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1 Introduction

The 5-minute oscillations are standing waves trapped in subphotospheric cavities, whose
evanescent part affect the profiles of photospheric lines.

The models developped to reproduce the signatures of these oscillations on spectral
lines are not completely satisfactory. In fact
i) computed I — V phases in very weak lines forming below h ~ 100 km are greater than
those observed, > 90° against < 60° (e.g. Deubner, 1989);
il) computed I oscillations in the line wings are stronger than those in the line core, but
the opposite is observed (Marmolino and Stebbins, 1989, their Fig. 3);
iii) computed and observed frequencies disagree significantly for higher degree modes which
are confined in the very surface layers (Christensen-Dalsgaard et al., 1985).

To solve point 1iii) the use of an improved equation of state appears promising
(Christensen-Dalsgaard et al., 1988). How this could help in the cases i) and ii) has not
yet been investigated.

The theoretical results i) and ii) are based on an oscillation model which considers
linear perturbations propagating in a compressible medium, assumed to be a perfect gas
stably stratified, and damped by radiation according to the Spiegel’s formula (Marmolino
and Stebbins, 1989). The resulting vertical velocity V', temperature perturbation 7" and
pressure perturbation P are, in an atmosphere characterized by a constant scale height H,
sound velocity c, and radiative decay time 7,.:

z

V = v, = veezp( ™ +i(wt — kz F k,2)) (1)
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with hy = 2H/(1 1 2HK;), a = 1/(qwr), r = (yw? — c?k2)/(w? — c?k?), and k, + tk; the
complex vertical wavenumber; in the double signs the upper and lower one corresponds to
upward and downward phase propagation respectively.

In an effort to specify the origin of the discrepancies between theory and observations,
we started a review of the model analysing its forecasts on a wider area of the k —w diagram
than that one where the 5-minute oscillations are confined. This work has revealed itself
fruitful leading to the identification of well defined areas with different phase relations in
the evanescent part of the k — w diagram.

The preliminary results we present here refer to waves whose progressive part carries
energy upwards all over the k — w diagram.

2 Results

A contour map of the T' — V' phase differences shows clearly the existence of two regimes
in the evanescent part of the diagnostic diagram (Fig. 1b):

zone a, where 90° < ¢7y < 180° and most of the 5 minute oscillations are confined;
¢Tv = 90° without radiative damping;

zone b, where ¢y < 0°%; ¢y = —90° without radiative damping.

The walls of zone b are sharp and mark a jump of almost +180° in the phase (exactly
180° in the adiabatic case). Radiation damping fixes also the phase offset, 0° with damping,
—90° without. The walls coincide with the lines labelled L,, and f on the k — w diagram
in Fig. 1a, which have the equations k2 = w?/c?- (y2w?r2 +7)/(vw?r? + 1) and w? = gk,
respectively, where g is the solar surface gravity.

The equation for L,, is the real part of the dispersion relation for pure acoustic waves
in the presence of radiative damping (e.g. Mihalas and Mihalas, 1984 their Eq. 101.11).
On this line the denominator of the Egs. (2) and (3) gets its minimum values and the
topology of the surface representing the T and P amplitudes relative to V over the k — w
diagram is dominated by the peaks occuring along it (Fig. 1c for the T perturbation). In
absence of damping the denominator of Eqs. (2) and (3) is zero, reduces to the dispersion
relation of Lamb waves (curve L in Fig. 1a), and corresponds to vanishing vertical velocity.

The equation for f defines the fundamental mode. On this line and for the waves
carrying energy upward the T amplitude vanishes for k; < 1/2H (Eq. 2). This behaviour

is clearly seen both in the T — V phase jump and in the contour maps involving the T
amplitude (Figs. 1c,d).
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The differentiation between the two evanescent zones is lost in the P — V phase

differences, since the phase jump on the fundamental mode disappears and ¢py ~ —90°
with and without damping in both the zones.

The evanescent area at k, < 1/2H is also characterized by a general increase of the
amplitude of P relative to T'. This relative increase is strengthened by radiation damping
which reduces significantly the T amplitudes and smooths only P amplitudes.
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Figure 1. window (a): k-w diagram for T = 4900°K, in presence of radiative damping,
7, = 15s. Solid line corresponds to k? — k? = 0; dashed lines are the fundamental mode,
labelled f, the modified Lamb waves, L,,, and the adiabatic Lamb waves, L. window (b):
contour map of the T — V phase differences; window (¢): contour map of the T amplitude
relative to V; window (d): contour map of the P amplitude relative to T'.

3 Conclusions

Analysing the forecasts of the photospheric oscillation model on the k — w diagram we
found that the Lamb waves appear to be modified by the radiative damping, and that
these modified Lamb waves and the fundamental mode are dividing lines in the phase
relations between the different perturbations. Along these lines the vertical velocity and
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the temperature perturbation get their minima respectively.

The transition between zone a, of the ordinary 5 minute modes, and zone b, confined
between fundamental mode and Lamb waves, has probably already been observed in the
phase spectra of Schmieder (1976), Lites and Chipman (1979), Staiger (1984), and Deubner
and Fleck (1989).

Pressures higher than temperatures are a possible source of discrepancy between the-
ory and observation for the 5-minute modes. In fact since each perturbation has an am-
plitude increasing with height, oscillations stronger in the line wings than in the line core,
as provided by theory, should imply core oscillations leaded by temperature and wing
oscillations leaded by pressure.

We are completing this work considering waves whose progressive part carries energy
downward. The model has to be improved allowing for complex horizontal wavenumber to
define properly the modified Lamb waves. Finally, we plan to compute theoretical phase
spectra for specific lines, which are directly comparable with observations, including the
atmospheric temperature stratification and transfer effects.
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