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Abstract

Optical coherence tomography (OCT) and confocal microscopy are pivotal in retinal imaging, offering distinct
advantages and limitations. In vivo OCT offers rapid, noninvasive imaging but can suffer from clarity issues and
motion artifacts, while ex vivo confocal microscopy, providing high-resolution, cellular-detailed color images, is
invasive and raises ethical concerns. To bridge the benefits of both modalities, we propose a novel framework based
on unsupervised 3D CycleGAN for translating unpaired in vivo OCT to ex vivo confocal microscopy images. This
marks the first attempt to exploit the inherent 3D information of OCT and translate it into the rich, detailed color
domain of confocal microscopy. We also introduce a unique dataset, OCT2Confocal, comprising mouse OCT and
confocal retinal images, facilitating the development of and establishing a benchmark for cross-modal image
translation research. Our model has been evaluated both quantitatively and qualitatively, achieving Fréchet inception
distance (FID) scores of 0.766 and Kernel Inception Distance (KID) scores as low as 0.153, and leading subjective
mean opinion scores (MOS). Our model demonstrated superior image fidelity and quality with limited data over
existing methods. Our approach effectively synthesizes color information from 3D confocal images, closely
approximating target outcomes and suggesting enhanced potential for diagnostic and monitoring applications in
ophthalmology.

Impact Statement
While OCT provides fast imaging, it can suffer from clarity issues; conversely, confocal microscopy offers
cellular detailed views but at the cost of invasiveness. Our 3D deep learning image-to-image translation
framework is the first to bridge optical coherence tomography (OCT) and confocal microscopy, offering rapid
and noninvasive acquisition of high-resolution confocal images. This image-to-image translationmethod has the
potential to significantly enhance diagnostic and monitoring practices in ophthalmology by overcoming the
ethical and technical constraints of traditional methods.

1. Introduction

Multimodal retinal imaging is critical in ophthalmological evaluation, enabling comprehensive visual-
ization of retinal structures through imaging techniques such as fundus photography, optical coherence
tomography (OCT), fundus fluorescein angiography (FFA), and confocal microscopy(1–3). Each imaging
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modality manifests different characteristics of retinal structure, such as blood vessels, retinal layers, and
cellular distribution. Thus, integrating images from these techniques can help with tasks such as retinal
segmentation(4,5), image-to-image translation (I2I)(6,7), and image fusion(8,9). Thereby improving the
diagnosis and treatment of a wide range of diseases, from diabetic retinopathy (DR), and macular
degeneration, to glaucoma(2,8).

Among these retinal imaging modalities, confocal microscopy, and OCT stand as preeminent
methodologies for three-dimensional retinal imaging, each offering unique insights into the complex-
ities of retinal anatomy. Confocal microscopy is a powerful ophthalmic imaging technique that
generates detailed, three-dimensional images of biological tissues. It utilizes point illumination and
point detection to visualize specific cells or structures. This allows for exceptional depth discrimin-
ation and detailed structural analysis. This technique is particularly adept at revealing the intricate
cellular details of the retina, crucial for the detection of abnormalities or pathologies(10,11). Although
in vivo confocal microscopy enables noninvasive examination of the ocular surface, its application is
confined to imaging superficial retinal layers and is constrained by a small field of view, as well as by
the impact of normal microsaccadic eye movements on the quality of the images(12–14). On the other
hand, ex vivo confocal microscopy, requiring tissue removal from an organism, is invaluable in
research settings as it offers enhanced resolution, nomovement artifacts, deeper and detailed structural
information, in vitro labeling of specific cell markers, and visualization of cellular-level pathology
which is not achievable with in vivo methods(15,16). The high-resolution capabilities of confocal
microscopy allow for a more granular assessment of tissue health. This includes clearer visualization
of changes in the appearance and organization of retinal pigment epithelium (RPE) cells, crucial in the
pathogenesis of age-related macular degeneration (AMD). Moreover, it is vital for observing micro-
vascular changes such as microaneurysms and capillary dropout in DR, and for monitoring neovas-
cularization and its response to treatment, offering detailed insights into therapeutic effectiveness.
These attributes make ex vivo confocal microscopy an essential tool for comprehensive retinal
research. While ex vivo confocal microscopy can only be used to image human retina post-mortem,
making it ineligible for use in regular clinical screening. Thus, it is notably beneficial to use murine
retinal studies as the mouse retina shares significant anatomical and physiological similarities with the
human retina(17,18). However, ex vivo confocal imaging requires tissue removal with the potential to
introduce artifacts through extracting and flattening the retina. Furthermore, the staining process can
lead to over-coloring, uneven color distribution, or incorrect coloring, potentially complicating the
interpretation of pathological features.

The OCT, on the other hand, is a noninvasive (in vivo) tomographic imaging technique that provides
three-dimensional images of the retinal layers, offering a comprehensive view of retinal anatomy. It boasts
numerous advantages, such as rapid acquisition times and the ability to provide detailed cross-sectional
grayscale images, which yield structural information at the micrometer scale. Clinically, OCT is utilized
extensively for its objective and quantitative measurements, crucial for assessing retinal layer thickness,
edema, and the presence of subretinal fluids or lesions, thereby facilitating real-time retinal disease
monitoring and diagnosis(1,19). Although OCT provides substantial advantages for retinal imaging, it
faces limitations such as diminished clarity under certain conditions and speckle noise, whichmanifests as
a grainy texture due to the spatial-frequency bandwidth limitations of interference signals. These
limitations can lead to artifacts, often exacerbated by patient movement, potentially obscuring critical
details necessary for accurate diagnosis and research. However, these speckle patterns are not just noise;
they are thought to contain valuable information about the retinal tissue’s microstructure(20), which could
be harnessed for detailed disease analysis and diagnosis.

In response to the need for a swift and noninvasive method of obtaining high-resolution, detailed
confocal images, we turn to the burgeoning field of deep learning-based medical image-to-image
translation (I2I)(21). I2I is employed to transfer multimodal medical images from one domain to another,
aiming to synthesize less accessible but informative images from available images. The translation
supports further analytical tasks, utilizing imaging modalities to generate images that are difficult to
acquire due to invasiveness, cost, or technical limitations(22–25). Thus, it enhances the utility of existing
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datasets and strengthens diagnostics in fields like ophthalmology(7,26), where multimodal approaches
have shown advantages over uni-modal ones in the analysis and diagnosis of diabetic eye diseases
(mainly DR), diabetic macular edema, and glaucoma(2,8,27–29). In OCT to Confocal translation, I2I aims
to transfer information that is challenging to visualize in OCT images into the clear, visible confocal
domain, preserving the structure of OCTwhile enriching them with high-resolution and cellular-level
details. By learning the relationship between confocal microscopy cell distribution and OCT speckle
patterns, we aim to synthesize “longitudinal confocal images,” revealing information traditionally
obscured in OCT. This advance aids early disease detection and streamlines treatment evaluation,
offering detailed retinal images without the ethical concerns or high costs of conventional confocal
methods.

Common medical image-to-image translation approaches have evolved significantly with the advent
of generative adversarial networks (GAN)(30,31). For instance, the introduction of pix2pix(32), a super-
vised method based on conditional GANs, leveraging paired images as a condition for generating the
synthetic image. However, obtaining such paired images can be challenging or even infeasible in many
medical scenarios. Consequently, unpaired image-to-image translationmethods, likeCycleGAN(33), have
emerged to fill this gap, addressing these limitations by facilitating the translation without the need for
paired images. These methods have been successfully applied to modalities likeMRI and CTscans(34–36),
yet the challenge of translating between fundamentally different image domains, such as from 3D
volumetric grayscale OCT to color confocal images at the cellular level remains relatively unexplored.
Translations of this nature require not only volume preservation but also intricate cellular detail rendering
in color, different from the grayscale to grayscale transitions typically seen inMRI-CT(37) or T1-weighted
and T2-weighted MRI conversions(38). This gap highlights the necessity for advanced translation
frameworks capable of handling the significant complexity of OCT to confocal image translation, a
domain where volumetric detail and cellular-level color information are both critical and yet to be
thoroughly investigated.

In this paper, we propose a 3D modality transfer framework based on 3D CycleGAN to capture and
transfer information inherent in OCT images to confocal microscopy. As registered ground truth is
unavailable, the proposed framework is based on an unpaired training strategy. By extending the original
CycleGAN approach, which processes 2D images slice-by-slice and often leads to spatial inconsistencies
in 3D data, we incorporated 3D convolutions into our model. This adaptation effectively translates
grayscale OCT volumes into rich, confocal-like colored volumes, maintaining three-dimensional context
for improved consistency and continuity across slices. We also unveil the OCT2Confocal dataset, a
unique collection of unpaired OCT and confocal retinal images, poised to be the first of its kind for this
application. This manuscript builds upon our initial investigation of this topic, with preliminary results
presented in(39). In conclusion, the core contributions of our work are as follows:

1. We introduce a 3D CycleGAN framework that first addresses the unsupervised image-to-image
translation from OCT to confocal images. The methodology exploits the inherent information of
in vivo OCT images and transfers it to ex vivo confocal microscopy domain without the need for
paired data.

2. Our framework effectively captures and translates three-dimensional retinal textures and structures,
maintaining volumetric consistency across slices. The result shows enhanced interpretability of
OCT images by synthesizing confocal-like details, which may potentially aid improved diagnostic
processes without the constraints of traditional methods.

3. The introduction of the OCT2Confocal dataset, a unique collection of OCT and confocal retinal
images, facilitates the development and benchmarking of cross-modal image translation research.

The remainder of this paper is organized as follows: Section 2 reviews relevant literature, context-
ualizing our contributions within the broader field of medical image translation. Section 3 outlines our
methodological framework, detailing the architecture of our 3D CycleGAN and the rationale behind its
design. Section 4 describes our novel OCT2Confocal dataset. Section 5 presents the experimental setup,
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including the specifics of our data augmentation strategies, implementation details, and evaluation
methods. Section 6 presents the results and analysis with ablation studies, dissecting the impact of
various architectural choices and hyperparameter tunings on the model’s performance, quantitative
metrics, and qualitative assessments from medical experts. Finally, Section 7 concludes with a summary
of our findings and an outlook on future directions, including enhancements to our framework and its
potential applications in clinical practice.

2. Related work

The importance of image-to-image translation is increasingly recognized, particularly for its applications
ranging from art creation and computer-aided design to photo editing, digital restoration, and especially
medical image synthesis(40).

Deep generative models have become indispensable in this domain, with (i) VAEs (Variational
AutoEncoders)(41) which encode data into a probabilistic latent space and reconstruct output from latent
distribution samples, effectively compressing and decompressing data while capturing its statistical
properties; (ii) diffusion models (DMs)(42,43) which are parameterized Markov chains, trained to
gradually convert random noise into structured data across a series of steps, simulating a process that
reverses diffusion or Brownian motion; and (iii) GANs(30) which employ an adversarial process
wherein a generator creates data in an attempt to deceive a discriminator that is trained to differentiate
between synthetic and real data. VAEs often produce blurred images lacking in detail(44), while DMs
often fall short of the high standards set by GANs and are computationally slower(45). GANs are
particularly noted for their ability to generate high-resolution, varied, and style-specific images, making
them especially useful in medical image synthesis(46–50). In particular, those based on models such as
StyleGAN(51) and pix2pix(32) architectures, offer significant improvements in image resolution and
variety, although with certain limitations. StyleGAN, an unconditional generative adversarial network,
performs well within closely related domains but falls short when faced with the need for broader
domain translation. On the other hand, pix2pix operates as a conditional GAN that necessitates paired
images for the generation of synthetic images. While powerful, this requirement often poses significant
challenges in medical scenarios where obtaining precisely pixelwise matched, paired datasets is
difficult or sometimes impossible.

Unpaired image-to-image translation methods, like CycleGAN(33), emerged to address the need for
paired datasets. CycleGAN, equipped with two generators and two discriminators (two mirrored GANs),
enforces style fidelity by training each generator to produce images indistinguishable from the target
domain by mapping the statistical distributions from one domain to another. It utilizes the cycle
consistency loss(52) to ensure the original input image can be recovered after a round-trip translation
(source to target and back to source domain) to preserve the core content. This architecture has shown
effectiveness in biological image-to-image translation(53) and medical image-to-image translation tasks,
such as MRI and CT scan translations(34,35,54) and fluorescein angiography and retinography transla-
tions(55), demonstrating its utility in scenarios where direct image correspondences are not available and
showing its capability of broader domain translation.

Notably, a significant gap remains in the translation of 3D medical images, where many existing
methods simulate a 3D approach by processing images slice-by-slice rather than as complete vol-
umes(38,56). While some work has been done in the 3D CycleGAN space, such as in translating between
diagnostic CTand cone-beam CT (CBCT)(57), these efforts have not ventured into the more complex task
of translating between fundamentally different domains, such as from grayscale OCT images to full-color
confocal microscopy. Such translations not only require the preservation of volumetric information but
also a high-fidelity rendering of cellular details in color, distinguishing them from more common
grayscale image-to-image translation.

In summary, translating OCT images into confocal is a novel problem in medical image-to-image
translation. This process, which involves the translation from grayscale to full-color 3D data, has yet to be
explored, particularly using a dedicated 3D network. This is the focus of our work.
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3. Proposed methodology

3.1. Network architecture

The proposed 3D CycleGAN method, an extension of the 2D CycleGAN architecture(33), employs 3D
convolutions to simultaneously extract the spatial and depth information inherent in image stacks. Given
an OCT domain X and a Confocal domain Y, the aim of our model is to extract statistic information from
both X and Y and then learn a mapping G :X ! Y such that the output by ¼ G xð Þ, where x ∈ X and
y ∈ Y . An additional mapping F transfers the estimated Confocal by back to the OCT domain X . The
framework comprises two generators and two discriminators to map X to Y and vice versa. The input
images are processed as 3D stacks, and all learnable kernels within the network are three-dimensional, as
depicted in Figure 1.

3.2. Generators and discriminators of 3D CycleGAN

3.2.1. Generator
The generator G begins with a Convolution-InstanceNorm-ReLU layer, followed by three down-
sampling layers, and nine residual blocks(58) that process the image features. It accepts an input of OCT
cubes with dimensions H ×W ×D×C1 , where H ,W , and D represent height, width, and depth,
respectively, and C1 is the channel dimension, with C1 ¼ 1 indicating a single-channel grayscale
format. Then, three fractional-strided convolution layers are used to increase the image size back to its
original dimensions. Finally, the network concludes with a convolution layer that outputs the image in a
3-channel RGB format to construct confocal images, using reflection padding to avoid edge artifacts.
Note that we have tested several settings, including U-Net architectures(59), WGAN-GP(60), and the
nine residual blocks (ResNet 9) give the best results. The generator F shares the identical architecture
with the generatorG, but its final convolution layer outputs the image in a single channel to reconstruct
OCT images. It processes input dimensionsH ×W ×D×C2, whereC2 ¼ 3correspond to the RGB color
channels of the confocal microscopy images.

3.2.2. Discriminator
The discriminator networks in our framework are adaptations of the 2D PatchGAN(32) architecture. In our
implementation, the 3D PatchGANs assess 70 × 70 × 9 voxel cubes from the 3D images to evaluate their
authenticity. The key benefits of utilizing a voxel-level discriminator lie in its reduced parameter count
relative to a full image stack discriminator.

Figure 1. The proposed OCT-to-Confocal image translation method is based on 3D CycleGAN.

Biological Imaging e15-5

https://doi.org/10.1017/S2633903X24000163 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X24000163


3.3. The loss function

The objective consists of four terms: (1) adversarial losses(30) for matching the distribution of generated
images to the data distribution in the target domain, (2) a cycle consistency loss to prevent the learned
mappings G and F from contradicting each other, (3) an identity loss to ensure that if an image from a
given domain is transformed to the same domain, it remains unchanged, and (4) the gradient loss to
enhance the textural and edge consistency in the translated images

1)Adversarial loss: In ourmodel, the adversarial loss is based on the binary cross-entropy (BCE) loss,
as used in traditional GANs(30). It adapts the style of the source domain to match the target by
encouraging the generators to produce outputs that are indistinguishable from the target domain
images and is defined as follows:

LAdvðG,DYÞ¼Ey�pdataðyÞ½�logDYðyÞ�+Ex�pdataðxÞ½�logð1 � DYðGðxÞÞÞ�, (1)

where G denotes the generator creating confocal images G xð Þ that aim to be indistinguishable
from real confocal images in domain Y , and DY represents the discriminator, distinguishing
between actual confocal y and translated imagesG xð Þ. The BCE loss measures the discrepancy
between the discriminator’s predictions and the ground truth labels using a logarithmic
function, which can be more sensitive to changes when the discriminator is making a decision.
We use an equivalent adversarial BCE loss for the mapping function F : Y !X and its
discriminator DX as ℒAdv F,DXð Þ to maintain the adversarial relationship in both translation
directions. The adversarial losses ensure the translated images conform to the stylistic char-
acteristics of the target domain.

2) Cycle consistency loss: Cycle consistency loss(52), defined in Equation (2), ensures the network
learns to accurately translate an image x from domain X to domain Y and back to X via mappings
G and F (forward cycle) and vice versa for an image y (backward cycle), preserving the original
image’s integrity.

LcycðG,FÞ¼Ex�pdataðxÞ½kFðGðxÞÞ� xk1�+Ey�pdataðyÞ½kGðFðyÞÞ� yk1�: (2)

The L1 loss between the original and translated backed image minimizes information loss, ensuring
that the transformed image retains essential details and the core content of the input image.

3) Identity loss: It was shown in(61) that adding identity losses can enhance the performance of the
CycleGAN by preserving color consistency and other low-level information between the input and
output, defined as follows:

LidðG, FÞ¼ Ex�pdataðxÞ½kFðxÞ� xk1�+Ey�pdataðyÞ½kGðyÞ� yk1�: (3)

The identity loss is calculated by taking the L1 norm of the difference between a source domain
image and its output after being passed through the generator designed for the opposite domain.
For instance, if an OCT image is fed into a generator trained to translate confocal images to OCT
images (opposite domain), the generator should ideally return the original OCT images
unchanged. This process helps maintain consistent color and texture and indirectly stabilizes
style fidelity.

4)Gradient loss:The gradient loss promotes textural fidelity and edge sharpness byminimizing the L1
norm difference between the gradients of real and synthesized images(57), thereby preserving detail
clarity and supporting both style rendering and information preservation through the enhancement
of smooth transitions and the maintenance of edge details. The gradient loss is defined as follows:

LGLðG,  FÞ¼ Ex�pdataðxÞ½k∇GðxÞ�∇yk1�+Ey�pdataðyÞ½k∇FðyÞ�∇xk1�, (4)

where ∇ denotes the gradient operator. The term ∇G yð Þ�∇y represents the difference between
the gradients of the generated image G yð Þ and the real image y.
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The total objective loss to minimize is the weighted summation of the four losses: the adversarial, the
cyclic, the identity, and the gradient, given as follows:

Ltotal ¼ LAdvðG,  DYÞ+LAdvðF,DXÞ+ λ1Lcyc + λ2Lid + λ3LGL (5)

where λ1, λ2 and λ3 are hyperparameters.

4. OCT2Confocal dataset

We introduce the OCT2Confocal dataset(62), to the best of our knowledge, the first to include in vivo
grayscale OCT and corresponding ex vivo colored confocal images from C57BL/6 mice, a model for
human disease studies(63,64), with induced autoimmune uveitis. Our dataset specifically features 3 sets of
retinal images, designated asA2L,A2R, andB3R. These identifiers represent the specificmice used in the
study, with “A2” and “B3” denoting the individual mice, and “L” and “R” indicating the left and right
eyes, respectively. An example of the A2R data is shown in Figure 2 (a). It is important to note that
although the training data consists of 3D volumes, for the sake of clarity in visualization and ease of
understanding, throughout the paper we predominantly display 2D representations of the OCT and
confocal images (Figure 2(b)).

a) The in vivoOCT imageswere captured at various time points (days 10, 14, 17, and 24) using the
Micron IV fundus camera equipped with an OCT scan head and a mouse objective lens provided
by Phoenix Technologies, California. The resolutions of mice OCT images are 512 ×512 ×1024
(H ×W ×D) pixels, which is significantly smaller than human OCT images. Artifacts in OCT
images, such as speckle noise and striped lines, can arise from motion artifacts, multiple
scattering, attenuation artifacts, or beam-width artifacts. Volume scans, or serial B-scans
(Figure 2(a)) defined at the x–z plane, were centered around the optic disc(1). In this study, for
image-to-image translation fromOCT to Confocal microscopy, the OCT volumetric data captured
on day 24 is utilized to align with the day when confocal microscopy images are acquired.

Figure 2. OCT2Confocal data. (a) The OCT cube with the confocal image stack of A2R, (b) The OCT
projection and confocal of 3 mice.
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Specifically, the selected OCT volumes encompass the retinal layers between the inner limiting
membrane (ILM) and inner plexiform layer (IPL) to align with the depth characteristics of the
corresponding confocal microscopy images. The OCT B-scans are enhanced through linear
intensity histogram adjustment and the adaptive-weighted bilateral filter (AWBF) denoising
proposed by Anantrasirichai et al.(65). The 2D OCT projection image, defined at the x-y plane
(Figure 2(b)), is generated by summing up the OCT volume along the z-direction.

b) The ex vivo confocal image. After the OCT imaging phase, the mice were euthanized on day
24, and their retinas were extracted and prepared for confocal imaging. The retinas were flat-
mounted, and sequential imaging was performed using adaptive optics with a Leica SP5-AOBS
confocal laser scanning microscope connected to a Leica DM I6000 inverted epifluorescence
microscope. The retinas were stained with antibodies attached to four distinct fluorochromes,
resulting in four color channels (Figure 3):

• Red (Isolectin IB4) channel (Figure 3(a)), staining endothelial cells lining the blood vessels. This
is important as changes in retinal blood vessels can indicate a variety of eye diseases such as DR,
glaucoma, and AMD.

• Green (CD4) channel (Figure 3(b)), highlighting CD4+ T cells, which are critical in immune
responses and can indicate an ongoing immune reaction in the retina.

• Blue (DAPI) channel (Figure 3(c)), which stains cell nuclei, giving a clear picture of cell
distribution.

• White (Iba1) channel (Figure 3(d)), staining microglia and macrophages, providing insights into
the state of the immune system in the retina.

This specific representation of cell types and structures via distinct color channels referred to as the
“color code,” is critical for the interpretability and utility of the confocal images in retinal studies.
Specifically, the blue channel represents the overall cell distribution within the retina, the green
channel highlights areas of immune response, and the red channel delineates the contour of the
vessels. Thus, combining these three channels, we create an RGB image encompassing a broader
range of retina-relevant information, forming the training set, and providing comprehensive colored
cellular detail essential for the model training process. These RGB confocal images, with their
corresponding day24OCTimages,were used for the training of the translation process.The confocal
images include resolutions of A2L at 512 × 512 × 14 pixels, A2R at 512 × 512 × 11 pixels (shown in
Figure 2(a)), and B3R at 512 × 512 × 14 pixels, all captured between the ILM and IPL layers.

Additionally, 23 OCT images without confocal matches from the retinal OCT dataset, also with induced
autoimmune uveitis, introduced byMellak et al.(66) were used to assess the model’s translation performance

(c) Cell Nuclei(b) CD4+ T Cells(a) Endothelial Cells (Vessel) (d) Microglia and Macrophages

R G B

Figure 3. Example of one slice in an original four-color channel of retinal confocal image stack. The
images show (from left to right):(a) Endothelial cells lining the blood vessels (red), (b) CD4+ T cells

(green), (c) Cell nuclei stained with DAPI (blue), and (d) Microglia and macrophages (white).

e15-8 Xin Tian et al.

https://doi.org/10.1017/S2633903X24000163 Published online by Cambridge University Press

https://doi.org/10.1017/S2633903X24000163


as a test dataset. The OCT images are derived from either different mice or the same mice on different days,
which also makes the dataset suitable for longitudinal registration tasks as performed in(67). This OCT2-
Confocal dataset initiates the application of OCT-to-confocal image translation and holds the potential to
deepen retinal analysis, thus improving diagnostic accuracy and monitoring efficacy in ophthalmology.

5. Experimental setup

5.1. Dataset augmentation

Our dataset expansion employed horizontal flipping, random zooming (0.9–1.1 scale), and random
cropping, which aligns with common augmentation practices in retinal imaging(68). Horizontal flipping is
justified by the inherent bilateral symmetry of the ocular anatomy, allowing for clinically relevant image
transformations. Random zoom introduces a controlled variability in feature size, reflecting physiologic
patient diversity encountered in clinical practice. Random cropping introduces translational variance and
acts as a regularization technique, mitigating the risk of the model overfitting to the borders of training
images. These augmentation strategies were specifically chosen to avoid the introduction of non-
physiological distortions that could potentially affect clinical diagnosis.

5.2. Implementation details

The implementation was conducted in Python with the PyTorch library. Training and evaluation took
place on the BluePebble supercomputer(69) at the University of Bristol, featuring Nvidia V100GPUswith
32 GB RAM, and a local workstation with RTX 3090 GPUs.

For our experiments, the OCT image cubes processed by the generatorGwere sized 512 × 512 × 9 ×C1,
with C1 ¼ 1 indicating grayscale images. Similarly, the confocal images handled by the generator F had
dimensions 512 × 512 × 9 ×C2, where C2 ¼ 3 represents the RGB color channels.

Optimization utilized the Adam optimizer(70) with a batch size of 1, and a momentum term of 0.5. The
initial learning rate was set at 2 × 10�5, with an input depth of 9 slices. Loss functions were configured
with λ1 ¼ 8, λ2 ¼ 0:1, and λ3 ¼ 0:1. The 400-epoch training protocol maintained the initial learning rate
for the first 200 epochs, then transitioned to a linear decay to zero over the next 200 epochs.Weights were
initialized from a Gaussian distribution N 0,0:02ð Þ , and model parameters were finalized at epoch
300 based on FID and KID performance.

5.3. Evaluation methods

5.3.1. Quantitative evaluation
The quantitative evaluation of image translation quality is conducted employing Distribution-Based
(DB) objective metrics(71) due to their ability to gauge image quality without necessitating a reference
image. Specifically, the Fréchet inception distance (FID)(72) and KID scores(73) were utilized.

These metrics are distribution-based, comparing the statistical distribution of generated images to
that of real images in the target domain. Their widespread adoption in GAN evaluations underscores
their effectiveness in reflecting perceptual image quality. FID focuses on matching the exact distribu-
tion of real images using the mean and covariance of features, which can be important for capturing the
precise details in medical images and the correct anatomical structures with the appropriate textures and
patterns. KID, on the other hand, emphasizes the diversity and general quality of the generated images
without being overly sensitive to outliers ensuring that the generated images are diverse and cover the
range of variations seen in real medical images. Lower FID and KID scores correlate with higher image
fidelity.

a) FID(72) is calculated as follows:
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FIDðr,gÞ¼ kμr�μgk22 +TrðΣr +Σg�2ðΣrΣgÞ
1
2Þ, (6)

where μr and μg are the feature-wise mean of the real and generated images, respectively,
derived from the feature vector set of the real image collection as obtained from the output
of the Inception Net-V3(74). Correspondingly, Σr and Σg are the covariance matrices for the
real and generated images from the same feature vector set. Tr denotes the trace of a
matrix, and ∥ �∥2 denotes the L2 norm. A lower FID value implies a closer match between
the generated distribution and the real image distribution. Specifically in this study, the
higher-dimensional feature vector sets characterized by 768-dimensional (FID768) and
2048-dimensional (FID2048) vectors are utilized as they capture higher-level perceptual
and semantic information, which is more abstract and complex compared to the direct
pixel comparison done by lower-dimensional feature spaces. These higher-dimensional
features are likely to include important biomarkers and tissue characteristics critical for
accurate image translation.

b) KID(73) is calculated using the maximum mean discrepancy (MMD) with a polynomial kernel, as
follows:

KID r,gð Þ¼ 1
m m�1ð Þ

X
i ≠ j

k xri ,x
r
j

� �
+

1
n n�1ð Þ

X
i ≠ j

k xgi ,x
g
j

� �
� 2
mn

X
i, j

k xri ,x
g
j

� �
(7)

where m and n are the numbers of real and generated images, respectively, xri and xgj are the
feature vectors of the real and generated images, respectively, and k x,yð Þ is the polynomial kernel
function.

5.3.2. Qualitative evaluation
The current objective metrics have been designed for natural images, limiting their performance when
applied to medical imaging. Therefore, a subjective test leveraging a remote, crowd-based assessment
was conducted for qualitative evaluation. This approach, contrasted with lab-based assessments,
involved distributing the images to participants rather than hosting them in a controlled laboratory
environment. The evaluation compared image-to-image translation results from five different methods:
the UNSB diffusion model(43), 2D CycleGAN, and three variations of the proposed 3D CycleGAN
approach. This evaluation involved a panel of experts comprising five ophthalmologists and five
individuals specializing in medical image processing. Participants were tasked with evaluating and
ranking five images in their relative quality score for 13 sets of images. The five images in each set are
resulted from the translation process of retinal OCT to confocal image translation. Tomitigate sequence
bias, the order of images within each set was randomized. Scores collected from the subjective testing
were quantified and expressed as a mean opinion score (MOS), which ranges from 1 to 100. Higher
MOS values denote translations of greater authenticity and perceived quality. The evaluation was
structured as follows:

1) Initial familiarization: The first three image sets included an original OCT image alongside its
corresponding authentic confocal image and five translated confocal images from different
methods and models, referred to as the with reference (W Ref) group. These were provided to
acquaint the participants with the defining features of confocal-style imagery.

2) Blind evaluation: The subsequent ten sets presented only the original OCT and five translated
confocal images, omitting any genuine confocal references to ensure an unbiased assessment of the
translation quality, referred to as the without reference (W/O Ref) group.
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The participants were instructed to rank the images based on the following criteria:

• Authenticity: The degree to which the translated image replicates the appearance of a real confocal
image.

• Color code preservation: Participants were advised to focus on the accuracy of color representation
indicative of high-fidelity translation which are: (i) The presence of green and red color to represent
different cell types, with blue indicating cell nuclei, (ii) The delineation of vessels by red, with green
typically enclosed within these regions, (iii) The alternation of green in vessels, where a green vessel
is usually adjacent to non-green vessels, and (iv) The co-occurrence of red and green regions with
blue elements.

• Overall aesthetic: The visual appeal of the image as a whole was also considered.
• Artifact exclusion: Any artifacts that do not impact the justification of overall image content should
be overlooked.

Additionally, to substantiate the reliability of selected metrics(FID768, FID2048, and KID) for evaluating
OCT to confocal image translations against MOS, Spearman’s rank-order correlation coefficient (SROCC)
and linear correlation coefficient (LCC) were applied to both selected DBmetrics and a range of no-reference
(NR) metrics, including FID64, FID192, FID768, FID2048, KID, NIQE(75), NIQE_M (a modified NIQE
version trained specificallywithparameters from theoriginal confocal imagedataset), andBRISQUE(76).Both
SROCC and LCC range from �1 to + 1, where + 1 indicates a perfect positive correlation, 0 denotes no
correlation, and�1signifies a perfect negative correlation. These analyses correlate themetricswith theMOS
to assess the consistency and predictive accuracy of FID and KID in reflecting subjective image quality
assessments.

From Table 1, the negative correlation of FID and KIDmetrics withMOS, as indicated by their SROCC
values, aligns with the expectation for lower-the-better metrics. Notably, KID demonstrates the strongest
negative correlation (�0.8271), closely followed by FID2048 (�0.7823) and FID768 (�0.7666), suggest-
ing their effectiveness in reflecting perceived image quality. Conversely, NIQE’s positive correlation
(0.6346) contradicts this principle, questioning its suitability, while the modified NIQE_M shows some
improvement with a negative correlation (�0.5416). BRISQUE’s low positive correlation (0.032) indicates
a nearly negligible relationship with MOS. LCC results reinforce these findings, particularly highlighting
KID’s superior correlation (�0.8099). These analyses collectively suggest that KID, FID768, and FID2048
are relatively the most reliable metrics for evaluating the quality of translated Confocal images in this
context, while the results for NIQE and BRISQUE imply limited applicability.

6. Results and analysis

In this section, we analyze our proposed model through ablation studies and compare it with baseline
methods both quantitatively and qualitatively. For clearer visualization, results are displayed as fundus-
like 2D projections from the translated 3D volume.

The ablation study investigates the impact of different generator architectures, hyperparameters of loss
functions, and the number of input slices on our model’s performance. This study is essential for

Table 1. Correlation of selected DB and NR image quality metrics with MOS

FID64 FID192 FID768 FID2048 KID NIQE NIQE_M BRISQUE

SROCC �0.3768 �0.4235 �0.7666 �0.7823 �0.8271 0.6346 �0.5416 0.032
LCC �0.699 �0.6894 �0.7872 �0.7813 �0.8099 0.5955 �0.5804 �0.0446

Note: FID and KID metrics assess image quality, with lower values indicating better quality. NIQE and BRISQUE are no-reference image quality
evaluators; lower NIQE scores suggest better perceptual quality, whereas BRISQUE evaluates image naturalness. SROCC and LCC measure the
correlation between objectivemetrics and subjectiveMOS ratings. SROCCandLCCvalues closer to�1 or 1 indicate a strong correlation, with positive
values suggesting a direct relationship and negative values an inverse relationship.
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understanding how each component contributes to the efficacy of the 3D CycleGAN framework in
translating OCT to confocal images.

We compare our model against the UNSB diffusion model(43) and the conventional 2DCycleGAN(33),
underscoring the effectiveness of the GAN architecture and 3D network. As the UNSB and 2D
CycleGAN are 2D models, 3D OCT and confocal images are processed into 2D slices along the
z-direction, which are then individually translated and subsequently reassembled back into a 3D volume.
This process allows us to directly compare the efficacy of 2D translation techniques on 3D data
reconstruction. We evaluated against 3D CycleGAN variants: one with 2 downsampling layers
(3D CycleGAN-2) without Gradient Loss, and another with the same layers but including Gradient Loss
(3D CycleGAN-GL). Our final model, 3D CycleGAN-3 with 3 downsampling layers and gradient loss is
also included in these comparisons. Each model is retrained on the same datasets and configurations for
consistency.

6.1. Ablation study

6.1.1. Generator architecture
In our experiments, the structure of the generator is found to have the most significant impact on the
generated results, overshadowing other factors such as the hyperparameters of gradient loss and identity
loss. From Table 2, the ResNet 9 configuration emerges as the most effective structure, outperforming
both U-Net and WGAN-GP models. The ResNet 9’s lower FID scores suggest a superior ability to
produce high-quality images that more closely resemble the target confocal domain. While WGAN-GP
attains the lowest KID score, visual assessment in Figure 4 shows that it still produces significant artifacts,
underscoring the limitation of WGAN-GP and the limitation of FID and KID metrics assessing image
quality in medical imaging contexts. On the other hand, the U-Net architecture, although commonly used
formedical image segmentation, falls short in this generative task, particularly in preserving the definition
and complex anatomical structures such as blood vessels and positions of the optic disc (where blood
vessels converge), as shown in the second column of Figure 4.Meanwhile, the ResNet 9 maintains spatial
consistency and detail fidelity, ensuring that synthesized images better preserve critical anatomical
features, which is paramount in medical diagnostics.

6.1.2. Impact of gradient and Identity loss hyperparameters
In our evaluation of the impact of identity loss (λ2) and gradient loss (λ3), we explore a range of values: λ2
at 0, 0.1, 0.5, and 1.5, and λ3 at 0, 0.1, 0.3, and 1.0. The line graphs in Figure 5 illustrate how these values
affect the FID and KID scores, with the optimal balance achieved at 0.1 for both parameters, where the
fidelity, the textural, and edge details from the original OCT domain the target confocal domain are
balanced.

We observe that the absence of identity loss (λ2 ¼ 0), as visualized in Figure 6, sometimes results in
color misrepresentation in the translated images, such as pervasive blue or absent green hues,

Table 2. Comparative results of a different generator architecture in 3D CycleGAN-3. The table
presents FID768, FID2048, and KID scores for U-Net, WGAN-GP, and ResNet 9 generators. Lower

scores indicate better performance, with the best result colored in red

Generator FID768 ↓ FID2048 ↓ KID ↓

U-Net 1.135 178.445 0.182
WGAN-GP 1.202 173.142 0.129
ResNet 9 0.785 151.302 0.143

Note: FID768 and FID2048 refer to the Fréchet Inception Distance computed with 768 and 2048 features, respectively. KID refers to the Kernel
Inception Distance. Both FID and KID indicate better performance with lower scores.
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underscoring its role in maintaining accurate color distribution. In contrast, overemphasizing identity loss
(λ2 ¼ 1:0) could lead to the over-representation of specific colors, raising the likelihood of artifacts.

Similarly, without the gradient loss (λ3 ¼ 0), as shown in Figure 6, some images exhibit a loss of detail,
particularly blurring the delineation of cellular and vascular boundaries. Conversely, an excessive
gradient loss (λ3 ¼ 1:0) overemphasizes minor vessels in the background and over-sharpens structures,
occasionally distorting primary vessels.

In conclusion, the identity loss and the gradient loss are 2 losses with small but significant weights that
help themodel to focus on important essential features without causing an overemphasis that could detract
from the overall image quality for OCT-to-confocal image translation.

Figure 4. Visual comparison of translated images using different generator architectures. This figure
displays the translated confocal images using U-Net, WGAN-GP, and ResNet 9 architectures.

Figure 5. Impact of Gradient and Identity Loss Hyperparameters λ2 and λ3 on FID and KID. The lowest
(optimal) score is highlighted in red.
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6.1.3. Impact of the input number of slices of OCT and confocal images
In our assessment of the 3D CycleGAN model’s performance with different numbers of input slices
(depth) for OCT and confocal images, we experimented with 5, 7, 9, and 11 slices. Due to the limited
correlation between FID and KID metrics with visual quality across different slice counts, we primarily
relied on visual assessments, as detailed in Figure 7.

Our findings indicate that at a depth of 5 slices, the model frequently exhibited repetitive artifacts and
blocky textures, struggling to accurately map the color distribution from confocal to OCT images, which
resulted in spatial inconsistencies and shadowing effects on blood vessels. Increasing the slice count to 7
improved color code preservation, yet issues with background shadowing remained, likely due to
persisting spatial discrepancies. The optimal outcome is achieved with 9 slices, which effectively
represented cell color distribution and maintained edge details, with minimal artifacts confined to less
critical areas such as image borders. Although 11 slices theoretically should provide further improve-
ments, it did not significantly outperform the 9 slice input and sometimes introduced central image
artifacts. Considering computational efficiency and image quality, an input depth of 9 slices is selected as
the standard for our model.

Figure 6. Visual comparison of translated confocal images with different λ2 and λ3 values against the
optimized setting.

Figure 7. Visual comparison of translated images with varying input slice depths (5, 7, 9, 11 slices). This
figure demonstrates the impact of different slice depths on the quality of image translation by the 3D

CycleGAN-3 model.
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6.2. Quantitative evaluation

In Table 3, we present both the DB image quality assessment results and subjective scores of the
13 selected OCT images set used in the subjective test. Across all DB metrics, the 3D CycleGAN-3
model outperformed other methods, achieving the lowest FID and KID scores in all scenarios (with
reference, without reference, and total dataset). These results suggest that this model is most effective in
aligning the statistical distribution of generated images with those of real images, indicating higher image
fidelity and better perceptual quality. The 3D CycleGAN-2 model follows as the second best, performing
notably well in the with-reference scenario. This suggests that the additional complexity of a third
downsampling layer in 3D CycleGAN-3 does confer an advantage. An inference is that an extra
downsampling layer in a 3D convolutional network improves feature extraction by broadening the
receptive field, enabling the model to better discern and synthesize the key structural elements within
volumetric medical images. Overall, the 3D CycleGAN models outperform the UNSB diffusion model
and the 2DCycleGAN, demonstrating the inadequacy of the diffusion model-based UNSB for translating
OCT to confocal images and illustrating the limitations of 2Dmodels when dealing with volumetric data.

6.3. Qualitative evaluation

The 3DCycleGAN-3model, as shown in Table 3, scored the highest in theMOS across all three scenarios
as determined by the expert panel’s rankings. This reflects the model’s superior performance in terms of
authenticity, detail preservation, and overall aesthetic quality. Notably, it also minimizes the presence of
non-impactful artifacts, which is critical for the utility of translated images in clinical settings.

Subjective test. Analysis based on MOS and visual observations from Figure 8 and Figure 9 indicates
that all 3D CycleGAN models effectively preserve blood vessel clarity, shape, and color code. The 3D
CycleGAN-3 model, which received the highest MOS ratings in all scenarios, is reported to reflect the
capacity for retaining more background detail and overall authenticity. Particularly in translating lower-
quality in vivo OCT images (e.g., Set 6 in Figure 9), the 3D CycleGAN-3 model demonstrates superior
performance, highlighting its effectiveness in capturing the complex relationships between OCT and
confocal domains.

In contrast, the 2Dmodels (2D CycleGAN and UNSB) sometimes introduce random colors, disregard
edges, and inaccurately replicate retinal vessel color patterns. The UNSB, as a diffusion model,
theoretically can generate diverse outputs. However, as indicated by its lower MOS scores and observed
in Figures 8 and 9, it struggles significantly with preserving accurate color codes and structural details,
leading to reduced visual quality and clinical usability in OCT to confocal translation. Conversely,
CycleGAN-based models employ adversarial training to directly learn the transformation of input images
into the target domain. This method is better at maintaining continuity in image quality and structure,
providing visual advantages over the UNSB model. However, when compared to 3D models, these
advantages diminish.

Specifically, when compared to the 3D CycleGAN-3, reconstructions from the 2D CycleGAN exhibit
significant issues: assembling 2D-processed images back into 3D often results in discontinuities in blood
vessels and features across slices (z-direction). It manifests as repeated artifacts and features at various
locations across different slices (xy-plane) and duplicated structures in 2D projections. As observed in
Figure 8 (Set 2) and Figure 9 (Sets 6 and 11), the 2D CycleGAN results in more visible hallucinations
than 3D CycleGAN-3 in the 2D projection images, where green artifacts occur at the optic disc (the
convergence point for blood vessels).Moreover, numerous fine, hallucinated vascular structures appear in
the background beyond the main vascular structures, which are absent in both the original OCT and
confocal images, underscoring the limitations of 2D CycleGAN in handling the complexity of 3D data
structures and maintaining spatial consistency.

Figure 10 presents a boxplot of MOS for the five evaluated methods, where 3D CycleGAN models
outperform 2Dmodels in translating OCT to confocal images. Specifically, the 3D CycleGAN-3 exhibits
amore concentrated distribution of scores inMOS, indicating a consensus among experts on the quality of
the generated confocal images by this model, underlining its proficiency in producing consistent and
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Table 3. The performance of models was evaluated by DB metrics FID scores and KID scores, alongside the subjective MOS rating. The results are
referred to categories with reference (’W Ref’), without reference (’W/O Ref’), and total (‘Total’) image sets. For each column, the best result is colored

in red and the second best is colored in blue

Model

W Ref W/O Ref Total

FID768↓ FID2048↓ KID↓ MOS↑ FID768↓ FID2048↓ KID↓ MOS↑ FID768↓ FID2048↓ KID↓ MOS↑

UNSB 1.659 313.189 0.597 29.300 1.611 301.666 0.655 25.360 1.622 304.325 0.641 26.269
2D CycleGAN 1.547 225.302 0.300 36.667 1.420 231.048 0.326 41.630 1.449 229.722 0.320 40.485
3D CycleGAN-GL 1.281 202.795 0.267 50.400 1.170 169.556 0.215 49.550 1.195 177.227 0.227 49.746
3D CycleGAN–2 0.852 149.486 0.144 53.967 0.890 166.473 0.160 52.860 0.881 162.553 0.156 53.115
3D CycleGAN–3 0.766 154.756 0.153 56.867 0.780 155.188 0.156 56.350 0.777 155.089 0.155 56.469

Note: FID768 and FID2048 refer to the Fréchet Inception Distance computed with 768 and 2048 features, respectively. KID refers to the Kernel Inception Distance. Both FID and KID indicate better performance with lower
scores. Mean Opinion Score (MOS) rates the subjective quality of images with higher scores reflecting better quality.
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reliable translations. The statistical analysis conducted via Kruskal–Wallis tests across each scenario
confirms significant differences among the methods (p< 0:001). Subsequent pairwise Mann–Whitney U
tests with Bonferroni adjustments clearly demonstrate that the 3D CycleGAN-3 model significantly
outperforms both the 2D CycleGAN and UNSB models in all scenarios evaluated. For more detailed
qualitative and quantitative results, please refer to Appendix A, where Table 5 presents FID, KID, and
MOS scores for each set evaluated in the subjective test.

Ophthalmologist feedback. In the subjective evaluations, ophthalmologists primarily assessed the
clarity and shape of blood vessels, with the majority acknowledging that the 3D CycleGAN-3 model
preserved blood vessel clarity and shape effectively, as well as the edges. The next aspect they considered
was color code preservation, particularly the representation of the green channel, which is crucial for
biological interpretation. Attention was also given to background detail, overall quality, aesthetics, and
the correct distribution of colors, a critical factor for the biological accuracy of the images. For example, in
scoring Set 2 of Figure 8, some experts preferred the 3D CycleGAN-3 for its accuracy in the green
channel, compared to the 3D CycleGAN-GL, which displayed slightly more background vessels but less
accuracy.

Figure 8. Visual comparative translation results with reference.

Figure 9. Visual comparative translation results without reference.
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The UNSBmodel, however, received criticism for incorrect color code preservation. Set 6 of Figure 9
was noted for instances where the 2D CycleGAN and UNSB models ignored edges, and in Set 7 of the
same figure, the 2D CycleGAN was criticized for exhibiting too much random color, missing the green
staining seen in the reference, and unclear imaging.

The feedback from ophthalmologists suggests that the 3D CycleGAN-3 model not only effectively
achieved a stylistic modal transfer but also more importantly preserved the biological content of the
medical images, which is vital for clinical interpretation and diagnosis.

Analysis of hallucinations. Following feedback from ophthalmological evaluations, we now focus on
analyzing how accurately ourmodels avoid introducing hallucinations – false features not actually present
in the true anatomy.

For subjectively evaluating the model hallucinations, we focus on two key biological features relevant
to retinal imaging: vessel structures in the red channel and immune cell markers, CD4+ T cells, in the
green channel. These features are crucial for assessing vascular structure and immune responses within
the retina for uveitis, respectively.

As shown in Figure 11, our analysis in Set 2 reveals notable differences in the clarity and fidelity of
vascular structures among the models. The 3D CycleGAN-3 model generally outperforms both the 2D
models and other 3D variations in preserving the integrity of major blood vessels with minimal
distortions. Specifically, areas highlighted in the red channel exhibit fewer hallucinated vessels, which
are incorrectly generated features not aligned with the underlying anatomical structure of the retina.

Similarly, in the green channel, which focuses on the distribution of CD4+Tcells indicative of immune
activity, the 3D CycleGAN-3 model shows a stronger correlation with the original confocal images in
terms of brightness which indicates the immune response areas. However, artifacts around the ONH in the
center are present across all models, with our proposed 3D CycleGAN-3 model demonstrating the least
severity in artifact generation.

6.4. Computational efficiency

To assess the computational demands of each model, we analyzed the number of parameters (#Params),
number of Floating Point Operations (#FLOPs), and RunTime (RT) for each translation process. The
#Params and #FLOPs represent the total number of trainable parameters and floating-point operations
required to generate an image, respectively. #Params measures the model complexity and memory usage.
#FLOPs provides an estimate of computational intensity, crucial for understanding the processing power
required and potential latency in real-time applications. The RT is measured during inference, indicating

Figure 10. Boxplot of subjective evaluation scores for comparison across scenarios with reference (‘W
Ref’), without reference (‘W/O Ref’), and the combined total (‘Total’). The circles indicate outliers in

the data.
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the practical deployment efficiency of each model, reflecting the time taken to process an image. For 2D
models, the RT is calculated by summing the times required to process nine of 512 × 512 images,
simulating the workflow for generating a complete 3D volume from 3D models.

Table 4 illustrates the tradeoff between computational efficiency and image quality. While the 2D
models (UNSB and 2D CycleGAN) demonstrate quicker processing times, their lower MOS scores
suggest a compromise in image quality. In contrast, the extended runtimes associated with 3D models,
although potentially limiting for real-time applications, result in higher-quality images that are more
clinically valuable, as reflected by their higherMOS scores and positive feedback from ophthalmologists.

The 2DCycleGAN, with the lowest #Params (11.378M) andmoderate #FLOPs (631.029G) among all
models, offers rapid inference times at 0.945s for processing 512 × 512 × 9 3D data. This indicates that 2D
CycleGAN is more suitable for applications requiring quick image processing such as real-time.
However, as revealed by its MOS and the feedback from quality evaluations, the lower complexity
cannot adequately capture the spatial relationships and structural complexity inherent in 3D data.

Despite having a higher parameter count than a 2D model, the UNSB model exhibits relatively fewer
#FLOPs (253.829G), which may be attributed to its diffusion-based generative process. Although this

Figure 11. Example of model hallucination analysis. Focusing on the red channel for vascular structures
and the green channel for CD4+ T cells. Areas highlighted (yellow boxes) show where each model

introduces inaccuracies in the representation of vascular and immune cell distributions.

Table 4. Comparative computational of different models. For each column, the red indicates the most
computationally efficient values for each metric

Model #Params (M) #FLOPs (G) RT (s) MOS ↑

UNSB 14.684 253.829 9.891 26.269
2D CycleGAN 11.378 631.029 0.945 40.485
3D CycleGAN-GL 47.793 1323.729 32.140 49.746
3D CycleGAN–2 47.793 1323.729 35.250 53.115
3D CycleGAN–3 191.126 1585.332 94.451 56.469

Note: ‘#Params’ denotes the total number of trainable parameters in millions (M), ‘#FLOPs’ represents the computational complexity in billions (G) of
floating-point operations, and ‘RT’ indicates the average execution time in seconds (s) per image. Lower values in each metric indicate more efficient
computational performance. MOS (Mean Opinion Score) rates the subjective quality of images with higher scores reflecting better quality.
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process involves numerous iterations, each iteration consists of simpler operations, thus accumulating a
lower total computational load (#FLOPs). However, the need for multiple iterations to refine image
quality leads to significantly longer runtimes—up to ten times longer than the 2D CycleGAN—
illustrating its inefficiency in time-sensitive scenarios.

The 3D CycleGAN models involve substantially higher #Params and #FLOPs. Particularly the 3D
CycleGAN-3, with 191.126M#Params and 1585.332G #FLOPs and the longest RTof 94.451s. However,
this investment in computational resources facilitates amore accurate rendering of complex 3D structures,
as evidenced by its highest MOS of 56.469, suggesting superior image quality and detail retention.
However, the increased computational demands of 3D models present a challenge for real-time applica-
tions, where quick processing is essential. Therefore, future efforts will focus on optimizing the
computational efficiency of 3D models without compromising their ability to deliver high-quality 3D
image translations to enable time-sensitive applications.

7. Conclusion and future work

In this paper, we present the 3D CycleGAN framework as an effective tool for translating information
inherent in OCT images to the confocal domain, thereby effectively bridging in vivo and ex vivo imaging
modalities. Although limited by dataset size, our quantitative and qualitative experiments showcased the
3Dmodel’s superiority over 2Dmodels in maintaining critical image characteristics, such as blood vessel
clarity and color code preservation. Our method demonstrates significant potential in providing non-
invasive access to retinal confocal microscopy, which could be revolutionary for observing pathological
changes, early disease detection, and studying drug responses in biomedical research. Results from our
uveitis dataset could help retinal vein occlusion or retinal inflammation observation, as detailed visual-
ization of inflammatory cell distribution (the color distribution) in the retina can provide insights into the
inflammatory processes. While the current translation results require further refinement for clinical
application, the potential to identify different immune cell types such as lymphocytes and monocytes
and layer changes in high-resolution translated retinal images could notably enhance the assessment of
immune responses and pathologic conditions in retinal diseases like AMD and DR directly from OCT
scans. Thus, future efforts will focus on expanding the dataset for more accurate and higher resolution
outputs and optimizing the 3D framework for computational efficiency, aiming to advance preclinical
study, early disease detection, and diagnostics. In line with these enhancements, we intend to explore the
integration of 2D projections with sampled 3D data for a 3D reconstruction-based OCT to confocal
translation. This approach is designed to maintain the 3D spatial information while reducing computa-
tional demands. Further development will include adapting the model for human OCT to confocal
translation and applying the translated results for early disease detection and enhanced diagnostic
practice.
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Table 5. The performance of models was evaluated by DB metrics FID scores and KID scores, alongside the subjective MOS rating of each individual
set. The best result is colored in red and the second best is colored in blue

Model Metric

W Ref W/O Ref Total

A2L_
D24

A2R_
D24

B3R_
D24 A2R_D10

A2R_
D14

A2R_
D17

B3L_
D24

B3R_
D17

TX12E2L_
D14

TX12E2R_
D14

TX12E3L_
D14

TX13B1L_
D14

TX13B3R_
D14 W Ref W/O Ref All

UNSB FID768 ↓ 1.768 1.699 1.510 1.975 1.638 1.567 1.643 1.620 1.372 1.454 1.594 1.641 1.603 1.659 1.611 1.622
FID2048 ↓ 335.571 336.422 267.572 434.316 318.284 324.705 317.714 271.564 318.818 274.218 312.400 243.367 201.276 313.189 301.666 304.325
KID ↓ 0.663 0.643 0.485 0.968 0.645 0.707 0.750 0.585 0.715 0.537 0.685 0.516 0.439 0.597 0.655 0.641
MOS ↑ 31.700 22.900 33.300 26.100 19.400 25.800 26.600 30.000 33.900 24.200 22.200 26.300 19.100 29.300 25.360 26.269

2D CycleGAN FID768 ↓ 1.668 1.509 1.465 1.553 1.364 1.640 1.415 1.349 1.490 1.250 1.437 1.564 1.140 1.547 1.420 1.449
FID2048 ↓ 215.451 240.731 219.724 260.986 250.141 247.595 217.812 214.397 254.606 216.557 254.916 215.287 178.178 225.302 231.048 229.722
KID ↓ 0.284 0.327 0.288 0.383 0.353 0.351 0.339 0.293 0.366 0.283 0.364 0.300 0.226 0.300 0.326 0.320
MOS ↑ 37.000 42.300 30.700 31.400 44.200 42.700 40.400 48.000 35.900 42.200 35.400 49.000 47.100 36.667 41.630 40.485

3D CycleGAN-GL FID768 ↓ 1.633 1.128 1.081 1.287 1.247 1.283 1.075 1.089 1.304 1.283 1.162 1.077 0.892 1.281 1.170 1.195
FID2048 ↓ 281.033 165.763 161.590 173.151 185.445 193.396 166.591 154.707 183.646 195.985 171.409 152.085 119.148 202.795 169.556 177.227
KID ↓ 0.401 0.206 0.193 0.212 0.246 0.294 0.207 0.195 0.224 0.255 0.228 0.164 0.124 0.267 0.215 0.227
MOS ↑ 46.900 42.100 62.200 63.300 39.000 46.300 50.400 42.800 46.100 47.100 47.400 50.800 62.300 50.400 49.550 49.746

3D CycleGAN–2 FID768 ↓ 0.994 0.840 0.723 0.969 0.927 0.953 0.794 0.793 0.949 1.023 0.859 0.880 0.749 0.852 0.890 0.881
FID2048 ↓ 176.433 140.350 131.675 202.865 174.571 165.633 140.414 136.360 197.414 187.966 171.102 153.010 135.396 149.486 166.473 162.553
KID ↓ 0.190 0.136 0.107 0.198 0.161 0.193 0.121 0.125 0.176 0.238 0.159 0.110 0.115 0.144 0.160 0.156
MOS ↑ 56.900 65.300 39.700 37.500 62.900 45.700 55.900 57.600 55.400 48.200 52.900 62.300 50.200 53.967 52.860 53.115

3D CycleGAN–3 FID768 ↓ 0.821 0.730 0.747 0.883 0.793 0.763 0.701 0.715 0.822 0.835 0.825 0.775 0.685 0.766 0.780 0.777
FID2048 ↓ 177.323 139.419 147.526 172.697 161.605 134.269 133.621 165.109 166.120 169.130 164.375 150.130 134.827 154.756 155.188 155.089
KID ↓ 0.187 0.127 0.144 0.179 0.167 0.122 0.126 0.172 0.180 0.185 0.182 0.136 0.114 0.153 0.156 0.155
MOS ↑ 54.500 65.900 50.200 57.700 56.800 58.900 60.000 50.600 56.600 56.100 40.300 55.500 71.000 56.867 56.350 56.469

Note: FID768 and FID2048 refer to the Fréchet Inception Distance computed with 768 and 2048 features, respectively. KID refers to the Kernel Inception Distance. Both FID and KID indicate better performance with lower
scores. Mean Opinion Score (MOS) rates the subjective quality of images with higher scores reflecting better quality.
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