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Abstract
In this note, we give a precise description of the limiting empirical spectral distribution for the non-
backtracking matrices for an Erdős-Rényi graph G(n, p) assuming np/ log n tends to infinity. We show
that derandomizing part of the non-backtracking random matrix simplifies the spectrum considerably,
and then, we use Tao and Vu’s replacement principle and the Bauer-Fike theorem to show that the partly
derandomized spectrum is, in fact, very close to the original spectrum.
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1. Introduction
For a simple undirected graph G= (V , E), the non-backtracking matrix is defined as follows. For
each (i, j) ∈ E, form two directed edges i→ j and j→ i. The non-backtracking matrix B is a 2|E| ×
2|E| matrix such that

Bi→j,k→l =
{
1 if j= k and i �= l

0 otherwise.

The central question of the current paper is the following:

Question 1.1. What can be said about the eigenvalues of the non-backtracking matrix B of random
graphs as |V| → ∞?

The non-backtracking matrix was proposed by Hashimoto [17]. The spectrum of the non-
backtracking matrix for random graphs was studied by Angel, Friedman, and Hoory [2] in the
case where the underlying graph is the tree covering of a finite graph. Motivated by the ques-
tion of community detection (see [23, 29–31]), Bordenave, Lelarge, and Massoulié [8] determined
the size of the largest eigenvalue and gave bounds for the sizes of all other eigenvalues for non-
backtracking matrices when the underlying graph is drawn from a generalization of Erdős-Rényi
random graphs called the Stochastic Block Model (see [19]), and this work was further extended
to the Degree-Corrected Stochastic Block Model (see [24]) by Gulikers, Lelarge, and Massoulié

Ke Wang was supported in part by Hong Kong RGC grants GRF 16308219, GRF 16304222, and ECS 26304920. Philip
Matchett Wood was supported in part by NSA grant H98230-16-1-0301.
C© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S096354832300024X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832300024X
https://orcid.org/0000-0001-8128-3441
mailto:kewang@ust.hk
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S096354832300024X&domain=pdf
https://doi.org/10.1017/S096354832300024X


Combinatorics, Probability and Computing 957

[15]. In recent work, Benaych-Georges, Bordenave, and Knowles [5] studied the spectral radii of
the sparse inhomogeneous Erdős-Rényi graph through a novel application of non-backtracking
matrices. Stephan and Massoulié [32] also conducted a study on the non-backtracking spectra of
weighted inhomogeneous random graphs.

In the current paper, we give a precise characterization of the limiting distribution of the eigen-
values for the non-backtracking matrix when the underlying graph is the Erdős-Rényi random
graph G(n, p), where each edge ij is present independently with probability p, and where we
exclude loops (edges of the form ii). We will allow p to be constant or decreasing sublinearly
with n, which contrasts to the bounds proved in [8] and [15] corresponding to the case p= c/n
with c a constant. Let A be the adjacency matrix of G(n, p), so Aij = 1 exactly when edge ij is part
of the graph G and Aij = 0 otherwise, and let D the diagonal matrix with Dii =∑n

j=1 Aij. Much is
known about the eigenvalues of A, going back to works of Wigner in the 1950s [38, 39] (see also
[16] and [3]), who proved that the distribution of eigenvalues follows the semicircular law for any
constant p ∈ (0, 1). More recent results have considered the case where p tends to zero, making
the random graph sparse. It is known that assuming np→ ∞, the empirical spectral distribution
(ESD) of the adjacency matrix A converges to the semicircle distribution (see for example [25] or
[35]). Actually, much stronger results have been proved about the eigenvalues of A (see the sur-
veys [37] and [6]). For example, Erdős, Knowles, Yau, and Yin [12] proved that as long as there is
a constant C so that np> ( log n)C log log n (and thus np→ ∞ faster than logarithmic speed), the
eigenvalues of the adjacency matrix A satisfy a result called the local semicircle law. This law char-
acterizes the distribution of the eigenvalues in small intervals that shrink as the size of the matrix
n increases. The most recent development regarding the local semicircle law can be found in [14]
and [1].

It has been shown in [2, 4, 17] (for example, Theorem 1.5 from [2]) that the spectrum of B is the
set {±1} ∪ {μ: det (μ2I − μA+D− I)= 0}, or equivalently, the set {±1} ∪ {eigenvalues of H},
where

H =
⎛⎝A I −D

I 0

⎞⎠ . (1.1)

We will call this 2n× 2n matrix H the non-backtracking spectrum operator for A, and we will
show that the spectrum of H may be precisely described, thus giving a precise description of the
eigenvalues of the non-backtracking matrix B. We will study the eigenvalues of H in two regions:
the dense region, where p ∈ (0, 1) and p is fixed constant; and the sparse region, where p= o(1) and
np→ ∞. The diluted region, where p= c/n for some constant c> 1, is the region for which the
bounds in [8] and [15] apply, and, as pointed out by [8], it would be interesting to determine the
limiting eigenvalue distribution of H in this region.

Note that E(D)= (n− 1)pI, and so we will let

α = (n− 1)p− 1

and consider the partly averaged matrix

H0 =
⎛⎝A I −E(D)

I 0

⎞⎠=
⎛⎝A −αI

I 0

⎞⎠ . (1.2)

The partly averaged matrix H0 will be an essential tool in quantifying the eigenvalues of the
non-backtracking spectrum operator H. Three main ideas are at the core of this paper: first, that
partial derandomization can greatly simplify the spectrum; second, that Tao and Vu’s replacement
principle [34, Theorem 2.1] can be usefully applied to two sequences of random matrices that
are highly dependent on each other; and third, that in this case, the partly derandomized matrix
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may be viewed as a small perturbation of the original matrix, allowing one to apply results from
perturbation theory like the Bauer-Fike Theorem. The use of Tao and Vu’s replacement principle
here is novel, as it is used to compare the spectra of a sequence ofmatrices with some dependencies
among the entries to a sequence of matrices where all random entries are independent; typically,
the Tao-Vu replacement principle has been applied in cases where the two sequences of random
matrices both have independent entries, see for example [34, 40, 41].

1.1 Results
Throughout the rest of this paper, we mainly focus on sparse random graphs where p ∈ (0, 1) may
tend to zero as n→ ∞. Our first result shows that the spectrum of H0 can be determined very
precisely in terms of the spectrum of the random Hermitian matrix A, which is well-understood.

Proposition 1.2 (Spectrum of the partly averagedmatrix). Let H0 be defined as in (1.2), and let 0<

p≤ p0 < 1 for a constant p0. If p≥ C/
√
n for some large constant C > 0, then, with probability 1−

o(1), 1√
α
H0 has two real eigenvaluesμ1 andμ2 satisfying μ1 = √

α(1+ o(1)) andμ2 = 1/√np(1+
o(1)); all other eigenvalues for 1√

α
H0 are complex with magnitude 1 and occur in complex conjugate

pairs. If np→ ∞ with n, then the real parts of the eigenvalues in the circular arcs are distributed
according to the semicircle law.

Remark 1.3. When n−1+ε ≤ p≤ n−1/2, more real eigenvalues of H0 will emerge. We provide a
short discussion on the real eigenvalues of H0 in Section 2.2. Note that as long as the number of
real eigenvalues is bounded by a fixed constant, for example when p≥ C/

√
n, the bulk distribution

of H0 is two arcs on the unit circle, with density so that real parts of the eigenvalues follow the
semicircular law.

The spectrum of the non-backtracking matrix for a degree regular graph was studied in [7],
including proving some precise eigenvalue estimates. One can view Proposition 1.2 as extending
this general approach by using averaged degree counts, but allowing the graph to no longer be
degree regular. Thus, Proposition 1.2 shows that partly averaging H to get H0 is enough to allow
the spectrum to be computed very precisely. Ourmain results are the theorems below, which show
that the empirical spectral measuresμH forH andμH0 forH0 are very close to each other, even for
p a decreasing function of n. (The definitions of the measureμM for a matrixM and the definition
of almost sure convergence of measures are given in Section 1.3).

Theorem 1.4. Let A be the adjacency matrix for an Erdős-Rényi random graph G(n, p). Assume
0< p≤ p0 < 1 for a constant p0 and np/ log n→ ∞ with n. Let 1√

α
H be a rescaling of the non-

backtracking spectrum operator for A defined in (1.1) with α = (n− 1)p− 1, and let 1√
α
H0 be its

partial derandomization, defined in (1.2). Then,μ 1√
α
H − μ 1√

α
H0

converges almost surely (thus, also
in probability) to zero as n goes to infinity.

Remark 1.5. When p� log n/n, the graph G(n, p) is almost a random regular graph and thusH0
appears to be a good approximation of H. When p becomes smaller, such an approximation is no
longer accurate. In this sense, Theorem 1.4 is optimal.

In Figure 1, we plot the eigenvalues of 1√
α
H and 1√

α
H0 for an Erdős-Rényi random graph

G(n, p), where n= 500. The blue circles mark the eigenvalues for H/
√

α and the red x’s mark the
eigenvalues for H0/

√
α. We can see that the empirical spectral measures of H/

√
α and H0/

√
α

are very close for p not too small. As p becomes smaller (note that here log n/n≈ 0.0054), the
eigenvalues ofH0/

√
α still lie on the arcs of the unit circle whereas the eigenvalues ofH/

√
α start

to escape and be attracted to the inside of the circle.
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Figure 1. The eigenvalues of H/
√

α defined in (1.1) and H0/
√

α defined in (1.2) for a sample of G(n, p) with n= 500 and
different values of p. The blue circles are the eigenvalues of H/

√
α, and the red x’s are for H0/

√
α. For comparison, the

black dashed line is the unit circle. For the figures from top to bottom and from left to right, the values of p are taken to be
p= 0.5, p= 0.1, p= 0.08 and p= 0.05, respectively.

To prove that the bulk eigenvalue distributions converge in Theorem 1.4, we will use Tao and
Vu’s replacement principle [34, Theorem 2.1] (see also Theorem 3.2), which was a key step in
proving the circular law. The replacement principle lets one compare eigenvalue distributions of
two sequences of random matrices, and it has often been used in cases where one type of random
input – for example, standard Gaussian normal entries – is replaced by a different type of random
input – for example, arbitrary mean 0, variance 1 entries. This is how the replacement principle
was used to prove the circular law in [34], and it was used similarly in, for example, [40, 41]. The
application of the replacement principle in the current paper is distinct in that the entries for one
ensemble of randommatrices, namelyH, has some dependencies between the entries, whereas the
random entries of H0 are all independent.

Our third result (Theorem 1.6 below) proves that all eigenvalues of H are close to those of H0

with high probability when p� log2/3 n
n1/6 , which implies that there are no outlier eigenvalues of H,
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that is, no eigenvalues of H that are far outside the support of the spectrum of H0 (described in
Theorem 1.2).

Theorem 1.6. Assume 0< p≤ p0 < 1 for a constant p0 and p≥ log2/3+ε n
n1/6 for ε > 0. Let A be

the adjacency matrix for an Erdős-Rényi random graph G(n, p). Let 1√
α
H be a rescaling of the

non-backtracking spectrum operator for A defined in (1.1). Then, with probability 1− o(1), each
eigenvalue of 1√

α
H is within distance R= 40

√
log n
np2 of an eigenvalue of 1√

α
H0, defined in (1.2).

In the upcoming Section 2, it will be demonstrated that eigenvalues in the bulk of the distri-
butions for 1√

α
H and for 1√

α
H0 have absolute value 1. Since p� log2/3 n

n1/6 , we have R= 40
√

log n
np2 =

o(1), and consequently, Theorem 1.6 provides informative results. We would like to mention that
the above result has been improved to hold for p� log n/n and that each eigenvalue of 1√

α
H is

within distanceO(( log nnp )1/4) of an eigenvalue of 1√
α
H0, using a variant of Bauer-Fike perturbation

theorem that appeared later in [11, Corollary 2.4], as opposed to invoking the classical Bauer-Fike
theorem in this paper (see Theorem 4.1).

1.2 Outline
We will describe the ESD of the partly averaged matrix H0 to prove Proposition 1.2 in Section 2.
In Section 3, we will show that the ESDs of H and H0 approach each other as n goes to infinity
by using the replacement principle [34, Theorem 2.1] and in Section 4 we will use the Bauer-Fike
theorem to prove Theorem 1.6, showing that the partly averaged matrix H0 has eigenvalues close
to those of H in the limit as n→ ∞.

1.3 Background definitions
We give a few definitions to make clear the convergence described in Theorem 1.4 between
empirical spectral distribution measures of H and H0. For an n× n matrix Mn with eigenvalues
λ1, . . . , λn, the empirical spectral measure μMn ofMn is defined to be

μMn = 1
n

n∑
i=1

δλi ,

where δx is the Dirac delta function with mass 1 at x. Note that μMn is a probability measure on
the complex numbers C. The empirical spectral distribution (ESD) forMn is defined to be

FMn(x, y)= 1
n
#
{
λi : Re(λi)≤ x and Im(λi)≤ y

}
.

For T a topological space (for example R orC) and B its Borel σ -field, we can define convergence
of a sequence (μn)n≥1 of random probability measures on (T, B) to a nonrandom probability
measureμ also on (T, B) as follows.We say thatμn converges weakly toμ in probability as n→ ∞
(written μn → μ in probability) if for all bounded continuous functions f : T →R and all ε > 0
we have

P

(∣∣∣∣∫
T
f dμn −

∫
T
f dμ

∣∣∣∣> ε

)
→ 0 as n→ ∞.

Also, we say that μn converges weakly to μ almost surely as n→ ∞ (written μn → μ a.s.) if for
all bounded continuous functions f : T →R, we have that

∣∣∫
T f dμn − ∫T f dμ

∣∣→ 0 almost surely
as n→ ∞.
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We will use ‖A‖F := tr (AA∗)1/2 to denote the Frobenius norm or Hilbert-Schmidt norm, and
‖A‖ to denote the operator norm. We denote ‖A‖max =maxij |aij|. We use the notation o(1) to
denote a small quantity that tends to zero as n goes to infinity. We use the asymptotic notation
f (n)� g(n) if f (n)/g(n)= o(1) and we write f (n)= o(g(n)); furthermore, we write f (n)=O(g(n))
if f (n)≤ Cg(n) for a constantC > 0 when n is sufficiently large. Finally, we will use I or In to denote
the identity matrix, where the subscript n will be omitted when the dimension can be inferred by
context.

2. The spectrum of H0
We are interested in the limiting ESD of H when H is scaled to have bounded support (except for
one outlier eigenvalue), and so we will work with the following rescaled conjugation of H, which
has the same eigenvalues as H/

√
α.

H̃ := 1√
α

⎛⎝ 1√
α
I 0

0 I

⎞⎠⎛⎝A I −D

I 0

⎞⎠⎛⎝√
αI 0

0 I

⎞⎠=
⎛⎝ 1√

α
A 1

α
(I −D)

I 0

⎞⎠ .

Note that the diagonal matrix 1
α
(I −D) is equal to −I in expectation, and so we will compare

the eigenvalues of H̃ to those of the partly averaged matrix H̃0, noting that H̃ = H̃0 + E, where

H̃0 :=
⎛⎝ 1√

α
A −I

I 0

⎞⎠ and E :=
⎛⎝ 0 I + 1

α
(I −D)

0 0

⎞⎠ . (2.1)

Note that H0/
√

α and H̃0 also have identical eigenvalues.
We will show that H̃0 is explicitly diagonalizable in terms of the eigenvectors and eigenvalues

of 1√
α
A, and then use this information to find an explicit form for the characteristic polynomial

for H̃0.

2.1 Spectrum of ˜H0: proof of Proposition 1.2
Since 1√

α
A is a real symmetric matrix, it has a set v1, . . . , vn of orthonormal eigenvectors with cor-

responding real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Thus we may write A√
α

=UTdiag(λ1, . . . , λn)U
where U is an orthogonal matrix. Consider the matrix xI − H̃0, and note that⎛⎝ I 0

−xI I

⎞⎠ (xI − H̃0)=
⎛⎜⎝ xI − 1√

α
A I

−x
(
xI − 1√

α
A
)− I 0

⎞⎟⎠ ,

we see that det (xI − H̃0)= det (I + x(xI − 1√
α
A))= det (x2I − x√

α
A+ I). Conjugating to diago-

nalize A, we see that

det (xI − H̃0)= det (x2I − xdiag(λ1, . . . , λn)+ I)=
n∏

i=1
(x2 − λix+ 1). (2.2)

With the characteristic polynomial for H̃0 factored into quadratics as in (2.2), we see that for
each λi of 1√

α
A, there are two eigenvalues μ2i−1 and μ2i for H̃0 which are the two solutions to

x2 − λix+ 1= 0; thus,
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μ2i−1 =
λi +

√
λ2i − 4

2
and μ2i =

λi −
√

λ2i − 4

2
. (2.3)

The eigenvalues of A are well-understood. We use the following results that exist in literature.

Theorem 2.1 ([26, 27]). Let A be the adjacency matrix for an Erdős-Rényi random graph G(n, p).
Assume 0< p≤ p0 < 1 for a constant p0 and p≥ n−1+φ for a small constant φ > 0. Then for any
ε > 0, the following holds with probability 1− o(1):

λ1(A)= np(1+ o(1));

max
2≤i≤n

|λi(A)+ p| ≤ L
√
np(1− p)+ nε√np

(
1

(np)2
+ 1

n2/3

)
,

where L= 2+ s(4)
np +O( 1

(np)2 ) and s
(4) = n2p

[
p3+(1−p)3
n2p(1−p) − 3

n2

]
.

Proof. We collect relevant results regarding the eigenvalues ofA from different works in the liter-
ature. In [26], it is shown that with probability 1− o(1), λ1(A)= (1+ o(1)) max{np,√	} where
	 is the maximum degree. As long as np/ log n→ ∞, max{np,√	} = np (for the bounds on 	

see, for instance, the proof of Lemma 3.5 below).
The operator norm of A−EA and the extreme eigenvalues of A have been studied in various

works (see [5, 12, 13, 18, 21, 27, 36]). In particular, in [27, Theorem 2.9], assuming p≥ n−1+φ , the
authors proved that for any ε > 0 and C > 0, the following estimate holds with probability at least
1− n−C: ∣∣∣∣∣ 1√

np(1− p)
‖A−EA‖ − L

∣∣∣∣∣≤ nε

(
1

(np)2
+ 1

n2/3

)
with L= 2+ s(4)

np +O( 1
(np)2 ) and s(4) = n2p

[
p3+(1−p)3
n2p(1−p) − 3

n2

]
= 1+O(p). The conclusion of the

theorem follows immediately from the classical Weyl’s inequality that max2≤i≤n |λi(A)+ p| =
max2≤i≤n |λi(A)− λi(EA)| ≤ ‖A−EA‖. �

Now we are ready to derive Proposition 1.2.

Proof of Proposition 1.2. Note that λi = λi(A)/
√

α and α = (n− 1)p− 1. We have that

λ1 = √np(1+ o(1)) and max
2≤i≤n

|λi| ≤ 2
√
1− p(1+ o(1)) (2.4)

with probability 1− o(1) by Theorem 2.1. Therefore, for λ1, we see from (2.3) that μ1,μ2 are real
eigenvalues and

μ1 = √np(1+ o(1)) and μ2 = 1√np
(1+ o(1))

with probability 1− o(1). Next, by Theorem 2.1, it holds with probability 1− o(1) for any 2≤ i≤
n that

λ2i = λ2i (A)
α

≤ 1
α

[
L
√
np(1− p)+ p+ nε√np

(
1

(np)2
+ 1

n2/3

)]2
.

Since p≥ C/
√
n for a sufficiently large constant C, we have

λ2i ≤ 1
α

[
2
√
np(1− p)+O( max{p, (np)−1/2, p1/2n−1/6+ε})

]2
= 4np(1− p)+O( max{p√np, 1, pn1/3+ε})

np− (p+ 1)
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= 4(1− p)+O( max{√p/n, (np)−1, n−2/3+ε})
1− p+1

np

= 4(1− p)+O
(
max{√p/n, (np)−1, n−2/3+ε}

)
+O

(
1
np

)
≤ 4− 3p,

for all sufficiently large n. Hence, for all i≥ 2, we have λ2i < 4 and thus μ2i−1,μ2i are complex
eigenvalues with magnitude 1 (since |μ2i−1| = |μ2i| = 1). One should also note that μ2i−1μ2i = 1
for every i, and that whenever μ2i−1 is complex (i.e., i≥ 2), its complex conjugate is μ2i−1 = μ2i.

Furthermore, note that Reμ2i−1 = Reμ2i = λi/2= λi(A)/2
√

α. It is known that the empiri-
cal spectral measure of A/

√
np(1− p) converges to the semicircular law supported on [− 2, 2]

assuming np→ ∞ (see for instance [25] or [35]). We have the ESD of the scaled real parts of μj

1
2n

2n∑
j=1

δ 2Reμj√
1−p

→ μsc

weakly almost surely where μsc is the semicircular law supported on [− 2, 2]. The proof of
Proposition 1.2 is now complete. �

2.2 Real eigenvalues of ˜H0 when p≤ n−1/2

As mentioned in Remark 1.3, when p becomes smaller than n−1/2, more real eigenvalues of H̃0
will emerge. We can identify some of these eigenvalues, using recent results of [12, 18, 21, 27] in
the study of the extreme eigenvalues of A. For instance, in [27, Corollary 2.13], assume n2φ−1 ≤
p≤ n−2φ′

for φ > 1/6 and φ′ > 0. Then

lim
n→∞ P

(
n2/3

( 1√
np(1− p)

λ2(A)−L− a
)

≤ s

)
= FTW1 (s), (2.5)

where L= 2+ 1
np +O( 1

n2p2 ), a=
√

p
n(1−p) and FTW1 (s) is the Tracy-Widom distribution function.

Therefore, when p≥ n−2/3+ε , by noting that FTW1 (s)→ 1 as s→ ∞ and selecting s to be a large
constant in (2.5), we see that

λ2(A)= 2
√
np(1− p)+ p+

√
1− p
np

+O
(√np
n2/3

)
.

Note that if p<
1−p
n1/3 , then p<

√
1−p
np and thus for n−2/3+ε ≤ p≤ n−1/2 � n−1/3,

λ22 − 4=
(

λ2(A)√
α

)2
− 4=

(
2
√
np(1− p)+

√
1−p
np + p+O

(√np
n2/3
))2

np− (p+ 1)
− 4

=
(
2
√
np(1− p)+

√
1−p
np + p

)2 +O
(

np
n2/3

)
np− (p+ 1)

− 4

= 4np(1− p)+ 4(1− p)+ 4p
√
np(1− p)+O( np

n2/3 )
np− (p+ 1)

− 4
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=
4(1− p)+ 4(1−p)

np + 4p
√

1−p
np +O

(
1

n2/3

)
1− p+1

np
− 4

= −4p+ 4p

√
1− p
np

+ 4(1− p)(2+ p)
np

+O(n−2/3)> 0.

Hence, from (2.3), both μ3 and μ4 are real. The convergence result (2.5) holds for finitely many
extreme eigenvalues of A and thus they also generate real eigenvalues for H̃0.

The fluctuation of the extreme eigenvalues of A has been obtained in [21, Corollary 1.5] for
n−7/9 � p� n−2/3 and in [18] for the remaining range of p up to p≥ n−1+ε . One could use sim-
ilar discussion as above to extract information about the real eigenvalues of H̃0. The details are
omitted.

2.3 ˜H0 is diagonalizable
We can now demonstrate an explicit diagonalization for H̃0. Since μ2i−1 and μ2i are solutions to
μ2 − μλi + 1= 0, one can check that the following vectors

y∗
2i−1 = 1√

1+ |μ2i−1|2
(
−μ2i−1vTi vTi

)
and y∗

2i =
1√

1+ |μ2i|2
(
−μ2ivTi vTi

)
(2.6)

satisfy y∗
2i−1H̃0 = μ2i−1y∗

2i−1 and y∗
2iH̃0 = μ2iy∗

2i for all i. Furthermore, y2i−1 and y2i are unit
vectors. For 1≤ i≤ n, define the vectors

x2i−1 =
√
1+ |μ2i−1|2

μ2i − μ2i−1

⎛⎝ vi

μ2ivi

⎞⎠ and x2i =
√
1+ |μ2i|2

μ2i−1 − μ2i

⎛⎝ vi

μ2i−1vi

⎞⎠. (2.7)

Defining

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

y∗
1

y∗
2

...

y∗
2n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
and X =

(
x1, x2, . . . , x2n

)

we see that X = Y−1 since v1, . . . , vn are orthonormal. Also it is easy to check that YH̃0X =
diag(μ1, . . . ,μ2n).

3. The bulk distribution: proving Theorem 1.4
We begin by re-stating Theorem 1.4 using the conjugated matrices defined in (2.1).

Theorem 3.1. Let A be the adjacency matrix for an Erdős-Rényi random graph G(n, p). Assume
0< p≤ p0 < 1 for a constant p0 and np/ log n→ ∞ with n. Let H̃ be the rescaled conjugation of
the non-backtracking spectrum operator for A defined in (2.1), and let H̃0 be its partial derandom-
ization, also defined in (2.1). Then, μH̃ − μH̃0 converges almost surely (thus, also in probability) to
zero as n goes to infinity.

To prove Theorem 3.1, we will show that the bulk distribution of H̃ matches that of H̃0 using
the replacement principle [34, Theorem 2.1], which we rephrase slightly as a perturbation result

https://doi.org/10.1017/S096354832300024X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832300024X


Combinatorics, Probability and Computing 965

below (see Theorem 3.2). First, we give a few definitions that we will use throughout this section.
We say that a random variable Xn ∈C is bounded in probability if

lim
C→∞ lim inf

n→∞ P( |Xn| ≤ C)= 1

and we say that Xn is almost surely bounded if

P

(
lim sup
n→∞

|Xn| < ∞
)

= 1.

Theorem 3.2 (Replacement principle [34]). Suppose for each m that Mm and Mm + Pm are
random m×mmatrices with entries in the complex numbers. Assume that

1
m
∥∥Mm

2∥∥
F + 1

m
∥∥Mm + Pm2∥∥

F is bounded in probability (resp., almost surely) (3.1)

and that, for almost all complex numbers z ∈C,

1
m

log
∣∣∣ det (Mm + Pm − zI)

∣∣∣− 1
m

log
∣∣∣ det (Mm − zI)

∣∣∣ (3.2)

converges in probability (resp., almost surely) to zero; in particular, this second condition requires
that for almost all z ∈C, the matrices Mm + Pm − zI and Mm − zI have non-zero determinant with
probability 1− o(1) (resp., almost surely non-zero for all but finitely many m).

Then μMm − μMm+Pm converges in probability (resp., almost surely) to zero.

Note that there is no independence assumption anywhere in Theorem 3.2; thus, entries in Pm
may depend on entries inMm and vice versa.

We will use the following corollary of Theorem 3.2, which essentially says that if the pertur-
bation Pm has largest singular value of order less than the smallest singular value for Mm − zI
for almost every z ∈C, then adding the perturbation Pm does not appreciably change the bulk
distribution ofMm.

Corollary 3.3. For each m, let Mm and Pm be random m×m matrices with entries in the complex
numbers, and let f (z,m)≥ 1 be a real function depending on z and m. Assume that

1
m

‖Mm‖2F + 1
m

‖Mm + Pm‖2F is bounded in probability (resp., almost surely), (3.3)

and

f (z,m)‖Pm‖ converges in probability (resp., almost surely) to zero, (3.4)

and, for almost every complex number z ∈C,∥∥(Mm − zI)−1∥∥≤ f (z,m), (3.5)

with probability tending to 1 (resp., almost surely for all but finitely many m).
Then μMm − μMm+Pm converges in probability (resp., almost surely) to zero.

Proof. We will show that the three conditions (3.3), (3.4), and (3.5) of Corollary 3.3 together
imply the two conditions needed to apply Theorem 3.2.

First note that (3.3) is identical to the first condition (3.1) of Theorem 3.2. Next, we will show
in the remainder of the proof that condition (3.2) of Theorem 3.2 holds by noting that sufficiently
small perturbations have a small effect on the singular values, and also the absolute value of the
determinant is equal to the product of the singular values.

Let z be a complex number for which (3.5) holds, let Mm − zI have singular values σ1 ≥ . . . ≥
σm, and let Mm + Pm − zI have singular values σ1 + s1 ≥ σ2 + s2 ≥ . . . ≥ σm + sm. We will use
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the following result, which is sometimes called Weyl’s perturbation theorem for singular values,
to show that the si are small.

Lemma 3.4 ([9, Theorem 1.3]). Let A and B be m× n real or complex matrices with singular values
σ1(A)≥ . . . ≥ σmin{m,n}(A)≥ 0 and σ1(B)≥ . . . ≥ σmin{m,n}(B)≥ 0, respectively. Then

max
1≤j≤min{m,n}

∣∣σj(A)− σj(B)
∣∣≤ ‖A− B‖ .

We then have that
max
1≤i≤m

|si| ≤ ‖Pm‖,
and by (3.5),

max
1≤i≤m

|si|
σi

≤ f (z,m)‖Pm‖
which converges to zero in probability (resp., almost surely) by (3.4). Thus we know that∣∣log (1+ si/σi)

∣∣≤ 2 |si/σi| ≤ 2f (z,m)‖Pm‖,
where the inequalities hold with probability tending to 1 (resp., almost surely for all sufficiently
large m). Using the fact that the absolute value of the determinant is the product of the singular
values, we may write (3.2) as∣∣∣∣∣ 1m

(
log

m∏
i=1

(σi + si)− log
m∏
i=1

σi

)∣∣∣∣∣= 1
m

∣∣∣∣∣
m∑
i=1

log
(
1+ si

σi

)∣∣∣∣∣≤ 2f (z,m)‖Pm‖,

which converges to zero in probability (resp., almost surely) by (3.4). Thus, we have shown that
(3.1) and (3.2) hold, which completes the proof.

3.1 Proof of Theorem 3.1
The proof of Theorem 3.1 will follow from Corollary 3.3 combined with lemmas showing that
the conditions (3.3), (3.4), and (3.5) of Corollary 3.3 are satisfied. Indeed, Lemma 3.7 verifies
(3.3), Lemma 3.9 verifies (3.5) and (3.4) follows by combining Lemma 3.5 and Lemma 3.9. Note
that the assumption np/ log n→ ∞ in Theorem 3.1 is only needed to prove conditions (3.3) and
(3.4). Condition (3.5) in fact follows for any p and for more general matrices – see the proof of
Lemma 3.9.

In Corollary 3.3, we will take Mm to be the partly derandomized matrix H̃0 and Pm to be the
matrix E [see (2.1)], where we suppress the dependence of H̃0 and E on n=m/2 to simplify the
notation. There are two interesting features: first, the singular values of H̃0 may be written out
explicitly in terms of the eigenvalues of the Hermitian matrix A (which are well-understood;
see Lemma 3.9); and second, the matrix E is completely determined by the matrix H̃0, making
this a novel application of the replacement principle (Theorem 3.2 and Corollary 3.3) where the
sequence of matrices H̃0 + E= H̃ has some dependencies among the entries.

Lemma 3.5. Assume 0< p≤ p0 < 1 for a constant p0. Further assume np/ log n→ ∞. For E as
defined in (2.1), we have that ‖E‖ ≤ 20

√
log n
np almost surely for all but finitely many n. In particular,

‖E‖ converges to zero almost surely for all but finitely many n.

Proof. First, note that ED= (n− 1)pI = (α + 1)I and thus

E :=
⎛⎝ 0 I + 1

α
(I −D)

0 0

⎞⎠=
⎛⎝ 0 1

α
(ED−D)

0 0

⎞⎠ .
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Since ED−D is a diagonal matrix, it is easy to check that

‖E‖ = ‖E‖max = 1
α

‖D−ED‖max = 1
α

max
1≤i≤n

|Dii −EDii| = 1
α

max
1≤i≤n

|Dii − (n− 1)p|.

Note that Dii’s have the same distribution. By the union bound, it follows that for any s> 0,

P(‖E‖ ≥ s)≤ nP
(
1
α

|D11 − (n− 1)p| ≥ s
)

= nP

⎛⎝ 1
α

∣∣∣ n∑
j=2

a1j − (n− 1)p
∣∣∣≥ s

⎞⎠ .

Next we will apply the following general form of Chernoff bound.

Theorem 3.6 (Chernoff bound [10]). Assume ξ1, . . . , ξn are iid random variables and ξi ∈ [0, 1]
for all i. Let p=Eξi and Sn =∑n

i=1 ξi, then for any ε > 0,

P(Sn − np≥ nε)≤ exp
(−RE(p+ ε||p)n) ;

P(Sn − np≤ −nε)≤ exp
(−RE(p− ε||p)n)

where RE(p||q)= p log ( pq )+ (1− p) log ( 1−p
1−q ) is the relative entropy or Kullback-Leibler diver-

gence.

By our assumption, np= ω(n) log n where ω(n) is a positive function that tends to infinity
with n. Now take K = (n− 1)p+ npt where t = t(n)= 10

√
log n
np (say). Our assumption

np/ log n→ ∞ implies t → 0 with n. Thus

P

⎛⎝ n∑
j=2

a1j ≥K

⎞⎠= P

⎛⎝ n∑
j=2

a1j − (n− 1)p≥ npt

⎞⎠≤ exp (− RE(p+ pt||p)n)

where

RE
(
p+ pt||p)= p(1+ t) log (1+ t)+ (1− p− pt) log

(
1− p− pt
1− p

)

= p(1+ t) log (1+ t)− (1− p− pt) log
(
1+ pt

1− p− pt

)
> p(1+ t)(t − t2/2)− pt = pt2(1− t)/2

by the elementary inequalities x− x2/2< log (1+ x)< x for x> 0.
Therefore, for n sufficiently large, taking t = 5

√
log n
np , we get

P

⎛⎝ n∑
j=2

a1j ≥ (n− 1)p+ npt

⎞⎠≤ exp
(

−npt2(1− t)
2

)
≤ exp (− 10 log n)= n−10.

Similarly, take L= (n− 1)p− npt where t = 5
√

log n
np . Applying the Chernoff bound yields that

P

⎛⎝ n∑
j=2

a1j ≤ L

⎞⎠= P

⎛⎝ n∑
j=1

a1j − (n− 1)p≤ −npt

⎞⎠≤ exp
(−RE(p− pt||p)n) .

We take n sufficiently large such that t = t(n)< 0.01 (say). Then
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RE(p− pt||p)= p(1− t) log (1− t)+ (1− p+ pt) log
(
1− p+ pt
1− p

)

= p(1− t) log (1− t)− (1− p+ pt) log
(
1− pt

1− p+ pt

)
> p(1− t)(− t − 3

5
t2)+ pt = 1

5
pt2(2+ 3t)≥ 2

5
pt2

where we use the fact that log (1− x)< −x for x ∈ (0, 1) and log (1− x)> −x− 3
5x

2 for x ∈
(0, 0.01). Hence, we get

P

⎛⎝ n∑
j=2

a1j ≤ (n− 1)p− npt

⎞⎠≤ exp
(

−2
5
pt2
)

= exp (− 10 log n)= n−10. (3.6)

Since 2αt = 2((n− 1)p− 1)t ≥ npt for n sufficiently large, it follows that

P

(
‖E‖ ≥ 10

√
log n
np

)
≤ nP

⎛⎝∣∣∣∣∣∣
n∑
j=2

a1j − (n− 1)p

∣∣∣∣∣∣≥ 2αt

⎞⎠
≤ nP

⎛⎝ n∑
j=2

a1j ≥ (n− 1)p+ npt

⎞⎠+ nP

⎛⎝ n∑
j=2

a1j ≤ (n− 1)p− npt

⎞⎠≤ 2n−10.

By the Borel-Cantelli lemma, we have that ‖E‖ ≤ 10
√

log n
np almost surely for all but finitely

many n.

To show (3.3), we combine Hoeffding’s inequality and Lemma 3.5 to prove the following
lemma.

Lemma 3.7. Assume 0< p≤ p0 < 1 for a constant p0. Further assume np/ log n→ ∞. For H̃0 and
E as defined in (2.1), we have that both 1

2n‖H̃0‖2F and 1
2n‖H̃0 + E‖2F are almost surely bounded.

Proof. We begin by stating Hoeffding’s inequality [20].

Theorem 3.8 (Hoeffding’s inequality [20]). Let β1, . . . , βk be independent random variables such
that for 1≤ i≤ k we have P(βi ∈ [ai, bi])= 1. Let S := ∑k

i=1 βi. Then for any real t,

P( |S−E(S)| ≥ kt)≤ 2 exp

(
− 2k2t2∑k

i=1 (bi − ai)2

)
.

Recall that α = (n− 1)p− 1 and H̃0 =
⎛⎝ 1√

α
A −I

I 0

⎞⎠, where A= (aij)1≤i,j≤n is the adjacency

matrix of an Erdős-Rényi random graph G(n, p). Thus

‖H̃0‖2F = 1
α

‖A‖2F + 2‖I‖2F = 1
α

∑
i,j

a2ij + 2n= 2
α

∑
i<j

aij + 2n.

To apply Hoeffding’s inequality, note that aij (i< j) are iid random variables each taking the value
1 with probability p and 0 otherwise. Let bi = 1 and ai = 0 for all i, and let k= (n2), which is the
number of random entries in A (recall that the diagonal of A is all zeros by assumption). Letting
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S=∑i<j aij, we see that ES= kp and so

P

( ∣∣S− kp
∣∣≥ kt

)
≤ 2 exp (− 2kt2).

Since ‖H̃0‖2F = 2
α
S+ 2n, we obtain that

P

( ∣∣∣∣ 12n‖H̃0‖2F − 1− kp
nα

∣∣∣∣≥ kt
nα

)
≤ 2 exp (− 2kt2).

Take t = p. For n sufficiently large,
kt
nα

= n(n− 1)p/2
n[(n− 1)p− 1]

≤ n(n− 1)p/2
n(n− 1)p/2

= 1

and since p≥ ω(n) log n/n for ω(n)> 0 and ω(n)→ ∞ with n, we get

P

(
1
2n

‖H̃0‖2F ≥ 3
)

≤ 2 exp (− 2kt2)≤ 2 exp (− ω(n)2 log2 n/2).

By the Borel-Cantelli lemma, we conclude that 1
2n‖H̃0‖2F is bounded almost surely. Since ‖E‖max =

‖E‖, by triangle inequality, we see
1
2n

‖H̃0 + E‖2F ≤ 1
2n

(‖H̃0‖F + ‖E‖F)2 ≤ 1
n
‖H̃0‖2F + 1

n
‖E‖2F

≤ 1
n
‖H̃0‖2F + ‖E‖.

By Lemma 3.5, we get 1
2n‖H̃0 + E‖2F is bounded almost surely. This completes the proof.

The last part of proving Theorem 3.1 by way of Corollary 3.3 is proving that (3.5) holds
with Mm = H̃0 and f (z,m)= Cz, a constant depending only on z, as given below in Lemma 3.9.
Note that (3.4) follows by combining Lemma 3.5 and Lemma 3.9. The following lemma will be
proved by writing a formula for the singular values of H̃0 in terms of the eigenvalues of the
adjacency matrix A, which are well-understood. A number of elementary technical details will be
needed to prove that the smallest singular value is bounded away from zero, and these appear in
Lemma 3.10.

Lemma 3.9. Let H̃0 be as defined in (2.1) and let z be a complex number such that Im(z) �= 0 and
|z| �= 1 (note that these conditions exclude a set of complex numbers of Lebesgue measure zero). Then
there exists a constant Cz depending only on z such that

∥∥(H̃0 − zI)−1∥∥≤ Cz with probability 1 for
all but finitely many n.

Proof. We will compute all the singular values of H̃0 − zI, showing that they are bounded away
from zero by a constant depending on z. The proof does not use randomness and depends only
on facts about the determinant and singular values and on the structure of H̃0; in fact, the proof is

the same if H̃0 is replaced with any matrix

⎛⎝M −I

I 0

⎞⎠ withM Hermitian.

To find the singular values of H̃0 we will compute the characteristic polynomial χ(w̃) for (H̃0 −
zI)(H̃0 − zI)∗, using the definition of H̃0 in (2.1), and assuming that w̃=w+ 1+ |z|2; thus,

χ(w̃) := det
(
(H̃0 − zI)(H̃0 − zI)∗ − (w+ 1+ |z|2 )I)

= det

⎛⎜⎝A2

α
− (z + z̄) A√

α
−wI A√

α
+ (z̄ − z)I

A√
α

+ (z − z̄)I −wI

⎞⎟⎠ .
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We can use the fact that if

⎛⎝X Y

Z W

⎞⎠ is a matrix composed of four n× n square blocks where W

and Z commute, then det

⎛⎝X Y

Z W

⎞⎠= det (XW − YZ) (see [33, Theorem 3]). Thus, it is equivalent

to consider

det
(
w
(
A2

α
− (z + z̄)

A√
α

−wI
)

+
(

A√
α

+ (z̄ − z)I
)(

A√
α

+ (z − z̄)I
))

.

Because A√
α
is Hermitian, it can be diagonalized to L= diag(λ1, . . . , λn), and thus the above

determinant becomes:

det
(
w
(
A2

α
− (z + z̄)

A√
α

−wI
)

+
(

A√
α

+ (z̄ − z)I
)(

A√
α

+ (z − z̄)I
))

= det
(
w
(
L2 − (z + z̄)L−wI

)+ (L+ (z̄ − z)I) (L+ (z − z̄)I)
)

=
n∏
i=1

(
w
(
λ2i − (z + z̄)λi −w

)+ (λi + (z − z̄)) (λi + (z̄ − z))
)

=
n∏
i=1

(−w2 +w
(
λ2i − (z + z̄)λi

)+ λ2i − (z − z̄)2
)
.

The quadratic factors can then be explicitly factored, showing that each λi generates two singular
values for H̃0 − zI, each being the positive square root of

1+ |z|2 + 1
2
(
λ2i − (z + z̄)λi

)± 1
2

√(
λ2i − (z + z̄)λi

)2 + 4(λ2i − (z − z̄)2).

The proof of Lemma 3.9 is thus completed by Lemma 3.10 (stated and proved below),
which shows that the quantity above is bounded from below by a positive constant depending
only on z. �
Lemma 3.10. Let z be a complex number satisfying Im(z) �= 0 and |z| �= 1. Then for any real number
λ, we have that

1+ |z|2 + 1
2
(
λ2 − (z + z̄)λ

)± 1
2

√(
λ2 − (z + z̄)λ

)2 + 4(λ2 − (z − z̄)2)≥ Cz, (3.7)

where Cz is a positive real constant depending only on z.

The proof of Lemma 3.10 is given in the appendix1 using elementary calculus, facts about
matrices, and case analysis. Lemma 3.10 completes the proof of Lemma 3.5 and thus of
Theorem 3.1.

4. Perturbation theory: proving Theorem 1.6
In this section, we study the eigenvalues of H via perturbation theory. Recall from that the
discussion in the beginning of Section 2 that H̃ in (2.1) has the same eigenvalues as H/

√
α.

1The appendix is available on the arXiv version.
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We consider H̃ = H̃0 + E where E=
⎛⎝ 0 I + 1

α
(I −D)

0 0

⎞⎠. Note that H0/
√

α and H̃0 also have

identical eigenvalues.
Let us begin by defining the spectral separation of matrices. Denote the eigenvalues of a matrix

M by ηi(M)’s. The spectral variation ofM + E with respect toM is defined by

SM(M + E)=max
j

min
i

|ηj(M + E)− ηi(M)|.

Theorem 4.1 (Bauer-Fike theorem; see Theorem 6 from [8]). If H0 is diagonalizable by the matrix
Y, then

SH0 (H0 + E)≤ ‖E‖ · ‖Y‖ · ‖Y−1‖.
Denote by Ci := B(μi(H0), R) the ball in C centred at μi(H0) with radius R= ‖E‖ · ‖Y‖ · ‖Y−1‖.
Let I be a set of indices such that

(∪i∈I Ci)∩ (∪i/∈I Ci)= ∅.
Then the number of eigenvalues of H0 + E in ∪i∈ICi is exactly |I|.

We will bound the operator norm of E and the condition number ‖Y‖ ∥∥Y−1∥∥ of Y to prove
Theorem 1.6.

By Lemma 3.5, we know that ‖E‖ ≤ 20
√

log n
np with probability 1 for all but finitely many n.

To bound the condition number of Y , we note that the square of the condition number of Y is
equal to the largest eigenvalue of YY∗ divided by the smallest eigenvalue of YY∗. Using the explicit
definition of Y from (2.6), we see from the fact that the vi are orthonormal that

YY∗ = diag(Y1, . . . , Yn)

where Yi’s are 2× 2 block matrices of the following form

Yi =
⎛⎝y∗

2i−1y2i−1 y∗
2i−1y2i

y∗
2iy2i−1 y∗

2iy2i

⎞⎠ .

Recall that

y∗
2i−1 = 1√

1+ |μ2i−1|2
(

−μ2i−1vTi vTi
)

and y∗
2i =

1√
1+ |μ2i|2

(
−μ2ivTi vTi

)

We then have Yi =
⎛⎝ 1 γi

γ i 1

⎞⎠ where

γi := μ2i−1μ2i + 1√
(1+ |μ2i−1|2)(1+ |μ2i|2)

.

It is easy to check that the eigenvalues of Yi are 1± |γi|. The eigenvalues of YY∗ are the union of
all the eigenvalues of the blocks, and so we will compute the eigenvalues 1± |γi| based on whether
λi produced real or complex eigenvalues for H̃0.

For i= 1, the eigenvalue λ1 produces two real eigenvalues for H̃0. Using the facts thatμ1μ2 = 1
and μ1 + μ2 = λ1, which together imply that μ2

1 + μ2
2 = λ21 − 2, we see that in this case γ 2

1 = 4
λ21
,

and so the two eigenvalues corresponding to this block are 1± |γ1| = 1± 2/ |λ1|. By (2.4), we see
that 1± |γi| = 1± 2√np (1+ o(1)) with probability 1− o(1).
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For i≥ 2, the eigenvalue λi produces two complex eigenvalues for H̃0, both with absolute value
1 (see Section 2). In this case, γi = 1+μ2

2i−1
2 . Again using the facts that μ2i−1μ2i = 1 and μ2

2i−1 +
μ2
2i = λ2i − 2, we see that γ iγi = λ2i /4, which shows that the two eigenvalues corresponding to this

block are 1± |λi| /2.
By [36] (see Theorem 2.1 in Section 2) we know that when p≥ log2/3+ε n

n1/6 , max2≤i≤n |λi| ≤
2
√
1− p+O(n1/4 log n/√np) with probability tending to 1, and thus the largest and

smallest eigenvalues coming from any of the blocks corresponding to i≥ 2 are 1+√
1− p+O(n1/4 log n/√np) and 1−√1− p+O(n1/4 log n/√np) with probability tending to 1.

Combining this information with the previous paragraph, we see that the condition number for
Y is √

1+√1− p+O(n1/4 log n/√np)
1−√1− p+O(n1/4 log n/√np)

=
√
(1+√1− p)2 +O(n−1/4p−1/2 log n)

p+O(n−1/4p−1/2 log n)

=
√
2
p
1+√1− p− p/2+O(n−1/4p−1/2 log n)

1+O(n−1/4p−3/2 log n)

=
√
2
p

(
(1+√1− p)+O(n−1/4p−3/2 log n)

)
≤ 2√p

for n sufficiently large. In the third equation above, we use the Taylor expansion. In the last
inequality, we use that n−1/4p−3/2 log n≤ log−3ε/2 n= o(1) since p≥ log2/3+ε n

n1/6 .

Finally, we apply Lemma 3.5 and Bauer-Fike Theorem (Theorem 4.1) with R= 40√p

√
log n
np =

40
√

log n
np2 to complete the proof.
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eigenvalues of sparse Erdős–Rényi graphs. Ann. Probab. 48(2) 916–962.
[22] Ivchenko, G. I. (1973) On the asymptotic behavior of degrees of vertices in a random graph. Theory Probab. Appl.

18(1) 188–195.
[23] Krzakala, F., Moore, C., Mossel, E., et al. (2013) Spectral redemption in clustering sparse networks. Proc. Natl. Acad.

Sci. USA 110(52) 20935–20940.
[24] Karrer, B. and Newman, M. E. J. (2011) Stochastic blockmodels and community structure in networks. Phys. Rev. E

83(1) 016107,–10.
[25] Khorunzhy, A. M. and Pastur, L. A. (1993) Limits of infinite interaction radius, dimensionality and the number of

components for random operators with off-diagonal randomness. Commun. Math. Phys. 153(3) 605–646.
[26] Krivelevich,M. and Sudakov, B. (2003) The largest eigenvalue of sparse random graphs.Comb. Probab. Comput. 12(1)

61–72.
[27] Lee, J. O. and Schnelli, K. (2018) Local law and Tracy–Widom limit for sparse randommatrices. Probab. Theory Relat.

Fields 171(1) 543–616.
[28] Latała, R., van Handel, R. and Youssef, P. (2018) The dimension-free structure of nonhomogeneous randommatrices.

Invent. Math. 214(3) 1031–1080.
[29] Massoulié, L. (2014) Community detection thresholds and the weak Ramanujan property. In STOC’14—Proceedings

of the 2014 ACM Symposium on Theory of Computing. ACM, pp. 694–703.
[30] Mossel, E., Neeman, J. and Sly, A. (2018) A proof of the block model threshold conjecture. Combinatorica 38(3)

665–708.
[31] Mossel, E., Neeman, J. and Sly, A. (2015) Reconstruction and estimation in the planted partition model. Probab.

Theory Relat. Fields 162(3-4) 431–461.
[32] Stephan, L. and Massoulié, L. (2022) Non-backtracking spectra of weighted inhomogeneous random graphs. Math.

Stat. Learn. 5(3) 201–271.
[33] Silvester, J. R. (2000) Determinants of block matrices.Math. Gaz. 84(501) 460–467.
[34] Tao, T. andVan, V. (2010) Randommatrices: universality of ESDs and the circular law.Ann. Probab. 38(5) 2023–2065.

With an appendix by Manjunath Krishnapur.
[35] Tran, L. V., Van, H. V. and Wang, K. (2013) Sparse random graphs: eigenvalues and eigenvectors. Random Struct.

Algorithms 42(1) 110–134.
[36] Vu, V. (2007) Spectral norm of random matrices. Combinatorica 27(6) 721–736.
[37] Vu, V. (2008) Random Discrete Matrices. Springer, pp. 257–280.
[38] Wigner, E. P. (1955) Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62(2) 548–564.
[39] Wigner, E. P. (1958) On the distribution of the roots of certain symmetric matrices. Ann. Math. 67(2) 325–327.
[40] Wood, P. M. (2012) Universality and the circular law for sparse random matrices. Ann. Appl. Probab. 22(3) 1266–

1300.
[41] Wood, P. M. (2016) Universality of the ESD for a fixed matrix plus small random noise: a stability approach. Ann.

Inst. Henri Poincaré Probab. Stat. 52(4) 1877–1896.

Cite this article: Wang K and Wood PM (2023). Limiting empirical spectral distribution for the non-backtracking
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