
Ergod. Th. & Dynam. Sys., page 1 of 32 © The Author(s), 2024. Published by Cambridge University
Press. This is an Open Access article, distributed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives licence (https://creativecommons.org/licenses/by-nc-nd/4.0),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided that no
alterations are made and the original article is properly cited. The written permission of Cambridge
University Press must be obtained prior to any commercial use and/or adaptation of the article.
doi:10.1017/etds.2024.56

1

Periodic data rigidity of Anosov automorphisms
with Jordan blocks

JONATHAN DEWITT

Department of Mathematics, The University of Maryland, Maryland, MD 20742, USA
(e-mail: dewitt@umd.edu)

(Received 16 May 2023 and accepted in revised form 07 August 2024)

Abstract. Anosov automorphisms with Jordan blocks are not periodic data rigid. We
introduce a refinement of the periodic data and show that this refined periodic data
characterizes C1+ conjugacy for Anosov automorphisms on T

4 with a Jordan block.

Key words: Anosov diffeomorphism, rigidity, periodic data, reducibility
2020 Mathematics Subject Classification: 37D20 (Primary); 37D25 (Secondary)

1. Introduction
An Anosov diffeomorphism of a Riemannian manifold M is a diffeomorphism
F : M → M such that TM continuously splits into two DF -invariant bundles Eu and
Es such that vectors in Eu are uniformly expanded byDF and vectors in Es are uniformly
contracted by DF . If L ∈ SL(n, Z) does not have any eigenvalues of unit modulus, then
the map induced by L on T

n is an Anosov diffeomorphism, which is called an Anosov
automorphism due to its algebraic construction. Anosov diffeomorphisms of tori exhibit
strong topological rigidity. If F : T

n → T
n is Anosov and in the homotopy class of

L ∈ SL(n, Z), then by work of Franks [Fra69] and Manning [Man74], there exists a
homeomorphism h such that h−1Fh = L. The map h is called a conjugacy and is Hölder
continuous. In this paper, we study ridigity of Anosov automorphisms defined by a matrix
L ∈ SL(4, Z) that have a Jordan block.

This paper is the first to show rigidity of an Anosov diffeomorphism with a Jordan
block. There are two main contributions of this paper. The first is the identification of the
correct refinement of the periodic data for this setting and showing that these data exist and
are well defined. The second main contribution is a new approach to studying the regularity
of conjugacies that does not rely on either conformality or an abundance of dynamically
invariant foliations. In fact, in this paper, we contend with Anosov automorphisms that,
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2 J. DeWitt

restricted to their unstable manifold, preserve only a single one-dimensional foliation and
whose differential has polynomial growth of conformal distortion.

In this paper, we study a rigidity property of conjugacies between Anosov diffeomor-
phisms. Specifically, we will investigate conditions that imply that a conjugacy h is C1.
One well-known obstruction to the existence of a C1 conjugacy is the periodic data, which
we now describe. Suppose that F and G are two diffeomorphisms that are C1 conjugate by
a conjugacy h. If p is a periodic point of period n, then h(p) is a periodic point of G of
period n. By the chain rule, we must have that

DpF
n = Dh(p)hDh(p)G

n(Dh(p)h)
−1.

Thus, the return maps of DF and DG at corresponding periodic points are conjugate.
Given two diffeomorphisms F and G with a conjugacy h between them, we say that F and
G have the same periodic data with respect to h if for each periodic point p of period n, we
have that DpFn and Dh(p)Gn are conjugate as linear maps. In some situations, if F and G
have the same periodic data, then h is C1.

We say that a diffeomorphism is Ck+ when it is Ck and its kth derivative is α-Hölder
continuous for some α > 0. We write Diffk+(M) for the group of diffeomorphisms of M
that are Ck+. This leads us to the definition of rigidity in which we are interested here.

Definition 1.1. We say that an Anosov diffeomorphism F : M → M is periodic data rigid
if for any Anosov diffeomorphism G ∈ Diff2+(M) in the homotopy class of F, if F and G
have the same periodic data with respect to a conjugacy h, then h is C1+.

The main examples of diffeomorphisms F exhibiting this type of rigidity are Anosov
automorphisms.

Periodic data rigidity is well studied. Early work was done by De la Llave, Marco, and
Moriyon. See, for example, [dlL87, dlL92, MM87]. More recently, a paper by Gogolev,
Kalinin, and Sadovskaya [GKS11] showed local periodic data rigidity of an Anosov
automorphism of Tn, under the assumption that no three eigenvalues of L have the same
modulus and that L and L4 are both irreducible. This result implies, as a consequence,
earlier results obtained in [Gog08]. See also the recent preprint [DG24], which obtains
non-perturbative versions of these results. Closely related to periodic data rigidity is
Lyapunov spectrum rigidity, see [GKS20, SY19] for generalizations of these results to
this setting. The paper [SY19] proves local Lyapunov spectrum rigidity for perturbations of
Anosov automorphisms with Lyapunov exponents of multiplicity one as well as some fur-
ther generalizations to the partially hyperbolic setting. These results rely on a careful study
of entropy along invariant foliations. The paper [GKS20] uses a related technique to gen-
eralize the results of [GKS11] from periodic data rigidity to Lyapunov spectrum rigidity.

The previously mentioned results apply to Anosov automorphisms of tori. The author
recently also obtained periodic data rigidity results for Anosov automorphisms of nilmani-
folds [DeW21]. Recently, Gogolev and Rodriguez Hertz [GRH22] have proved additional
periodic data rigidity results relying on a novel condition called very non-algebraicity
using a technique of matching functions that they introduced. They also extended these
results to codimension one Anosov diffeomorphisms in [GRH21].
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Rigidity of Anosov automorphisms with Jordan Blocks 3

In this paper, we consider Anosov automorphisms of T4 with a Jordan block, such as
the following:

A =

⎡
⎢⎢⎣

2 1 1 0
1 1 0 1
0 0 2 1
0 0 1 1

⎤
⎥⎥⎦. (1)

Such automorphisms with Jordan blocks are known to not be periodic data rigid due to
examples of de la Llave in [dlL02, §6], and do not seem to have been studied after the
construction of those counterexamples. In fact, any Anosov automorphism of T4 that has
a Jordan block in its periodic data is not periodic data rigid. In this paper, we nonetheless
recover a periodic data rigidity result for such automorphisms by introducing a refinement
of the periodic data, which we call the Jordan periodic data. As we will explain after
the theorem when we define Jordan periodic data, this extra data will allow us to detect
precisely when the derivative cocycle DF is cohomologous to constant.

THEOREM 1.2. If L ∈ SL(4, Z) defines an Anosov automorphism of T4 with a Jordan
block and F is any C2+ Anosov diffeomorphism of T4 in the homotopy class of L with
the same periodic data as L, then the two have well-defined Jordan periodic data and
are C1+ conjugate if and only if their full Jordan periodic data coincide. Further, the
condition of having the same full Jordan data as L is equivalent toDF being continuously
cohomologous to the constant cocycle given by L.

In Proposition A.1, we give an explicit description of to which Anosov automorphisms
this theorem applies. In fact, the work of Kalinin, Sadovskaya, and Wang [KSW23] gives
the following as an immediate corollary.

COROLLARY 1.3. Suppose that L is as in Theorem 1.2. Then there exists k ∈ N such that if
F is as in Theorem 1.2 and F is a Ck small perturbation of L, then F is C∞ conjugate to L.

This follows from the main theorem [KSW23, Th eorem 1.3], which is a ‘bootstrapping’
result that says C1 conjugacies between a weakly irreducible Anosov automorphism and
its perturbation are C∞. The automorphisms we consider are weakly irreducible due to
[KSW23, Lemma 3.1] and Proposition A.1.

In the course of the proof of Theorem 1.2, we investigate how one may think about
periodic data in this setting, which leads us to the Jordan periodic data, which we describe
below.

1.1. Jordan periodic data. Fix some λ > 0. If we have a cocycle taking values in the set
of matrices

Uλ =
{[
λ a

0 λ

]
| a ∈ R

}
,

then knowing that two such cocycles have the same periodic data may not be enough
to determine that they are cohomologous as GL(2, R) cocycles. In fact, if we have two
continuous cocycles A and B over a map σ : � → � taking values in Uλ, and all of the
periodic data of A and B has a Jordan block, then their periodic data are identical because
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4 J. DeWitt

all such Jordan blocks are conjugate. If we write these cocycles as[
λ αA

0 λ

]
and

[
λ αB

0 λ

]
,

then these two cocycles are continuously cohomologous as GL(2, R) cocycles precisely
when there exists a constant C and a continuous map ψ : � → R such that

αA = CαB + ψ ◦ σ − ψ . (2)

We then define [αA] to be the set of all functions αB such that there is a solution C, ψ to
equation (2). We call [αA] a cohomology class. One can check that [αA] is determined by
the periodic data of αA, i.e. [αA] is determined by the sums of αA along all periodic orbits.
We refer to [αA] as the Jordan periodic data associated to A. For the formal definition
of Jordan periodic data, see Definition 3.2 as well as the surrounding discussion, which
explains the relationship between this cohomology class and periodic data.

Not all cocycles are immediately recognizable as taking values in Uλ. We say that
a cocycle is Uλ-framed if it may be continuously conjugated into Uλ. If a cocycle is
Uλ-framed and has a Jordan block, then its Jordan periodic data may be defined, and indeed
is well defined independent of the conjugacy into Uλ.

Our main result has two parts. The first part shows that if an Anosov diffeomorphism
has the same periodic data as an Anosov automorphism with a Jordan block, then it has
well-defined Jordan periodic data.

PROPOSITION 1.4. Let L be an Anosov automorphism of T4 with a Jordan block and
eigenvalues λ, λ−1. Suppose that F is a C2 Anosov diffeomorphism with the same periodic
data as L. Then the stable and unstable bundles of F are trivial, and Uλ and Uλ−1-framed,
respectively.

In the case that the stable and unstable bundles admit such framings, one obtains [αFu ]
and [αFs ] as before; we refer to these as the unstable and stable Jordan periodic data,
respectively. We refer to the pair [αFu ] and [αFs ] as the full Jordan periodic data.

The second part of the main result shows that if an Anosov diffeomorphism has the
same Jordan periodic data as an Anosov automorphism, then the two are C1+-conjugate.

PROPOSITION 1.5. Suppose that L is an Anosov automorphism of T4 with a Jordan block
and that F is a C2+ Anosov diffeomorphism such that:
(1) F has the same periodic data as L with respect to a conjugacy h;
(2) the stable and unstable bundles of F are trivial and admit Uλ−1 and Uλ-framings,

respectively;
(3) F has the same full Jordan periodic data as L.
Then h is a C1+ conjugacy between F and L.

These immediately combine to prove Theorem 1.2.
There are several directions for further investigation beyond the results of this paper.

The first is to consider what happens for higher dimensional Jordan blocks. In this paper,
we have only addressed the case of a two-dimensional Jordan block. Another direction
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Rigidity of Anosov automorphisms with Jordan Blocks 5

would also be to consider Anosov automorphisms with Jordan blocks that have more
than two Lyapunov exponents. A third direction would be to move past rigidity of Anosov
automorphisms to the case where the derivative cocycle is not cohomologous to constant.
For example, the author does not know the answer to the following question, which would
give a nonlinear generalization of Theorem 1.2.

Question 1.6. Suppose that F and G are Anosov diffeomorphisms with the same periodic
data as a linear Anosov diffeomorphism of T4 that has a Jordan block. If the full Jordan
data of F and G coincide, then are F and GC1 conjugate?

1.2. Outline of proof. The proof follows the following outline.
(1) We introduce the ‘Jordan’ periodic data.
(2) We do some preliminary work to produce aDF -invariant flag E on which the Jordan

periodic data are well defined.
(3) We show the existence of ‘slow’ foliations within each unstable leaf tangent to E and

their unique integrability.
(4) We show that the conjugacy h intertwines these slow foliations and is uniformly C1+

along them.
(5) We show that the ‘slow’ foliation is C1+ and that its holonomies are uniformly

regular over long distances.
(6) Using the de la Llave argument [dlL02], we construct a C1 model of the conjugacy,

h0, such that Fn ◦ h0 ◦ L−n → h uniformly. By studying the derivatives Fnh0L
−n,

we obtain that h is Lipschitz.
(7) Once we know that h is suitably Lipschitz, we can differentiate it and use cocycle

rigidity to conclude that its derivative is continuous and hence h is differentiable.

2. Preliminaries
For definitions concerning foliations, we refer the reader to [PSW97], which contains a
thorough discussion of the topic. We use the same terminology as that paper, which is
standard. We now set some notation that will be of particular use in our argument. For
a foliation F , we write F(x) for the leaf containing the point x. As an extension of this
notation, if S is a set, then we write F(S) for

⋃
x∈S F(x). If F is a foliation with C1

leaves that foliates a Riemannian manifold M and if x ∈ F(y), then we denote by dF (x, y)
the distance between x and y as measured along the immersed submanifold F , where F
is endowed with the pullback Riemannian metric obtained from its inclusion into M. If
h : M → M is a map, then we say that h intertwines the foliations F and G if h(F(x)) =
G(h(x)) for all points x ∈ M .

We say that a map f is C1+ if there exists 0 < α < 1 such that the derivative of f is
Cα . When we say that a map of a non-compact space is uniformly Cα , we mean that there
exist α, δ > 0 such that, restricted to balls of radius δ, the map is Cα Hölder with uniform
constant.

In the following argument, we will often work with uniform transversals to a C1

foliation F ⊂ M . What we mean by this encompasses two things. First, that there is a
uniform upper bound on the C1 norm of the transversals when we regard them as maps
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6 J. DeWitt

of a disk into M. Second, that there is a uniform lower bound on the angle between the
tangent space to γ and TF . In other words, when we work with uniform transversals,
we are assuming a uniform upperbound on the C1 norm of these transversals as well as
a uniform lower bound on the angle that they make with the foliation to which they are
transverse.

If W is a set such that each leaf of F intersects W at most once, then we write 	W for
the projection onto W along the leaves of F . Specifically, if z is a point such that z ∈ F(x)
for some x ∈ W , then 	W(z) = x. We say that sets T and W are holonomy related if
W ⊂ F(T ) and vice versa. We will typically use this notation for projections onto a curve
contained in an unstable leaf that is transverse to a subfoliation of the the unstable foliation.

For an Anosov diffeomorphism F, we denote by Wu,F the unstable foliation of F. This
foliation has uniformly C2+ leaves when F is C2+. We denote by Eu,F the unstable bundle
of F; similarly we define the stable foliation Ws,F and the stable bundle Es,F .

If E is an n-dimensional vector bundle over a manifold M, then by a framing of E, we
mean a choice of basis [e1, . . . , en] of Ex for each x that varies continuously with x. For
an Anosov automorphism L on T

4 with a Jordan block, we have a translation invariant
framing [eL1 , eL2 ] that presents the differential of DL|Eu,L as a Jordan block:[

λ 1
0 λ

]
.

3. Jordan periodic data
Suppose that A : � → GL(2, R) is a continuous function defining a cocycle over a
transitive hyperbolic system σ : � → �, such as a transitive Anosov diffeomorphism. The
natural notion of equivalence for two cocycles is the notion of conjugacy. We say that two
continuous cocycles A1, A2 : � → GL(2, R) are continuously conjugate if there exists a
continuous function B : � → GL(2, R) such that for all x ∈ �,

A2(x) = (B(σ(x)))−1A1(x)B(x).

We analogously speak of two cocycles being Hölder conjugate if we may take B to be
Hölder. We speak of other regularities analogously. Further, we say that a cocycle A is
conjugate into a subgroup H ⊆ GL(2, R) if there exists B : � → GL(2, R) such that for
every x ∈ �,

(B(σ(x)))−1A1(x)B(x) ∈ H .

Suppose that A is continuously conjugate to a cocycle taking values in the group Uλ ⊂
GL(2, R) given by

Uλ =
{[
λ a

0 λ

]
| a ∈ R

}
.

We say that such a cocycle is reducible to a cocycle taking values in Uλ, or is Uλ-framed.
By assumption, the cocycles of interest in this paper have non-trivial Jordan blocks in their
periodic data. If a cocycle has a Jordan block in its periodic data for every periodic point,
then we say that this cocycle has Jordan-full periodic data. Note that this happens when
a cocycle has the same periodic data as a constant cocycle defined by a Jordan block. We
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now consider the cohomology of such cocycles that are Hölder conjugate to Uλ and have
Jordan-full periodic data. We may write such a cocycle as[

λ αA

0 λ

]
(3)

for αA : � → R a Hölder continuous function. The function αA characterizes A up to
Hölder GL(2, R)-conjugacy: two Uλ-valued coycles A and B are Hölder conjugate if and
only if αA and αB lie in the same ‘projective’ cohomology class. The following follows
from a much more detailed result of Sadovskaya [Sad13, Proposition 5.1], which gives a
detailed description of GL(2, R) cocycles.

LEMMA 3.1. Suppose that (�, σ) is a transitive hyperbolic system and that A, B : � →
GL(2, R) are two Hölder continuous functions defining cocycles reducible to Uλ that are
Jordan-full. Then, A and B are Hölder conjugate if and only if there exists a constant
C �= 0 and a Hölder continuous function φ : � → R such that

αA = CαB + φ ◦ σ − φ.

In fact, if A and B take values in Uλ, then any conjugacy between A and B takes values in
upper triangular matrices.

By the usual abelian Livsic theorem, αA = CαB + φ ◦ σ − φ if and only if there exists
C such that for each periodic point p of period k,

∑k
i=1 αA(σ

ip) = C
∑k
i=1 αB(σ

ip). If
there is such a C, we say that the periodic data of A and B are in the same projective class.
Given this preliminary, the following definition is well defined.

Definition 3.2. Suppose that A : � → GL(2, R) is a function defining a cocycle over a
transitive hyperbolic system that is reducible to Uλ. Let Per(�) be the set of periodic
points of �. As before, associated to A is the function αA : � → R. We define the Jordan
periodic data of A to be the projective class of the function Per(�) → R that sends a
periodic point p of period k to the sum of αA along its orbit:

p 	→
k∑
i=1

αA(σ
i(p)).

Lemma 3.1 shows that the Jordan periodic data characterize up to conjugacy the
cocycles for which they are defined.

The discussion above defines the Jordan periodic data for cocycles over a single fixed
system. If we have two cocycles over different conjugate systems, then we may pull back
the cocycle by the conjugacy. We then say that two cocycles have the same Jordan periodic
data with respect to a conjugacy h if the pulled back cocycle has the same Jordan periodic
data as the original cocycle.

If F is an Anosov diffeomorphism such thatEu,F andEs,F are trivial bundles and admit
Uλ and Uλ−1 -framings, then we write [αFu ] for the Jordan data of DF |Eu,F and [αFs ] for
the Jordan data of the stable bundle. We call the pair the full Jordan data of F.
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4. Preliminary reductions
In this section, we give some preliminary reductions that bring us closer to producing the
Uλ-framings we need to define the periodic data.

LEMMA 4.1. Suppose L is as in Proposition A.1 and that F is a C2 Anosov diffeomorphism
with the same periodic data as L. Then there exists a non-trivial Hölder continuous
DF -invariant flag

0 ⊂ E ⊂ Eu,F

and Hölder continuous Riemannian metrics on E and Eu,F /E such that with respect to
these metrics, the differential of F has pointwise norms exactly λ. The same holds forEs,F .

Proof. Because F has the same periodic data as L, the top and bottom Lyapunov exponents
of the measures supported on periodic orbits are equal. Thus, we may apply the continuous
amenable reduction [KS13, Theorem 3.9] to conclude that either DF |Eu,F is conformal
with respect to some Hölder continuous metric, or that there exists a Hölder continuous
DF invariant flag

0 ⊂ E ⊂ Eu,F . (4)

As DF |Eu,F has Jordan blocks in its periodic data, it cannot be conformal, and thus we
obtain the non-trivial flag in equation (4).

We now appeal to our knowledge of the periodic data for the claim about the metric.
Note that because E is one-dimensional, the map N : T4 → R

× given by x 	→ ‖DxF |E‖
defines a cocycle over F. Further, note that the assumption on periodic data implies
that all the periodic data of N are a power of λ. Thus, by the abelian Livsic theorem
[KH97, Th eorem 19.2.1], N is Hölder cohomologous to the constant cocycle λ, that is,
N = λ(φ ◦ F)φ−1 for some Hölder φ : T4 → R

×. If we replace the reference metric ‖ · ‖
on E with the metric φ‖ · ‖, then for this new metric, we have that the norm of DF |E is
exactly λ at every point.

Precisely the same considerations show that Eu,F /E admits a norm with the same
property.

Remark 4.2. The reason that the above lemma is phrased in terms of a norm instead of
in terms of a cocycle conjugacy is that there is nothing telling us that the bundle E is
orientable.

Remark 4.3. After this point, we will always equip Eu,F with a metric obtained from
Lemma 4.1. The lemma gives metrics on E and Eu,F /E . Here is how we can obtain a
metric on Eu,F . To begin, fix a complement Ec to E inside of Eu,F ; this can be done
by taking the orthogonal complement to E with respect to any fixed reference metric, for
instance. Then we have a projection π : Eu,F → Eu,F /E . We may pull back the metric on
Eu,F /E to Ec via π . We then obtain a metric on Eu,F by declaring the metrics on Ec and
E to be orthogonal. We will use this choice of metric below.

We now remark on some useful properties of the new metric we just constructed. The
most useful property is that if we measure distance along unstable leaves by using this
metric, then curves tangent to E will be uniformly stretched by a factor of exactly λ under
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Rigidity of Anosov automorphisms with Jordan Blocks 9

the dynamics. Throughout the rest of the proof, we will measure distance along unstable
leaves with respect to this new metric. The old and new metrics on Eu,F each make the
leaves of the unstable foliation into metric spaces. A useful observation is that the (metric
space) metrics on the leaves of the unstable foliation are bi-Lipshitz equivalent whether we
choose to measure distance with the old or the new metric.

We will continue using this metric until we can obtain a better one, which happens once
we know that Eu,F is in fact Uλ-framed. See Remark 6.7.

5. The ‘slow’ foliation
Note that if we identify a Wu,L leaf with R

2 by use of the framing [eL1 , eL2 ], then Wu,L has
an invariant foliation tangent to the eL1 line field. We call this foliation SL. We think of this
foliation as ‘slow’ because vectors tangent to it grow at only rate O(λn) when we iterate
L. The following proposition constructs an analogous ‘slow’ foliation SF that subfoliates
the unstable foliation Wu,F .

In this proof, we will use the notion of a quasi-isometry. Consider a surjection of
metric spaces f : (M1, d1) → (M2, d2). Then f is an (A, B)-quasi-isometry if there exist
constants A ≥ 1 and B ≥ 0 such that for any x, y ∈ M1,

1
A
d1(x, y)− B ≤ d2(f (x), f (y)) ≤ Ad1(x, y)+ B.

PROPOSITION 5.1. Suppose that F is a C2+ Anosov diffeomorphism that has the same
periodic data as L ∈ SL(4, Z), which is hyperbolic and has a Jordan block, and that h
is a conjugacy between F and L. Restricted to a Wu,F leaf, the bundle spanned by eF1
is uniquely integrable and tangent to a foliation SF , which has uniformly C1+ leaves.
Further, h intertwines SF with the foliation SL.

Proof. Throughout this proof, we endow M with the metrics obtained from Lemma 4.1 as
described in Remark 4.3. By [DeW21, Cor ollary 2.7], there exist uniform constants A, B
such that for all x ∈ T

4, h|Wu,L(x) : Wu,L(x) → Wu,F (h(x)) is an (A, B)-quasi-isometry.
Note that [

λ 1
0 λ

]n
= λn

[
1 n/λ

0 1

]
.

This implies that if x ∈ Wu,L(y) and x /∈ SL(y), then there exists C > 0 such that

dWu,L(L
n(x), Ln(y)) ≥ Cλnn.

As h is a quasi-isometry, this implies that

dWu,F (F
n(h(x)), Fn(h(y))) = dWu,F (h(L

n(x)), Ln(y)) ≥ A−1Cλnn− B. (5)

However, if q ∈ Wu,F (r), and q and r are two points connected by a curve tangent to E
contained within Wu,F (r), then

dWu,F (F
n(q), Fn(r)) ≤ λn (6)

because ‖DF |E‖ = λ when we use the metric from Lemma 4.1. Thus, if q and r are
connected by such a curve, then h−1(q) and h−1(r) must lie in the same SL leaf inside
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10 J. DeWitt

of Wu,L because otherwise, equation (6) would contradict equation (5). This implies that
the curves inside an unstable leaf tangent to E uniquely integrate to a foliation. Further,
this foliation has uniformly C1+ leaves because the E distribution is uniformly Hölder by
Proposition 4.1.

6. Differentiability along the slow foliation and the Jordan periodic data
The approach we follow for showing that h is differentiable along SL is not new and follows
exactly the same argument as in [DeW21, §2.5]. Consequently, we will just give an outline
of the idea. To establish differentiability of h along SL, we will use the following result,
which is a C1+ version of Saghin and Yang [SY19, Theorem G]. All the definitions used
in this section and a thorough discussion may be found in [DeW21, §2.5].

Definition 6.1. Let F be an expanding foliation for aC1+ diffeomorphism f. An f -invariant
measure μ is a Gibbs expanding state along F if for any foliation chart of F , the
disintegration of μ along the plaques of the chart is equivalent to the Lebesgue measure
on the plaque for μ-almost every plaque.

Using this definition, we may state the following.

LEMMA 6.2. [DeW21, Lemma 13] Let M be a smooth closed manifold and let
f , g ∈ Diff1+(M). Let F be a one-dimensional expanding foliation for f, and let G be
an expanding foliation for g such that F and G have uniformly C1+ leaves. Let μ be a
Gibbs expanding state of f along F . Suppose that f and g are topologically conjugate by a
homeomorphism h and that h intertwines F and G. Then the following two conditions are
equivalent:
(1) ν := h∗(μ) is a Gibbs expanding state of g along the foliation G;
(2) h restricted to each F leaf within the support of μ is uniformly C1+.

The main thing that needs to be verified to apply the previous lemma is that the SF
foliation is absolutely continuous. This is immediate from the following lemma because
‖DF |E‖ = λ is constant. This lemma follows from work of Ledrappier and Young [LY85].
An equivalent statement that applies to our setting appears in [SY19, Theorem 2.5]

LEMMA 6.3. Let F be a C1+ diffeomorphism and let μ be an F-invariant measure.
Suppose that F is an expanding foliation for F. Suppose that ξ is an increasing measurable
partition subordinate to F and μ. Then the conditional measures of μ are absolutely
continuous on the leaves of F if and only if

Hμ(F
−1ξ | ξ) =

∫
log ‖DF |TF ‖ dμ,

where Hμ(F−1ξ | ξ) is the conditional entropy of F−1ξ given ξ .

The previous two lemmas then combine to show the following.

PROPOSITION 6.4. The conjugacy h in Proposition 5.1 is uniformly C1+ on leaves of the
SL foliation.

Using this differentiability, we can show the following proposition.
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PROPOSITION 6.5. The bundle E in Lemma 4.1 is trivial.

Proof. Recall the linear frame [eL1 , eL2 ] of Eu,L. Because h intertwines SL and SF , and is
C1+ along these foliations, we see that Dh(eL1 ) is a continuous framing of E ; hence, E is
trivial.

We can now prove Proposition 1.4, which says that if F has the same periodic data
as L, which has Jordan blocks, then the stable and unstable bundles of F are Uλ and
Uλ−1 -framed, respectively.

Proof of Proposition 1.4. By Proposition 6.5, the bundle E from Lemma 4.1 has a framing
ẽF1 . The periodic data for DF |E is exactly multiplication by λ. Hence, by application of a
Livsic argument, we can rescale the ẽF1 framing by a Hölder function to find a new framing
eF1 with the property that

DxFe
F
1 (x) = λeF1 (F (x)).

We now show that Eu and Eu/E are trivial. By Proposition B.3, the bundle Eu is
orientable, and hence, by [MS74, Problem 12-A],w1(E

u) = 0. However,Eu is isomorphic
to Eu/E ⊕ E , so w1(E

u) = w1(E
u/E)⊕ w1(E) by additivity of the first Stiefel–Whitney

class, see [MS74, §4]. Thus, we find that w1(E
u/E) = 0, and hence this bundle is trivial.

This also implies that Eu is trivial as it is the sum of trivial bundles.
Thus, we see that Eu,F /E also admits a non-vanishing section eF2 because it is trivial.

By the same Livsic argument as before, we can rescale eF2 so thatDF acts on this section as
multiplication by λ. Let eF2 be a Hölder continuous section of Eu projecting to eF2 along E .
Then, with respect to the framing [eF1 , eF2 ],DF |Eu is Uλ-framed. The same considerations
apply to the stable bundle.

Definition 6.6. In the following, we will say that an Anosov diffeomorphism is Uλ-framed
if the following hold:
(1) F is in the same homotopy class as an Anosov automorphism L ∈ SL(4, Z) with a

Jordan block;
(2) the stable and unstable bundles of F are trivial;
(3) DF |Eu,F and DF |Es,F admit Hölder continuous Uλ- and Uλ−1 -framings, where

λ > 1 is an eigenvalue of L. We refer to the unstable framing as [eF1 , eF2 ].

Remark 6.7. Once we know that the bundleEu,F isUλ-framed, for some framing [eF1 , eF2 ],
we may then choose a new metric on Eu,F as in Remark 4.3 by declaring eF1 and eF2 to
be unit length and orthogonal. This new metric will satisfy all of the properties of the
metric from that remark, but will have the additional property that it makes [eF1 , eF2 ] an
orthogonal frame. We will use this metric below.

7. Regularity of the ‘slow’ foliation
To upgrade the regularity of the ‘slow’ foliation, we will use the normal forms developed
by Kalinin and Sadovskaya. The following theorem is a combination of [Kal24, Theorem
4.6, Corollary 4.8, and Remark 4.2]. In the following theorem, the required estimate on ε is
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particularly simple because we have assumed that r is bounded away from 1 (see [Kal24,
Corollary 4.8]).

THEOREM 7.1. (Non-stationary linearization) Let F be a Cr , r ∈ (3/2, ∞] diffeomor-
phism of a smooth manifold X and let W be an F-invariant topological foliation of X
with uniformly Cr leaves. Let χ > 0 and

0 < ε < χ/5.

Suppose that the linear extension DF |TW satisfies

eχ−ε‖v‖ ≤ ‖DxF(v)‖ ≤ eχ+ε‖v‖. (7)

Then, there exists a family {Hx}x∈X of Cr diffeomorphisms Hx : W(x) → TxW(x)

satisfying Hx(x) = 0 and D0Hx = Id such that for each x ∈ X,

DxF |TW(x) = HF(x) ◦ F ◦ H−1
x : TxW → TF(x)W(F (x)). (8)

The maps Hx restricted to balls of uniform radius depend continuously on x ∈ X in
the C�r� topology and have derivative that is uniformly r − �r� Hölder. Further, for each
y ∈ Wx , the map Hy ◦ H−1

x : TxW → TyW is affine.

We now upgrade the regularity of the SF foliation. The idea behind the subsequent
proofs is to use that the normal forms coordinates are uniformly bilipschitz on small
balls. This allows us to compare the rate at which curves shrink in both the normal forms
coordinates and in the ambient manifold.

PROPOSITION 7.2. Suppose that F is a C2+ Anosov diffeomorphism that is Uλ-framed as
in Definition 6.6 and has the same Jordan data as L. Then, the SF foliation is uniformly
C2+ when restricted to Wu,F leaves.

Remark 7.3. The following proof uses the normal forms coordinates. One could also prove
this by using that the cocycle holonomies restricted to leaves are C1+ and show that the eF1
distribution is invariant under these holonomies by studying the map FnHF−nxF−nyF

−n,
where Hxy denotes the cocycle holonomy between two points x and y in the same unstable
leaf.

Proof. To begin, let us explain why normal forms coordinates exist for the Wu,F foliation
using Theorem 7.1. The main thing to check is equation (7). Due to our assumption on the
periodic data, from [Kal11, Theorem 1.3], it follows that for each ε > 0, there is cε > 0
such that for any v ∈ Eu,F ,

cεe
χ−ε‖v‖ < ‖Dxf (v)‖ < c−1

ε eχ+ε‖v‖.

We can then eliminate the constant cε by passing to an adapted metric. Thus, we see that
the coordinates from the conclusion of Theorem 7.1 exist. We call these normal forms
coordinates.
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We now use the normal forms to finish the proof. Note that if γ : [0, 1] → M is a C1

curve tangent to the eF1 distribution, then for some C = len(γ ), we have

dWu,F (F−nγ (0), F−nγ (1)) ≤ Cλ−n, (9)

because DF−1(eF1 ) = λ−1eF1 . Note that for any x ∈ M , the Riemannian distance on
Wu,F
loc (x) and the Euclidean distance on Wu,L with respect to the normal forms chart

on Wu,F are uniformly bi-Lipschitz as the normal forms depend continuously on the
basepoint in the C1 topology.

Note that TxWu,F comes equipped with the framing [eF1 , eF2 ], which gives coordinates
on it as a manifold and as a vector space. We will always use this framing to express
differentials of maps as matrices. As explained in Remark 6.7, we may choose an adapted
metric on TxWu,F that makes eF1 and eF2 orthonormal.

Note that [
λ 1
0 λ

]−n
= λ−n

[
1 −nλ−1

0 1

]
.

Hence, by equation (8), F−n, when viewed as a map TxWu,F → TF−n(x)Wu,F in normal
forms coordinates, is

HF−n(x)F
−nH−1

x = λ−n
[

1 −nλ−1

0 1

]
. (10)

Suppose that γ : [0, 1] → TxWu,F is non-constant in the eF2 direction. Then, it is
immediate from equation (10) that there exists C1 such that

dTF−n(x)Wu,F (HF−n(x)F
−nH−1

x (γ (0)), HF−n(x)F
−nH−1

x (γ (1))) ≥ C1nλ
−n. (11)

Consider now a curve η in Wu,F that is tangent to the eF1 distribution. Then, as in
equation (9), there exists C2 such that

dWu,F (F−n(x))(F
−n(η(0)), F−n(η(1))) ≤ C2λ

−n.

Note that under backwards iteration, the curve F−n ◦ γ lies in a uniformly small ball.
There exists C3 such that on such uniformly small balls, Hx is C3-bi-Lipschitz. Thus,

dTF−n(x)Wu,F (HF−n(x)F
−n(η(0)), HF−n(x)F

−n(η(1))) ≤ C3C2λ
−n. (12)

Thus, Hxη must lie tangent to the linear eF1 foliation on TxWu,F because otherwise,
equation (11) would contradict equation (12).

This implies that the linear foliation of TxWu,F tangent to eF1 pushes forward by Hx to
the SF foliation. Thus, the SF foliation has the same regularity as Hx , as it is the image
under Hx of the eF1 foliation. As the maps Hx are uniformly locally C2+, this implies that
SF is a uniformly C2+ foliation subordinate to Wu,F .

We may consider holonomies along the SL foliation between distant uniform transver-
sals T and W. As the holonomies of the SL foliation are isometries, this implies that the
resulting map T → W is uniformly continuous independent of the distance between T
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14 J. DeWitt

and W along SL leaves. We will now develop a sequence of lemmas and prove that the
analogous property holds for SF .

For θ ∈ [0, π ], we say that a transversal W is θ -transverse to SF if at every point, we
have that W makes an angle of at least θ with SF . The following says that transversals to
the SF foliation travel between uniformly distant leaves in uniform time. To describe the
distance between leaves, we use the notion of the Hausdorff distance between two sets in
a metric space (M , d). The Hausdorff distance is defined as

dH (X, Y ) = max
{

sup
x∈X

d(x, Y ), sup
y∈Y

d(y, X)
}

.

If X and Y are two sets which both lie inside a leaf W of another foliation W , then we write

dWH (X, Y ) = max
{

sup
x∈X

dW(x, Y ), sup
y∈Y

dW (y, X)
}

,

where dW is the distance along the leaf W with the W term’s pullback metric.
We will prove the following by covering the foliation with tiny charts in which the claim

is trivial.

LEMMA 7.4. Suppose that F isUλ-framed. For anyD > 0, θ ∈ (0, π/2], there existC > 0
such that if x ∈ Wu,F (y) and dWu,F

H (SF (x), SF (y)) < D, then any θ -uniform transversal
from x to SF (y) hits SF (y) in distance at most C.

Before we begin the proof, we introduce some definitions. As a reminder, a local product
neighborhood for a point in a foliation is a foliation chart on a neighborhood of the point.
Let Bnr (0) denote the ball of r radius in R

n. For what follows, we will work with foliation
charts whose domain is of the form φ : [−a, b] × Bn−1

r (0) ⊂ R
n → M; the reason for this

is so that we can refer to the ‘top’ and ‘bottom’ plaques of the chart, by which we mean
φ({−a} × Bn−1

r (0)) and φ({b} × Bn−1
r (0)). As the SF foliation is transversely orientable,

we require that this ordering of the end leaves agrees with the transverse orientation on the
foliation.

As the SL foliation restricted to Wu leaves is essentially the same as a foliation of
Euclidean R

2 by parallel lines, it makes perfect sense to speak of the vertical ‘distance’
between two leaves. This distance is precisely equal to the Hausdorff distance between two
leaves, though we refer to it as vertical as we are thinking of it in this geometric way.

Definition 7.5. For θ ∈ (0, π/2], t0 > 0, ε > 0, a (θ , t0, ε)-chart for a point x is a local
product neighborhood for the SF foliation such that x lies in the middle of the bottom
plaque of the neighborhood and any unit speed transversal beginning from x that is
θ -transverse hits the top leaf of the foliation chart in at most t0 time. Further, we require
that h carries the top and bottom plaques of the chart to leaves of the SL foliation at vertical
distance at least ε from each other.

Proof of Lemma 7.4. To begin, we show that for every θ ∈ (0, π ], there exist tθ , ε > 0
such that every point x ∈ T

4 is contained in the bottom leaf of a (θ , tθ , εθ )-chart. To prove
this, we essentially use two claims, one about the uniform continuity of h and the other
about the uniform C1-ness of SF .
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(1) Note that because h is uniformly continuous, for any ε > 0, there exists εL > 0 such
that if P1 and P2 are two bounded plaques of the SF foliation in the same Wu,F leaf
with d(P1, P2) > ε, then h(P1), h(P2) lie in leaves of the SL foliation at vertical
distance at least εL > 0 apart.

(2) For a fixed θ ∈ (0, π ], because the SF foliation is uniformlyC1, for every sufficiently
small ε > 0, there exist tε,θ > 0 and δε,θ > 0 such that every point x is contained in
the middle of the bottom plaque of a product neighborhood where a θ -transversal
beginning from x hits the top plaque in at most tε,θ time and, in addition, d(P1, P2) >

δε,θ .
By combining these two statements, we obtain that for any θ > 0, there exist tθ , εθ > 0

and a cover of the SF foliation by (θ , tθ , εθ )-charts. Further, note that as the SF foliation
is transversely orientable, we may choose these charts to agree with this transverse
orientation.

We now show that uniform transversals uniformly travel ‘vertically’. Consider a
θ -transverse curve γ to the SF foliation passing through a point x. Let B be a
(θ , tθ , εθ )-neighborhood for x and let P1, P2 be the top and bottom plaques of B. Note
that the vertical distance between h(P1) and h(P2) is at least εθ . Thus, we see that as γ
traverses B, the vertical height of h(γ ) increases by εθ . This implies that h(γ (0)) and
h(γ (ntθ )) are vertical distance at least nεθ apart.

If SF (x) and SF (y) are at Hausdorff distance at most D apart, then because h is a
quasi-isometry, there exists D′ > 0 such that dWu,L

H (h(SF ), h(SF )) < D′. Thus, we see
that a unit-speed uniform θ -transversal starting at the SF (x) leaf will reach the SF (y) leaf
in at most �D′ε−1

θ tθ� time. The claim follows.

We may now prove the following.

LEMMA 7.6. Suppose that F is Uλ-framed, then the holonomies of the SF foliation are
uniformly C1. That is, if W and T are two uniform C1 holonomy related transversals,
then the map 	T ,W : T → W has uniformly continuous Jacobian, which is bounded
independent of the transversals.

The approach of the following proof is to use normal forms coordinates to linearize the
SF foliation and study how transversals to the SF foliation are stretched by its holonomies.
Because SF is intertwined with the SL foliation, which has isometric holonomies, the
holonomies of SF can only stretch curves a limited amount transverse to the SF foliation.
This observation then implies the result.

Proof. By Lemma 7.4, there existsC1 > 0 such that if T is a transversal to the SF foliation
of length less than 1, and W is a uniform transversal to the SF foliation, then 	W(T ) has
length less that C1. This is immediate because 	W(T ) is itself a uniform transversal.

Let Hx : Wu,F (x) → TxWu,F (x) be the normal forms coordinates as in Theorem
7.1. On balls of uniform radius r0 � C1, the normal forms coordinates are uniformly
D-bi-Lipschitz for someD ≥ 1. By that theorem, we have in addition that if x ∈ Wu,F (y),
then the map Hy ◦ H−1

x : TxWu,F → TyWu,F is affine. In fact, its differential, with
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respect to the [eF1 , eF2 ] framing, is of the form[
a b

0 c

]
, (13)

because the normal forms intertwine the SF foliation with the linear foliation of TxWu,F

tangent to eF1 as we saw in the proof of Proposition 7.2.
Fix a small number 0 < ε � r0. Suppose that I is a uniform transversal to the SF

foliation through the point x that has length at least ε, but length less than r0.
Let Ix = Hx ◦ I . Then, Ix is a curve in TxWu,F . Suppose that dIx/dt is α(t)eF1 +

β(t)eF2 . Because Ix has length at least D−1ε and is uniformly transverse to SF , there
exists a uniform constant C2 > 0 such that∫

β(t) dt ≥ C2D
−1ε. (14)

Consider a point y ∈ Wu,F such that y ∈ SF (I ). If we view Ix in the TyWu,F normal
coordinates, then Ix has differentialDHyH−1

x ◦ Ix , which by equation (13) has differential
with eF2 component equal to

cβ(t)eF2 .

Let J be a curve through 0 in TyWu,F tangent to eF2 . Note that H−1
y J is a uniform

transversal to the SF foliation. As a curve in TyWu,F , 	JHyH−1
x Ix has tangent cβ(t)eF2 .

Thus, by equation (14),

len(	JHyI ) ≥ cC2D
−1ε.

However, by the uniform D-bi-Lipschitzness of normal coordinates, this implies that

len(	HyJ I ) ≥ cC2D
−2ε.

However, by the first paragraph of this proof, the length of this curve is at most C1. Thus,

C1 ≥ cC2D
−2ε,

so

c ≤ C1C
−1
2 D2ε−1.

Note that this estimate is independent of x and y. This implies that in normal forms
coordinates, the holonomies are uniformly C1 because the entry c in equation (13) is
uniformly bounded. However, this implies that the same result holds for the SF holonomies
because the normal forms coordinates are uniformly locally C2+.

The previous discussion shows that the distribution defined by the vector field eF1 is
C1+; however, this is not the same as the vector defining the distribution being C1. We
now upgrade the regularity by using regularity for solutions of Livsic equations following
[NT98, Theorem 2.2].

LEMMA 7.7. Suppose that F is Uλ-framed. Then, the vector field eF1 is uniformly C1+
along Wu,F .
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Proof. The vector field eF1 is only Hölder continuous, but we would like a C1+ version
of it. So, let ẽF1 be a C1+ rescaling of eF1 , which exists because eF1 is tangent to a C1+
distribution by Lemma 7.2.

Let [eF1 ] denote the subspace tangent to eF1 . Then consider the C1+ cocycleA : T4 → R

arising from DF |[eF1 ] : T4 → R that sends x to the number η(x) such that DFẽF1 =
eη(x)ẽF1 . Note that if p is a periodic point of period p, then

∑n
i=1 A(F

i(p)) = n ln λ.
We claim that, in fact, A is cohomologous to constant via a transfer function φ : T4 → R

that is uniformly C1+ along Wu leaves. This follows from the argument in [NT98,
Theorem 2.2], which we now sketch. If we view the function A as defining a cocycle
A on the space T

4 × R, then this cocycle is partially hyperbolic because R is abelian.
Hence, the unstable foliations lift to T

4 × R and these are uniformly C1+ foliations Wu,A.
If B is another uniformly C1+

R-valued cocycle along Wu,F leaves arising from a function
B : T4 → R, then we similarly get uniformly C1+ foliations Wu,B. One can then check
that the transfer function carries Wu,A leaves to Wu,B leaves. As each of these foliations
has uniformly C1+ leaves, we see by the implicit function theorem that a transfer function
must be uniformly C1+ as well.

Using the function φ to rescale ẽF1 , we may find a new vector field êF1 that is uniformly
C1+ on Wu,F leaves and satisfiesDFêF1 = λêF1 . It suffices to now check that eF1 coincides
with êF1 . Note that êF1 = β(x)eF1 for some continuous function β. Then computing
DFβ(x)eF1 in two different ways, we find

λβ(x)eF1 (σ (x)) = λβ(F (x))eF1 ,

and hence β is constant on orbits and hence is constant. Thus, in fact êF1 = ce : 1F and so
eF1 was C1+ all along.

LEMMA 7.8. Suppose that F is Uλ-framed and let φt be the flow along the eF1 vector field,
that is, tangent to slow leaves. Then,

φt = Fn ◦ φλ−nt ◦ F−n. (15)

Proof. Both sides of the equality are flows of C1 vector fields, so it suffices to check that
they have the same generating field, that is, the right-hand side is generated by eF1 .

If we write φt in coordinates as (x, y) 	→ (x, y)+ teF1 +O(t2), then we see that the
composition takes

(x, y) 	→ F−n(x, y)

	→ F−n(x, y)+ tλ−neF1 +O((λ−nt)1+α)
	→ (x, y)+ teF1 +O(nλ−nαt1+α),

as desired.

The following proof is the only place where we use that the Jordan periodic data of
F are exactly those of L. It seems that, in general, if G has Jordan periodic data αG
and

∫
αG d vol > 0, then the following proof can still be carried out. It is unknown

to the author whether this property necessarily holds for the Jordan data of all Anosov
diffeomorphisms with the periodic data of L.
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LEMMA 7.9. Let F be Uλ-framed. Let φt be the flow along eF1 and suppose that F has the
same Jordan data as L. Then, the flow φt carries uniform C1 transversals to SF to uniform
C1 transversals to SF .

Proof. To do this, we will study the differential of the flow φt in the [eF1 , eF2 ] framing. We
will do so by first studying the differential of the flow φt . We write all differentials below
with respect to the [eF1 , eF2 ] framing.

Because eF1 is a C1+ vector field, we have that the flow map φt (x) is C1+ in time and
initial conditions. (The author is unaware of a reference in the literature for this claim;
however, one can show this by reading, for example, [Izz99] and keeping track of the
Hölder constant during Picard iteration.) Thus, in a coordinate chart, we may writeDφt =
Id +O(tσ ) for the differential of the flow of time t for some 0 < σ < 1. We will only be
interested in this differential for increasingly short times λ−nt .

We now find an expression for Dφt in terms of the [eF1 , eF2 ] framings. We can always
choose our coordinates to be tangent to the vector fields [eF1 , v], where v is some smooth
transverse field to eF1 . Then, v = αeF1 + βeF2 and we can insist that both α and β are
Cσ -Hölder and that β is uniformly bounded below by transversality. For ease of notation,
let x be the initial point and y = φλ

−nt .
To change into the [eF1 , eF2 ] framing, we must conjugate Id +O(λ−nσ tσ ) as follows:[

1 −α(y)β−1(y)

0 β−1(y)

]
[Id +O(λ−nσ tσ )]

[
1 α(x)

0 β(x)

]

=
[

1 −α(y)β−1(y)

0 β−1(y)

] [
1 α(x)

0 β(x)

]
+O(λ−nσ tσ )

=
[

1 α(x)− α(y)β−1(y)β(x)

0 β−1(y)β(x)

]
+O(λ−nσ tσ ) .

Note that d(x, y) = O(λ−nt). As β is bounded below, this implies that

β−1(y)β(x) = 1 +O(λ−nσ tσ ).

Using a Hölder estimate on α and canceling gives that with respect to the [eF1 , eF2 ]
framings,

Dφλ
−nt = Id +O(tσ λ−nσ )

for some 0 < σ < 1.
Hence, with respect to the framings, using the relation φt = Fn ◦ φλ−nt ◦ F−n, we find

Dφt =
[
λn nλn−1

0 λn

]
(Id +O(tσ λ−σn))

[
λ−n −nλ−n−1

0 λ−n
]

.

However, this is converging to Id as n → ∞. Thus, we see that for all times t, Dφt is the
map that sends eF1 	→ eF1 and eF2 	→ eF2 at corresponding base points.

In particular, this implies the result because it shows that curves that are uniformly
transverse to the flow direction eF1 remain uniformly transverse to eF1 and are not distorted
in length as the fields eF1 and eF2 are uniformly bounded above and below in length.
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Remark 7.10. It is perhaps not surprising that the eF2 field is preserved by φt because the
frames [ce : 1F , ce : 2F ] are the only frames that present the cocycle as a constant Jordan
block.

7.1. The conjugacy is Lipschitz. Now that we have established stronger properties of the
SF foliation, we will use these to show that h is Lipschitz.

LEMMA 7.11. Suppose that F is C2+, Uλ-framed, and has the same Jordan periodic data
as L. Then, h is uniformly Lipschitz restricted to each unstable leaf.

The proof of Lemma 7.11 is based on exhibiting h as the uniform limit of a sequence
of uniformly C1 functions. The main difficulty we encounter is that we cannot establish
regularity of h in a single step. Instead, we establish regularity of h incrementally by
studying its regularity in some directions before others. As an ansatz, suppose we knew
that h was differentiable with

Dzh =
[
a(z) b(z)

0 c(z)

]
,

with respect to the framings [eL1 , eL2 ] and [eF1 , eF2 ]. It is easy to deduce that a(z) = C for
some number C because h intertwines the SL and SF foliations. It is straightforward to
check that c(z) = C as well by using that b(z) is uniformly bounded. Below, we study the
‘differential’ of h in this manner building up information little by little. We first study the
possible diagonal ‘entries’ of the matrix representing the derivative of h and then study
the ‘upper right-corner’ of Dh.

What makes this approach difficult is that the existence of a particular partial derivative
is not a property that is invariant under coordinate change. To see what is meant by
this, consider a function φ : R2 → R that has a partial derivative ∂xφ at every point but
does not have the partial derivative ∂yφ defined at any point. If we precompose φ by a
diffeomorphism f : R2 → R

2, then φ ◦ f : R2 → R may not have any partial derivatives
at any point. This may happen, for instance, if f does not preserve the leaves of the foliation
of R2 by horizontal lines. Naturally, φ ◦ f still has derivatives along some curves. However,
the existence of the derivative is not guaranteed by merely knowing that the curve is tangent
to a particular direction. For example, there are smooth curves γ1, γ2 : (−1, 1) → R

2 such
that γ̇1(0) = γ̇2(0), where φ ◦ γ1 has a derivative at 0 yet φ ◦ γ2 is not differentiable at 0.
For instance, consider a curve γ2 that is tangent to a horizontal line but only to first order.

We will deal with the issues alluded to in the above paragraph by using foliations to
control the directions in which we differentiate. By proceeding in this manner, we can still
recover the information we need by studying a derivative normal to the foliations SL and
SF , which we introduce in Definition 7.16.

This section relies on the following lemma of de la Llave. The version we give below is
a slight rephrasing of the original adapted to our setting. See [GKS20] for a recent example
of the use of this lemma in a similar context.

LEMMA 7.12. [dlL02, Theorem 2.1] Let F , G be C1 Anosov diffeomorphisms of a closed
manifold M. Let h be a homeomorphism of M such that:
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(1) h ◦ F = G ◦ h.
Let k be a map—not necessarily invertible or continuous—such that:
(2) k(Wu,F

x ) ⊂ Wu,G
h(x); and

(3) supx dWu,G(k(x), h(x)) < ∞.
Then,

h(x) = lim
n→∞ G−n ◦ k ◦ Fn(x),

and the limit is reached uniformly with respect to the distances dWu,F and dWu,G .

As the convergence in Lemma 7.12 is uniform, we can use it to study whether the
conjugacy is Lipschitz by exhibiting the conjugacy as a uniform limit of uniformly
Lipschitz functions.

In the following, we will writeDh(eL1 ) to mean the derivative of h in the direction of eL1
along the foliation SL. By Proposition 6.4, this derivative exists. Note that when we make
use of this notation, we are not asserting that h is differentiable.

LEMMA 7.13. There exists C1 �= 0 such that DheL1 = C1e
F
1 . Without loss of generality,

we may assume that C1 = 1.

Proof. By Proposition 6.4, we know that this derivative exists and that

Dh(eL1 ) = c(x)eF1

for some Hölder function c(x). Because

F ◦ h = h ◦ L,

we can differentiate this equation along SL on both sides and use the chain rule to find that

λc(x)eF1 = λDh(eL1 ) = Dh(eL1 )λ = c(L(x))λeF1 .

Thus, c(x) is constant on orbits. Hence, as c(x) is continuous, it is constant. To ensure that
C1 = 1, we replace [eF1 , eF2 ] with [C1e

F
1 , C1e

F
2 ]. Note that this does not change the Jordan

periodic data or the function α representing the data in this framing.

We now show our first smoothing lemma.

LEMMA 7.14. Suppose that F is C2+ and Uλ-framed. There exists a function h0 : M → M

such that, writing hx for the restriction h0|Wu,L(x), we have that:
(1) h0 intertwines the Wu,L and Wu,F foliations as well as the SL and SF foliations;
(2) hx is C1 and is uniformly C0 close to h with respect to dWu;
(3) with respect to the framings [eL1 , eL2 ], [eF1 , eF2 ], the differential of h0 is[

1 b(x)

0 a(x)

]
,

where a is a uniformly bounded continuous function on each leaf and the uniformity
is independent of the leaf.
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Before beginning the proof, we describe how one studies the regularity in a situation
like this. If we want to show that a function k : Wu,L(x) → Wu,F (h(x)) is uniformly C1,
then it suffices to check that this is true in a particular family of charts adapted to the
C1 norms on these manifolds. While Wu,L(x) admits a chart ψL : R2 → Wu,L(x) that is
an isometry, and hence uniformly C1, the leaf Wu,F (h(x)) does not a priori have such a
nice parameterization. However, Wu,F does admit a uniform family of charts, which we
now describe. Let φ be the flow of the C1+ vector field eF1 along the leaves of SF . Note
that for any fixed t0 > 0, the maps φt for t ∈ [−t0, t0] are uniformly C1+. Fixing numbers
N , t0 > 0 and a parameter θ > 0, if γ (t) : (−δ, δ) → Wu,F (h(x)) is any unit speed curve
of length between N and 2N that makes an angle of at least θ with eF1 distribution, then
the map ψFγ : (−δ, δ)× (−t0, t0) → Wu,F (h(x)) defined by

(t1, t2) 	→ φt2γ (t1),

is a parameterization of a subset of Wu,F . In addition, ψFγ is a C1+ chart for the SF
foliation.

In particular, given this uniform family of charts, we may study regularity in the
following way. If we want to show that a map k : Wu,L(x) → Wu,F (h(x)) is uniformly
C1, it suffices to show that for each uniform pair of charts ψFγ and ψL, we have that

(ψFγ )
−1 ◦ k ◦ ψL (16)

is uniformly C1 as a map defined on a subset of R2. In the proof that follows, we will use
this family of charts to study the regularity.

As mentioned before, because the leaves of the Wu,L foliation are Euclidean, they admit
global uniformly smooth charts. Specifically, on the Wu,L foliation, we exclusively work
with the global charts of the form

(t1, t2) 	→ x + t1e
L
1 + t2e

L
2 .

We construct these charts around a specific transversal to the SL foliation of the form
T0 : t 	→ x + teL2 in a manner analogous to equation (16). We similarly denote such a
chart by ψLT0

. In addition, these transversals t 	→ x + teL2 define a linear foliation, which
we denote by FL.

Before proceeding, we obtain the following lemma that says that usable transversals to
the SF foliation exist.

LEMMA 7.15. In each Wu,F leaf, there exists a uniform C1 transversal to the SF foliation.
Moreover, this transversal is given by a map R → Wu,F with uniformly continuous,
bounded derivative. Further, this transversal is uniformly C0 close to the image of a
uniform transversal to the SL foliation under h.

Proof. To begin, observe that there exist uniformly Hölder continuous topological
transversals to the SF foliation such as h(T0), where T0 is a leaf of FL. Call this transversal
T1. We will mollify this transversal to obtain the lemma.

We first describe how locally we can mollify this transversal to make it uniformly C1.
As the SF foliation is a C1+-foliation, we may view T1 in a small, uniformly C1+ foliation
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box for the SF foliation. Pulling everything back by this chart, we have a foliation box
[−1, 1] × [−1, 1]. By choosing the foliation box sufficiently small and correctly placed
relative to T1, we may arrange that within this box, T1 is represented by the graph of a
Hölder continuous map φ such that φ(0) = 0 and φ(1) ∈ (−1/2, 1/2). We mollify φ to
obtain a new function φ̂ that is uniformly C1+ on the interval (−3/4, 3/4). Note that the
derivatives of φ̂ are uniformly bounded because this is always the case for mollifications
of uniformly Hölder functions by convolution with a fixed standard mollifier. Thus, we
can locally smooth φ̂ with uniform estimates regardless of where we are smoothing.
However, these local mollifications might not piece together to form the full mollified
transversal while staying C0 close to the original one. Nevertheless, we can fix this
within the chart where we are mollifying: we may use the C1+ flow along the eF1 vector
field as in Lemma 7.9 to fix our mollified curve so that it does not drift away from the
topological transversal T1. As we need only flow a finite distance, the tangent of the flowed
curve remains uniformly transverse to the SF foliation and the curve’s derivative stays
uniformly bounded. Thus, by inductively proceeding along the transversal T1, we obtain
the result.

We now proceed with the proof of the first smoothing lemma.

Proof of Lemma 7.14. We give the construction for a single leaf Wu,L(x). The full result
follows by repeating the construction on each leaf.

Fix a uniform C1 transversal TF : R → Wu,F (h(x)) to the SF foliation as obtained
from Lemma 7.15. In particular, we may use that h(T0) and TF are uniformly C0 close
as maps R → Wu,F (x) and that the transversal has a parameterization with uniformly
bounded derivative.

Letting T0 : R → Wu,L be a transversal to SL tangent to eL2 , define P : R → R by
T −1
F ◦	TF ◦ h ◦ T0. Note that P is uniformly Hölder because it is the composition of

uniformly Hölder maps.
Along the FL leaf T0, we can mollify P as follows to get a function P̃T0 . Fixing any

smooth bump function σ on R, we define

P̃T0(t) :=
∫
P(t − x)σ (x) dx.

Note that P̃T0 is C0 close to P and that TF ◦ P̃T0 is uniformly C0 close to TF ◦ PTF =
	TF ◦ h ◦ T0. However, as TF is C0 close to h ◦ T0, this is uniformly C0 close to h ◦ T0

and hence TF ◦ P̃T0 is uniformly C0 close to h ◦ T0 as maps R → Wu,F .
We now define the map hx . Define ĥ2 to be the map TF ◦ P̃T0 . We use ĥ2 defined in

this way to ensure that the parameterization of TF we obtain remains C0 close to the
corresponding parameterization of h(T0). As before, let φ be the flow along the eF1 vector
field tangent to the SF foliation. In the coordinates (t1, t2) = x + t1e

L
1 + t2e

L
2 on Wu,L,

define

hx : (t1, t2) 	→ φt1(ĥ2(t2)). (17)

We now check that hx has the required regularity properties. From the definition, it is
immediate that hx is C1. Next, we claim that hx is C0 close to h. From earlier, we have
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that h(T0(t)) is uniformly close to TF ◦ P̃T0(t). We claim that independent of s,

φs(TF ◦ P̃T0(t)) is uniformly close to h(s, t) = φs(h(T0(t)).

This follows because the flow φs is a uniform quasi-isometry independent of the value of
s: this follows because h is a quasi-isometry and intertwines the flow φs with the linear
flow along SL, which is isometric.

We now turn to the differentiability properties of hx . From the definition of hx in
equation (17), hx is manifestly C1 and Dhx(eL1 ) = eF1 . It just remains to check that when
written with respect to the bases [eL1 , eL2 ] and [eF1 , eF2 ], the bottom right corner of Dhx is
uniformly bounded.

We begin by checking the corresponding claim for a pair of uniform charts. For a uni-
form transversal γ to SF , we have uniform chartsψFγ andψL, and may write hx as (h1, h2)

in these charts. We claim that in such uniform charts, the derivative of hx looks like[
1 b

0 a

]
, (18)

where a is a uniformly bounded continuous function. To see this, note first that h2 in these
charts is equal to γ−1 ◦	γ ◦ TF ◦ P̃T0 . By Lemma 7.6, the map 	γ is uniformly C1 as
a map TF → γ , as these are both uniform transversals. Thus, as the remaining maps in
the composition are uniformly C1, so is the entire composition. Hence, a is uniformly
bounded.

Getting uniformity for the specific framing in the lemma requires only slightly more
work. The matrix in equation (18) is written with respect to the chart coordinate frames,
which are vector fields [eL1 , eL2 ] and [eF1 , ∂y], where ∂y depends on the chart ψFγ . The
field eF2 in which we are actually interested is a linear combination of eF1 and the chart
coordinate ∂y , that is, eF2 = ce : 1F + d∂y , where c and d are uniformly Hölder and d is
uniformly bounded away from 0 because, in uniform charts, the coordinate directions are
uniformly transverse. Thus, written with respect to bases [eL1 , eL2 ] and [eF1 , eF2 ], Dhx has
the following form: [

1 ∗
0 ad−1

]
.

Thus, the derivative is uniformly bounded as required.

7.2. Normal differentiability. For a function A : R2 → R
2, one often studies differen-

tiability of A by studying the partial derivatives of A. However, the usual definition of a
partial derivative is far from being formulated in a coordinate independent way: the partial
derivatives of a function are its derivatives along the coordinate directions. For a function
A that is C1, then there is no problem with this, because we can recover the derivative of A
in any particular direction from the knowledge of the directional derivatives of A in other
directions. For a C1 function A, the derivatives of A are determined by its derivatives along
certain curves. If we know the derivative along enough of these curves, then we know the
derivative along any curve.
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Normal differentiability deals with the situation where we cannot differentiate along
curves, so we cannot use curves directly to define a derivative. However, we may be able
to obtain a derivative once we quotient by a foliation. Consider a map φ : R2 → R

2 that
preserves the foliation by horizontal lines. Then φ induces a map φ̃ : R → R, where we
identify R with the space of horizontal lines. It is entirely plausible that this map φ̃ is
smooth even though the map φ restricted to any vertical line is not even differentiable. In
this case, we think of φ as being differentiable and the derivative of φ̃ as being a ‘normal’
derivative to the foliation by horizontal lines. By quotienting by the foliation, we are able
to canonically detect this normal component of φ.

We say that a foliation F has well-defined holonomy if for any two transversals I and
J such that I ⊂ F(J ), we have that for each x ∈ I , |F(x) ∩ J | = 1. For example, the
foliation of R

2 by lines has well-defined holonomy; in particular, note that SL and SF
both have well-defined holonomy when restricted to unstable leaves. A foliation of a
closed manifold might not have well-defined holonomy. When restricted to a coordinate
neighborhood, all foliations have well-defined holonomy. However, we will not work with
such a local notion as it is not necessary in our case.

Definition 7.16. Suppose that F and G are two C1 foliations with well-defined holonomy.
Suppose that φ is a continuous map intertwining the F and G foliations. We say that φ is
normally C1 differentiable to F and G if for any pair T and W of smooth transversals to F
and G, respectively, with φ(T ) ⊂ G(W), the map T → W given by 	W ◦ φ is C1. (Here,
as before, 	W denotes the projection to W along the leaves of G.)

Note that because F and G are C1 foliations, the holonomy between different transver-
sals is C1, and hence this notion of differentiability is well defined independent of the
choice of transversals.

When we have fixed a pair of transversals T and W, we will speak about differentiability
of φ along the transversals T and W normal to the foliations F and G. Further, because the
holonomies of F and G are absolutely continuous with respect to the Lebesgue measure,
it makes sense to speak of normal differentiability almost everywhere along a transversal.
We may also speak of normal differentiability at a pair of points x and y ∈ G(φ(x)).

We will restrict the use of this definition to the case where the foliations have dimension
1 and subfoliate a space of dimension 2. In fact, if we have differentiability along such
foliations and v and w vectors transverse to F and G such that the basepoint of w is the
image of the basepoint of v, then there is a well-defined number Dv,wφ that we call the
normal derivative of φ between v and w, which we define in the following manner. Let T
and W be two transversals with dT /dt = v and dW/dt = w at corresponding points. We
then define Dv,wφ by

D(	W ◦ φ ◦ T )(∂t ) = (Dv,wφ)w.

Having made this definition, we now list a number of claims describing the basic and
hopefully intuitive properties of this construction for later use.

CLAIM 7.17. Suppose that φ : M1 → M2 intertwines foliations F and G with well-defined
holonomy. Suppose that v ∈ TxM1 \ TxF and w ∈ TyM2 \ TyG such that Dv,wφ exists.
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Then, for any v′ ∈ TM1|F(x) \ TF(x) andw′ ∈ TM2|G(φ(x)) \ T G(x), the normal deriva-
tive Dv′,w′φ exists.

Proof. Supposing such a pair exists, we can express the derivative defining Dv′,w′φ
by composing with smooth maps. By definition, Dv,wφ existing means that if T is a
transversal tangent to w at 0, then

	W ◦ φ ◦ T : R → W

is differentiable at 0. However, this implies that if T ′ is a transversal tangent to v′ at t = 0
and W ′ is tangent to w′, then

	W ′	W ◦ φ ◦ T ◦ T −1 ◦	T ◦ T ′ = 	W ′ ◦ φ ◦ T ′

is also differentiable at 0 by the chain rule as we have pre- and post-composed with smooth
functions. However, D(	W ′ ◦ φ ◦ T ′) defines Dv′,w′φ, which we see exists.

CLAIM 7.18. Suppose that φ : M1 → M2 intertwines foliations F and G with well-defined
holonomy. Suppose that ψ is another map intertwining these foliations. Then if
ψ : M1 → M2 satisfies ψ(x) ∈ F(φ(x)) for all x, ψ and φ are both differentiable where
either is differentiable and at such points, φ and ψ have the same normal derivative.

Proof. For a pair of transversals W and T, note that 	W ◦ φ ◦ T = 	W ◦ ψ ◦ T ; the
conclusion is immediate.

CLAIM 7.19. If φ is C1 and intertwines foliations as before, then the normal derivative
agrees with the usual derivative in the appropriate sense. Namely, if Dφ(v) = λw, then
Dv,wφ = λ. More broadly, if TF and T G are the tangents to F and G, then

	TGw Dφ(v) = (Dv,wφ)w, (19)

where 	TGw denotes the projection onto the subspace spanned by w along T G.

Proof. We begin by checking equation (19). As before, fixC1 transversals T and W tangent
to v and w. The normal derivative Dv,wF is equal to the λ satisfying, for C1 transversals,

(D	W ◦ φ ◦ T )(∂t ) = (Dv,wφ)w.

As φ is C1, we can rewrite this as

D(	W ◦ φ ◦ T )(∂t ) = (D	W)(Dφ ◦ T )(∂t ) = 	TGw (DF(v)),

which gives equation (19) as desired.
The statement in the second sentence of the claim then follows from equation (19). In

this case, if D(φ(v)) is a multiple of w, then 	TGw Dφ(v) = Dφ(v), so Dv,wφ = λ by the
definition of Dv,wφ.

CLAIM 7.20. Suppose that φ intertwines two foliations F and G as before and thatDv,wφ

exists. If v′, w′ are another pair of vectors with the same respective basepoints, then we can
compute Dv′,w′φ in the following way. Let q be the tangent to F at v and r be the tangent

https://doi.org/10.1017/etds.2024.56 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.56


26 J. DeWitt

to G at the basepoint of w. For a pair of vectors a and b in R
2, write 	ab for the projection

onto b along a. Then, if 	q
w′w = λw′ and 	r

v′v = ηv′, then Dv′,w′φ = ληDv,wφ.

Proof. As before, we can rewrite the formula that defines the normal derivative Dv′,w′φ
into one involving the normal derivative Dv,wφ. Namely,

	W ′ ◦ φ ◦ T = (	W ′) ◦	W ◦ φ ◦ T ◦ (T −1 ◦	T ◦ T ′).

The projections in the statement of the claim are the differentials of the terms in
parentheses written in appropriate coordinates.

7.3. Normal differentiability of the conjugacy.

LEMMA 7.21. For the SL and SF foliations, for any pair T , W of corresponding
transversals, we have that h is normally differentiable at almost every point of T. In fact,
for uniform transversals T and W, the induced map	Wh : T → W is uniformly Lipschitz.

Proof. We will show this only for the case of uniform transversals, as, by the preceding
discussion, this implies normal differentiability for all transversals. We will show this
by studying the convergence in Lemma 7.12. Let hn = F−n ◦ h0 ◦ Ln, where h0 is as
in Lemma 7.14. We calculate the differential Dzhn with respect to the [eL1 , eL2 ], [eF1 , eF2 ]
framings,

Dhn =
[
λ−n −nλ−n−1

0 λ−n
] [

1 c(Lnz)

0 a(Lnz)

] [
λn nλn−1

0 λn

]
=

[
1 cn(z)

0 a(Lnz)

]
,

where a is a uniformly bounded continuous function and cn(z) is some continuous function
depending on n. Fix uniform transversals T : (−1, 1) → Wu,L(x) and W : (−1, 1) →
Wu,F (h(x)) to the SL and SF foliations, respectively. We can write Ṫ as αL(t)eL1 +
βL(t)e

L
2 and Ẇ as αF (t)eF1 + βF (t)e

F
2 . The tangent to hn ◦ T is then[

α(t)+ β(t)cn(T (t))

a(Ln(T (t)))β(t)

]
.

Let	W be the projection to W along SF and let eW be the tangent field to W. Then, the
differential of 	W : F(W) → W , with respect to these framings [eF1 , eF2 ] and [eW ], is

[0, ω]

for some continuous function ω. We claim that ω is uniformly continuous. Note that for
a point y, ω(y) is the derivative of the map 	w ◦ η for η a uniform transversal tangent to
eF2 (y); by Lemma 7.6, this derivative is uniformly bounded.

Thus, the derivative of 	W ◦ hn ◦ TL : R → W sends

∂t 	→ a(Ln(T (t)))β(t)ω(F−nk(Ln(x)))eW ,

which is uniformly bounded. Thus, the sequence of maps ηn = 	W ◦ hn ◦ TL is uniformly
Lipschitz. As the sequence ηn converges uniformly to the map 	W ◦ h ◦ TL, we see that
this map is uniformly Lipschitz as well, and hence differentiable almost everywhere with
uniformly bounded derivative.
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As noted after its definition, the normal derivative is well defined independent of the
transversals used to calculate it. We now determine the normal derivative of h.

LEMMA 7.22. There exists C such that for almost every z, DeL2 (z),eF2 (h(z))h = C.

Proof. We have that F ◦ h = h ◦ L. Both of these are normally differentiable almost
everywhere to the foliations SF and SL, and thus they have the same normal derivatives.
Writing a(z) for the derivative DeL2 (z),eF2 (h(z))h, by calculating the derivative of h ◦ L in
two ways, we see that for almost every z,

λa(z) = a(L(z))λ.

Thus, by ergodicity, as a is almost surely (a.s.) L-invariant, it agrees almost everywhere
with a constant C. Thus, there exists C such that DeL2 ,eF2 (h(z)

h is equal to C almost
everywhere.

We now give another smoothing argument to produce an approximation k to h with
even better properties. This time, we do not smooth in the normal direction because by
Lemma 7.21, h already has some regularity in this direction.

LEMMA 7.23. There exists C �= 0 and a function h0 : M → M such that, writing hx for
the restriction h0|Wu,L(x), we have that:
(1) h0 intertwines the Wu,L and Wu,F foliations as well as the SL and SF foliations;
(2) hx is uniformly C0 close to h;
(3) hx is uniformly C1;
(4) with respect to the framings [eL1 , eL2 ], [eF1 , eF2 ], the differential of h0 is

Dh0 =
[

1 b

0 C

]
,

where b is a uniformly continuous bounded function on each leaf and the bounded-
ness is independent of the leaf.

Proof. We show how to do the smoothing for a particular leaf Wu,L(x0). The result follows
by smoothing on each leaf.

As in the proof of Lemma 7.14, we fix a uniform global transversal TF to the SF foliation
and T0, a parameterization of an FL leaf. Then, we define ω(t) ∈ R by

φω(t)h(T0(t)) ∈ TF .

Note that ω is bounded and uniformly Cα for some α > 0. Thus, as in Lemma 7.15, we
may mollify ω to obtain ω̃, which is uniformlyC1 and uniformly close to ω. We now define
a new version of h, hx0 : Wu,L(x0) → Wu,L(h(x0)) using the (t1, t2) = x0 + t1e

L
1 + t2e

L
2

coordinates on Wu,L:

hx0(t1, t2) = φω̃(t2)+t1	TF ◦ h(T0(t2)).

We claim that this map satisfies the conclusion of the lemma. The first two claims follow as
in the proof of Lemma 7.14. We will show the remaining claims by studying the derivatives
of hx0 in uniform charts.

https://doi.org/10.1017/etds.2024.56 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.56


28 J. DeWitt

By Lemma 7.9, for all t ∈ R, φt (TF ) is a uniform transversal to the SF foliation.
Hence, we may restrict to using a uniform chart on Wu,F formed from such transversals
φtTF . This gives us a uniform chart ψF = ψF

φt0TF
: (t1, t2) 	→ φt0+t1TF (t2). Let us take

the chart ψL : (t1, t2) 	→ (x0 + t0e
F
1 )+ t1e

F
1 + t2e

F
2 on WL. Then, in these charts, the

map (ψF )−1 ◦ hx0 ◦ ψL = (ω̃(t2)+ t1, t2), which is uniformly C1.
It now remains to verify the properties of the differential of hx0 . That the differential

has block form [
1 b

0 c

]

for two continuous function b and c is immediate from its coordinate expression. In
particular, we can read off from this that Dhx0(e

L
1 ) = eF1 . Also, note that b is uniformly

bounded as ω̃ is uniformly C1.
It only remains to check that c is constant. For this, it suffices to show that there exists

a fixed C �= 0 such that Dhx0(e
L
2 ) = ce : 2F + deF1 for some function d. We check this

using properties of the normal derivative. Because hx0 is C1 and intertwines the SL and
SF foliations, by Claim 7.19, we have that at places where hx0 is differentiable, the normal

derivative agrees with the actual derivative. This means that if 	
eF1
eF2

denotes the projection

of a vector onto eF2 along eF1 , then as hx0 is C1,

ce : 2F = 	
eF1
eF2
Dhx0(e

L
2 ) = (DeL2 ,eF2

hx0)e
F
2 .

So by Lemma 7.22, at almost every point, DeL2 ,eF2
hx0 = C. This implies that almost

everywhere, c = C. However, c is continuous so c = C everywhere.

LEMMA 7.24. In Lemma 7.23, we must have C = 1.

Proof. For the sake of contradiction, suppose that C �= 1. We write hn = F−n ◦ h0 ◦ Ln
and apply Lemma 7.12. The differential of hn at z is equal to

λ−n
[

1 −1/λ
0 1

]n [
1 b(Ln(z))

0 C

]
λn

[
1 1/λ
0 1

]n
=

[
1 n/λ− Cn/λ+ b(Ln(z))

0 C

]
.

Note that the upper right-hand corner of this matrix is not only unbounded, but is going
uniformly to infinity because b(Ln(z)) is uniformly bounded. Let γ : [0, 1] → Wu,L be the
curve t 	→ x + teL2 . Then, by integrating the derivative of hn, we see that arbitrarily small
segments of γ are stretched to uniform length by hn for sufficiently large n. However, this
implies that the sequence hn can have no uniform modulus of continuity, which contradicts
the uniform convergence of hn to a continuous function h.

We can now show that h is Lipschitz on each leaf.

Proof of Lemma 7.11. We can now conclude by applying Lemma 7.12 again. By applying
Lemmas 7.23 and 7.24, we obtain a map h0 that is uniformly C1+ on Wu,L leaves and such
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that the differential Dh0 is, with respect to the frames [eL1 , eL2 ], [eF1 , eF2 ],[
1 a(z)

0 1

]
,

where a is uniformly bounded. As before, let hn = F−n ◦ h0 ◦ Ln. Then, we may calculate
as before that the differentials of the functions hn are[

1 a(Ln(x))

0 1

]
.

However, note that as these differentials are uniformly bounded, the sequence hn is
uniformly Lipschitz. By Lemma 7.12, as h is the uniform limit of the hn, we obtain that h
is uniformly Lipschitz on each leaf.

8. Differentiability of the conjugacy
We can now prove Proposition 1.5. We will use the following result.

THEOREM 8.1. [KSW23, Theorem 2.1] Let F be a transitive C1+Hölder Anosov diffeo-
morphism of a compact manifold M, and let A and B be β-Hölder linear cocycles over F.
Suppose that A has one Lyapunov exponent and B is fiber bunched.

Let μ be an ergodic F-invariant measure on M with full support and local product
structure. Then, any μ-measurable conjugacy between A and B is β-Hölder continuous,
that is, coincides with a β-Hölder continuous conjugacy on a set of full measure.

We now turn to the proof of Proposition 1.5.

Proof of Proposition 1.5. The hypotheses include that F is Uλ-framed. Hence, by
Lemma 7.11, h is Lipschitz and hence differentiable almost everywhere along unstable
leaves. Its derivative, with respect to the framings [eL1 , eL2 ] and [eF1 , eF2 ], satisfies[

λ 1
0 λ

]
Dxh = DL(x)h

[
λ 1
0 λ

]
. (20)

Both DF |Eu,F and DL|Eu,L have one exponent and are fiber bunched. Moreover, with
respect to volume, we have that equation (20) holds almost everywhere. Thus, we see
from Theorem 8.1 that Dh agrees volume almost everywhere with a Hölder continuous
function. In particular, this implies that h is uniformly C1+ along unstable manifolds as h
is Lipschitz and hence is the integral of its derivative. The same argument shows that h is
C1+ along stable manifolds. Thus, by Journé’s lemma, h is C1+ (see [Jou88] or [DeW21,
Lemma 35]).
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A. Appendix. Conjugacy of integer matrices with Jordan blocks
The purpose of this appendix is to give the characterization of the elements of SL(4, Z)
that we consider in this paper. The Anosov automorphisms to which Theorem 1.2 applies
may be described quite succinctly.

PROPOSITION A.1. Suppose that L ∈ SL(4, Z) is a matrix with a Jordan block and no
eigenvalues of modulus 1. Then, L is conjugate to a block matrix of the form[

A C

0 B

]
,

where A, B ∈ GL(2, Z), C �= 0, and the characteristic polynomials of A and B are equal
and have two distinct real roots.

Proof of Proposition A.1. We first show that such a hyperbolic matrix is conjugate to a
matrix of the given form. Let p(λ) denote the characteristic polynomial of L. Then, because
L’s eigenvalues each have multiplicity 2 and L is hyperbolic, we see that p(λ) = q(λ)2 for
some irreducible q ∈ Z[λ]. By [New72, Theorem III.12], any integer matrix L is conjugate
to a block upper triangular matrix, where the diagonal blocks of the matrix correspond to
the irreducible factors of the characteristic polynomial of L. In our case, this implies that
L is conjugate to a matrix of the given form.

Remark A.2. It is possible that the diagonal blocks in Proposition A.1 may not be conjugate
through integer matrices. For example, consider the automorphism defined by⎡

⎢⎢⎣
3 2 1 0
4 3 0 1
0 0 0 1
0 0 −1 6

⎤
⎥⎥⎦ . (A.1)

B. Appendix. Orientability of the unstable bundle
The purpose of this section is to show that the unstable bundle of an Anosov diffeomor-
phism on a torus is orientable. This is relatively straightforward to show once one has
introduced appropriate definitions. The central idea is just that topological conjugacies
preserve the notion of topological orientability of topological foliations. Hence, if we know
a foliation is conjugate to an orientable topological foliation, we will use this information
to upgrade that topological orientability to an orientation of the tangent to the foliation.

Let (�, F) be a foliation of an n-manifold by leaves of dimension k that is given by
a foliation atlas {(Ui , φi)}, where each φi : Ui ⊂ M → R

k × R
n−k , so that the transition

functions have the form

φiφ
−1
j (x, y) = (αij (x, y)), γij (y)).

Note that even if the maps φi are C0, it makes sense to say whether the transition
function is orientation preserving. This is because for a fixed y0, αij (x, y0) as a topological
map may preserve or reverse the topological orientation at any given point, that is, its
map on local homology is ±1 at every point. If this map is 1 at every point, then αij is
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orientation preserving. If αij is orientation preserving for each point in its domain, then
we say that the transition function φiφ−1

j is orientation preserving.

Definition B.1. [HH81, §2.3] We say that a foliation (�, F) is orientable if it admits an
atlas such that all transition functions φiφ−1

j , as above, are orientation preserving.

When we speak of an orientation of a foliation F with uniformly C1 leaves, what we
mean is that there exists an orientation on TF as a continuous bundle. The following
proposition says that if a foliation with uniformly C1 leaf is orientable as a topological
foliation, then it is orientable.

PROPOSITION B.2. Suppose that M is a C1 manifold and that F is a foliation of M with
uniformly C1k-dimensional leaves. Then, if F admits an oriented topological foliation
atlas, then TF is orientable as a continuous bundle over M.

Proof. We will construct a continuous non-vanishing section of �kTF , the space of
k-forms on TF . Fix a continuous Riemannian metric on TM .

If we have a point x ∈ M , then x is in the domain of some foliation chart φ : U →
R
k × R

n−k . If we let Ux be the plaque of this chart containing x, then we may find a C1

disk Dx containing x inside of Ux whose orientation agrees with the chart orientation on
the plaque. As F is uniformlyC1, we may fix a local smooth transversal foliation T defined
in a neighborhood of Ux . This gives us holonomy maps Tx,y : D → Dy , between D and its
image in the plaque Uy via the T holonomies. Let ω ∈ �kTD be a choice of orientation
on Dx agreeing with the chart orientation. Then, D(Tx,y)∗ω gives an orientation on Dy .
Thus, on a neighborhood V ⊂ M of x, we may define a continuous unit norm section ω̂ of
�kTF by setting ω̂ = ω/‖ω‖.

Note that the oriented atlas of F gives, at every point z ∈ M , a choice of generator of
the local homology [μz] ∈ Hn(F(z), F(z) \ z). However, for such a C1 manifold endowed
with a metric, [μz] is associated to a unique element ω̂x ∈ �dim M

z TM of unit norm. If we
let {μz}z∈M be the choice of generators of Hn(F , F(z) \ z) arising from the topological
oriented foliation atlas, then observe that [μz] and ω̂ correspond to the same orientation.
Thus, we may extend the definition ω̂ globally because any section we construct agrees
with [μz]. Then, ω̂ is continuous due to its local construction.

For a discussion of Anosov automorphims of nilmanifolds, see [DeW21, §2]. Note that
a torus is a nilmanifold, so the following result applies in our setting.

PROPOSITION B.3. Suppose that F : N/� → N/� is an Anosov diffeomorphism of a
nilmanifold. Then, the unstable bundle Eu,F is orientable.

Proof. By the work of Franks [Fra69] and Manning [Man74], there exists an Anosov
automorphism L : N/� → N/� and a conjugacy h between F and L. From the discussion
in [DeW21, §2.2], we see that the foliation Wu,L is orientable. Thus, as h intertwines the
foliation Wu,F and Wu,L, by Proposition B.2, TWu,F = Eu,F is an orientable bundle.
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