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Attenuation of turbulence in a periodic cube by
finite-size spherical solid particles
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To investigate the attenuation of turbulence in a periodic cube due to the addition of
spherical solid particles, we conduct direct numerical simulations using an immersed
boundary method with resolving flow around each particle. Numerical results with
systematically changing particle diameters and Stokes numbers for a fixed volume fraction
A show that the additional energy dissipation rate in the wake of particles determines
the degree of the attenuation of turbulent kinetic energy. On the basis of this observation,
we propose formulae describing the condition and degree of the attenuation of turbulence
intensity. We conclude that particles with size proportional to 1/,/y, where A and y are
the Taylor length and the mass density ratio between particles and fluid, most significantly
reduce the intensity of developed turbulence under the condition that y and A are fixed.
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1. Introduction

We investigate solid particle suspension, where flow advects particles and vortices
shedding from particles can change surrounding flow. Such fluid—particle interactions play
essential roles in many flow systems. In particular, the enhancement and attenuation of
turbulence by the addition of solid particles are important in industrial and environmental
flows. However, there remain many unsolved scientific issues on the complex phenomena.
In fact, although turbulence modulation due to solid particles is a classical issue in fluid
mechanics back to the seminal experiments by Tsuji & Morikawa (1982) and Tsuji,
Morikawa & Shiomi (1984) about 40 years ago, there is no clear conclusion even for
the most fundamental question: i.e. what determines the condition for the turbulence
modulation? Gore & Crowe (1989) proposed a criterion on this issue by compiling data
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for particulate turbulent pipe flow and a jet. They concluded that turbulence was enhanced
(or attenuated) if the ratio D/L, with D and L being the particle diameter and the integral
length (L = 0.2 x (pipe radius) for pipe flow, and L = 0.039 x (distance from the exit)
for a jet), is larger (or smaller) than 0.1 because larger particles produce turbulence in
their wake, while smaller ones acquire their energy from large-scale vortices. Since then,
even recently experiments with newer techniques such as particle tracking (Cisse et al.
2015) and particle image velocimetry (Hoque et al. 2016) were conducted. However, the
Gore & Crowe (1989) picture still holds, although Hoque et al. (2016), for example,
proposed a more accurate estimation of the criterion of the enhancement and attenuation
of homogeneous turbulence.

Numerical simulations have been playing important roles in the investigation of this
complex phenomenon with many control parameters. Elghobashi & Truesdell (1993)
and Elghobashi (1994) conducted numerical simulations of particulate turbulence. Their
simulations were conducted with pointwise particles that obey the Maxey & Riley (1983)
equation, and they showed the importance of the normalized particle velocity relaxation
time (i.e. the Stokes number). Although continuum approaches (Crowe, Troutt & Chung
1996) were also used, we have to resolve flow around each particle to treat fluid—particle
interactions accurately. Numerical methods for such direct numerical simulations (DNS)
with finite-size particles were proposed in this century (Kajishima e al. 2001; ten Cate
et al. 2004; Burton & Eaton 2005; Uhlmann 2005). For example, Kajishima ez al. (2001)
demonstrated numerically turbulence enhancement by finite-size particles. Since then,
numerical schemes (Maxey 2017) have been developing to more easily and accurately
treat the no-slip boundary condition on particles’ surface. Thanks to these developments,
many authors recently conducted DNS of particulate turbulence under realistic boundary
conditions: for example, channel flow (Uhlmann 2008; Shao, Wu & Yu 2012; Picano,
Breugem & Brandt 2015; Costa et al. 2016, 2018; Fornari et al. 2016; Wang et al. 2016;
Peng, Ayala & Wang 2019), pipe flow (Peng & Wang 2019), duct flow (Lin et al. 2017) and
Couette flow (Wang, Abbas & Climent 2017).

In the present study, as a first step towards the complete clarification, prediction
and control of the interaction between solid particles and turbulence, we examine
the simplest case: namely, the modulation of turbulence by finite-size solid spherical
particles in a periodic cube. Many authors (ten Cate et al. 2004; Homann & Bec 2010;
Lucci, Ferrante & Elghobashi 2010, 2011; Yeo et al. 2010; Gao, Li & Wang 2013;
Wang et al. 2014; Schneiders, Meinke & Schroder 2017; Uhlmann & Chouippe 2017)
studied numerically behaviours of finite-size particles in periodic turbulence. Concerning
turbulent modulation, ten Cate er al. (2004) conducted DNS of forced turbulence of
particle suspension to demonstrate the enhancement of energy dissipation due to the
excitation of particle-size flow. In particular, they showed that the energy spectrum
was enhanced for wavenumber k larger than the pivot wavenumber k, ~ 0.72ky, with
kg = 27 /D being the wavenumber corresponding to the particle diameter D, whereas it
was attenuated for k < k,. Similar modulation of the energy spectrum was also observed
by Yeo et al. (2010), Gao et al. (2013) and Wang et al. (2014). An important observation
in these studies is that the pivot wavenumber k, is approximately proportional to kg in
forced turbulence (ten Cate er al. 2004; Yeo et al. 2010), though k;/k, varies in decaying
turbulence (Gao et al. 2013). The importance of particle size was also emphasized by Lucci
et al. (2010, 2011). More concretely, Lucci et al. (2011) demonstrated numerically that
the decay rate of turbulence depended on the particle size even if the Stokes number was
identical. Gao et al. (2013) demonstrated similar results, although they also emphasized the
impact of the Stokes number on the turbulence modulation. Recall that once we fix the flow
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conditions, turbulence modulation can depend on, in addition to the number of particles,
both the particle size and the Stokes number. Although the importance of the particle size
is evident, the role of the Stokes number is still ambiguous. In particular, the condition
for the turbulence modulation (i.e. attenuation or enhancement) has not been described
explicitly in terms of these particle properties because of the lack of systematic parametric
studies. Besides, it is also desirable to predict the degree of turbulence modulation under
given flow conditions and particle properties.

The present study aims at showing the condition for finite-size particles to attenuate
turbulence in a periodic cube. To this end, we conduct a systematic parametric study
by means of DNS of forced turbulence, and investigate turbulence modulation due to
spherical solid particles with different diameters and Stokes numbers for a fixed volume
fraction. Then, based on the obtained numerical results, we propose formulae that give the
condition and degree of turbulence attenuation.

2. Direct numerical simulations
2.1. Numerical methods

The fluid velocity u(x, t) at position x and time ¢ is governed by the Navier—Stokes
equation

Ju 1 2 «
—4u-Vu=——Vp4+vVut+f+f7° 2.1)

at oF
and the continuity equation

V.eu=0, (2.2)

for an incompressible fluid in a periodic cube with side Ly (= 2m). Here, p(x,¢) is
the pressure field, and pr and v denote the fluid mass density and kinematic viscosity,
respectively. In (2.1), £ (x, 1) is the force due to suspended solid spherical particles,
whereas f(x,t) is an external body force driving turbulence. In the present study,

we examine the two cases with different kinds of external force f(x,f). One is a
time-independent forcing (Goto, Saito & Kawahara 2017):

S = (—sinxcosy, +cosxsiny, 0). (2.3)

The other forcing, f”(x, 1), is a force that keeps the energy input rate P constant
(Lamorgese, Caughey & Pope 2005). This forcing is expressed concretely in terms of its

Fourier transform f @ (k, t), where k is the wavenumber, as

P
— k.1 if0 < k| <k,

SOk, =1 2E ) (2.4)
0 otherwise.
In (2.4), a(k, t) and E; are the Fourier transform of u(x, ¢) and the kinetic energy
1
Er = —|af? 2.5
p= D Sl 2.5)

0<|k| <k

in the forcing wavenumber range (0 < |k| < k¢), respectively. In (2.4), P is arbitrary
because the Reynolds number can be changed by changing v. We use the value P = 1,
whereas we set kr = 1.5 so that we can make the inertial range as wide as possible.
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f N3 v Ry Lo/L L/7 7/Ax CFL number

Run256v  f® 256 8x 1073 48 53 48 1.0 6.4 x 1072
Run 512v 5123 2.0
Run256i f@ 256 7.3x1073 94 47 54 1.0 5.8 x 1072

Table 1. Parameters and statistics of single-phase turbulence, where N> is the number of grid points,
Lo (= 27) is the side of the numerical domain, Ax (= Lo/N) is the grid width, v is the kinematic viscosity,
R, is the Taylor-length-based Reynolds number, L is the integral length, and 7 is the Kolmogorov length. The
Courant—Friedrichs—Lewy (CFL) number is defined by the temporal average of +/2K;/3 At/Ax, with the total
kinetic energy K; per unit mass and the time increment A¢ of the temporal integration.

Note that £ sustains statistically homogeneous isotropic turbulence, whereas f)
sustains turbulence with a mean flow that is composed of four columnar vortices (Goto
et al. 2017).

In the present DNS, we use the second-order central finite difference on a staggered
grid to estimate the spatial derivatives in (2.1). We use N> = 256> grid points for the main
series of DNS, and 5123 points for accuracy verifications. In table 1, we summarize other
numerical parameters and the statistics of the single-phase turbulence. In the present study,
we estimate the integral length L(r) by 37 [~ K~V E(K', 1) dk'/4 [° E(K', 1) dK, where

E(k, t) is the energy spectrum, and the Taylor length A(¢) by \/10v K'(#) /€ (t), where € (¢)
is the spatial average of the energy dissipation rate and K'(r) is the turbulent kinetic energy:

K'(1) = 3(lux,n) — U®?),  with Ux) = u(x, 1). (2.6)

Here, (-) and -~ denote the spatial and temporal averages, respectively. Then the
Taylor-length-based Reynolds number is evaluated by R,(¢) = u/(r) A(¢)/v, where
u'(t) = /2 K'(t)/3. We also estimate the Kolmogorov length by n (1) = e(®)~ V434 We
have confirmed that the statistics shown in table 1 are common in Runs 256v and 512v,
implying that the spatial resolution for the former run is fine enough.

We estimate the particle—fluid interaction force f“7(x,t) in (2.1) by an immersed
boundary method (Uhlmann 2005). In this method, we distribute uniformly N; Lagrangian
force points on each particle’s surface (Saff & Kuijlaars 1997; Lucci et al. 2010) to estimate
the interaction force < by imposing the no-slip boundary condition of the fluid velocity
on these points. The force f 7 (x, 1) is determined by redistributing ]”“1’ onto grid points,
whereas the force f j(_f and moment Lj(_f around the particle centre acting on the jth
particle are estimated by integrating the reaction —f“f’ on the particle’s surface. Then
we obtain the position x;(#), velocity v;(f) = dx;/d¢ and angular velocity w;(7) of the
Jjth particle (I < j < N,, with N, being the number of particles) by integrating Newton’s
equations of motion:

dv;
m—L =7 4" 2.7
and
d(z)j
dr

Here, we denote the diameter and mass density of the particles by D and p,, and

therefore the mass and inertial moment of a particle are m = & ,opD3 /6 and I = mD?/10,
respectively. In (2.7), £ is the interaction force between particles. For this, we consider
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only the normal component of the contact force due to the elastic collision, which is
estimated by the standard discrete element method. For the estimation of f7, we neglect
the frictional force and the lubrication effect. We have also neglected gravity.

We integrate numerically (2.1), (2.7) and (2.8) by the fractional step method (Uhlmann
2005), where we use the second-order Adams—Bashforth method instead of the three-step
Runge—Kutta method. We also use a modified version (Kempe & Frohlich 2012) of
Uhlmann’s immersed boundary method for particles with the smallest Stokes numbers
in each run (see table 2) when we integrate (2.7) and (2.8); it improves the numerical

stability by modifying the evaluation method of f ;—f and L;_ 7 in these equations. We

integrate the viscous term in (2.1) by the second-order Crank—Nicolson method, and the
elastic force in (2.7) by the first-order Euler method. The discretized forms of the Poisson
equation for the pseudo-pressure and the Helmholtz equation for the implicit integration
of the viscous term are solved by the direct method with the fast Fourier transform (FFT).
We also use the FFT to estimate the body force £ by (2.4), where we do not use any
special treatment for the velocity at the grid points inside particles, since the particle size
(see table 2) is always smaller than the forcing scale, 27 /ks. Our DNS codes have been
validated by the test of a sedimenting sphere demonstrated in § 5.3.1 of Uhlmann (2005).

2.2. Parameters

For a given external forcing, the parameters of fluid phase are the kinematic viscosity v,
the mass density pf, a characteristic length (e.g. the integral length L or the Taylor length
1), and a characteristic velocity (e.g. the root-mean-square u’ of fluctuation velocity).
The parameters of particles are, on the other hand, the diameter D, the mass density p,
and the number N,, of particles. Therefore, there are four independent non-dimensional
parameters. Here, we adopt R = u'A/v, the volume fraction A of the particles, the
non-dimensional particle diameter D/L, and the particle Stokes number St = 7,/T, where

yD?
W=t =l 2.9)

is the relaxation time of particle velocity, and T = L/u’ is the turnover time of the largest
eddies. We conduct three series of DNS with fixed Ry and A (= 8.2 x 1073) by changing
D/Z and St; see tables 1 and 2. In §§ 3 and 4 (see figures 3 and 5), we also discuss results of

supplemental DNS for the smallest particles in Runs 256v and 256i with a smaller volume
fraction (A = 4.1 x 1073).

3. Results

The target of the present study is the attenuation of the turbulent kinetic energy defined
by (2.6). First, we examine the turbulence driven by the external force f ) We show the
temporal average K’, normalized by the value K, for the single-phase flow, in figure 1(a)

as a function of the particle diameter D normalized by the integral length L. Here, we
compute the time average for the duration of 2507 in the statistically steady state. At
the initial time, we distribute the particles uniformly on a three-dimensional lattice with
vanishing velocity, and we exclude the transient period of about 197 before the system
reaches the statistically steady state. On the other hand, we evaluate the spatial average
K’ (1) of the turbulent kinetic energy of the fluid by using the method proposed by Kempe
& Frohlich (2012) to calculate the volume fraction of the fluid phase in each grid cell.

949 A45-5


https://doi.org/10.1017/jfm.2022.787

S. Oka and S. Goto

"PAJBRWNSA 3q Jouued AIIO0[oA
SATIR[QI AU} As1BIAq soponred 3saBie] ayy 10f 9oy MOYS JoUu O A “(9°P) JO MOI WOROQ AYY UI PIJSI OS[ ST (€°¢) Jquunu Sploukay d[onIed Ay, 'sased oYy [ Ul _O] X T'8
2q 0) paxy SI |/ UONOERIJ SWIN[OA Y] Jey) os[e 910N "(] 2[qe}) 9oud[nqiny aseyd-a[Surs ay) Jo [ pue 7 Jo sonfea ay) asn opp oponed e uo syurod 90105 Jo roquunu oY) ST 7y
pue ‘sopnaed Jo requinu oy St 4y ‘7 Aq pougop IeqUINU SIY0IS Y} ST 4§ ‘omel KJISudp ssew oy st (Jo /40 =) A “ropourerp oyy st (7 :soponed oy jo siojoweIed 7 d[quL

— — — - Syl ovl 6¢l Cll 88 8 €9 (44 144 (44 33 €C I 2
698¢C1 698 ¢l 698 ¢l 698 ¢l 8Ice 8I¢CE 8I¢ce 8I¢cE S08 S08 S08 S08 <0C 0T <0C 0T 0C N
[ I ! ! 8 8 8 8 9 9 9 ¥9 cIs 45 45 45 45 N
00Lc 099 OLI v 099 OLI Iy 0l OL1 14 0l 9¢C 0L1 v or 9¢ ¥9°0 )
8¢l [43 8 (4 8¢l [43 8 4 8¢l [43 8 < 45 8¢l [43 8 4 A
9 ¥9 ¥9 9 [43 [43 [43 [43 91 91 91 91 08 08 08 08 08 b/aq
'l 'l 1l 'l 650 650 650 650 6C0 620 620 620 SI'o S1'o SI'0 S1'o cro 1/a
¥9 ¥9 9 9 [43 [43 [43 [43 91 91 91 91 8 8 8 8 8 w/a
196z uny (2)

508 508 508 S08 S08 N
IS IS IS IS TIS N
0€1 (43 'S 0C 1S°0 s
TIS 8CI1 43 8 T A
8L 8L 8L 8L 8L u/q
IO  LT0 LI0 L0 L0 1/d

91 91 91 91 91 ¥v/d

AZIG uny (9)
— — — — (43! 0¢€l1 ! Il €8 08 S9 |12 (9% w LE ST 11 92y
69871 69871 69871  698CI  8Ice  8Ite  8ITE  8IZE  SO8 508 508 508 T0c  T0T 0T 20T 70T N
I I I I 8 3 8 8 ¥9 9 ¥9 9 TIs TS TIS TS TIS N
0012 0zs o€l € 0cs o€l 43 'S o€l 43 'S 07¢ o€l 43 'S 07C IS0 iy
8TI1 43 8 T 8CI1 43 8 T 81 43 8 T TIs 8TI 43 8 T A
€9 €9 €9 €9 43 43 € 43 91 91 91 8L 8L 8L 8L 8L u/a
€T €T €T €T 990 990 990 990  €£0  €£0 €€°0 €0 LI'0O  LI'0O  LI'O  LI'0O  LIO 1/a
79 ¥9 ¥9 ¥9 43 43 43 43 91 91 91 91 8 8 8 8 8 xv/a

A9GT uny (v)

949 A45-6

ssald Ausianun abprquied Aq suljuo paysiiand £8/°zz0z"wyl/£ 101 0L/610°10p//:5d1y


https://doi.org/10.1017/jfm.2022.787

https://doi.org/10.1017/jfm.2022.787 Published online by Cambridge University Press

Attenuation of turbulence by spherical particles

(a) T (b) LR LERALLRALL LR LLLL DAL
L :
h
S " 1 I i |
]
~
X s 4 4 05 i 4
0 | NIRRT B ETET BN R R TIT] B TTT] B SRR
10! 1 10! 1 10 102 103 10*
D/L St

Figure 1. (a) Particle-size dependence of the temporal mean K’ of the turbulent kinetic energy, which is

normalized by the value K{, for the single-phase flow. The results are from Run 256v with forcing f° ) Different
symbols denote the results for different values of the Stokes number: St = 0.51, [J; St = 2.0, o; St = 8.1, A;

St =32, A; St = 130, B; St = 520, e; St = 2100, x. (b) Stokes number dependence of K'. Different symbols
correspond to different particle diameters: D/L = 0.17, o; D/L = 0.33, B; D/L = 0.66, o; D/L = 1.3, . In
the cases of the smallest particles (D/Z = 0.17), we also show the results of higher-resolution DNS (Run 512v)
with blue symbols. Error bars indicate the standard deviation of K'(r).

It is clear, in figure 1(a), that smaller particles are able to attenuate turbulence more
significantly, and no attenuation occurs when D is as large as L. This is consistent with the

conventional view (Gore & Crowe 1989). However, looking at the result with D = 0.17L
and St = 0.51, for example, it is also clear that D < L is not the sufficient condition for the
attenuation and that the degree of the turbulence reduction depends on the Stokes number.

The St dependence of the attenuation rate is evident in figure 1(b). Looking at the case

with the smallest particles D = 0.17L (e in figure 1b), we can see that the attenuation is
more significant for larger St, and it saturates for St >> 1, for which we observe about 43 %

reduction of K’. Recall that the volume fraction A of the particles is only 8.2 x 1073,
Although larger particles with D = 0.33L (M in figure 1b) also attenuate the turbulence,
the attenuation rate is smaller than for the cases with D = 0.17L. However, the tendency
that the attenuation rate, for fixed D, is larger for larger St and it saturates for Sz >> 1 is
common in the both cases with D = 0.17L and 0.33L. Larger particles with D = 0.66L or
1.3L cannot attenuate turbulence even if St > 1.

To verify the numerical accuracy, we also show the results of Run 512v in figure 1(b).
Recall that Runs 512v and 256v treat the common physical parameters (table 2) with
different spatial resolutions for the smallest particles (D = 0.17L), since it is particularly
important to show that the significant reduction of turbulence intensity with those small
particles is not an artefact. It is therefore of importance to confirm that the results
(blue symbols) with the higher resolution (D/Ax = 16, Run 512v) and those (black
ones) of Run 256v (D/Ax = 8) are in good agreement. This validation of the numerical
resolution is consistent with the previous study (Uhlmann & Chouippe 2017) with the same
immersed boundary method, which also used the resolution of D/Ax = 16. Incidentally,
the relatively large fluctuations indicated by error bars in figure 1(b) do not imply large
statistical errors, but they stem from the significant temporal fluctuations of turbulence
driven by f ) (Yasuda, Goto & Kawahara 2014; Goto et al. 2017).

Next, we look at the results (figure 2) with the other forcing . The trend of the
attenuation of turbulence driven by £ is similar to the case with ) shown in figure 1;
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Figure 2. Same as figure 1 but for the other forcing, £ (Run 256i). (a) Different symbols denote the results
with different values of the Stokes number: St = 0.64, [J; St = 2.6, o; St = 10, A; St = 41, A; St = 170, H;

St = 660, e; St = 2700, x. (b) Different symbols correspond to different particle diameters: D/Z =0.15, o;
D/L=0.29,R;D/L=0.59,0;D/L=1201.

when D < L, the turbulence intensity is attenuated more significantly when St is larger (or
D is smaller) for fixed D (or fixed Sr). We also notice that the attenuation rate of turbulence
driven by £ is smaller than in the case with £, This is due to the fact that there is no

mean flow in turbulence driven by f). We will discuss this difference below in more
detail.

We have observed in figures 1 and 2 that for fixed D, the attenuation is more significant
for larger St, and it saturates when St > 1. We can explain these observations by the
facts that (i) the relative velocity magnitude between a particle and surrounding fluid
is determined by Sz, and (ii) it is an increasing function of St that tends to a value of
O() for St > 1. To demonstrate these facts, we plot in figure 3(a) the average relative
velocity magnitude (|Au[), as a function of St for Run 256v. Here, (), denotes the
average over particles, and we evaluate Au for each particle by using the method proposed
by Kidanemariam et al. (2013) and Uhlmann & Chouippe (2017), where we define the
velocity of the surrounding fluid of a particle by the average fluid velocity on the surface
of the sphere with diameter 2D concentric with the particle.

It is clear that the relative velocity magnitude tends to be a value of O®') when St > 1
in the cases D = 0.17L (e) and 0.33L (H). Note that for larger particles (e.g. the results

shown in light grey for D = 0.66L), the estimated values of Au may have less meaning. In

particular, the estimated fluid velocity has no physical meaning when D > L because it is
the average of fluid velocity over a domain much larger than the largest eddies. This is the
reason why we have excluded the data for the largest particles (D = 1.3L) from figure 3(a)
and the following arguments.

Similar dependence of (|Aul), on St and D is observed in figure 3(c) for the case (Run
256i) with the other forcing, ). Looking at the results with D = 0.15L (e) and 0.29L
(M), we can see that the relative velocity magnitude is larger for larger St, and it tends to a
value for St > 1. It is clear in figures 3(a) and 3(c) that the velocity difference magnitude
depends only weakly on the particle size. This is reasonable because the Stokes number
St (= 1p/T) determines particles’ ability to follow the swirling of the largest (i.e. most
energetic) eddies. We also notice that the relative velocity magnitude normalized by « is
larger for £) than for £®. Since turbulence driven by f*) is accompanied by mean flow,
the velocity of surrounding fluid, and therefore | Au|, can be larger.
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Figure 3. (a,c) Average relative velocity between a particle and the surrounding fluid. (b,d) Correlation
between the attenuation rate (3.2) of the turbulent intensity and the estimate (3.1) of the energy dissipation
rate €, due to particles normalized by the mean energy dissipation rate € of single-phase turbulence. For the
estimation of €,, we put C, = 1. The results are for (a,b) Run 256v (with f @), and (c,d) Run 256i (with
f (i)). Different symbols are the results for different particle diameters: (a,b) D/Z =0.17, ¢; D /Z =0.33, |l
D/Z = 0.66, o; (c,d) D/Z =0.15, o; D/Z =0.29, K D/Z = 0.59, o. In (b,d), red symbols represent results
with a smaller volume fraction A = 4.1 x 1073 of the smallest particles (D/L = 0.17 in (b), and 0.15 in (d));
we show results for five cases of the mass ratio (y = 2, 8, 32, 128 and 512) in each panel. The proportional
coefficients of the dotted lines in (b) and (d) are 1.7 and 0.93, respectively. Error bars indicate the standard
deviations of the temporal fluctuations.

We may also confirm the St dependence of the relative velocity in visualizations.
Figure 4 shows snapshots of flow and particle motions on a cross-section (z = 0) for Run
256v. Black arrows show the flow, which is composed of four vortex columns sustained by
™ (2.3), whereas blue balls are the particles (D = 0.17L) with two different St values:
St = 0.51 in figure 4(a), and St = 130 in figure 4(b). Comparing the particle velocity (blue
arrows) to the fluid velocity, we can see that the relative velocity is much more significant
for the larger St. It is also remarkable that large enstrophy is produced in the wakes of the
particles with larger Sz. As will be explained below, this large relative velocity and the
resulting vortex shedding in large St cases are the cause of the turbulence attenuation.

Since we have computed the relative velocity, we can estimate the energy dissipation
rate per unit mass due to the shedding vortices around particles by

A (IAuI3)p‘

D (3.1)

e =0C,
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Figure 4. Visualization of flow and particle motions on the z = 0 plane for Run 256v. Blue balls indicate

particles, D = 0.17L (= 7.8%); blue arrows indicate particle velocity; black arrows indicate fluid velocity;
background colour indicates enstrophy magnitude (redder colour implies larger magnitudes). The Stokes
number is (a) St = 0.51 and (b) St = 130. A supplementary movie is also available online at https://doi.org/10.
1017/jfm.2022.787.

Here, C, is a constant, and A is the volume fraction of the particles. The estimation
(3.1) of €, is derived under the assumption that the energy dissipation rate in the wake
behind a single particle is balanced with the energy input rate P, due to the force from
the particle to fluid. Since P, depends only on D and |Au| when the particle Reynolds
number Re,, (see (3.3) below) is large, the dimensional analysis leads to P, ~ |Aul/D.
Then the mean energy dissipation rate due to all particles may be estimated by (3.1)
with the factor A because the volume fraction of particle wakes is proportional to A.
The estimation of €, by (3.1) is an approximation because, in a more precise sense,
C, weakly depends on Re),. This approximation is, however, sufficient in the following
arguments. The additional energy dissipation rate €, is the key quantity for understanding
the turbulence attenuation. More concretely, when the relative velocity is non-negligible,
shedding vortices enhance turbulent fluctuating velocity at scales smaller than the particle
size D. This enhancement was demonstrated in previous studies (ten Cate et al. 2004;
Yeo et al. 2010; Wang et al. 2014) by investigating the energy spectrum. In particular,
they showed that the energy spectrum E(k) was enhanced (attenuated) for wavenumbers
k larger (smaller) than the pivot wavenumber k, ~ 0.6k;—0.9k;, with k; = 27/D. In the
present DNS, we may estimate k), in the case with the smallest particles because the other
cases show only moderate attenuations. By estimating the energy spectrum without special
treatments of the existence of particles, we observe that the smallest particles (D ~ 87 in
both Runs 256v and 256i) attenuate E(k) for k < 0.5kg, whereas they strongly enhance
it for k 2 k4 (figures are omitted). These observations are consistent with the proposed
scenario of turbulence attenuation; that is, particles acquire their energy from the largest
energetic eddies and then bypass the energy cascading process to dissipate directly the
energy at the rate €, in their wakes.
In fact, it is evident in figures 3(b) and 3(d) that the attenuation rate defined by

Ar = KK (3.2)
= :
KO
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is approximately proportional to €,. This is the most important observation of the present
DNS. We also show in figures 3(b,d) results (red symbols) with a smaller volume fraction

(A = 4.1 x 1073) for the smallest particle cases. We can see that the relation between Ar
and ¢, is independent of A, which further verifies the estimation (3.1) of €,. Note that the
proportional coefficient Ar/(€,/€p) is about twice as large for the turbulence driven by

@ as for 7. In the next section (see (4.10)), we will show the origin of this difference.
By using the estimated relative velocity magnitude, we can also estimate the particle
Reynolds number

Rep = ———2 (3.3)

to see if Re, is large enough for vortex shedding. The estimated values are listed in
table 2. For example, for St = 32, Re, = 42 for D = 0.17L, Re, = 80 for D = 0.33L,

and Re, = 124 for D = 0.66L. This means that vortices are shedding from the particles
in these cases. It is, however, important to emphasize that although Re, 2 1 is a
necessary condition for the turbulence attenuation, large Re;, does not always imply a large
attenuation rate, which depends on D.

4. Discussions

On the basis of the DNS results shown in the previous section, we discuss the physical
mechanism of turbulence attenuation in the present system. Figures 1 and 2 imply that
turbulence can be attenuated more significantly by smaller particles, and no attenuation
occurs when D/L = 1. Therefore, here we restrict ourselves to the cases of the attenuation
by small particles; more precisely,

DSL. @1

It is also an important observation that vortex shedding from particles is enhanced when
turbulence is significantly attenuated (see figure 4 and the supplementary movie). This

implies that when vortices are shed from particles smaller than L, the intrinsic turbulent
energy cascade is bypassed and the energy dissipation is enhanced by the shedding
vortices, which leads to the attenuation. In the following subsections, we consider the
condition and degree of the turbulence attenuation due to this mechanism.

4.1. Condition for turbulence attenuation

Let us derive the condition for turbulence attenuation. For simplicity, in this subsection,
we neglect the temporal fluctuations of L(t), A(¢), K'(r) and u/(¢), and omit the overbars

of L, A, K" and /. The DNS results shown in the previous section (see figures 3b,d)
indicate that the attenuation rate is determined by the energy dissipation rate (3.1) due to
shedding vortices. Therefore, turbulence attenuation requires the conditions for shedding
vortices to acquire their energy from the turbulence: (i) there exists non-negligible (i.e.
O(u)) relative velocity between particles and their surrounding fluid; and (ii) the particle
Reynolds number (3.3) is large enough for shedding vortices.

First, we examine (i), which is the condition for particles not to follow the surrounding
flow. In other words, the particle velocity relaxation time T, is larger than the turnover
time of the largest eddies, i.e. St 2 1. Estimating 7, by (2.9), we can express this condition

949 A45-11
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(St 2 1) as

18 A
L~— 4.2)

¥ Re ﬁ

Here, we have defined the Reynolds number by Re = «/L/v, and used T = L/u’ and the
expression

Dz

15vu’? N u’ 43
€ = =z 2 4.3)
of the energy dissipation rate in isotropic turbulence (Taylor 1935).

Equation (4.2) implies that the sufficient velocity difference between particles and
fluid requires that particle diameter D must be larger than a length proportional to the
Taylor length A. Note, however, that when the mass density ratio y is much larger than 1,
particles smaller than A can attenuate turbulence because of the coefficient 1/,/y on the
right-hand side of (4.2). Indeed, this is the case for some parameters of the present DNS;
for example, for Run 256v (see table 1), although D = 0.17L is comparable with A, St can
be much larger than 1 when y >> 1, and in such cases turbulence is significantly attenuated
(figure 1).

Next, we examine condition (ii). When (4.2) holds, the relative velocity magnitude is
O(u') (figures 3a,c), and therefore the particle Reynolds number (3.3) is Re, ~ u/D/v.
The condition for Re, to be larger than O(1) is therefore expressed as

D > L/Re. (4.4)

For Re > 1, if (4.2) holds, then (4.4) also holds. Hence (4.2) gives the lower bound of D
for the turbulence attenuation by small particles.

4.2. Estimation of attenuation rate

Further developing the above arguments, we may also estimate the attenuation rate of K'.
Here, we assume that if D < L, then particles have only limited impact on the mean flow;
this is indeed the case in the present system with mean flow driven by f). Under this
assumption, the energy input rate (U - f*)) is the same as in the single-phase turbulence.
Hence, because of the statistical stationarity, the mean energy dissipation rate of the
particulate turbulence is approximately equal to the value

(Ko + K})*/?

7 4.5)

€0 = Ce
for the single-phase flow. Here, C. (= O(1)) is a flow-dependent constant (Goto &
Vassilicos 2009), and Ko and K{, denote the kinetic energies of the mean and fluctuating
single-phase flows, respectively. Incidentally, in the turbulence driven by £, although the
mean flow is absent, the energy input rate is the same, by construction (2.4) of the forcing,
in the single-phase and particulate flows.

In particulate turbulence with a small volume fraction of particles, the input energy
is either transferred to the Kolmogorov scale by the energy cascading process from
the forcing-scale eddies, or dissipated in the wake behind particles. Hence the energy
dissipation rate is the sum of €. through the energy cascade and ¢, in the wake of the
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0.4 T T T T T

1= (1=Ar/(1 +a))*?
)

0 0.1 0.2 0.3
ep/eo

Figure 5. Verification of (4.8), according to which we replot the data in figures 3(b) and 3(d) with blue and
black symbols, respectively. Darker and lighter symbols denote the cases with A = 8.2 x 1073 and 4.1 x 1073,
respectively. The dashed line indicates 1.3¢, /€.

particles (i.e. the energy dissipation rate bypassing the energy cascade):
€0 = €c + €p. 4.6)

Here, €, is expressed by
(Ko + K')3/?
=l

in terms of the modulated turbulent kinetic energy K’. Then substituting (4.5) and (4.7)
into (4.6) divided by €, we obtain the formula

4.7)

Ar \? €
- (1 _ ) _% 38)
l+o €0
for the attenuation rate Ar defined by (3.2). In (4.8), o denotes the ratio
Ko
Ky

between the mean and fluctuation energies of single-phase flow: « = 0 for the turbulence
driven by £, whereas « is estimated numerically as 1.86,/1.89 2 0.98 for f*). Note that
although C¢ in (4.5) and (4.7) depends on flow, (4.8) is independent of C.. This means
that (4.8) is flow-independent. In fact, by using (4.8), the two data sets of Ar in figures 3(b)
and 3(d) for the two kinds of forcing collapse (figure 5). The formula (4.8) further reduces
to

N (I +a)e,

€0

Ar (4.10)

when Ar is not too large. This explains the reason why the proportional constant
Ar/(ep/€p) in figure 3(b) is approximately twice as large as that in figure 3(d). Recall
that o 4+ 1~ 1.98 for £, and @ + 1 = 1 for £,
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We emphasize that (4.8) can predict the attenuation rate Ar if we know €,. By using
(3.1), we may estimate €, for St >> 1 because |Au| = cu’ for St > 1 with a flow-dependent
constant ¢ (figures 3a,c). Then we may rewrite (4.8) as

= 1 . .

Here, C1/7 ~c3C 7/ Ce is also a flow-dependent constant. The above equation may reduce to

(14+a)AL
D

when Ar is not too large. This simple expression (4.12) means that the attenuation due to
the considered mechanism occurs when (4.1) holds with a sufficient volume fraction A.
In other words, the upper bound of the attenuation by small particles is given by (4.1). It
also explains that the attenuation rate Ar is larger for smaller D. Hence, combining this
with (4.2), we conclude that for fixed A and y, particles with size proportional to 4/,/y
most effectively attenuate turbulence intensity. Since the numerical verification of this
conclusion requires DNS with further smaller particles, we leave it for future studies. It is
also worth mentioning that €, (see (3.1) and figures 3b,d), and therefore Ar approximated
by (4.12), are proportional to the volume fraction A. This explains the reason why larger
mass fraction (y A) generally tends to lead larger turbulence attenuation because St is
larger for larger y .

Ar (St> 1) (4.12)

5. Conclusions

We have derived the conditions (4.1) and (4.2),i.e.L > D > 1/ /7, for the dilute additives
of solid spherical particles, without gravity, to attenuate turbulence in a periodic cube.
First, we have verified numerically the conventional picture that the attenuation is due
to the additional energy dissipation rate €, in (3.1), caused by shedding vortices around
particles; more concretely, we have shown in figures 3(b) and 3(d) that the attenuation rate
Ar is approximately proportional to €,. This result leads immediately to the attenuation
condition because the attenuation occurs when €, in (3.1) takes a finite value, which
requires a finite relative velocity |Au| between particles and their surrounding fluid, i.e.
St > 1. In fact, as shown in figures 3(a) and 3(c), |Au| takes finite values when St > 1,
and it tends to a value of O(u) for St > 1. The condition St = 1 leads to (4.2) for the
particle diameter D; and if (4.2) holds, then Re;, >> 1 also holds, and therefore vortices are
shedding from the particles. Hence (4.2) gives the lower bound of D for the turbulence
attenuation. In other words, since particles smaller than /_l/ /v behave like tracers for the
largest energetic eddies, they cannot modulate them.

The picture of the turbulence attenuation due to the shedding vortices also leads to the
estimation of the attenuation rate. The simple argument developed in § 4.2 leads to (4.8),
which well explains the DNS results (figure 5). We emphasize that (4.8) is a formula
independent of forcing schemes. For St > 1, (4.8) reduces to Ar ~ AZ/D (see (4.12)),
which implies that for a given volume fraction, smaller particles that satisfy (4.2) attenuate
turbulence more effectively. This is consistent with the DNS results (figures 1 and 2).
Hence in turbulence at sufficiently high Reynolds numbers (and therefore L > 1 > 7)),
particles with size proportional to 1/ /v attenuate turbulence most significantly under
the condition that the Reynolds number Re, the mass ratio y and the volume fraction A
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are fixed. Furthermore, since Ar is proportional to AL/D for St > 1, turbulence is hardly
attenuated when D is as large as L (see also figures 1 and 2). Therefore, (4.1) gives the
upper bound of D for the attenuation by the considered mechanism.

Recall that we have considered turbulence attenuation only by small particles. Although

it is difficult to conduct DNS with particles larger than L in turbulence at similar Reynolds
numbers, we may expect only small relative velocity for D 2 L in the present system,
where neither gravity nor mean flow larger than L exists. Then vortices are not shed
from such large particles. Incidentally, when the mean-flow or gravitational effects are
important, the relative velocity between particles and fluid creates vortices, which can
lead to turbulence modulation.

Before closing this paper, it is worth mentioning the possibility that particles can
modulate turbulence even if they do not satisfy (4.2) because they can interrupt energy
cascade in the inertial range. More concretely, if particles’ velocity relaxation time 7, is
comparable with the turnover time 7 (£) of eddies with size ¢ in the inertial range, then they
follow the motion of eddies larger than ¢, but they have relative velocity with those smaller
than £. Since larger eddies have more energy, the relative velocity between particles and
fluid is determined by the eddies with size £. Therefore, the particles acquire their energy
from such eddies with size ¢ and some part of cascading energy at scales smaller than
£ may be bypassed by the shedding vortices behind particles and dissipated in the wake
of particles. Such a phenomenon is to be observed numerically in turbulence at higher
Reynolds numbers in the near future.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2022.787.
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