but will later be imposed
in calculations.

To include the viscous and non-parallelism effects in the critical layer, we set

Re−1 = λ̄l3μ, R̃−1
T = λ̃l3μ, R−1

T = σ lμlγ /c, (2.11a–c)

where λ̄, λ̃ = O(1) are Haberman (1972) parameters and σ = O(1) with the factor c being
included for convenience. Interestingly, it is possible to take into account non-parallelism
and non-equilibrium at the same time by adopting the third scaling in (2.11a–c) for a
turbulent shear flow, which is a crucial difference from laminar flows (see § 4.3).

The mean-flow profiles, Ū(x̄, r) and T̄(x̄, r), near the neutral position, x̃ = x̃N or x̄ = 0,
can be expanded as Taylor series, and near the critical level rc the latter are further
expanded about rc, leading to[

Ū(x̄, Y)

T̄(x̄, Y)

]
=
(

Ūc

T̄c

)
+ ε2/5

[
σ

(
Ū1,c

T̄1,c

)
x̄ +
(

Ū′
c

T̄ ′
c

)
Y

]

+ 1
2
ε4/5

[
σ 2

(
Ū2,c

T̄2,c

)
x̄2 + 2σ

(
Ū′

1,c

T̄ ′
1,c

)
x̄Y +

(
Ū′′

c

T̄ ′′
c

)
Y2

]
+ · · · , (2.12)

where Q̄n(r) = ∂nQ̄(x̃, r)/∂ x̃n|x̃=x̃N with Q̄ denoting Ū or T̄ , a prime denotes the
differentiation with respect to r, and the subscript ‘c’ indicates the value of the quantity at
the critical level r = rc.

The flow structure consists of several distinctive layers as is illustrated in figure 1. In
addition to the main shear region and critical layer, where the CS is essentially planar, a
‘circularity layer’ emerges, where the circular geometry and three-dimensionality of the
nonlinearly induced mean-flow distortion appear at leading order. The fluctuations in all
these three layers are of hydrodynamic nature but acquire the character of sound in the
acoustic region farther away from the jet. The purpose of the ensuing analysis is to describe
nonlinear development of the CS on the jet (§ 3), and identify the emitter, i.e. the part of the
fluctuations that radiates sound waves (§ 6). The key result for the former is the amplitude
equation (3.66). The emitters are found to be the subdominant slowly breathing mean-flow
distortion and streaks, which are generated by nonlinear interactions in the main shear
layer and critical layer. The key results are the expressions for the physical sources, (6.11)
together with (6.12) and (6.20), as well as their connection with the equivalent sound
source (6.32) for the wave equation (6.37). Using the equivalent sound source, which is
obtained by probing into the physical sound sources and radiation processes, the acoustic
field is predicted on the basis of first principles.
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O (lγ
−1)

O (lγ
−1)

O (lβ
−1)

O (lμ)

O (1)

x = O (1)
O (RT)

x̃ = x̃N, x̄ = 0

rc

Sound field

Main shear layer

Critical layer

Circularity layer

Sound

Generalised

inflection

point

ŪO, T̄O,

ŪI, T̄ I,

P̄O, ρO, μO

P̄I, ρI, μI

Exhaust nozzle

Axis

Neutral position

Figure 1. The asymptotic structure and scales in both the axial and radial directions.

3. Asymptotic theory for weakly nonlinear critical layer

3.1. Asymptotic expansions in the main shear layer
Given that the mean-flow distortion generated by nonlinear interactions is also a part of
CS, the disturbance in the main shear layer can be decomposed into two parts

q̃(ζ, τ, x̄, r, θ) = q̂W(ζ, τ, x̄, r, θ)+ q̂M(τ, x̄, r, θ), (3.1)

where q̃ represents any of the velocity, pressure, temperature and density; q̂W denotes the
part of a travelling-wave form, which depends on the coordinate propagating with the
common phase speed, ζ = x − ct, and can be further expanded as

q̂W(ζ, τ, x̄, r, θ) = εA†(τ, x̄, θ)q̂0(r)eiαζ + ε7/5q̂1(τ, x̄, r, θ)eiαζ + c.c.+ · · · , (3.2)

for all quantities except the azimuthal velocity, the corresponding pre-factor for which is
∂A†/∂θ instead of A†. The second term in (3.2), q̂M , denotes the mean-flow distortion or
streaky structure and will be analysed in § 6.1. The travelling-wave part

At leading order, we will arrive at the eigenvalue problem defining the dispersion
relation and radial structure of the CS. The main outcome of this section is the nonlinear
equation governing the amplitude function A†, (3.66). Its derivation consists of two steps.
First by considering (the solvability condition for) the equation governing the second term
in (3.2), an ‘embryo amplitude’ equation, (3.25), was established, which contains the
nonlinear jump across the critical level. Second, by analysing the nonlinear interactions
in the critical layer, we determine the jump (3.60). For the reader whose primary interest
is in the result, it suffices to note these two milestones or even just the final output (3.66)
without going through the rather lengthy algebra.

Inserting (3.2) into the CS equations (not shown in this paper) yields the linear equations
for q̂ at O(ε), from which eliminating û, v̂, ŵ, T̂ and ρ̂, we obtain the compressible
Rayleigh equation{
LH(c;α) ≡ ∂2

∂r2 +
(

1
r

+ T̄ ′

T̄
− 2Ū′

Ū − c

)
∂

∂r
α2
[

Ma2(Ū − c)2

T̄
− 1
]

+ 1
r2
∂2

∂θ2

}
p̂0 = 0.

(3.3)
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Equation (3.3), together with its boundary conditions, p̂0 being finite at r = 0 and p̂0 → 0
as r → ∞, formulates an eigenvalue problem. With l2β = lγ = ε2/5, helical modes in the
near-nozzle region can be regarded as the azimuthally modulated form of the ring mode.
The effect of three-dimensionality can be included as modulation by setting

r−2
c = ε2/5r̆−2

c , (3.4)

with r̆−2
c = O(1). Although we also have r−1

c = ε1/5r̆−1
c , the term proportional to r−1

representing circularity is tacitly retained in the Rayleigh equation, which amounts to a
composite treatment. Certainly, we can expand the solution order by order, for which
O(ε1/5) deviations for the eigenvalue α and c should be introduced, and the expansions
in the main shear layer can be rewritten as

q̂W(ζ, τ, x̄, r, θ) = εA†(τ, x̄, θ)[q̂0(r)+ ε1/5q̂r(r)]eiαζ

+ ε7/5q̂1(τ, x̄, r, θ)eiαζ + c.c.+ · · · . (3.5)

This procedure is equivalent to the present treatment but is more complicated. Proceeding
with the composite treatment, the leading-order Rayleigh equation thus reads

LR(c;α)p̂0 = 0, (3.6)

where the Rayleigh operator becomes

LR(c;α) ≡ ∂2

∂r2 +
(

1
r

+ T̄ ′

T̄
− 2Ū′

Ū − c

)
∂

∂r
+ α2

[
Ma2(Ū − c)2

T̄
− 1
]
. (3.7)

The solution to (3.6) behaves as

p̂0 → P0,∞√
r

exp
[
−αr
√

1 − Ma2(Ū+ − c)2/T̄+
]
, as r → ∞, (3.8)

where P0,∞ is a constant, Ū+ = 2U∗
O/(U

∗
I − U∗

O) and T̄+ = βT = T∗
O/T

∗
I are the axial

velocity and temperature of the coflow. As r → 0, p̂0 must remain regular, and can be
expanded in the form of zeroth-order Bessel function

p̂0(r → 0) → P0,0

{
1 + 1

4

[
1 − Ma2(Ūa − c)2/T̄a

]
α2r2 + · · ·

}
, (3.9)

where P0,0 is another constant to be determined together with P0,∞ by solving (3.6)
globally, while Ūa and T̄a denote the mean-flow axial velocity and temperature on the axis
respectively.

Near the critical level, the asymptotic solution for p̂0 is found as (cf. Wu 2005)

p̂0 → Ū′
c

T̄c

[
π1(α; y)+ α2

3

(
a±+ι0 ln |y|)π2(α; y)

]
, (3.10)

where y = r − rc → 0

π1(α; y) = 1 − 1
2α

2y2 + 1
4α

2ι1y4 + O( y5), π2(α; y) = y3 − 3
4 ι0y4 + O( y5),

ι0 = 1
rc

+ T̄ ′
c

T̄c
− Ū′′

c

Ū′
c
, ι1 = T̄ ′′

c

T̄c
− 2Ū′′′

c

3Ū′
c

− T̄ ′2
c

T̄2
c

+ Ū′′2
c

2Ū′2
c

+ 11
12
ι20 − Ma2Ū′2

c

T̄c
− α2

2
.

⎫⎪⎬⎪⎭
(3.11)
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As is well known, the jump (a+ − a−) corresponds to the −π phase jump of the logarithm
in (3.10) as r crosses the critical level from r+

c to r−
c so that

a+ − a− = π i ι0 sgn(Ū′
c). (3.12)

In the present case, the critical level is located at the generalised inflection point on the
mean-flow profile (Tam & Morris 1980), and so we have

ι0 = 1
rc

+ T̄ ′
c

T̄c
− Ū′′

c

Ū′
c

= 0, (3.13)

which is the necessary condition for the existence of the inviscid neutral mode. The
azimuthal velocity is O(ε6/5) and is found as

ŵ0( y) = − T̄p̂0

iα(Ū − c)(r̆c + ε1/5y)
. (3.14)

Next at O(ε7/5), eliminating û1, v̂1 and T̂1, we obtain the inhomogeneous Rayleigh
equation for p̂1

LR(c;α)p̂1 = − 2 i
αc

(
G11p̂′

0 + α2G12p̂0

) ∂A†

∂ x̄
+ 2 i
α

(
G21p̂′

0 + α2G22p̂0

)
D0A†

− σ
(
G01p̂′

0 + α2G02p̂0

)
x̄A† − 1

r̆2
c

p̂0
∂2A†

∂θ2 , (3.15)

where coefficients Gij (i = 0, 1, 2 and j = 1, 2) are the same as those in (3.36) of [I], and

D0 = ∂

∂τ
+ ∂

∂ x̄
. (3.16)

The last term on the right-hand side of (3.15) is the correction due to three-dimensionality.
Equation (3.15) is subject to the boundary conditions that p̂1 is regular at r= 0, and p̂1 → 0
as r → ∞.

As y → 0, the asymptote of p̂1 is found as

p̂1 ∼ d1(τ, x̄)
[
π1(α; y)+ 1

3α
2ι0 ln |y|π2(α; y)

]
+ d±

2 (τ, x̄)π2(α; y)

+ α2

T̄c

(
i
α
D0A† − σ Ū1,cx̄A†

)[
y − ι0y2 ln |y| −

(
a± + 1

3 ι0

)
y2 + 1

3 jRy3 ln |y|
]

+ iαŪ′
c

cT̄c

∂A†

∂ x̄
y2 + α2Ū′

c

3T̄c
σ j1Rx̄A†y3 ln |y| + Ū′

cA†
θθ

2T̄cr̆2
c

y2, (3.17)

where d1(τ, x̄) is an undetermined function

jR =
(

T̄ ′′
c /T̄c − T̄ ′2

c /T̄
2
c

)
−
(

Ū′′′
c /Ū

′
c − Ū′′2

c /Ū
′2
c

)
− 1/r2

c + 3ι20 − 2Ū′
cι0/c, (3.18a)

j1R = (T̄ ′
c/T̄c)

(
T̄ ′

1,c/T̄
′
c − T̄1,c/T̄c

)− (Ū′′
c /Ū

′
c)
(
Ū′′

1,c/Ū
′′
c − Ū′

1,c/Ū
′
c
)− 2Ū1,cι0/c.

(3.18b)

For (3.15) to have a solution satisfying the boundary conditions, a solvability condition
must be satisfied, which is derived by multiplying rT̄/(Ū − c)2 to (3.15) and integrating
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by parts, as

− 3
Ū′

c

{(
d+

2 − d−
2
)− [2α2

3T̄c

(
i
α
D0A† − σ Ū1,cx̄A†

)
ι0 + α2

3
d1

] (
a+ − a−)}

= − 2 i
αc

Jr1
∂A†

∂ x̄
+ 2 i
α

Jr2D0A† − σJr0x̄A† − 1
r̆2

c
JhA†

θθ , (3.19)

where Jri and Jh are constants defined by the integrals

Jri = 1
rc

−
∫ ∞

−∞
rT̄

(Ū − c)2

(
Gi1p̂′

0p̂0 + α2Gi2p̂2
0

)
dr (i = 0, 1, 2), (3.20)

Jh = 1
rc

−
∫ ∞

−∞
rT̄p̂2

0

(Ū − c)2
dr. (3.21)

We can express the asymptote of q̃ near y = 0 in the main shear layer in terms of the
‘inner variable’, Y , namely,

p̃ ∼ ε(Ū′
c/T̄

′
c)A

†eiαζ + c.c., ṽ ∼ −ε iαA†eiαζ + c.c., (3.22a,b)

w̃ ∼ −ε4/5 A†
θ

iαr̆cY
eiαζ + c.c., T̃ ∼ ε3/5 T̄ ′

c

Ū′
cY

[
1 + iD0 − ασ Ū1,cx̄

αŪ′
cY

]
A†eiαζ + c.c.,

(3.23a,b)

ũ ∼ ε

{
∂2
θθ

α2r̆2
c Y

− ln ε2/5ι0 ln |Y| − a± − ε2/5 ln ε2/5
[

i jR
αŪ′

c
D0 + σ

(
j1R − jR

Ū1,c

Ū′
c

)
x̄
]

ln |Y|

−ε2/5 3T̄c

α2Ū′
c

(
d±

2 − e2D0 − e3x̄
)}

A†eiαζ + c.c. , (3.24)

where the parameters e2 and e3 have the same values above and below the critical level. In
addition to the logarithmic singularity in p̃, ũ and ṽ, there is a simple-pole singularity of T̃ ,
w̃ and ũ. In order to regularise these singularities, a non-equilibrium or viscosity has to be
reintroduced in the critical layer. With the scalings specified in § 2.2, at O(lγ ε) = O(ε7/5),
nonlinearity, non-equilibrium, non-parallelism and viscosity would all contribute to the
jump d+

2 − d−
2 (see (3.17)) across the critical layer.

We can divide the jump d+
2 − d−

2 into the linear and nonlinear parts, denoted by J L
d

and J N
d , respectively. The former corresponds to the −π phase jump across rc of the

logarithmic function in (3.17). Inserting this linear part of the jump into (3.19), we obtain

T̄c

α2

[
− 2 i
αc

Jr1
∂A†

∂ x̄
+ 2 i
α

(
Jr2 − α2ι20π i∣∣Ū′

c
∣∣ T̄c

)
D0A† − σ

(
Jr0 − 2Ū1,c

α2ι20π i∣∣Ū′
c
∣∣ T̄c

)
x̄A† − Jh

r̆2
c

A†
θθ

]

= −π i j sgn(Ū′
c)

[
i

αŪ′
c
D0 + σ

(
j1R

jR
− Ū1,c

Ū′
c

)
x̄
]

A† − 3T̄c

α2Ū′
c
J N

d (τ, x̄, θ). (3.25)

It is worth pointing out that the linear jump of (d+
2 − d−

2 ), J L
d , consists of

1
3α

2d1ι0π i sgn(Ū′
c), as (3.17) indicates. This part is identical to 1

3α
2d1(a+ − a−)

according to (3.12), and thus cancel −1
3α

2d1d1(a+ − a−) in (3.19). As a result, the
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function d1(τ, x̄), which can be determined by taking the analysis to O(ε6/5) (cf. Wu &
Tian 2012), does not affect the key result (3.25). Equation (3.25) will lead to the required
amplitude equation once the nonlinear jump J N

d is determined by the analysis in § 3.2.
For that purpose, we note that the jump (d+

2 − d−
2 ) is related to the jump of û1 across the

critical level as follows:

û1( y = 0+)− û1( y = 0−) = − 3T̄c

α2Ū′
c
(d+

2 − d−
2 ). (3.26)

3.2. Critical-layer analysis
As was stated in § 2.2, the equations and solutions in the critical layer will be described
in terms of the inner variable Y defined by (2.8). The disturbance characterising the CS in
the critical layer could be expressed as

q̃(ζ, τ, x̄, Y, θ) = ε

∞∑
j=j0

εj/5q̃j(ζ, τ, x̄, Y, θ)+ q̃L(ε; ζ, τ, x̄, Y, θ) ln ε, (3.27)

where q̃ also represents any of the velocity, pressure, temperature and density of the CS, j0
indicates the magnitude of each quantity: j0 = −2 and −1 for T̃ and w̃ respectively, while
j0 = 0 for ũ, ṽ and p̃. The terms involving a logarithmic factor, q̃L, are ignored owing to
the fact that they match with the outer expansions automatically.

We further express q̃j as Fourier series of ζ when it is necessary. For deriving the
expected amplitude equation, it suffices to expand q̃j up to e2 iαζ as

q̃j =
2∑

n=0

q̃( j,n)ei nαζ + c.c.+ · · · . (3.28)

It is recognised that ũ1, ṽ3, w̃0, p̃3 and T̃−1 are driven by the primary nonlinear
interactions and consist of the mean-flow distortion (q̃( j,0) + c.c.) and the first harmonic
(q̃( j,2)e2 iαζ + c.c.). Similarly, ũ2, ṽ4, w̃1, p̃4 and T̃0 consist of the regenerated fundamental
component (q̃( j,1)eiαζ + c.c.), through which nonlinear effects enter the amplitude
equation. Specifically, the axial velocity jump of the regenerated fundamental will be
calculated and used to derive the modulation equation.

Substituting (3.27) into the CS equations, we obtain the equations within the critical
layer. The inner solutions for ṽ0, ṽ1, p̃0, p̃1 and p̃2 are found to be simply the trivial
continuations of the inviscid linear outer solutions, namely,

ṽ0 = − i Â/(αŪ′
c)e

iαζ + c.c., ṽ1 = 0; (3.29)

p̃0 = Â/(α2T̄c)eiαζ + c.c., p̃1 = 0, p̃2 = 0, (3.30)

where we have redefined the amplitude function as

Â = α2Ū′
cA†. (3.31)

The leading-order azimuthal velocity and temperature of the CS, w̃−1 and T̃−2, satisfy[
L〈1〉

c,1T̃−2, L〈1〉
c,2w̃−1

]
=
[
i T̄ ′

c/(αŪ′
c), −∂θ/(α2r̆c)

]
Âeiαζ + c.c., (3.32a,b)
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where the operator

L〈n〉
c,j ≡ ∂

∂τ
+ ∂

∂ x̄
+ i nη̄ + χ

∂

∂η̄
− λjn

∂2

∂η̄2 , (3.33)

in which the first two terms represent the non-equilibrium effect

η̄ = α
(
Ū′

cY + σ Ū1,cx̄
)
, (3.34)

denotes the shifted local radial variable in the critical layer and

χ = αŪ′
cσ
(
Ū1,c/Ū′

c + V̄c/c
)
, (3.35)

represents the non-parallelism (i.e. the axial variation and radial velocity) of the mean flow,
which now manifests as the translating-critical-layer effect due to the dependence of the
effective critical level on the variable x̄ (see (3.34)); λjn ( j = 1, 2) characterise the complex
viscosity and conductivity, introduced in the models for coherent Reynolds stresses, and
have the expressions

(λ1n, λ2n) = α2Ū′2
c T̄c

(
Pr−1λ̄μc + P̃r−1

T λ̃μ̃t,c exp(i nωτ̂2), λ̄μc + λ̃μ̃t,c exp(i nωτ̂1)
)
.

(3.36a,b)

This is the first time that the effects of a translating critical layer and complex eddy
viscosity have been included in weakly nonlinear dynamics. The solutions for w̃−1 and
T̃−2 are worked out as[

T̃−2, w̃−1

]
=
{∫ ∞

0

[
i T̄ ′

c

αŪ′
c
K(1)1 ,− 1

α2r̆c
K(2)1

∂

∂θ

]
Â
ξ1 exp(− i η̄ξ1) dξ1

}
eiαζ + c.c.,

(3.37a,b)
where the integrand kernels

K( j)
1 (ξ) = exp

(
−λj1ξ

3/3 + iχξ2/2
)

( j = 1, 2), (3.38)

and the notation,

Â
ξ = Â(τ − ξ, x̄ − ξ, θ), (3.39)

is introduced to indicate the dependence on history. It is worth noting that the
translating-critical-layer effect, the eddy viscosity and conductivity influence the kernel;
this is a noteworthy difference from the laminar-flow case (cf. Wu 1993).

The leading-order axial velocity of the CS, ũ0, is found to satisfy the equation

L〈1〉
c,1ũ0 = −Ū′

cṽ2 − T̄c

(
∂ p̃2

∂ζ
− ∂ p̃0

c∂ x̄

)
− (Ū′′

c Y + σ Ū′
1,cx̄
)
ṽ0

− (T̄ ′
cY + σ T̄1,cx̄

) ∂ p̃0

∂ζ
+ μ′

cT̄cŪ′
c
∂T̃−2

∂Y
+ χ

αT̄c
T̃−2. (3.40)

The expansions of the continuity and energy equations at O(ε) are combined to give

∂ ũ0

∂ζ
+ ∂ṽ2

∂Y
+ ṽ0

rc
+ ∂w̃−1

r̆c∂θ
= λ11

T̄c

∂2T̃−2

∂η̄2 . (3.41)
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Evolution and radiation of multi-mode coherent structures

With the aid of the scaled vorticity, introduced as

Q̃j = ∂Y ũj ( j = 0, 1, 2), (3.42)

we differentiate (3.40) with respect to Y to obtain

L〈1〉
c,1Q̃0 = −λ̃11

Ū′
c

T̄c

∂2T̃−2

∂η̄2 + χ
Ū′

c

T̄c

∂T̃−2

∂η̄
+ Ū′

c

[
1
r̆c

∂w̃−1

∂θ
+
(

1
rc

+ T̄ ′
c

T̄c
− Ū′′

c

Ū′
c

)
ṽ0

]
,

(3.43)
where use has been made of (3.41), and we have put

λ̃1n = λ1n − α2Ū′2
c T̄2

c λ̄μ
′
c. (3.44)

Solving (3.43), we arrive at

Q̃0 =
{

i T̄ ′
c

αT̄c

(
λ̃11

λ21 − λ11

)∫ ∞

0

[
exp
(
(λ21−λ11)ξ

3
1 /3
)

− 1
]

K(2)1 (ξ1)Â
ξ1 exp(− i η̄ξ1) dξ1

+ χ T̄ ′
c

αT̄c

∫ ∞

0
Kχ(ξ1)K

(2)
1 (ξ1)Â

ξ1 exp(− i η̄ξ1) dξ1 − Ū′
c

α2r̆2
c

∫ ∞

0
ξ1K(2)1 (ξ1)Â

ξ1
θθ

× exp(− i η̄ξ1) dξ1 − i ι0
α

∫ ∞

0
K(2)1 (ξ1)Â

ξ1 exp(− i η̄ξ1) dξ1

}
exp(iαζ)+ c.c.,

(3.45)

where the second term is contributed by the translating-critical-layer effect, and

Kχ(ξ1) =
∫ ξ1

0
ξ2 exp((λ21 − λ11)ξ

3
2 /3) dξ2; (3.46)

the presence of this term is somewhat unexpected.
Consider the azimuthal momentum equation at O(ε7/5) and the energy equation at

O(ε6/5) for w̃(0,0) and T̃(−1,0)[
L〈0〉

c,1T̃(−1,0),L〈0〉
c,2w̃(0,0)

]
= −ṽ∗

(0,1)∂Y

[
T̃(−2,1), w̃(−1,1)

]
, (3.47a,b)

whose solutions are[
T̃(−1,0), w̃(0,0)

]
=
∫ ∞

0

∫ ∞

0
ξ1Â

∗ ξ2
[
− i T̄ ′

c

αŪ′
c
K(1)2 ,

1
α2r̆c

K(2)2
∂

∂θ

]
Â
ξ1+ξ2

× exp(− i η̄ξ1) dξ1 dξ2, (3.48a,b)

where the integrand kernels

K( j)
2 (ξ1, ξ2) = exp

[
−(λj1ξ

3
1 + 3λj0ξ

2
1 ξ2)/3 + iχ(ξ2

1 + 2ξ1ξ2)/2
]

( j = 1, 2). (3.49)

From the axial momentum equation at O(ε8/5), the equation for ũ(1,0) is derived as

L〈0〉
c,1ũ(1,0) = −ṽ∗

(0,1)
∂ ũ(0,1)
∂Y

− Ū′
cṽ(3,0) − (Ū′′

c Y + σ Ū1,cx̄)ṽ(1,0) − T̃(−2,1)
∂ p̃∗
(0,1)

∂ζ

+ μ′
cT̄cŪ′

c
∂T̃(−1,0)

∂Y
+ Ū′

c

T̄c
σ
(
Ū1,c/Ū′

c + V̄c/c
)

T̃(−1,0). (3.50)
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The expansion of the combined continuity and energy equations at O(ε6/5) for the
mean-flow-distortion part gives

∂ṽ(3,0)

∂Y
+ ∂w̃(0,0)

r̆c∂θ
= λ10

T̄c

∂2T̃(−1,0)

∂η̄2 , (3.51)

with the aid of which we obtain from (3.50) the vorticity equation for Q̃(1,0) ≡ ∂Y ũ(1,0)

L〈0〉
c,1Q̃(1,0) = Ū′

c∂w̃(0,0)
r̆c∂θ

− ṽ∗
(0,1)

∂Q̃(0,1)
∂Y

−
∂ p̃∗
(0,1)

∂ζ

∂T̃(−2,1)

∂Y

− Ū′
c

T̄c

[
λ̃10

∂2

∂η̄2 − χ
∂

∂η̄

]
T̃(−1,0). (3.52)

The solution is found as

Q̃(1,0) = Ū′
c

α2r̆2
c

∫ ∞

0

∫ ∞

0
ξ2

1 K(2)2 (ξ1, ξ2)Â
∗ ξ2 Â

ξ1+ξ2
θθ exp(− i η̄ξ1) dξ1 dξ2

+ Ū′
c

α2r̆2
c

∫ ∞

0

∫ ∞

0
ξ1ξ2K(2)2 (ξ1, ξ2)

(
Â

∗ ξ2 Â
ξ1+ξ2
θ

)
θ

exp(− i η̄ξ1) dξ1 dξ2

+ i ι0
α

∫ ∞

0

∫ ∞

0
ξ1K(2)2 (ξ1, ξ2)Â

∗ ξ2 Â
ξ1+ξ2 exp(− i η̄ξ1) dξ1 dξ2

+ i T̄ ′
c

αT̄c

∫ ∞

0

∫ ∞

0
ξ1CQ(ξ1, ξ2)K

(2)
2 (ξ1, ξ2)Â

∗ ξ2 Â
ξ1+ξ2 exp(− i η̄ξ1) dξ1 dξ2,

(3.53)

where the last term is contributed by the temperature perturbation, and the kernel

CQ(ξ1, ξ2) = exp
(
(λ21 − λ11)ξ

3
1 /3
)

− λ̃11(λ21 − λ11)
−1
[
exp
(
(λ21 − λ11)ξ

3
1 /3
)

− 1
]

+ iχKχ(ξ1)−
(
λ̃10 − iχξ−1

1

)
(λ20 − λ10)

−1

× exp
(
(λ21 − λ11)ξ

3
1 /3
) [

exp
(
(λ20 − λ10)ξ

2
1 ξ2

)
− 1
]
. (3.54)

At the next order, ũ2, or the corresponding vorticity Q̃2 ≡ ∂Y ũ2, is coupled with ṽ4, w̃1,
p̃4 and T̃0. In order to work out the jump of ũ(2,1) across the critical layer, we split the
quantities at this order, any of which is denoted by q̃( j,1), into three parts

q̃( j,1) = q̃N( j,1) + q̃O
( j,1) + q̃L( j,1), (3.55)

where qL( j,1) represents the linear part, while q̃N( j,1) and q̃O
( j,1) denote the nonlinear parts

which do and do not contribute to the jump respectively. It turns out that the nonlinear
terms ṽ(0,1)∂Y q̃( j−1,0) and ṽ∗

(0,1)∂Y q̃( j−1,2) produce no contribution to the jump and hence
are included in q̃O

( j,1). The jump of (d+
2 − d−

2 ) can be found after integrating Q̃(2,1) with
respect to Y from −∞ to ∞, and would consist of the linear and nonlinear parts, J L

d and
J N

d . The former confirms the −π phase jump of the logarithm in the outer expansion û2.
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Evolution and radiation of multi-mode coherent structures

The latter is contributed by Q̃N
(2,1) ≡ ∂Y ũN(2,1), which satisfies the equation

L〈1〉
c,1Q̃N

(2,1) = Ū′
c

∂w̃N
(1,1)

r̆c∂θ
− ṽ(0,1)

∂Q̃∗
(1,0)

∂Y
− ∂ p̃(0,1)

∂ζ

∂T̃∗
(−1,0)

∂Y

− λ̃11
Ū′

c

T̄c

∂2T̃N
(0,1)

∂η̄2 + χ
Ū′

c

T̄c

∂T̃N
(0,1)

∂η̄
; (3.56)

the derivation is given in Zhang (2022).
To find w̃N

(1,1) and T̃N
(0,1) on the right-hand side of (3.56), we consider the azimuthal

momentum equation at O(ε8/5) and the energy equation at O(ε7/5), which read[
L〈1〉

c,1T̃N
(0,1),L〈1〉

c,2w̃N
(1,1)

]
= −ṽ(0,1)∂Y

[
T̃∗
(−1,0), w̃∗

(0,0)

]
. (3.57a,b)

The solutions are found as[
T̃N
(0,1), w̃N

(1,1)

]
= −

∫ ∞

0

∫ ∞

0

∫ ∞

0
ξ2

3 Â
ξ1 Â

ξ1+ξ2
[

i T̄ ′
c

αŪ′
c
K(1)3 ,

1
α2r̆c

K(2)3
∂

∂θ

]
Â

∗ ξ1+ξ2+ξ3

× exp (− i η̄(ξ1 − ξ3)) dξ1 dξ2 dξ3, (3.58a,b)

where the integrand kernels

K( j)
3 (ξ1, ξ2, ξ3) = exp

[
−λj1

(
ξ3

1 − 3ξ2
1 ξ3 + 3ξ1ξ

2
3

)
/3 − λ∗j1ξ3

3 /3 − λ∗j0ξ2ξ
2
3

+ iχ
(
ξ2

1 − 2ξ1ξ3 − ξ2
3 − 2ξ2ξ3

)
/2
]

( j = 1, 2). (3.59)

Inserting (3.58) along with (3.29)–(3.30), (3.37b) and (3.53) into (3.56), and integrating
Q̃N
(0,1) with respect to Y from −∞ to ∞, we arrive at the nonlinear part of d±

2

J N
d = NΘ + NU + NT , (3.60)

where

NΘ(Â; τ, x̄, θ) = 2πŪ′2
c

3α|Ū′
c|T̄cr̆2

c

∫ ∞

0

∫ ∞

0
ÂΘ(Â; ξ1, ξ2)KΘ(ξ1, ξ2) dξ1 dξ2, (3.61a)

NU(Â; τ, x̄, θ) = −2π i Ū′
cι0

3|Ū′
c|T̄c

∫ ∞

0

∫ ∞

0
ÂN(Â; ξ1, ξ2)KU(ξ1, ξ2) dξ1 dξ2, (3.61b)

NT(Â; τ, x̄, θ) = −2π i Ū′
cT̄ ′

c

3|Ū′
c|T̄2

c

∫ ∞

0

∫ ∞

0
ÂN(Â; ξ1, ξ2)KT(ξ1, ξ2) dξ1 dξ2; (3.61c)

here, we have introduced notations

ÂΘ(Â; ξ1, ξ2) = ξ1

[
Â
ξ1 Â

ξ1+ξ2 Â
∗ 2ξ1+ξ2
θ

]
θ

+ ξ1Â
ξ1 Â

ξ1+ξ2 Â
∗ 2ξ1+ξ2
θθ

+ ξ2Â
ξ1
[
Â
ξ1+ξ2 Â

∗ 2ξ1+ξ2
θ

]
θ
, (3.62a)

ÂN(Â; ξ1, ξ2) = Â
ξ1 Â

ξ1+ξ2 Â
∗ 2ξ1+ξ2

, (3.62b)

973 A8-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

59
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.597


Z. Zhang and X. Wu

the kernels in which have the expressions

KΘ(ξ1, ξ2) = KU(ξ1, ξ2) = ξ2
1 K(2)J (ξ1, ξ2), (3.63a)

KT(ξ1, ξ2) = ξ2
1

[
CT(ξ1)K

(1)
J (ξ1, ξ2)+ C∗

Q(ξ1, ξ2)K
(2)
J (ξ1, ξ2)

]
, (3.63b)

with

K( j)
J (ξ1, ξ2) = exp

[
−
(
λj1 + λ∗j1

)
ξ3

1 /3 − λ∗j0ξ2
1 ξ2 − iχ(ξ2

1 + ξ1ξ2)
]

( j = 1, 2),

(3.64)

CT(ξ1) = exp
(
−(λ21 − λ11)ξ

3
1 /3
)

+ λ̃11(λ21 − λ11)
−1

×
[
exp
(
−(λ21 − λ11)ξ

3
1 /3
)

− 1
]

− iχKχ(−ξ1). (3.65)

3.3. Amplitude equation and its upstream condition
Inserting (3.60) into (3.25), we arrive at the expected amplitude equation

∂Â
∂ x̄

+ 1
cg

∂Â
∂τ

− 1
ch

∂2Â
r̆2

c∂θ
2 = σsx̄Â + σN (NΘ + NU + NT) , (3.66)

where

cg = ςw/
[
2 iJr2/α − πα

(
jR − 2ι20

)
/
(∣∣Ū′

c
∣∣ T̄c
)]
, ch = ςw/Jh,

σs = σ
{

Jr0 + π iα2
[
Ū1,c

(
jR − 2ι20

)
− Ū′

cj1R

]
/
(∣∣Ū′

c
∣∣ T̄c
)}
/ςw,

σN = −3α2/ςw, ςw = 2 i (Jr2 − Jr1/c) /α − πα
(

jR − 2ι20
)
/
(∣∣Ū′

c
∣∣ T̄c
)
.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.67)

Here, cg is the complex group velocity. The integro-partial-differential equation (3.66)
describes the simultaneous axial evolution and temporal–azimuthal modulation under the
combined effects of viscosity, nonlinearity and non-parallelism.

In the general case where the CS is superposition of the ring and helical modes, the
amplitude function Â can be decomposed as

Â(τ, x̄, θ) =
∞∑

m=−∞
A[m](τ, x̄)ei mθ , (3.68)

from which follows the relation A[m]∗ = A∗[−m]. We introduce an overall amplitude to
characterise the multiple ring-/helical-mode CS,

AH(τ, x̄) =
√√√√ ∞∑

m=−∞

∣∣A[m](τ, x̄)
∣∣2. (3.69)

It should be noted that the Fourier component of nonlinear products should be understood
as a triple discrete convolution or a triple Cauchy product.
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Evolution and radiation of multi-mode coherent structures

To determine the self-consistent upstream condition, we note that the nonlinear term
J N

d is negligible since the amplitudes of the seeded modes upstream are small. The
linear limit of (3.66) is solved to give the upstream condition

A[m] → A[m]
0 exp

[
σsx̄2/2 + κ [m]x̄ − i S0τ

]
asx̄ → −∞, (3.70)

in which A[m]
0 is the complex initial amplitude of the seeded mode with azimuthal

wavenumber m, and it has modulus a[m]
0 and initial phase φ[m]

0 , i.e.

A[m]
0 = a[m]

0 eiφ[m]
0 , (3.71)

where S0 is the deviation of the frequency from that of the neutral mode, i.e. the frequency
of the CS is ω = αc + ε2/5S0, and

κ [m] = i S0/cg − m2/ch, (3.72)

is the correction to the complex axial wavenumber. The real part of κ [m], �(κ [m]), denotes
the (scaled) linear growth rate of each ring/helical mode.

4. Theoretical considerations of the evolution equation

4.1. Singularity and nonlinearity
Nonlinear effects are associated with four types of singularities in the inviscid linear
solution of nearly neutral modes constituting the CS (Wu 2019): (a) the simple-pole
singularity in the velocity due to three-dimensionality; (b) the simple-pole singularity
in the temperature; (c) the primary logarithmic singularity for a non-inflectional
point mode (Zhang 2022); (d) the secondary logarithmic singularity due to the
non-equilibrium effect. When regularised in the critical layer, each of the singularities
represents a large disturbance and thus contributes a nonlinear term in the evolution
equation.

As was shown in [II], the evolution of pure ring-mode CS is governed by a
strongly nonlinear theory because the nonlinearities associated with compressibility and
non-equilibrium are made comparable by taking the mean-temperature gradient at the
critical level to be small. The evolution of multiple ring and helical modes takes a weakly
nonlinear form because the nonlinear interactions among ring/helical modes take place at
a lower amplitude than that between a ring mode and its harmonics does.

In the nonlinear amplitude equation (3.66), the left-hand side represents the axial
evolution and the temporal–azimuthal modulation, while the right-hand side consists
of the effects of non-parallelism and nonlinearity. The latter is composed of three
parts. The nonlinear term NΘ is associated with three-dimensionality, measured by
r̆−2

c , NU is with non-inflectional nature of the critical layer (ι0) (Zhang 2022), which
vanishes for CS of subsonic modes, while NT is contributed by compressibility, measured
by T̄ ′

c. The amplitude equation (3.66) reduces to that for the incompressible regime
by setting T̄ ′

c = 0. Furthermore, with r̆cθ being interpreted as Z = ε2/5z, the scaled
slow spanwise variable, the nonlinear terms in the amplitude equation (3.66) resemble
those describing the nonlinear evolution of the near-planar waves on planar shear
layers (Wu 1993), but the kernels are modified by non-parallelism and complex eddy
viscosity.
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4.2. Modal composition and nonlinearity
When only one ring or helical mode is seeded upstream, the nonlinear interaction does not
generate additional unseeded modes so that Â takes the form

Â(τ, x̄, θ) = AS(τ, x̄)ei mθ , (4.1)

and it follows that the nonlinear terms ÂΘ and ÂN become

ÂΘ ≡ 0, ÂN = A ξ1
S A ξ1+ξ2

S A ∗ 2ξ1+ξ2
S ei mθ . (4.2a,b)

As a result, the factor ei mθ drops out of the amplitude equation, which simplifies to the
one for AS(τ, x̄). The three-dimensional nonlinearity does not influence the dynamics of a
single helical mode, the nonlinear effects on which are associated with the compressibility
and logarithmic singularities, measured by T̄ ′

c and ι0 respectively. This is consistent with
the Squire transformation, which converts a three-dimensional wave into an equivalent
two-dimensional counterpart; see Goldstein & Leib (1989) and Leib (1991). For a subsonic
mixing layer and jet, T̄ ′

c, which controls the nonlinearity due to compressibility, turned out
to be numerically small for a range of Ma, as was pointed out by Sparks & Wu (2008),
[I] and [II]. This led them to take T̄ ′

c as a small parameter such that the nonlinearity
due to compressibility is comparable to that associated with the secondary logarithmic
singularity of the axial velocity of the mode. A strongly nonlinear critical-layer theory
emerges. Similarly, when only one ring or helical mode is seeded upstream, the present
weakly nonlinear theory is unlikely to be accurate or appropriate (see e.g. figure 2a), and
a strongly nonlinear theory is required instead.

When two modes, whose azimuthal wavenumbers are m1 and m2 with the difference
mν = |m1 − m2| /= 0, are seeded upstream, the self-interaction of each mode generates
an axisymmetric mean-flow distortion, whereas the mutual interactions of the two
generate streaks with azimuthal wavenumbers ±mν . The modes ±mν interact at the
cubic level with the fundamental to excite modes with azimuthal wavenumbers m1 ± mν ,
or m2 ± mν . Further interactions at higher orders with the seeded and newly excited
modes generate more azimuthal components m1 ± nmν or m2 ± nmν (n ∈ Z) so that the
azimuthal-wavenumber spectrum is expected to broaden.

4.3. Laminar case
The amplitude equation for CS on a turbulent jet, (3.66), is applicable to the wavepackets
of instability modes on a laminar shear flow as a special case. For a laminar flow, the
coherent Reynolds stresses disappear. The radial velocity of the base flow is of O(Re−1),
smaller than that in the turbulent case, and the axial variation of a laminar base-flow
profile is slower, occurring on the slow axial variable x̃L = Re−1x instead of x̃ = R−1

T x
for a turbulent mean flow. We can thus drop the term representing the non-parallelism,
σsx̄Â, from (3.66), and in the nonlinear terms set σ = 0 (so that χ = 0) and λ̃ = 0.
Correspondingly, the kernel in the nonlinear term due to compressibility reduces to that in
Leib (1991), in which the viscosity law, μ = T̄n, was used.

Despite the slow variation of a laminar base flow, the non-parallelism may have
an appreciable effect on the evolution. We may derive a composite theory to include
effects of both non-equilibrium and non-parallelism as was done in Wu & Huerre
(2009).
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Evolution and radiation of multi-mode coherent structures

4.4. Weak compressibility and weaker three-dimensionality limits
When three-dimensionality is weaker than assumed, i.e. r̆−2

c � 1, but the flow is fully
compressible with T̄ ′

c = O(1), the amplitude equation (3.66) reduces to

∂Â
∂ x̄

+ 1
cg

∂Â
∂τ

= σsx̄Â + σNNT(Â; τ, x̄, θ), (4.3)

in which the nonlinearity is contributed only by compressibility, and the dependence on
θ is entirely parametric. On the other hand, when the flow is weakly compressible with
T̄ ′

c � 1 but r̆−2
c = O(1), we may drop NT to obtain

∂Â
∂ x̄

+ 1
cg

∂Â
∂τ

− 1
ch

∂2Â
r̆2

c∂θ
2 = σNNΘ(Â; τ, x̄, θ)+ σNNU(Â; τ, x̄, θ). (4.4)

However, neither (4.3) nor (4.4) represents a distinguished regime. A distinguished
regime arises when both compressibility and three-dimensionality are weaker than
assumed. We discuss this for a regular critical layer (ι0 = 0), and introduce

r̆−1
c = lβ̇ ˙̆r−1

c , T̄ ′
c = l2

β̇
˙̄T ′

c, (4.5a,b)

with lβ̇ � 1 and ˙̆r−1
c ∼ ˙̄T ′

c = O(1) to retain the two types of nonlinearity. Inserting them
into (3.66) and rescaling A = l−1

β̇
Ȧ, we obtain its limiting form

∂Ȧ
∂ x̄

+ 1
cg

∂Ȧ
∂τ

= σNNΘ(˙̆r−1
c , Ȧ; τ, x̄, θ)+ σNNT(

˙̄T ′
c, Ȧ; τ, x̄, θ). (4.6)

In this situation, the linear growth rate remains of O(lγ ) = O(ε2/5), while the unscaled
amplitude is increased to the order of ε̇ = εl−1

β̇
. When the unscaled amplitude ε̇ is

increased to O(l2γ ), namely, lβ̇ = O(ε1/5), the limiting form (4.6) would break down
because a strongly nonlinear critical layer arises. The present theory, together with its
limiting form, remains valid for ε−1/5 � rc � ε−2/5. When r−1

c = O(ε2/5) = O(ε̇1/2),
which is realised in a ‘very-near-nozzle’ region, a strongly nonlinear theory is required to
describe the interactions of an arbitrary number of coexisting ring and helical modes. This
case will be reported in a separate paper.

Other limiting cases include the ‘very non-parallel’ and ‘very viscous’ regimes, in each
of which the amplitude equation (3.66) simplifies as is discussed in Zhang (2022).

4.5. Terminal forms
Mathematical considerations, aided by numerical results, suggest three possible terminal
forms of solutions, which the disturbance may attain as x̄ → ∞ or at a finite axial distance
x̄s. Their occurrence depends on the size of the initial amplitude.

When the initial amplitude is small enough, the entire evolution remains practically
linear, taking the form (3.70). For moderate initial amplitudes, the most common evolution
scenario is that following the linear stage the modes in the wavepacket interact with each
other, causing oscillatory saturation and eventual attenuation. Since the non-parallelism
and viscous effects cause ‘memory decay’, as indicated by the kernels, nonlinear terms
diminish and the modes become independent in the final relaxation stage with the
amplitude of each mode resuming the form (3.70).
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The second terminal form is that the amplitudes of the modes in the CS blow up at a
finite downstream distance x̄s. As x̄ → x̄s, the amplitude of each mode has the structure

A[m] → a[m]
T /(x̄s − x̄)5/2+i σT , (4.7)

where a[m]
T and σT are complex and real, respectively. The present form of singularity

is a generalisation of that for a single mode (Goldstein & Leib 1989; Leib 1991) to the
multiple-mode case. Substitution of (4.7) into the governing equations of A[m] leads to a
system of coupled nonlinear algebraic equations for a[m]

T and σT ; see Zhang (2022) for the
detail. The value of x̄s depends on the composition and size of the seeded modes, and has
to be determined numerically. In the vicinity of x̄s, the present theory breaks down, and
the disturbance is likely to enter a fully nonlinear stage, where the amplitude would evolve
on the same short length scale as the wavelength, and the Euler or N–S equations have to
be called upon (cf. Goldstein & Leib 1989). A full resolution of the singularity is beyond
scope of the present study.

Finally, we consider the focusing singularity of the form in Wu (1993), namely,

Â = F(θ̂)/(x̄s − x̄)5/2+i σT , θ̂ = (θ − θs)/(x̄s − x̄)1/2, (4.8a,b)

where θs is azimuthal angle at which the CS concentrates. Inserting (4.8a,b) into (3.66),
we obtain the integro–differential equation for F(θ̂), which is given in Zhang (2022). This
type of singularity is associated with both the two- and three-dimensional nonlinear terms,
which are of the same order. Numerical solutions indicate a trend of azimuthal focusing,
but there is no firm evidence of the eventual formation of the singularity.

5. Numerical solutions of the amplitude evolution equation

The theory is applied to a compressible turbulent jet, in which the mean flow is formed
between the exhaust flow, (U∗

I , T∗
I ), and a co-flow, (U∗

O, T∗
O) (U∗

O < U∗
I appropriately

assumed). The axial mean-flow velocity is chosen to have a self-similar profile

Ū
[
η† ( y, x̃)

]
= ŪR + f (η†), (5.1)

with f (η†) = −(1 + qc sech2η†) tanh(η†)

ŪR = U∗
I + U∗

O
U∗

I − U∗
O

= 1 + βU

1 − βU
, η†(x̃, r) = η†

c + r − rT(x̃)
δT(x̃)

(r > 0), (5.2a,b)

where βU = U∗
O/U

∗
I ; η† is the self-similar variable with η†

c being introduced to ensure
that the critical level r = rc at the neutral position x̃ = x̃N is located at r = rT(x̃N); rT and
δT are functions of x̃, standing for the equivalent central position and the thickness of the
shear layer, respectively. The phase speed of the neutral mode, c, is given by

c = Ūc = ŪR + f
(
η†

c

)
. (5.3)
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Evolution and radiation of multi-mode coherent structures

The dependence of rT and the scaled mean-flow radial velocity V̄c on δT and further on
the spreading rate of the shear layer, dΘ∗/dx∗, was found in [II] as follows:

ṙT

rc
=
(

1 − 2
C (1)

∞ − Ū+C (1)
c

C (0)
∞ − Ū+C (0)

c

)
δ̇T − Cμ

C (0)
∞ − Ū+C (0)

c
, (5.4)

V̄c = T̄c

[(
rcŪc/T̄c − C (0)

c

)
(ṙT/rc)+

(
C (0)

∞ − 2C (1)
∞
)
δ̇T

]
, (5.5)

δ̇T = C −1
1 RT(dΘ∗/dx∗), (5.6)

where the mean-flow-dependent constants C (i)
∞ , C (i)

c , Cμ and C1 (i = 0, 1) can be found
in § 3.4 and appendix D of [II].

The mean-temperature profile is given by the generalised Crocco relation

T̄(η†) = −
√

PrT
(γ − 1)Ma2

2

(
Ū − Ū−

) (
Ū − Ū+

)+ 1 − βT

2

(
Ū − Ū+

)+ βT , (5.7)

where we have defined Ū± = ŪR ∓ 1, representing the dimensionless velocities of the core
flow and coflow. Similarly, the temperature of the core flow is designated as T̄+ = βT , and
that of the coflow as T̄− = 1, for convenience.

The numerical approach to solve the amplitude equation (3.66) is now described. After
the coefficients are calculated by solving the Rayleigh equation for the eigen mode, and
the initial conditions specified, the evolution equation is marched downstream using the
fully implicit two-step Adams–Moulton scheme as well as a predictor–corrector method
consisting of the three-step Adams–Bashforth and two-step Adam–Moulton schemes for
the predictor and corrector, respectively. Both methods have third-order accuracy, and the
first method takes the advantage of the fact that the kernel functions are identically zero
and hence the integrands do not involve A at the current position x̄. The axial range of
computation is [−10, 20] with the typical step �x̄ = 0.1, and halving the size did not
cause appreciable difference.

5.1. Coherent structures without frequency sidebands
In this subsection, calculations will be performed for a simple form of CS consisting
of ring and helical modes with exactly the same frequency, that is, frequency sideband
components are excluded. The general form where those components are present will be
considered in the next subsection, while their role in emission of sound waves will be
analysed in § 6.

In the present parametric studies, we mainly focus on the effects of initial conditions.
Unless stated otherwise, the flow conditions are given as follows: the upstream velocity
ratio U∗

O/U
∗
I = 1/9 and temperature ratio T∗

O/T
∗
I = 7/8, the exhaust Mach number MaI =

0.6, the Prandtl number Pr = 0.7, the dimensionless critical-layer position rc = 10, the
Haberman parameters characterising eddy viscosities λ̄ = λ̃ = 0.3, the phase lags in the
coherent Reynolds stresses τ̂1 = τ̂2 = π/5, the spreading rate of the shear-layer thickness
δ̇T = 0.25, qc = 0.1, ε = 0.05 and S0 is assigned as ε−2/5αc/10.

Figure 2 shows the evolution of CS in three cases: a single helical mode, a pair of helical
modes with the same initial amplitude, and a pair of helical modes with different initial
amplitudes being seeded. When only one helical mode, m = 1, is seeded upstream, the
evolution predicted by the present nonlinear theory is similar to that by the linear theory.
The nonlinearity, driven solely by compressibility and measured by T̄ ′

c, turns out to be
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Nonlinear theory
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(b)(a)

Figure 2. Amplitude evolution with different modes seeded upstream. (a) A single m = 1 mode (dashed line),
a pair of m = ±1 modes with identical initial amplitude (the solid line without circles) and a pair of m = ±1
modes of different initial amplitudes with ratio a[−1]

0 /a[1]
0 = 0.5 (the solid lines with circles); (b) development

of nonlinearly generated modes: solid lines for |m| = 1, dashed lines for |m| = 3, dash–dotted lines for |m| = 5,
dotted lines for |m| = 7: lines without circles represent the helical modes with identical initial amplitude
(a[−1]

0 /a[1]
0 = 1) and lines with filled/empty circles represent the helical modes with m ≷ 0 and initial amplitude

ratio a[−1]
0 /a[1]

0 = 0.5.

weak in the present subsonic regime. It implies that a strongly nonlinear theory should be
developed to describe the dynamics. When a pair of helical modes, m = ±1, are seeded
upstream with the same initial amplitude, their common amplitude undergoes nonlinear
modulation characterised by rapid oscillations before eventual attenuation. Higher helical
modes, including m = ±3,±5,±7, are excited and evolve downstream nonlinearly; they
amplify to arrive at considerable levels quickly, which even exceed that of the seeded ones
at some axial positions, as is shown in figure 2(b). However, if the initial amplitudes of the
seeded modes differ, the evolution is quite different: instead of attenuating, the amplitude
blows up at a finite distance downstream.

The nonlinear interaction between a pair of helical modes generates an azimuthal-
dependent mean-flow distortion or streaks, as was observed in experiments (Long &
Petersen 1992; Corke & Kusek 1993). Figure 3 shows the azimuthal distribution of the
mean-flow axial velocity at the critical level, r = rc, at several axial positions for the
two cases of figure 2(b). Figure 3(a) shows the case with identical initial amplitude.
The distribution is nearly circular at x̄ = 0, but becomes non-circular at other positions
downstream. At x̄ = 10, two peaks appear around θ = 0◦ and 180◦. Figure 3(b) shows the
result for the case with initial amplitude ratio a[−1]

0 /a[1]
0 = 0.5. At x̄ = 0 and 5, the mean

flow is distorted only slightly. At x̄ = 10, significant distortion has occurred, and there
appear four sharp peaks around θ = 3◦, 101◦, 183◦ and 281◦, as well as four mild peaks
at 52◦, 142◦, 232◦ and 322◦. This highly non-axisymmetric feature arises because higher
modes gain significant amplitudes and their interaction generate mean-flow distortions
proportional to cos(2mθ) and cos(4mθ).

Next, we will consider the evolution when two helical modes with different |m| are
seeded upstream. Figures 4 and 5 show the axial evolution and azimuthal modulation for
the cases with m = −1, 2 and m = 1, 2 seeded upstream, respectively. When m = −1 and
2 are seeded (figure 4a), more modes, including m = −7,−4, 5, 8, . . ., are excited. Modes
m = −4 and 2 gain appreciable amplitudes at nearly the same position and amplify at
nearly the same growth rate, which is expected since they are both excited at cubic order.
Modes m = −7 and 5 are generated at quintic order, and hence appear farther downstream
and exhibit similar features. Interestingly, the nonlinearly excited modes soon acquire
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Figure 3. Azimuthal distribution at several axial positions of the mean-flow axial velocity at the critical level
with m = ±1 modes seeded upstream. (a) Identical initial amplitude (a[−1]

0 /a[1]
0 = 1); (b) initial amplitude

ratio a[−1]
0 /a[1]

0 = 0.5.
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Figure 4. Amplitude evolution when two helical modes, m = −1, 2 with A[−1]
0 = A[2]

0 , are seeded upstream:
(a) axial evolution; (b) axial evolution and azimuthal modulation.

greater amplitudes than those of the seeded modes, causing rapid azimuthal modulation as
is displayed in figure 4(b). The amplitudes appear to develop a finite-distance singularity
of the form (4.7) in the present case. When modes m = 1, 2 are seeded (figure 5), all
modes with finite azimuthal wavenumbers including the ring mode (m = 0) are excited.
Modes m = 0 and m = 3, which are forced by the cubic interactions, acquire appreciable
amplitudes at nearly the same position and grow at near the same rates. Modes m = −1, 4
and m = −2, 5, excited at quintic and septet orders, respectively, arise increasingly farther
downstream. Note that the ring mode exhibits no more special characteristics in the
dynamics, and can be regarded as one of the helical-mode family with m = 0. Again modes
subsequently excited by nonlinear interactions amplify quickly to become comparable
to the seeded ones. In this case, all modes attenuate eventually. It is quite remarkable
that merely reversing the azimuthal direction of a helical mode leads to such a drastic
difference.

When the ring mode is seeded along with two helical modes, the evolution becomes
more complicated. Figure 6 shows the axial evolution and azimuthal modulation for the
cases where m = 0, 1, 2 and m = 0,−1, 2 are seeded upstream. In both cases, all modes
with finite azimuthal wavenumbers are excited, and these along with the seeded modes
undergo rather violent oscillations, but the amplitudes blow up in the former case while
decay in the latter. The contrasting outcomes indicate that the nonlinear dynamics is
extremely sensitive to the initial conditions, which is a well-known feature of nonlinear
systems. Of course, as one of the outcomes is blow-up, a better assessment of the role
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Figure 5. Amplitude evolution when two helical modes, m = 1, 2 with A[1]
0 = A[2]

0 , are seeded: (a) axial
evolution; (b) axial evolution and azimuthal modulation.
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Figure 6. (a) Amplitude evolution for the cases with two helical modes and the ring mode seeded: m = 0, 1, 2
with A[0]

0 = A[1]
0 = A[2]

0 ; m = 0,−1, 2 with A[−1]
0 = A[0]

0 = A[2]
0 ; the axial evolution and azimuthal modulation

are shown in (b,c) respectively.

of the initial condition needs to be made in a theory in which the singularity is properly
regularised. Nevertheless, the present comparison is still meaningful since the evolution
differs significantly well before the singularity is approached.

Now turn to a CS consisting of the ring mode and pairs of helical modes. We consider
a representative case, termed ‘case-FW ’, in which modes m = 0,±1,±2 are seeded
upstream with their initial amplitudes and phases being listed in table 1; the former are
rescaled such that the overall amplitude AH = 1 (see (3.69)). The axial evolution and
azimuthal modulation are shown in figure 7. Upstream of the neutral position, x̄ = 0,
the seeded modes grow nearly exponentially. Through nonlinear interactions, modes with
|m| > 2 are all excited near the neutral position and then amplify to acquire a considerable
level quickly. All modes undergo complex nonlinear evolution and finally decay, indicating
breakdown of the CS.
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Evolution and radiation of multi-mode coherent structures

Modes A[−2] A[−1] A[0] A[1] A[2]

Initial amplitude ratios a[m]
0 /a[0]

0 1 2 1 1 2
Initial phases φ[m]

0 −2π/3 −π/3 0 −π/6 π/3

Table 1. Initial amplitudes and phases of the seeded modes in case-FW .
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Figure 7. Nonlinear dynamics of a CS in case-FW : (a) axial evolution of constituting modes; (b) axial
evolution and azimuthal modulation of the amplitude function; (c) amplitude evolution along different
azimuthal angles θ = nπ/6 (n = 0–5) with the overall amplitude of the CS being also shown for comparison.

The amplitude Â(x̄, θ) of a CS is azimuthally dependent as is displayed in figure 7(b).
Figure 7(c) shows the amplitude evolution for six azimuthal angels θ = nπ/6 (n = 0–5),
in which each curve corresponds to the intersection of the surface shown in figure 7(b)
with the corresponding θ -plane. For comparison, also shown is the overall amplitude, AH,
which measures the averaged energy density of the CS. The oscillations of the amplitude
at certain azimuthal angles are particularly spiky, and at most angles the undulation is
stronger than that of the overall amplitude.

The leading-order vorticity of the CS in the critical layer is

ΩΩΩc =
(
ε2/5∂Yw̃−1,−ε4/5∂ζ w̃−1,−ε3/5Q̃0

)
, (5.8)

a consideration of which helps understand the formations of vortices. Figure 8 shows
contours of the axial vorticity at three axial positions, which indicate the existence
of axial vortices. At x̄ = 0, the vorticity filed is rather regular, consisting of 4 cells,
indicating the dominance of the Fourier components with m = ±2. At x̄ = 5, the contours
become irregular, as components with larger |m| become more prominent, leading to
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Figure 8. Contours of the axial vorticity Ωc,x of a multiple-mode CS in case-FW on three η–θ planes at
x̄ = 0 (a), 5 (b) and 15 (c). Negative values are plotted by dashed lines.
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Figure 9. Evolution of the mean-flow distortion, measured by |ũ(1,0)(η̄ = 0)|, of multiple-mode CS along
different azimuthal angles θ = nπ/6 (n = 0–5) in case-FW ; the azimuthally averaged mean-flow distortion is
also shown.

reduced azimuthal spacing. Downstream at x̄ = 15, the azimuthal spacing decreases even
further, indicating that components with smaller |m| have subdued while those with larger
|m| persist, which may be viewed as breakup of large-scale vortices into smaller ones.
The vorticity tends to concentrate around azimuthal angle θ = 300◦, but the focusing
singularity (4.8a,b) does not appear to occur.

Nonlinear interactions generate an azimuthally dependent mean-flow distortion or
streaks, which are regarded as a part of the CS in the present theory. Figure 9 shows the
axial evolution of the mean-flow distortion, measured by the maximum values in the radial
direction of |ũ(1,0)|max defined by (3.42) and (3.53), on different azimuthal planes. The
mean-flow distortion is quickly generated by nonlinear interactions for each θ , and grows
to a considerable size. Different from the fundamental components, which have decayed
rather rapidly to a low level by x̄ = 15 (figure 7c), the mean-flow distortion maintains its
amplitude for much longer axial distances.

The azimuthal variation of the mean-flow distortion gives rise to streaky structures.
Figure 10(a–c) shows the azimuthal–radial distribution of the ζ -independent axial velocity,
i.e. (ũ(1,0) + c.c.) as defined by (3.27)–(3.28), at three axial positions x̄ = 0, 5 and 15. As
with the axial vorticity displayed in figure 8, a radially staggered pattern is observed. The
axial–azimuthal distribution is shown in figure 10(d–f ). The contours are qualitatively
similar to the structures extracted from the data of experiments (Nogueira et al. 2019) and
LES (Pickering et al. 2020).
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Evolution and radiation of multi-mode coherent structures
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Figure 10. Streaky structures represented by the ζ–independent axial velocity, ũ(1,0) + c.c., in case-FW . First
row: contours on the η–θ plane at x̄ = 0 (a), 5 (b) and 15 (c); second row: contours on the θ–x̄ plane at η = −3
(d), 0 (e) and 3 ( f ).

5.2. Coherent structures consisting of frequency sidebands: sideband resonance and
temporal–spatial modulation

5.2.1. Fourier decomposition
The calculations are now extended to wavepackets consisting of frequency sideband
components. Specifically, in addition to the fundamental mode with frequency ω0, discrete
components with slightly different frequencies ω0 + ε2/5LΔ (L = ±1, ±2, . . .) are also
present, where Δ = O(1) is the scaled difference frequency. The amplitude function can
be expressed as a Fourier series

Â(τ, x̄, θ) =
∞∑

m=−∞
A[m]ei mθe− i S0τ =

∞∑
m,L=−∞

A[m](L)e− i LΔτ ei mθe− i S0τ , (5.9)

where A[m](L) characterises the complex amplitude of each mode with azimuthal
wavenumber m and frequency

ω(L) = αc + ε2/5S0 + Lων = αc + ε2/5(S0 + LΔ), (5.10)

and the relation A∗[m](L) = A[−m](−L)∗ holds. The nonlinear multiplications in the
amplitude equation should be performed as the triple discrete convolutions, or triple
Cauchy products, on two variables.

Ignoring the nonlinear terms, we obtain the upstream condition for the present
evolution–modulation equation

A[m](L) → A[m](L)
0 exp

[
σsx̄2/2 + κ [m](L)x̄ − i S0τ

]
as x̄ → −∞, (5.11)
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Modes Initial amplitude ratios a[m](L)
0 /a[1](0)

0 Initial phases φ[m](L)
0

A[−2](0) 0.2 π

A[−1](0) 0.8 0
A[0](0) 0.6 0
A[1](0) 1 0
A[2](0) 0.3 π

A[1](−1) 0.25 0

Table 2. Initial amplitude ratios and phases of the seeded modes in case-HW .

where A[m](L)
0 = a[m](L)

0 eiφ[m](L)
0 and κ [m](L) = i(S0 + LΔ)/cg − m2/ch. Two sets of

amplitudes can be introduced, namely,

A(L)H (x̄) =
√√√√ ∞∑

m=−∞

∣∣A[m](L)(x̄)
∣∣2, A[m]

H (x̄) =
√√√√ ∞∑

L=−∞

∣∣A[m](L)(x̄)
∣∣2; (5.12a,b)

the former represents the energy averaged over all modes of different m but with the same
frequency ω(L), while the latter the energy averaged all modes of different frequency but
with the same m. The overall amplitude of the CS composed of all azimuthal wavenumbers
and frequencies can be defined as

AC(x̄) =
√√√√ ∞∑

m=−∞
A[m] 2
H =

√√√√ ∞∑
L=−∞

A(L) 2
H =

√√√√ ∞∑
L,m=−∞

∣∣A[m](L)
∣∣2. (5.13)

5.2.2. Numerical results of the evolution–modulation equation
When one or several frequency sidebands are seeded upstream, more sideband modes
would be excited nonlinearly. In the present study, calculations will be performed for a
set of initial conditions, termed ‘case-HW ’, where a frequency sideband mode A[1](−1)

is seeded along with the central-frequency components with m = 0,±1,±2; the initial
amplitudes and phases are listed in table 2 with the m = ±1 modes being dominant. The
difference frequency is taken to be ων = 0.025ω0 ≈ 0.03. Other flow parameters are the
same as those in case-FW except that δ̇T = 0.15, λ̄ = λ̃ = 0.125 and ε = 0.054.

Figure 11 shows two types of amplitudes, A(L)H and A[m]
H , defined in (5.12a,b). Each A(L)H

amplifies/decays monotonically before/after reaching the peak value, while A[m]
H exhibits

nonlinear undulation except for m = 0. Nevertheless, the development of A(L)H and A[m]
H is

much simpler than A[m](L), the amplitude of each individual component; see below.
Figure 12(a–c) displays the axial evolution of the helical modes with frequencies

ω = ω(0), ω(−1) and ω(1), respectively. Among the central-frequency components with
ω(0) (L = 0), five ring and helical modes are seeded, while other modes are excited
near the neutral position and evolve downstream. Similarly, for the components with
ω = ω(−1) (L = −1), although only one helical wave with this frequency, A[1](−1), is
seeded upstream, lower sidebands of ring or helical modes are all excited. The amplitude
of each mode develops axial undulation. Among the upper sidebands, whose frequency
is ω = ω(1), the ring and all helical waves are excited nonlinearly. Most of individual
components exhibit strong oscillations, but their overall amplitude A(L)H modulates rather
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Figure 11. Evolution of A(L)H (a) and A[m]
H (b) in case-HW .
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Figure 12. Amplitude evolution of ring/helical modes in sideband components with different frequencies
ω = ω(0) (a), ω(−1) (b) and ω(1) (c).

mildly and then decays. This is an indication that among the helical components with the
same frequency there is vigorous energy exchange, facilitated through their interactions
with the streaks and mean-flow distortion, which are generated by the mutual and
self-interactions of the helical modes, respectively.

Figure 13(a–c) displays the evolution of components with azimuthal wavenumbers m =
0,−1 and 1, respectively. The modes with m = 0 and −1 only have the central-frequency
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Figure 13. Amplitude evolution of frequency sidebands of ring/helical modes with different azimuthal
wavenumbers m = 0 (a), −1 (b) and 1 (c).

components seeded upstream, while the component with m = 1 consists of a seeded
lower sideband. The frequency spectrum of each ring/helical mode broadens: sideband
frequencies appear both below and above the central frequency. The amplitudes of several
sideband components develop undulations, while the overall amplitude A[m]

H of each
ring/helical mode amplifies and decays rather gradually, indicating energy transfer between
different frequency sidebands within each set of ring or helical modes.

The flow is in general quasi-periodic in time due to the presence of frequency sidebands
since the fundamental and difference frequencies, ω0 and ων , are incommensurable, and
so are ω0 + Lων for different integer L. Figure 14 shows the temporal and spatial (axial
and azimuthal) modulation of the amplitude A(τ, x̄, θ) at three moments within the long
period, T = 2π/ων = ε−2/52π/Δ. As is illustrated, the amplitude A(τ, x̄, θ) breaths with
respect to time slowly.

In order to probe further into the temporal–spatial modulation of the CS, the complex
amplitude is expressed in terms of its overall its modulus a(τ, x̄, θ) and argument
2πψ(τ, x̄, θ), and is further decomposed into Fourier series of azimuthal components,
each of which is also written in the form of its modulus and phase

A(τ, x̄, θ) = a(τ, x̄, θ) exp (i 2πψ(τ, x̄, θ)) =
∞∑

m=−∞
a[m](τ, x̄) exp

(
i 2πψ [m](τ, x̄)

)
ei mθ .

(5.14)
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Figure 14. Temporal–spatial modulation of the CS as shown by perspective views of the amplitude
function A at three moments τ = 0 (a), T/3 (b) and 2T/3 (c) within a period.
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Figure 15. Azimuthal distributions of the amplitude modulus a(τ, x̄, θ) (a–c) at six moments τ = nT/6
(n = 0–5), and the Fourier spectrum of the amplitude (d–f ) at three axial positions x̄ = 0 (a,d), 5 (b,e) and
10 (c, f ).

The azimuthal distribution of the breathing amplitude a(τ, x̄, θ) at three axial positions
is shown in figure 15(a–c), and the corresponding frequency–azimuthal-wavenumber
‘spectrum’ |A[m](L)| is displayed in figure 15(d–f ). The amplitude undergoes appreciable
redistribution within the long period. At x̄ = 0, the amplitude at different moments takes
a simple sinusoidal pattern since the disturbance is dominated by the seeded m = ±1
modes. The spectrum focuses in the neighbourhood of central-frequency modes (m =
±1, L = 0). At x̄ = 5, the azimuthal distribution becomes irregular since more helical
modes with higher azimuthal wavenumbers, together with their frequency sidebands, are
excited and grow. The ‘spectrum’ broadens as is indicated figure 15(e). At x̄ = 10, the CS
amplitude evolves into a regular but not a simple-sinusoidal pattern since the amplitudes
of ring/helical modes decay and arrive at almost the same value.

The wavepacket is azimuthally dependent. The modulation of the overall envelop
a(τ, x̄, θ) on several azimuthal planes as well as of the constituting ring/helical modes
is shown in figures 16(a–c) and 16(d–f ), respectively. As is illustrated in figure 16(a), the
overall envelope a of the wavepacket breaths within the long period, and its azimuthal
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Figure 16. Temporal modulation of CS: (a–c) amplitude modulus on six azimuthal planes with θ = nπ/3
(n = 0–5); (d–f ) amplitude modulus of each ring/helical mode at three axial positions x̄ = 0 (a,d), 5 (b,e) and
10 (c, f ) in case-HW .

variation is appreciable. At x̄ = 0 and 5 (figure 16a,b), the envelope is greatly reduced
near the azimuthal plans θ = 2π/3 and 4π/3, which thus represent ‘quiet regions.’
Downstream at x̄ = 10, there is no longer distinct ‘quite’ and ‘focused’ regions (figure 16c).
On the other hand, the long-period breathing becomes intermittent rather than being
sinusoidal. Figure 16(d) indicates that the wavepacket at x̄ = 0 is dominated by m = ±1
modes, which undergo sinusoidal breathing; other modes have been excited but their
amplitudes remain almost constant. At x̄ = 5, all ring/helical modes breath strongly (see
figure 16e). At x̄ = 10, the disturbance has attenuated to a reduced but still appreciable
level, yet the breathing becomes more complex, and the temporal jittering becomes
more significant (figure 16f ). The envelope undergoes oscillations of relaxation type, and
between the consecutive episodes is a time window in which the breathing wavepacket is
substantially suppressed.

The nonlinearly produced slowly breathing mean-flow distortion and streaks are
composed of low-frequency components. Figure 17 shows the evolution of these
components, represented by ũ[m](L)

(1,0) at η̄ = 0 with different m and L. Along the axial
direction, low-frequency components are excited and grow to a considerable level. It is
interesting to note that although the amplitudes of all constituting modes in the O(1)
frequency band diminish downstream, the low-frequency components representing the
mean-flow distortion and streaks are sustained at finite levels.

Each low-frequency component consists of ring/helical modes. Figure 18(a–c) shows
the evolution of these modes in the ω = 0, ων and 2ων components. Consistent with
previous observations, the ring-mode components (m = 0) jitter more significantly as
is also indicated by figure 18(a,b). Although modes with larger |m| have smaller
amplitudes upstream, some of them reach somewhat higher levels downstream. This
does not contradict the experimentally observed trend that the azimuthal wavenumber
m of dominant components in streaks decreases with the axial distance (Pickering et al.
2020). The present theory is valid in the near-nozzle region, where helical modes reside
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Figure 17. Axial evolution of the mean-flow distortion, represented by ũ[m](L)
(1,0) at η̄ = 0, for m = 0,−1, 1,−2

and 2 (a–e).

in the thin shear layer and have fairly high frequencies. Their amplitudes attenuate
eventually downstream as figures 7(a) and 12 indicate, and accordingly so would the
nonlinearly generated low-frequency components although they may persist for fairly
long distances. On the other hand, as the jet evolves into the so-called ‘developed
region’, lower-frequency and smaller-m helical modes residing in the jet column amplify
to overtake the shear-layer modes (Batchelor & Gill 1962). Pairs of helical modes
with opposite azimuthal wavenumbers ±m interact to generate streaks with azimuthal
wavenumber 2m (Long & Petersen 1992; Wu & Huerre 2009). The ring mode interacts
with itself to generate a mean-flow distortion (m = 0) (Zhang & Wu 2022). As a result,
lower-m components would become more prominent with the increase of the axial
distance. Nevertheless, the long persistence of streaks mentioned above does highlight
the need of developing a unified theory valid for CS in both the near-nozzle and
well-developed regions, which seems possible since in the latter dominant nonlinear
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Figure 18. Axial evolution of the mean-flow distortion and streaks, represented by ũ[m](L)
(1,0) at η̄ = 0, for

different m: ω = 0 (a); ω = ων (b); ω = 2ων (c).

interactions take place between pairs of helical modes with ±m whereas the interactions
among modes with different |m| diminish progressively due to the increasing differences
in their phase speeds.

A salient feature of the theoretical predictions is that as a result of nonlinear modal
interactions most components in the fundamental and low-frequency frequency bands
undergo oscillatory axial amplification and saturation; see figures 13 and 18. A similar
feature is exhibited by the spectral POD modes extracted from LES data, but not by the
resolvent modes as figures 7 and 10 of Pickering et al. (2020) indicate. This difference is
perhaps not surprising since POD modes include nonlinearity whereas resolvent modes
are linear.

The breathing streaky structure can be illustrated by the ζ -independent vorticity

ΩΩΩcM =
[
ε3/5∂Yw̃(0,0), ε7/5

(
r̆c

−1∂θ ũ(1,0) − c−1∂x̄w̃(0,0)
)
,−ε4/5Q̃(1,0)

]
+ c.c.. (5.15)

Figure 19(a–c) displays contours on the η–θ plane of the axial vorticity ΩcM,x at x̄ = 5
at three moments, while figure 19(d–f ) shows contours on the θ–x̄ plane ofΩcM,x at η = 0.
Streamwise elongated vortices staggered in double rows in the radial direction are formed
and breath slowly with respect to time within the long period. As will be pointed out
later, although the present leading-order mean-flow distortion and streaks contribute to
the nonlinear dynamics, they do not directly emit sound waves, which are radiated instead
by much weaker secondary mean-flow distortion and streaks.
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Figure 19. Breathing streaky structure, represented by contours of the axial vorticity, ΩcM,x, in case-HW at
three moments τ = 0 (a,d), T/3 (b,e) and 2T/3 (c, f ) within a period. Panels (a–c) on the η–θ at x̄ = 5; panels
(d–f ) on the θ–x̄ plane at η = 0.

6. Acoustic radiation of ring-/helical-mode CS

As was discussed in [II], the fundamental waves and their harmonics of subsonic-mode
CS cannot radiate sound waves directly (unless their amplitude growth/attenuation is taken
into account, in which case exponentially small supersonic components in their spectral
tails radiate to small angles to the downstream axis). Instead, the nonlinearly generated
low-frequency components (i.e. the mean-flow distortion and streaks) on the scales of
the wavepacket envelope play the leading role as an emitter, as was shown in our previous
studies (Wu & Huerre 2009; [I] and [II]). However, while the essential mechanism remains
valid, the results in these papers are not directly applicable to multiple-mode CS in the
near-nozzle region. This is because the mean-flow distortion and streaks are generated by
a different form of forcing and have rather different far-field asymptote. In this section, we
will analyse the mean-flow distortion and streaks to identify the actual physical sources
and to reveal the detailed process of sound generation.

6.1. Mean-flow distortion in the main layer
The breathing mean-flow distortion and streaks caused by nonlinear interactions are part
of the CS (see Wu & Zhuang 2016). Independent of ζ , these components can be expanded
in the main shear layer as

q̂M(τ, x̄, r, θ) = ε8/5
(

uM, ε
2/5vM, ε

1/5wM, ε
2/5pM, TM, ρM

)
. (6.1)

The order of magnitude is determined by the interactions in the main shear layer as well
as by the jump across the critical layer, which is associated with the secondary O(ε8/5)
mean-flow distortion and streaks. Here, it is noted that although an O(ε6/5) mean-flow
distortion and streaks are generated by leading-order nonlinear interactions in the critical
layer, they are trapped within that region. Hence no sound wave is emitted at this order
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even though T̃(−1,0) and w̃(0,0), which represent the leading-order mean-flow distortion
and streaks, make the primary contributions to the nonlinear dynamics of the CS. This
differs from a wavepacket of pairs of helical modes in the developed region, where the
leading-order streaks radiate the dominant sound waves (Wu & Huerre 2009).

The leading-order term in (6.1) satisfies a set of inhomogeneous equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
c
∂uM

∂ x̄
+ ∂vM

∂r
+ vM

r
+ ∂wM

r̆c∂θ

)
+ T̄D1ρM − T̄ ′

T̄
vM = 0, (6.2a)

D1uM + Ū′vM = 0, (6.2b)

0 = −T̄
∂pM

∂r
+ fr, (6.2c)

D1wM = − T̄∂pM

r̆c∂θ
+ fz, (6.2d)

D1TM + T̄ ′vM = 0, (6.2e)

TM/T̄ + T̄ρM = 0, (6.2f )

where the operator D1, the bulk forcing terms, fr and fz, are given, respectively, by

D1 = ∂

∂τ
+ Ū(r)

c
∂

∂ x̄
, (6.3)

fr = 2v̂0
[
v̂′

0 − iαû0 − iαT̄(Ū − c)ρ̂0
] |A†|2 = 2

[
T̄(v̂2

0/T̄)
′ + v̂2

0/r
]
|A†|2, (6.4)

fz = T̄(v̂0ŵr/T̄)′|A†|2θ . (6.5)

Equation (6.2c) is integrated to give

pM(τ, x̄, r, θ) = 2|A†|2
[
v̂2

0

T̄
+
∫ r

∞
v̂2

0

r�T̄
dr�
]

= def.2|A†|2
[
v̂2

0

T̄
+ pMr(r)

]
, (6.6)

where pM(r → ∞) → 0 is imposed as in [I] and [II]. Following the same practice as in
§ 3.1, we have tacitly retained the circularity at leading order, such as 2v̂2

0 |A†|2/r in fr, but
relegated terms due to three-dimensionality, such as T̄(v̂0ŵr/T̄)′|A†|2θ , to the next order.

Eliminating ρM , uM and TM , we obtain a single equation for vM(
∂

∂τ
+ Ū

c
∂

∂ x̄

)(
∂vM

∂r
+ vM

r

)
− Ū′

c
∂vM

∂ x̄
= −SH(τ, x̄, r, θ), (6.7)

where

SH(τ, x̄, r, θ) = ∂fz
r̆c∂θ

− T̄∂2pM

r̆2
c∂θ

2 = − T̄|A†|2θθ
α2r̆2

c

{[
T̄p̂′

0p̂0

(Ū − c)2

]′
− 2T̄p̂′

0p̂′
0

(Ū − c)2
+ 2α2pMr

}

= T̄|A†|2θθ
r̆2

c

{[
Ma2 − T̄

(Ū − c)2

]
p̂2

0

+ T̄p̂′
0p̂0

α2(Ū − c)2r
+ T̄p̂′2

0

α2(Ū − c)2
− 2pMr

}
. (6.8)

Note that, unlike the case of ring-mode CS, the forcing is absent in the continuity, axial
momentum, energy and state equations. Such a forcing, which represents the bulk source
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Evolution and radiation of multi-mode coherent structures

of sound, appears instead in the radial and azimuthal momentum equations, (6.2c) and
(6.2d). Note that pM enters through the azimuthal momentum equation, and so both bulk
sources are relevant for three-dimensional components, namely, they do not contribute to
the axisymmetric part of the mean-flow distortion.

By Fourier transform, equation (6.7) is solved in the frequency–wavenumber space
(ω̄, κ), and the solution in the spectral space, denoted by a wide hat ‘•̂’, is found as

v̂M(ω̄, κ, r, θ) = − i
(
ω̄ − Ūκ/c

) [rc

r
â±

M(ω̄, κ)+ 1
r

∫ r

∞(0)

r�ŜH(ω̄, κ, r�, θ)
(Ūκ/c − ω̄)2

dr�
]
.

(6.9)
The jump of vM across the critical layer can be obtained by matching as

vM( y = 0+)− vM( y = 0−) = ṽ(5,0)(Y → ∞)− ṽ(5,0)(Y → −∞)

+ c.c. def.==== V(τ, x̄, θ). (6.10)

Use of (6.9) in the Fourier transform of (6.10) gives the relation

â+
M(ω̄, κ, θ)− â−

M(ω̄, κ, θ) = i V̂(ω̄, κ, θ)
ω̄ − κ

+ ÎH(ω̄, κ)
def.==== Ĵa(ω̄, κ, θ), (6.11)

where V̂ denotes the Fourier transform of V(τ, x̄, θ), and

ÎH(ω̄, κ, θ) = 1
rc

−
∫ ∞

0

rŜH(ω̄, κ, r, θ)
(Ūκ/c − ω̄)2

dr, (6.12)

which will be found to form part of the equivalent sound source (see §§ 6.2–6.3).
The jump across the critical layer

V(τ, x̄, θ) =
∫ ∞

−∞
∂Y ṽ(5,0)(τ, x̄, Y, θ) dY + c.c., (6.13)

has to be calculated by carrying the analysis of the critical layer to a higher order than
necessary for determining the nonlinear dynamics of the CS. The detail is presented below,
but may be skipped in the first reading, especially if the reader is primarily interested in
the final outcome, which is (6.20).

By inserting the inner expansions into the CS equations and collecting only the
mean-flow distortion that contributes to the jump (6.13), we have

∂ṽN(5,0)
∂Y

= − T̃(−2,1)

T̄c

[
− iαũ∗

(0,1) +
∂ṽ∗
(2,1)

∂Y
+
ṽ∗
(0,1)

rc

]
− ∂ ũ(1,0)

c∂ x̄
− ṽ(3,0)

rc
−
∂w̃N

(2,0)

r̆c∂θ
,

(6.14)

L〈0〉
c,1w̃N

(2,0) = λ11

T̄c

∂2T̃(−2,1)

∂η̄2 w̃∗
(−1,1) −

∂w̃(−1,1)w̃∗
(−1,1)

r̆c∂θ
− T̃(−2,1)

∂ p̃∗
(0,1)

r̆c∂θ
−

2ṽ(0,1)w̃∗
(−1,1)

rc
.

(6.15)

With the aid of (3.41), (6.14) becomes

∂ṽN(5,0)
∂Y

= −∂ ũ(1,0)
c∂ x̄

− ṽ(3,0)

rc
−
∂w̃N

(2,0)

r̆c∂θ
− λ11

T̄2
c

T̃(−2,1)
∂2T̃∗

(−2,1)

∂η̄2 . (6.16)
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In evaluating the jump (6.13), we consider the integrals across the critical layer of the
terms on the right-hand side of (6.16). Integrating (3.53) with respect to Y twice yields∫ ∞

−∞
ũ(1,0) dY = π i

α4|Ū′
c|
∫ ∞

0

[
1
r̆2

c
ξ2

(
Â

∗ ξ2 Â
ξ2
θ

)
θ

+ iα
Ū′

c

(
ι0 + T̄ ′

c

T̄c

)
Â

∗ ξ2 Â
ξ2
]

dξ2.

(6.17)
Substituting (3.48b) into (3.51) and integrating across the critical layer, we have∫ ∞

−∞
ṽ(3,0) dY = π i

α4Ū′
c|Ū′

c|r̆2
c

∫ ∞

0

(
Â
ξ1 Â

∗ ξ1
θ

)
θ

dξ1. (6.18)

By solving (6.15) and integrating Y from −∞ to ∞, we obtain∫ ∞

−∞
w̃N
(2,0) dY = − 2π i λ11T̄ ′

c

α4Ū′
c|Ū′

c|T̄cr̆c

∫ ∞

0

∫ ∞

0
ξ2

1 K(1)1 (ξ1)K
(2)∗
1 (ξ1)Â

∗ ξ1+ξ2
θ Â

ξ1+ξ2 dξ1 dξ2

− 2π

α5|Ū′
c|r̆3

c

∫ ∞

0

∫ ∞

0
K(2)1 (ξ1)K

(2)∗
1 (ξ1)

(
Â
ξ1+ξ2
θ Â

∗ ξ1+ξ2
θ

)
θ

dξ1 dξ2

− π i
α4Ū′

c|Ū′
c|r̆c

(
T̄ ′

c

T̄c
+ 2

rc

)∫ ∞

0
Â
ξ1 Â

∗ ξ1
θ dξ1. (6.19)

Finally, substitution of (6.17)–(6.19) into (6.16) followed by integration with respect to Y
leads to the jump

V(τ, x̄, θ) = π i
α4|Ū′

c|c
∫ ∞

0

∂

∂ x̄

[
1
r̆2

c
ξ1

(
Â
ξ1 Â

∗ ξ1
θ

)
θ

− iα
Ū′

c

(
ι0 + T̄ ′

c

T̄c

)
Â
ξ1 Â

∗ ξ1
]

dξ1

+ 2π i λ11T̄ ′
c

α4Ū′
c|Ū′

c|T̄cr̆2
c

∫ ∞

0

∫ ∞

0
ξ2

1 exp
(
−(λ11 + λ∗21)ξ

3
1 /3
)

×
(

Â
ξ1+ξ2 Â

∗ ξ1+ξ2
θ

)
θ

dξ1 dξ2

+ 2π

α5|Ū′
c|r̆4

c

∫ ∞

0

∫ ∞

0
exp
(
−(λ21 + λ∗21)ξ

3
1 /3
) (

Â
ξ1+ξ2
θ Â

∗ ξ1+ξ2
θ

)
θθ

dξ1 dξ2

+ π i
α4Ū′

c|Ū′
c|r̆2

c

(
T̄ ′

c

T̄c
+ 1

rc

)∫ ∞

0

(
Â
ξ1 Â

∗ ξ1
θ

)
θ

dξ1

+ 2πλ11T̄ ′2
c

α3Ū′2
c |Ū′

c|T̄2
c

∫ ∞

0
ξ2

1 exp
(
−(λ11 + λ∗11)ξ

3
1 /3
)

Â
ξ1 Â

∗ ξ1 dξ1 + c.c..

(6.20)

Surprisingly, and interestingly, although neither ṽN(5,0) nor w̃N
(2,0) influences the evolution

of CS, they appear as part of the leading-order physical sound sources. In other words,
aerodynamically insignificant parts of the fluctuations play a leading role in sound
generation. It is worth noting that the contribution from the critical layer consists
of four terms, as (6.16) indicates: (a) ∂x̄ũ(1,0) representing the axial variation of the
energetic part of streaky structure, (b) r−1

c ṽ(3,0) representing the circularity distortion of
the leading-order streaks (rolls), (c) the secondary streaky structure w̃(2,0) and (d) the
secondary forcing due purely to the thermal fluctuation.
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6.2. Analysis of circularity layer
The induced mean-flow distortion and streaks change their character through distinctive
regions in the radial direction. In the main flow, the disturbance appears quasi-planar in
the sense that the azimuthal variation enters as a high-order effect and is parametric. The
solution (6.9) was obtained on this basis and thus breaks down as r − rc � 1 when the
azimuthal variation appears at leading order. This occurs when r − rc = O(ε1/5). This
region, referred to as ‘circularity layer’, extends in the radial direction from the jet axis to
just below the acoustic field, and is sandwiched by the main shear layer as is illustrated in
figure 1. Being outside of the shear layer, the mean-flow field is uniform. Mathematically,
the perturbation is described in terms of a radial variable

r̆ = ε1/5r. (6.21)

By inserting (6.21) and r−1
c = ε1/5r̆−1

c into (6.7) or (6.9), we have

v̂M(ω̄, κ, y, θ) → − i
(
ω̄ − Ūκ/c

)
â±

M(ω̄, κ), (6.22)

which suggests that the perturbation scales as ε2(Ŭ±, V̆±, W̆±, ε1/5P̆±, T̆±) in the
‘circularity layer’. Let Q̆ represent any of those quantities above. We can decompose it
into axisymmetric/helical components as

Q̆(τ, x̄, r̆, θ) =
∞∑

m=−∞
Q̆[m](τ, x̄, r̆)ei mθ . (6.23)

The perturbation is found to be governed by the linear homogeneous equations

∂V̆±

∂ r̂
+ i mW̆±

r̂
= 0, D±

(
V̆±, W̆±

)
= − T̄±

c

(
∂

∂ r̂
,

i m
r̂

)
P̆±, (6.24a,b)

where the superscript ‘[m]’ has been omitted for brevity, ‘±’ refers to the region above or
below rc and the operator D± is defined as

D± = ∂

∂τ
+ Ū±

c
∂

∂ x̄
, (6.25)

with Ū± (T̄±) denoting the mean velocity (temperature) in core/co-flow respectively.
Eliminating V̆± and W̆± among (6.24a,b), we arrive at the equation for P̆±(

∂2

∂ r̂2 + ∂

r̂∂ r̂
− m2

r̂2

)
P̆± = 0, (6.26)

whose solution is

P̆± =
{ N±

1 (τ, x̄)+ N±
2 (τ, x̄) ln r̆ (m = 0), (6.27a)

N±
1 (τ, x̄)r̆|m| − N±

2 (τ, x̄)r̆−|m| (m /= 0), (6.27b)

where N±
1 and N±

2 , also with the superscript ‘[m]’ omitted, are functions of τ and x̄ to
be determined by applying the boundary and matching conditions. For the solution to be
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bounded at r̆ = 0 and r̆ → ∞, we take{ N−
2 = 0 (m = 0), (6.28a)

N+
1 = N−

2 = 0 (m /= 0). (6.28b)

The matching condition, vM( y → ±∞) = V̆±(r̆ = r̆±
c ), implies that

−cT̄−1
+ D2

+a+
M =

{
r̆−1

c N+
2 (m = 0), (6.29a)

|m|r̆−|m|−1
c N+

2 (m /= 0); (6.29b)

−cT̄−1
− D2

−a−
M =

{ 0 (m = 0), (6.30a)

|m|r̆|m|−1
c N−

1 (m /= 0). (6.30b)

The continuity condition at r̆c requires that

0 =
{ N+

1 − N−
1 + ln r̆cN+

2 (m = 0), (6.31a)

−r̆|m|
c N−

1 − r̆−|m|
c N+

2 (m /= 0). (6.31b)

Interestingly, the property of the axisymmetric component is different from that of helical
components in that we can obtain N+

2 for m = 0 directly from (6.29a) and (6.30a) without
solving (631a), in other words, it is decoupled from and can be solved independent of N±

1 ,
which have to be determined after the acoustic field is, and thus N±

1 represent a back effect
by the radiated sound on the near-field hydrodynamics.

From (6.11) and (6.28)–(6.31), it is found that

N̂+
2 =

{
cr̆cM

2
+Ĵa (m = 0), (6.32a)

cr̆|m|+1
c M 2

v Ĵa/|m| (m /= 0), (6.32b)

where N̂+
2 (ω̄, κ) is the Fourier transform of N+

2 (τ, x̄) and we have defined the notations

M±(ω̄, κ) =
√
(Ū±κ/c − ω̄)2/T̄±, Mv(ω̄, κ) = (M −2

+ + M −2
− )−1/2. (6.33a,b)

It will transpire in § 6.3 that N̂+
2 plays the role of the equivalent sound source.

6.3. Acoustic field generated by modulated CS

The algebraic decay of V̆+ implies that the induced perturbation scales as
ε11/5(Ũ, Ṽ, W̃, T̃, P̃) in the acoustic region, where

r̄ = lγ r/c = O(1). (6.34)

These quantities are all real functions of (τ, x̄, r̄, θ) and can also be decomposed as

q̃(τ, x̄, r̄, θ) =
∞∑

m=−∞
ε|m|/5q̃[m](τ, x̄, r̄)ei mθ , (6.35)

with q̃ standing for any of Ũ, Ṽ , W̃, T̃ and P̃. Each helical component satisfies the
linearised Euler equations, eliminating from which Ũ[m], Ṽ [m] and T̃ [m], we obtain a
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Evolution and radiation of multi-mode coherent structures

three-dimensional convected wave equation for P̃[m]. On omitting the superscript ‘[m]’
for brevity, the equation reads

Ma2D2
+P̃ = T̄+

c2

(
∂2

∂ x̄2 + ∂2

∂ r̄2 + ∂

r̄∂ r̄
− m2

r̄2

)
P̃, (6.36)

subject to the Neumann boundary condition, which follows from matching with the
solution in the circularity layer. We can also solve the wave equation (6.36) in the
frequency–wavenumber space, in which it becomes a Helmholtz equation[

∂2

∂ r̄2 + ∂

r̄∂ r̄
+ Ma2

T̄+

(
Ū+κ − c ω̄

)2 − κ2 − m2

r̄2

]
P̂(ω̄, κ, r̄) = 0, (6.37)

together with its boundary condition

∂P̂
∂ r̄

∣∣∣∣∣
r̄=0

= ∂
̂̆P+

∂ r̆

∣∣∣∣∣
r̆→∞

=
⎧⎨⎩ N̂+

2 /r̄ (m = 0), (6.38a)

|m|N̂+
2 /r̄

|m|+1 (m /= 0). (6.38b)

The solution to (6.38) is found as

P̂ = −Ĉ(ω̄, κ)N̂+
2 (ω̄, κ)H

(1)
|m|(K r̄), (6.39)

where H(1)|m| is the first-kind Hankel function of order |m|

K (ω̄, κ) =
√

Ma2
(
Ū+κ − c ω̄

)2
/T̄+ − κ2, (6.40)

and Ĉ is determined by matching with the solution in the circularity layer as

Ĉ(ω̄, κ) =
{

i π/(2c) (m = 0), (6.41a)

i πK |m|/
[
2|m|c|m|+1(|m| − 1)!

]
(m /= 0). (6.41b)

The result (6.39) shows that N̂+
2 is the equivalent sound source, which encapsulates

the effects of all physical sources. As (6.32) and (6.11) indicate, the equivalent source is
contributed by the nonlinear interactions in the main shear flow and the critical layer,
measured by SH and V , respectively, which are the actual physical sound sources. In
conclusion, it is the secondary temporally–spatially breathing mean-flow distortion and
streaky structure, which are generated by nonlinear interactions of the CS, that radiate.

The acoustic pressure P̃(τ, x̄, r̄) in physical space is obtained by the inverse Fourier
transform of (6.39) as

P̃(τ, x̄, r̄) = − 1
4π2

∫ ∞

−∞
e− i ω̄τ dω̄

∫ ∞

−∞
Ĉ(ω̄, κ)N̂+

2 (ω̄, κ)H
(1)
|m|(K r̄)ei κ x̄ dκ. (6.42)

Of primary interest is its far-field characteristics, which we derive from (6.42) by
introducing a pair of variables (R̄, ϕ̄)

R̄ =
√

x̄2 + r̄2, tan ϕ̄ = r̄/x̄ (0 � ϕ̄ � π), (6.43)

so that
x̄ = R̄ cos ϕ̄, r̄ = R̄ sin ϕ̄, (6.44a,b)

and (R̄, ϕ̄, θ) forms a system of spherical coordinates, in which R̄ is the distance of a field
point P(R̄, ϕ̄, θ) to the origin O (which is at the neutral position of the central mode in the
wavepacket), and ϕ̄ the angle between vector⇀OP and the positive x̄-axis.
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As R̄ → ∞, the asymptote of H(1)|m|(K r̄) = H(1)|m|(K R̄ sin ϕ̄) can be written as

H(1)|m|
(
K R̄ sin ϕ̄

)→
√

2
πK R̄ sin ϕ̄

exp
[
i
(
K R̄ sin ϕ̄ − |m|π/2 − π/4

)]
. (6.45)

The acoustic pressure P̃ in the far field can be approximated asymptotically by using the
stationary-phase method. For (6.42), the phase function is introduced as

φ(ω̄, κ, ϕ̄) = (K r̄ + κ x̄) /R̄ =
√

Ma2
(
Ū+κ − c ω̄

)2
/T̄+ − κ2 sin ϕ̄ + κ cos ϕ̄. (6.46)

There exists only one stationary point, where ∂κφ(ω̄, κ, ϕ̄) = 0, at

κ = κs(ω̄, ϕ̄) =
⎡⎣ sgn(ω̄) cos ϕ̄√

1 − Ma2+ sin2 ϕ̄

− Ma+

⎤⎦ Ma+ c ω̄

Ū+(1 − Ma2+)
, (6.47)

where Ma+ = Ū+T̄−1/2
+ Ma = (βU/β

1/2
T )MaI < 1 in the subsonic regime. The stationary

point, κs, must be in the region that leads to a wave form of P̃, namely, Ma2(Ū+κ −
c ω̄)2/T̄+ − κ2

s > 0, which is always satisfied. It should be noted that although the
evolution–modulation equation for the amplitude remains valid for subsonic modes on
supersonic flows, the present acoustic radiation theory is not directly applicable. This is
due to the fact that there is a singular point in the integrand of (6.11). The solution for the
acoustic field must be modified by resolving this ‘envelope critical layer’ by reintroducing
non-parallelism and possibly viscous effect as well.

The far-field acoustic pressure is thus given by

P̃(τ, R̄, ϕ̄) → exp (− i(2|m|π + π)/4)
2π2R̄

√
sin ϕ̄

∫ ∞

−∞
exp
(
sgn[∂2

κκφ(ω̄, κs, ϕ̄)] i π/4
)√|∂2

κκφ(ω̄, κs, ϕ̄)|K (ω̄, κs)

× Ĉ(ω̄, κs)N̂+
2 (ω̄, κs) exp

(
iφ(ω̄, κs, ϕ̄)R̄ − i ω̄τ

)
dω̄, (6.48)

where

∂2
κκφ(ω̄, κs, ϕ̄) =

(
Ma2Ū2+ − T̄+

)
/
√

T̄+ sin ϕ̄√
Ma2(Ū+κ − cω̄)2 − T̄+κ2

s

+ Ma2Ū+(Ū+κ − cω̄)− T̄+κs

Ma2(Ū+κ − cω̄)2 − T̄+κ2
s

cos ϕ̄.

(6.49)
Note that (6.48) is regular as ϕ̄ → 0 and π because we have

∂2
κκφ(ω̄, κs, ϕ̄) → O

[
K −2(ω̄, κs)

]
= O(1/ sin2 ϕ̄). (6.50)

The intensity of the acoustic pressure for each m may be defined as the temporal
root-mean-square value, which can be calculated in the spectral space by using Parseval’s
theorem as

¯̃P[m](R̄, ϕ̄) = 1
2π2R̄

√
sin ϕ̄

√
1

2π

∫ ∞

−∞

∣∣S [m](ω̄, ϕ̄)
∣∣2 dω̄ def.==== 2D [m](ϕ̄)

(2π)5/2R̄
, (6.51)

where the spectrum function

S [m](ω̄, ϕ̄) = ε(11+|m|)/5
[
|∂2
κκφ(ω̄, κs, ϕ̄)|K (ω̄, κs)

]−1/2
∣∣∣∣Ĉ[m](ω̄, κs)N̂+

2
[m]
(ω̄, κs)

∣∣∣∣ ,
(6.52)
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Evolution and radiation of multi-mode coherent structures

for a mode with azimuthal wavenumber m, and its directivity function, D [m](ϕ̄), is
a superimposition of the spectrum function. Both D [m](ϕ̄) and S [m](ω̄, κs) are of
O(ε(11+|m|)/5). In the expression (6.52), a factor may be identified

D [m]
p (ϕ̄) ≡

[
|∂2
κκφ(ω̄, κs, ϕ̄)|K (ω̄, κs)

]−1/2 ∣∣∣κ−|m|
s Ĉ[m](ω̄, κs)

∣∣∣ , (6.53)

which may be interpreted as the ‘refraction coefficient’ of the mean flow (cf. Wu & Huerre
2009) since it depends on the mean-flow property, but independent of the evolution and
modulation of the CS.

The acoustic field consists of components with different m, of which the axisymmetric
sound wave (m = 0) turns out to be dominant. However, the sound wave m = 0 is not
emitted solely by the ring mode; the interactions between a pair of helical modes with
opposite azimuthal wavenumbers ±m contribute as well. The overall directivity and
spectrum of the acoustic field can be characterised by

D�(ϕ̄) =
√√√√∫ ∞

−∞

[
S �(ω̄, ϕ̄)

]2 dω̄, (6.54)

where

S �(ω̄, ϕ̄) =
√√√√ ∞∑

m=−∞

∣∣S [m](ω̄, ϕ̄)
∣∣2. (6.55)

For the present case with a discrete frequency sideband, we are also interested in the
directivity of each constituting Fourier component (m, L)

D [m](L)(ϕ̄) = |S [m](LΔ, ϕ̄)|ων, (6.56)

whose frequency is ωL = Lων = ε2/5LΔ. With this viewpoint, we define the directivity
of the sound waves with azimuthal wavenumber m as (cf. (6.51))

D [m](ϕ̄) =
√√√√ ∞∑

L=−∞

[
D [m](L)(ϕ̄)

]2
, (6.57)

and similarly the directivity of the sound waves with frequency ωL may be defined as

D (L)(ϕ̄) =
√√√√ ∞∑

m=−∞

[
D [m](L)(ϕ̄)

]2
. (6.58)

The overall directivity, (6.54), becomes

D�(ϕ̄) =
√√√√ ∞∑

m=−∞

[
D [m](ϕ̄)

]2 =
√√√√ ∞∑

L=−∞

[
D (L)(ϕ̄)

]2
. (6.59)

6.4. Numerical results for acoustic radiation
After solving the nonlinear modulation equation to determine the temporal–spatial
dynamics of the CS, the physical sources in the shear layer and critical layer, ÎH and
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Figure 20. The acoustic far field of the CS in case-HW as shown by the directivity of sound waves with
azimuthal wavenumber |m| = 0 (a), 1 (b) and 2 (c) and different frequencies ω = Lων (L = 1–5); the overall
directivity of each ring/helical acoustic component is also shown. The panel to the right of plot (a) is an enlarged
view of the latter.

V̂ , can be evaluated, and the acoustic radiation predicted. Figure 20 shows the directivity
of the acoustic field of the CS in case-HW , whose dynamic characteristics are presented
in § 5.2.2. In this case, the sound waves with m = 0 and ±1 are significant. For each
|m|, the overall directivity as well as the directivity of Fourier components with different
frequencies is displayed in the polar coordinates. The directivity of the acoustic field with
m = 0 takes on a dipole pattern, which beams in the downstream and upstream directions,
while the emission to the direction perpendicular to the jet axis is weak (figure 20a).
The helical sound waves with |m| = 1 and 2 are radiated primarily to directions that
beam slightly upstream (figure 20b), and hence dominate the sideline acoustic field. The
component with the fundamental difference frequency, ω = ων , carries the majority of
the acoustic energy. For helical sound waves (|m| = 1, 2), the component with harmonic
frequency 2ων is also significant, and exhibits a directivity of a quadrupole. Components
with frequencies higher than 2ων are negligible.

Figure 21(a–e) shows the ‘spectrum’, S [m](L), of the acoustic field with respect to |m|
and L, for five radiation angles. For ϕ̄ = 0 and π, emission is primarily the axisymmetric
sound (m = 0) with the difference frequency ων . It remains the dominant component for
ϕ̄ = π/4 and 3π/4, but helical sound waves with |m| = 1 including ω = 2ων components
become appreciable. At ϕ̄ = π/2, the axisymmetric sound is no longer the strongest but
is still significant while the first helical sound with ω = ων becomes dominant. Since the
measurement device and human auditory sense of sound waves are not sensitive to the
azimuthal directivity for each frequency, we can define a frequency spectrum S (L) and
directivity D (L) by summing up the contributions of the ring/helical modes with the same
frequency. The resulting D (L) and S (L) are shown in figure 21( f –g), where the overall
directivity D is also plotted for comparison purpose. The sound wave with frequency ων
dominates the radiation to all directions. Corresponding to ων , the Strouhal number based
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Figure 21. Spectrum of the acoustic radiation in case-HW S [m](L) for different radiation angles ϕ̄ = nπ/4,
n = 0–4 (a–e); directivity D (L) for each frequency ( f ); frequency spectrum S (L) (g). Panel ( f ) is an enlarged
view of D (L) for L = 3, 4 and 5.

on the nozzle diameter and exit velocity is

Sta,D = D∗f ∗/U∗
I = (2R0ων/π)/(1 − βU) ≈ 0.218, (6.60)

which is much lower than that of the fundamental mode of the CS, StD ≈ 8.692. This
prediction is qualitatively consistent with the measurements of Michalke & Fuchs (1975).

The composition of seeded modes may affect the radiation significantly. When only
one ring/helical mode is seeded upstream, no other modes can be excited so that only
m = 0 sound wave would be emitted. When two modes, m and m + 1, are seeded, each
consisting of a frequency sideband, all helical modes would be excited. Sound waves with
finite m would be emitted by the corresponding mean-flow-distortion components. More
generally, if modes m1 and m2, with mν = |m1 − m2| /= 0, are seeded upstream, more
modes m1 ± nmν or m2 ± nmν (n ∈ N) would appear in the flow field due to nonlinear
interactions. Through the physical acoustic sources, which are proportional to ÂÂ

∗
, sound

waves with azimuthal wavenumbers nmν are emitted.
Now we turn to the effects of key flow parameters on the overall radiation characteristics.

In order to ensure that in all cases the amplitude does not blow up, we set δ̇T = 0.24
instead of δ̇T = 0.15 used before. Figure 22 shows the directivity and spectrum of the
sound field for different ŪR and rc. As either of the parameters is varied, the directivity
remains similar, which takes a dipole pattern. It appears different from the ring-mode
radiation analysed in [II] because the composition and evolution of the wavepacket are
different, and for m /= 0 the refraction effect differs too. For each fixed rc, with the increase
of ŪR components with frequencies 2ων , 3ων and so on are suppressed. The sound waves
radiated in the case of rc = 15 are stronger than in the case of rc = 10, consistent with the
conclusion drawn in [II] that circularity suppresses radiation.
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Figure 22. Acoustic radiation for different ŪR and rc = 10 (a,c,e) and 15 (b,d, f ): directivity D (a,b);
spectrum S (L) at the radiation angles ϕ̄ = 0 (c,d), π/2 (e, f ).

7. Conclusions and discussions

The present paper investigated nonlinear evolution and acoustic radiation of CS in
the form of a wavepacket consisting of multiple ring/helical modes in the near-nozzle
region of a turbulent circular jet. As in previous studies, the formulation is based on
triple decomposition of the instantaneous flow, and each constituting mode of the CS
is considered as an instability wave supported by the (Favre) time-averaged mean flow.
The effects of fine-scale turbulence on the CS is accounted for by a gradient model
that allows for a possible phase lag between the coherent small-scale Reynolds stresses
and the strain rate of the CS. Following linear amplification, the CS becomes nearly
neutral and undergoes nonlinear temporal–spatial modulation, simultaneously radiating
low-frequency sound waves.

We considered interactions of an arbitrary number of ring/helical modes with nearly the
same frequency, which became possible because by taking advantage of weak azimuthal
variation the perturbation was represented as a wavepacket with an amplitude function that
depends on the azimuthal coordinate as well as on suitable slow axial and time variables.
The dominant effects influencing the nonlinear dynamics come from the common critical
layer, where viscosity as well as non-parallelism and non-equilibrium effects, associated
with the axial spreading of the mean flow and the modulation of the modes, respectively,
play a leading-order role. In particular, the self and mutual interactions of the modes at the
quadratic level generate a mean-flow distortion and streaks, which interact in turn with the
modes at the cubic level, contributing history-dependent nonlinear terms to the amplitude
equation of integro-partial-differential form.

By solving this equation, the vorticity and temperature fields of the CS were
obtained. Numerical results showed that nonlinear development depends crucially on the
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composition of the seeded modes, and may exhibit complicated behaviours including
azimuthal focusing of the CS and rapid oscillations of the amplitude before attenuation
or blow-up within a finite axial distance. When ring/helical modes consist of frequency
sideband components, their mutual interactions generate low-frequency long-wavelength
fluctuations on the scales of the wavepacket envelope. The slowly breathing and
azimuthally dependent mean-flow form streaky structures. These components play an
important role in the nonlinear dynamics and subtly also in the low-frequency acoustic
radiation. Specifically, we find that the leading-order streaky structure driven by the
dominant interactions within the critical layer is confined in that region. It contributes
the dominant nonlinear effects on the dynamics of the CS, but does not directly emit
sound waves. The streaky structure that does radiate waves (but plays no leading-order
role in the dynamics of the CS) was generated by (a) nonlinear interactions in the main
flow, which contribute to the Reynolds stresses in the radial and azimuthal momentum
equations, (b) the secondary interactions with the critical layer and (c) the axial variation
and circularity distortion of the leading-order streaks and rolls. Unlike the fundamental
and harmonics of the subsonic-mode CS, which are trapped within the shear flow and
become exponentially small outside of it, these secondary breathing streaky structures
decay algebraically in the radial direction and evolve to acquire the character of sound
waves. By analysing the asymptote of the streaky structures and the forcing that drives
them, (a–c) were identified to be the physical sources of the acoustic field, the directivity
and spectrum of which were predicted. The present asymptotic approach thus provides a
detailed first-principles description of the radiation process. Once again, the result suggests
that the most energetic near-field fluctuations may not necessarily be an emitter of the
dominant far-field sound waves, which are more likely to be radiated by aerodynamically
insignificant near-field components. Such a feature was revealed in a number of previous
studies based on asymptotic approach (Wu & Hogg 2006; Wu 2011; [I]; [II]), and may be
a rather common and crucial characteristics of aerodynamically generated sound waves.
Furthermore, through the analysis, the (mathematical) equivalent sound source, in an
acoustic analogy framework, was identified. It can be expressed in terms of the physical
sources before the radiated sound waves are determined, unlike the planar shear layer
where the equivalent source must be calculated simultaneously with the acoustic field.
It should be noted that while the conversion to the equivalent source from the Reynolds
stresses in the main jet is rather analogous to that in usual acoustic analogy, the calculation
of the equivalent source from the Reynolds stresses in the critical layer, (b,c), involves
solving viscous evolution equations.

It is worth pointing out that, unlike what may be referred to as data-driven approaches,
where the characteristics of CS and the acoustic field are inferred from resolved LES or
experimental data, or the parameters in the models are optimised so as to fit best the data
on the dynamics of CS or the acoustic field, our work focuses on developing a rule-based
approach that is as self-consistent and also requires as few input modelling parameters, as
possible so that it is capable of making as many a priori predictions as possible, including
nonlinear evolution of CS, the physical sources, the precise radiation processes and finally
the acoustic field. These represent the strength of our approach, which is evident a priori.
Also obvious are its weaknesses or limitations, which include restricted applicability and
mathematical complexity. These need to be improved by further work.

The present theory was derived for a circular jet, but it can be applied to supersonic
jets and wall-bounded flows with moderate Mach numbers, where a similar envelop
radiation mechanism appears to operate as indicated by experimental (e.g. Laufer 1964)
and DNS (e.g. Duan, Choudhari & Wu 2014) results that the frequencies of energetic sound
waves radiated are much lower than those of the near-field hydrodynamic fluctuations.
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A modification to the theory is required because, as was pointed out in § 6.3, an envelope
critical layer arises. It is necessary to analyse this layer, where the effect of non-parallelism
may come into play to smooth out the singularity in the acoustic solution.

The nonlinear dynamics and acoustic radiation of CS (or instability waves) of different
forms and/or in different regions are described by three related but distinct theories: pairs
of oblique modes (Wu & Huerre 2009), ring mode ([II]) in the developed region and
multiple ring/helical modes in the near-nozzle region in the present paper. Nevertheless
it is desirable and indeed might be possible to derive a unified or a composite theory
covering all these cases. Given that the nonlinear critical-layer theories describing the
evolution and modulation of CS are rather complex, it might, from the viewpoint of
engineering applications, be advantageous to adopt a hybrid approach, in which LES or
NPSE (nonlinear parabolised stability equations) are employed to describe the evolution
and modulation of CS in the near fields, and then the theoretical results concerning
radiation are exploited to predict the acoustic far fields. Such a hybrid approach is
possible in principle since our asymptotic theory shows that the equivalent source can
be determined beforehand using the near-field solution. For that purpose, existing NPSE
algorithms, which were developed for disturbances composed of a small number of modes
with commensurable frequencies, have to be extended to wavepackets. Also the equivalent
source has to be evaluated carefully under the guidance of the present asymptotic theory.
These tasks form one of our ongoing research projects.
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Appendix A. Calculations pertinent to an experiment and limitation of the theory

In order to aid the assessment of the validity and limitation of the present theory, here
we carry out calculations pertinent to the flow conditions of Cavalieri et al. (2013), where
the evolution of (uncontrolled) multiple ring–helical modes on an axisymmetric jet was
measured.

The dimensional nozzle diameter is D∗ = 0.05 m and the exhaust Mach number is
MaI = 0.6. The Reynolds number based on the dimensional exhaust velocity U∗

J and D∗
is ReD = U∗

J D∗/ν∗ = 570 000, where ν∗ is the kinematic viscosity. The coflow is absent
and thus ŪR = 1 and βT = 1. Supposing that the mean-flow profile takes the form (5.1),
we choose the parameter qc = 0.08436 so that the ratio of the momentum thickness Θ∗
to its nominal thickness δ∗T is the same as that in the experiment (see table 1 of Cavalieri
et al. 2013). This leads to C1 = Θ∗/δ∗T = 0.4659, where we note that for profile (5.1) our
nominal thickness δ∗T is approximately one fifth of the measured thickness between the
positions where the mean velocities are equal to ‘0.01U∗

J ’ and ‘0.99U∗
J ’ (which is the δ

given in table 1 of Cavalieri et al. 2013).
Let us concentrate on a CS whose central mode is neutral near x∗

N/D
∗ = 2.5.

From figure 3 of Cavalieri et al. (2013), the dimensional nominal and momentum
thicknesses at the neutral position are estimated to be δ∗T(0) = 5.800 mm and Θ∗

N =
2.702 mm, respectively. The spreading rate of the momentum thickness is found to be

973 A8-52

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

59
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-4447-6014
https://orcid.org/0000-0002-4447-6014
https://orcid.org/0000-0002-3406-8017
https://orcid.org/0000-0002-3406-8017
https://doi.org/10.1017/jfm.2023.597


Evolution and radiation of multi-mode coherent structures

dΘ∗/dx∗ = 0.03 by observing the growth of thickness from x∗/D∗ = 2 to 3. The critical
level is close to lip line r∗ = D∗/2 and so rc = 4.31. Other dimensionless parameters are

Re = 33063, η†
c = −0.02, α = 0.391, c = 1.221, (A1a–d)

and the Strouhal number of the neutral mode at x∗
N/D

∗ = 2.5 is

StD,N ≡ f ∗D∗/U∗
J = αcrc/(2π) = 0.327. (A2)

In order to aid the comparison with experiments, the key relations between the
dimensional and normalised variables/quantities are highlighted. The axial position from
the nozzle x∗/D∗ is related to the slow axial variable x̄ in our theory via

(x∗ − x∗
N)/D

∗ = (cδ∗T(0)/D∗) ε−2/5x̄. (A3)

For a regular critical layer, a+ = a− = a (see (3.10)), which is determined when the
Rayleigh equation is solved. It follows from (3.22a), (3.24), (3.34) and (3.42) that the
leading-order dimensionless axial velocities of the CS at the centrelline r = 0 and at
critical level are given by

ûx(0) = εû0(r = 0)A†(τ, x̄)eiαζ + c.c., (A4)

ûx(rc) = εû0(r = rc)A†(τ, x̄)eiαζ + c.c., (A5)

the latter of which is approximately the axial velocity at r∗/D∗ = 0.5, since the generalised
inflection point is very close to the lip line with the dimensional deviation approximately
η†

cδ
∗
T = −0.116 mm (see (3.24) in [II]). In (A5)

û0(r = rc)A†(τ, x̄) = −aA†(τ, x̄)+ (αŪ′
c)

−1
∫ σαŪ1,cx̄

−∞
Q̃0(τ, x̄, η̄) dη̄, (A6)

where the integral term can be evaluated analytically using (3.45).
We specify the initial conditions as in the case-HW (table 2) with the difference

frequency StD,ν = 0.02. It is worth noting that the choice of ε does not influence the
dynamics or radiation, provided that εa0 is held fixed. We set ε = 0.1 leading to an overall
amplitude about 0.004 at the neutral position. The remaining parameters are assigned as:
λ̃ = λ̄ = (ε6/5Re)−1 and τ̂1 = τ̂2 = 0 since the results are insensitive to the values of λ̃
and τ̂i.

Figure 23 shows the predicted amplitude evolution of the modes with StD = 0.4 and
different m, among which five ring and helical modes are seeded, while others are
nonlinearly excited near the neutral position. The overall features are similar to those
shown in the main text. Nonlinear effects cause much slower attenuation, which is
oscillatory for some components. Comparing the two panels, one notes that the axial
velocity along the centreline (which is proportional to the overall amplitude A†) and the
axial velocity on the lip line differ appreciably: the latter peaks and attenuates much later.
This is because the shape of the latter, represented by the second and nonlocal term in
(A6), undergoes distortion due to the combined leading-order effects of non-equilibrium
and non-parallelism in the critical layer. On the centreline the axial velocities of the ring
and helical modes are all similar (figure 23a). However, at the lip line, the axial velocity
of the ring mode is much smaller than those of the helical modes (figure 23b). This is
because the latter are dominated by the second term in (A6), which is associated with
three-dimensionality. These differences indicate that appropriate quantitative comparisons

973 A8-53

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

59
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.597


Z. Zhang and X. Wu

0 2 4 6 8
–9

–7

–5

–3
lo

g
|û
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Figure 23. Amplitude evolution of the ring/helical modes with the frequency StD = 0.4 represented by the
axial velocity on the centreline (a) and the lip line (b). The dashed lines in (a) represent linear evolution.

have to be made between specific quantities. One may note that the centreline axial
velocity amplifies by a factor about 5 over an axial distance of 2D∗, weaker than the
growth by a factor of 10 observed in experiment (e.g. figure 28 in Cavalieri et al.
2013). This weaker amplification is due to a rather small, and possibly underestimated,
spreading rate dΘ∗/dx∗ = 0.03 being used. When the latter is increased to 0.045 and
the initial amplitudes of the seeded modes are increased by a factor of 1.53/2, the
growth factor over the same axial distance increases to 10 (but the result is not shown).
It is impossible to make quantitative comparisons in the compressible regime because
nonlinear evolution depends sensitively on the composition of the initial modes, but
experiments using controlled excitation have not yet been conducted. The second reason
is that the present work focuses on interactions among helical and ring modes, which
are of weakly nonlinear form. However, when helical modes are absent or weak, strongly
nonlinear self interaction of the ring mode, which is ignored in the present work, becomes
important. An appropriate comparison calls for extension of the theory to accommodate
this scenario. In the incompressible regime, there have been a few experiments where ring
and helical modes were excited in a controlled manner, and a preliminary quantitative
comparison was performed in Zhang (2022), showing encouraging agreement.

Figure 24(a,b) shows the acoustic field predicted by the present theory. The sound
pressure level (SPL, in dB) in figure 24(a) is defined as

SPL = 20 log |p̃∗/p∗
ref | = 20 log |(ρ∗

0 U∗2
0 )p̂/p

∗
ref |, (A7)

with the specified reference pressure p∗
ref = 2.0 × 10−5 Pa. The radiation to the direction

ϕ̄ ≈ 60◦ is the strongest. The instantaneous dilatation rate of the low-frequency acoustic
field is

∇ · uuu = −Ma2D+P̃, (A8)

where P̃ is given by (6.42). The far field of the dilatation rate is obtained by the
stationary-phase method, and the contours are displayed in figure 24(b). Although the
flow conditions are different, the main feature of contours resembles that in the DNS
results (e.g. figures 11, 16 and 21) of Suponitsky et al. (2010), which focussed on the
lower-frequency sound waves emitted by nonlinear interactions. In particular, the peak
radiation direction is about 60◦ to the downstream axis, suggesting that this may be a
robust character of the envelope radiation.
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Figure 24. Contours of the sound pressure (values in contours are in dB) (a) and the instantaneous dilatation
rate (b) of the low-frequency acoustic filed.

For the seeded modes with the amplitudes specified, the overall intensity of the
low-frequency sound waves is in the range of 90 ∼ 100 dB along r∗/D∗ = 35, which
is comparable to that measured for the component of the lowest frequency (StD = 0.1)
(see figure 8 in Cavalieri et al. 2012). However, discrepancies from the experimental
measurements exist. For example, the overall acoustic directivity in the latter peaks at
polar angles between 20◦ ∼ 40◦, significantly lower than 60◦. Possible reasons are now
discussed with references to the limitation of the present theory. The noise measured in the
frequency band of 0.2 � StD � 0.9 is, as discussed in our previous work ([II]), contributed
by CS in (a) the developed (see Wu & Huerre 2009; [II]), (b) the near-nozzle (the present
investigation) and (c) the very-near-nozzle (see § 4.4 and Zhang & Wu 2023b) regions, and
possibly by fine-scale turbulence also. Moreover, represented by a wavepacket, a CS may
emit sound waves by (at least) two mechanisms (Zhang & Wu 2023a): a linear mechanism,
through which a spatially modulated wave emits sound waves of the same frequencies as
the fundamental and its harmonics (Tam & Morris 1980; Cavalieri et al. 2012; Zhang &
Wu 2023b), and a nonlinear mechanism (Wu & Huerre 2009; Suponitsky et al. 2010;
[I]; [II]), through which a spatially and temporally modulated wavepacket generates
sound waves in a band of frequencies much lower than the central frequency of the
CS. These linear and nonlinear mechanisms operate simultaneously in practice, emitting
noise of comparable intensity for a CS of wavepacket with a moderate amplitude. The
relatively high- and low-frequency noise dominates the near axis and sideline directions,
respectively. The present work has considered only the nonlinear mechanism pertinent
only to a CS in a near-nozzle region where the potential core is about to disappear. For an
appropriate comparison with experimental measurements, further theoretical development
is needed. Firstly, it is necessary to account for also the sound waves radiated by the CS
in the developed region through the linear mechanism (cf. Zhang & Wu 2023a). With
this portion of noise included, it is expected that the peak radiation angle of the overall
noise would be smaller than 60◦. Secondly, for improved accuracy and/or convenience of
application it is desirable to construct a unified or composite theory that describes the
nonlinear dynamics and acoustic radiation of CS in all (very-near-nozzle, near-nozzle and
the fully developed) regions (cf. Zhang & Wu 2023b). Efforts on both fronts are being
made in our ongoing projects.
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