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1. Introduction

Let f{x) — f{xx, x2, ••-,*„) = 2* 2* «M***i («« = ««) be a positive
quadratic form with determinant D, and let M be the minimum of /.for inte-
gral jr ̂  0. Then / attains the value M for a finite number of integral
x = ib11** (ft = 1, • • •, s) called its minimal vectors.

f is said to be perfect if the s equations

/(*"*) = 2 I a « W M W K = ' t f (ft = 1, • • •, S)

uniquely determine the Jn («+1) coefficients aw of / ; that is, if the equations

S(mt) = 21 bt,mkimki = 0 (ft = 1, • • •, s; bti = bS()
i i

have only the trivial solution bfl s= 0.
/ is said to be extreme if for all infinitesimal variations of the coefficients

a(j, MnjD is a maximum; defining A = (2/M)nZ), we see that / is extreme if
A is a local minimum.

Let F(y) = J , 2* ̂ nViVi be the adjoint of / ; we say that / is eutactic
if F(y) is expressible as

(1.1) F(y)=ipk{m'ky)*=iPkXl (pk > 0; ft = 1. • • •, «).
t-i fc-i

Voronoi [9] proved

THEOREM 1.1. -4 positive quadratic form is extreme if and only if it is
perfect and eutactic.

For forms with « ^ 6, this is often not a simple criterion to apply;
in § 21 give a useful simplification of the general relation (1.1) in terms of the
group of automorphs of the form. A more specialised result of this nature
has been obtained by Barnes [1].

All the perfect and extreme forms are now known for n 5j 6. In partic-
ular, Korkine and Zolotareff [8] found all the perfect forms for n ^ 5,
and recently Barnes [2] has given the complete enumeration of the perfect
forms for n = 6. Relatively little appears to be known about the forms for
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» > 6; most of the known perfect forms are listed in Coxeter [6] and Barnes
[3,1]. All others are: K12 given in [7];.Kuof [3,II];<P10of [5]; the unclassified
forms given in [3,11]; and the sequences of forms of [4] and [10].

In §§ 3 and 5, I define two new classes of forms which considerably
extend the list of known perfect forms. Thus for the early values of n,
we find that these new forms Rn, Sn contribute:

for n = 7, 7 perfect forms;
for n = 8, 21 perfect forms;
for n — 9, 43 perfect forms.

All except four of these are new, the exceptions being R7(3, 2, 2),
Rt(5, 3, 1), S7(6, 2) and S7(5, 3) which appear as extensions in [3, II].
However, these forms are classified here for the first time. Tables of the
forms Rn, Sn for n = 7, 8 and 9 are given at the end of §§ 3 and 5 respectively.

Suppose the variables of the («+l)-dimensional form f{x) =
f(x1, • • •, xn+1) are made to satisfy the non-trivial linear relation

(1.2) ifiXt = 0.
I

The form f(x) and the condition (1.2) now define a new form g(x) say;
g(x) is said to be the section of f(x) by 2 &*« = 0. g{x) is in fact an n-
dimensional form; in practice, however, because of symmetry considerations,
it is often more convenient to leave it expressed in n+1 variables. It should
be noted that the form g[x) (as an (»+Invariable form) has no unique
adjoint form; the adjoint G{y) is in fact found to be dependent on the par-
ticular n variables from xx,- • • ,xn+1, remaining after elimination of a
variable between f(x) and (1.2). The forms Sn of § 5 are obtained as sections
of the forms Rn+1 defined in § 3. In § 4,1 obtain a number of results relating
the properties of a form to those of its section. These are: (i) a necessary and
sufficient condition that a section of a perfect form be perfect; (ii) formulae
giving the adjoint and determinant of the section in terms of the known
form. These results are then used to establish the properties of the forms SB.

The definitions of the forms Bn,L
r
n, Pn and Qn, referred to in this paper,

are given in [3,1].
Finally, I wish to thank Professor E. S. Barnes for his helpful suggestions

connected with this work.

2. Simplification of Voronoi's criterion for eutactic forms

As we saw in § 1, the form f(x) = 2 2 aaxixi> is eutactic if its adjoint
F(x) = J J ^ j j i j ^ is expressible as

(2.1) F = j>PkXl, (Pk > 0; k = 1 ,
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Let g be the group of automorphs of /. Then under the contragredient
group G, the linear forms Xt fall into the transitive systems

(2.2) (4V--.4?).--- . (4V--.4?)-

We now rewrite (2.1) as

(2.3) . F =

We now prove

LEMMA 2.1. (i) / / F can be expressed in the form (2.3) with the
unrestricted in sign, then there is an expression with

(ii) The form f is eutactic if and only if there is now a solution of (2.3)
with

ox > 0, • • •, aT > 0.

PROOF. If the group G has order h, there are precisely hlkt (i = 1, • • •, r)
elements of G which transform a form of the *'th set of (2.2) into another
given form of that set. Applying all the transformations of G to (2.3), and
adding, we obtain

hF = 2 \j (pi'» + tf+ • • • +pi?) 2 (4°
Thus

(2.4) F = a, $ (#>)•+ • • • +<rr 2 (4")*.

where

(2.5) at = I (,<<> +pp+...+ P(')), (* = 1, • • •, r).

This proves (i).
If now there is a solution of (2.4) with

<r ( >0 ( t = l , • • • , r ) ,

clearly this is also a solution of (2.3), and / is eutactic.
If, however, for some », necessarily at ^ 0, then from (2.5) there is at

least one value of / (I g ; ^ kt), for which

PP £ 0,

and / is not eutactic. This completes the proof.

COROLLARY 1. If in (2.4) there is some value of i for which at < 0,
then from (2.5), there is at least one value of j (1 ^ / ^ kt) for which
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w < o.
In practice, Lemma 2.1 has no great application, as a complete knowl-

edge of the group G is required. However, we can use the lemma to obtain
the following more general result.

THEOREM 2.1. F has a representation of the form

(2.6) F i

with either pk > 0 {k = 1, • • •, s) or pk unrestricted in sign (k = 1, — , s),
*/ and only if there is a representation which also satisfies the condition that
pr = p, whenever Xr and A, are equivalent under G.

PROOF. The representation provided by Lemma 2.1 satisfies the condi-
tion of the theorem, since any two equivalent forms Xr, A, are included in
one system of transitivity under G.

3. The form /Jmfo, r2, • • •, rk)

3.1. Definition, Minimum and Determinant. We define Rm =
•R* (ri» ri<'' "> rt) to be the form

with lattice the sublattice of the integral lattice

(3.2) f ^sO^od^+l)),
I

where
k

r1^ri^--->rk^l;Jirt = m,
and x= (x'1', •••,*<*>);
and Ar is the connected, reflexible form of [6], defined by

Ar(x) = xl-x^z+xl x^Xr+x*.

For example /?7(6, 1) is the form

f(X) = {{x^-x^x^+ 41

with lattice the sublattice of the integral lattice

2 x( = 0 (mod 7),
I

where
x = (X™,z™).
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Since AT has determinant (r+l) /^, we see that

_ 1

We shall also show that

M(Rm) = 2, with A(Rm

We first examine all integral vectors x =£ 0 for which

(3.3) / £ 2.

Let e'/1 denote the unit vector in w-space corresponding to the coordinate
xf. Since

/ = 0 if *«> = 0,
»+*

(3.4) Att(*<«>) = 1 if ±*<" = 2 •?>, ( O ^ ^ X ^ + A ^ r , ) ,

^ ^ 2 otherwise,

in order to satisfy (3.3), AT (xm) can be non-zero for at most two values of t.
(i) Suppose a single- Ar (jf(<)) is non-zero. Since no x{t) for which

^r.C*'") = 1 satisfies the relation (3.2), we have ATt(x
w) ^ 2.

If rt ^ 3, there are vectors xw satisfying (3.2) for which ATi(x
w) = 2;

for example

(ii) Suppose ATt(x
(t)) is non-zero for just two values of t, t = tlt and

<2 say. Then from (3.4), / ^ 2, equality holding when

In this case, we have

2 •}« (0 ^ , - < &+*< ^ V *'= 1. 2),

where jr1'"', x(tt) are defined with like sign in (3.42). Of these, only the follow-
ing satisfy (3.2), and so are minimal vectors:

±(jf"')+jr('«)) with A1+Ag = r1+1,
±(jr('i»-x"«») with ht = h2.

Hence the form -Rmfo, rt, • • •, rk) has minimum 2 as required, provided
k = 1, rx ^ 3; or k ^ 2.
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We note that the forms Bm, Lr
m are special cases of Rm with

rx = r2 = • • • = rm = 1,
2 = rx ^ r2 ^ • • • ̂  rk ^ 1,

respectively. To avoid repetition, in what follows we assume rx J> 3.

3.2. Conditions for Perfection. We shall need the following minimal
vectors of Rm:

(3 5) ^ - • P ' f i £ » • < / £ ' . . / * * " + i ; i ^ < S * ) .
ej«-aj«(l g . ' ^ ^ l g / g r,,; 1 ̂  *x < ta ^ k),

6) e ' + e & e ' e & ( 1 ^ *
e(M+e(!,)(«e(y(1 ^ ,

1 ^ /x < ta ^ A),

(3.7) | e^'+efa ^ / ̂  r,; S ̂  * ̂  *).

(3.8)
5 e^+^'
i-i

^rt;2^t^ k).

LEMMA 3.1. If the form Rm defined by (3.1) and (3.2) *s perfect, then so
is the form i?m+r,(r0 ^ r,):

1

PROOF. The minimal vectors of Rm+r% include

(3.9) (i) the vectors (3.5,) with t = 0; (3.52) with tt = 0;

(3.10) (ii) the vectors (3.6,) with t = 0; (3.6g) with t% = 0;

(3.11) (iii) the vectors (3.7) with t = 0.

Suppose all the minimal vectors of Rm+T satisfy the relation

(3.12) " f * "xW**/ = 0 (P«
I I

We set
In = 9n = 2P«-Pu-Pn

Since 2fm is perfect
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(3.13)

and so

(3.14)

From the vectors (3.9),

P. R.

Pu

la

Scott

= 0

= 0

(1

(1

<jtj = 0

for i, j taken over the ranges given in (3.5).
If r0 ^ 2, from the vectors (3.10) we obtain

where i, j take values as in (3.6). Using (3.14),

lu+i = °
and hence

q» = 0 (1 ^ » < ; ^ m+r0).

It follows that (3.12) must be of the form

From (3.13), £w = 0 (1 ^ / ^ f»); now using the vectors (3.11),

and /?„,+,.,, is perfect.
We now examine those forms which cannot be obtained in this way.
I. Forms containing three terms Ar, (rx ^ r , ^ f , § 2).

f(x) = Ari{x^)+Art{x^)+Art
and

f *<s0(mod(r1+l)).
i

We again consider a quadratic relation

(3-15) f|I I

satisfied by all the minimal vectors.
From the vectors (3.5),

9a = 0,

where *, ; take the values given in (3.5) (with k = 3). Similarly, from (3.6)
we have
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again with the ranges of *, j as in (3.6), and since / contains three terms, it
follows that

Hence (3.15) can be written

Finally, from the vectors (3.8) it easily follows that

hi = ° (l
and Rn is perfect.

II. Forms containing just two terms Ar , AT (r± ^ r% ^ 2).

f(x) = Ari{x
with lattice

For rx ^ 5, it is easy to show that Rm is perfect, using the same method
as in I. However, Rm is not perfect in the following cases:

R6(3,2): this case is trivial, since now s <N =
7?6(3,3): all minimal vectors satisfy the relation

i?4(4,2): we find s = 20 < N = 21.
i?,(4,3): all minimal vectors satisfy

( * \a ii

i?g(4,4): all minimal vectors satisfy

( * \2 /» \2

We note here that Ra (4,4,1) is perfect. For, consider the relation

l = o.

From the minimal vectors et—e9, we have

ty« = ^ W - * (1 ^ « ^ 4),
2^« = ^.»+* (5 ^ •• ^ 8).

Now using the vectors
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we obtain

P. R. Scott

i n.

hence / is perfect.
Similarly R7 (3,3,1) is perfect.
III. Forms containing a single term Am.

f{x) = An(x) = x\—Xi

with lattice

> , = 0(mod(»H-l)).

If we apply the unimodular transformation

(I 1 1 ••• 1
1 1 ••• 1
. 1 . . . 1

we obtain the form

y,

with lattice

0 (mod

This is the form Pm, known to be perfect and extreme for m ^ 6.
(For w ^ 8, perfection can be established as in I).

3.3. Equivalences to Known Forms. We have the following equivalences:
(i) R7 (3,3,1) ~ P7 under the transformation

—3
- 2

—1

1

2

3

2

—2
•

—2

2

4

2

— 1

2

1

— 1

2

1

2

•
•

•

•

4

4

1
2

— 1

1

2

3

2

- 2
•

- 2

—2

•

2

1

- 2

—3

— 1

2

1

2

(ii) H£8(3,3,l,l) ~@g under the transformation
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i/ —• T v —̂ *

2

2
•

—1

•

— 1

- 1
1

V i

3.4 The Eutaxy
is a multiple of

(3.16)

where

On

— 1

•

— 1

•

2

2

1

ofRm

perfect

-

2

2

1

•

1

— 1

/*(*) =

and

1

•

1

2

2

•

1

= i
«-i

extreme

—2

—2
•

—1

•

- 1

- 1

). The

A*(x«

forms

— 1

*

— 1

•

- 2
o

1

•

_ 2

- 2

1

•

1

1

•

1

—2

- 2

•

1
1

adjoint F(JT) O

65

x.

We next consider the problem of deciding when Rm is eutactic, i.e. when its
adjoint F(x) is expressible as

(3.171

where kk(k = 1, • • •, s) are the associated linear forms.
If for some t, /, (I < * < / ^ k) we have

/>*>«,

then iJfl,^, • • •, rk) is not eutactic.
For the coefficient of x^x^ in F(x) is zero, and now the only linear

forms Xk for which A| involves a term in as '̂a '̂ are

Equating coefficients of 23^'a^1 in (3.17), we obtain

—Pa—Pb Pi = 0,

and so Rm cannot be eutactic.
There appears to be no completely general result for the remaining

forms Rm. However, the calculations required for any particular form are
greatly simplified by the use of Theorem 2.1.
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For completeness, we note the following elements of the group G of
automorphs of F(x):

U{ = (*<<> -*x%+ 1_,, <j = 1, • • -, r,)); (i - 1, • • - , * ) ;

V(i = (*<<> -+ *<", (k = 1, • • -,rt)); provided r{ = r,;

W ^(af'+*&, (i=l,---,r1-l);xV^-YiLlx?>).

Finally, in view of the equivalence i?g(3,3,l,l) ~@g we note that the
form Qs is not extreme, contrary to the statement made in [3, I], p. 79.

In Table 1 are listed the new forms /?m(>i, • • •, rt) for m = 7, 8, 9.
The columns give respectively the value of m; the values of the parameters
r,, • • •, rk as a partition of m; the quantity A = (2/M)mD; the number s
of pairs of opposite minimal vectors; and whether the form is extreme (£),
or perfect and not extreme (P).

TABLE 1

The forms JJ.fo, rt,..., r») for m = 7, 8, 9.

m

7

8

9

Partition of m

6+1
5+2
3+2+2
7+1
6+2
5+3
6+1 + 1
6+2+1
4+2+2
3+3+2
3+2+2+1
8+1
7+2
6+3
6+4
7+1 + 1
6+2+1
6+3+1
6+2+2
4+4 + 1
4+3+2
3+3+3
6+1+1+1
6+2+1+1
4+2+2+1
3+3+2+1
3+2+2+2
3+3+1+1+1
3+2+2+1+1

3

3«

3»

3

3

31

A

7«/2«
3*/2*
3«/2

4
• 7V2*

3»/2*
7«/2t

3V24

. 6V21

3
3«/2

3«/2*
3

7«/2'
.5/2*

4
. 7"/2'

3»/2»
3l/2*
5«/2«

.5>/2'
2

7"/2«
3*/2*

. 5«/2*
3

3«/2'
4

3«/2

s

28
30
32

44
42
49
36
38
40
52
40

63
60
64
76
63
51
58
53
70
60
78
45
47
49
62
56
55
49

P or £

E
E
E

P
E
P
P
P
P
E
P

E
E
E
E
P
P
P
P
E
E
E
P
P
P
P
E
P
P
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4. Theorems on sections of positive quadratic forms

4.1. The Perfection of a Section. Let g(x1, • • ',xn+1) be an arbitrary
positive definite form with minimum M for integral x ^= 0, and let
f(x1, •••,#„) be the section obtained by setting

(4.1) 2 xtXi = 0 (<xn+1 =£ 0, a,- integral).

THEOREM 4.1. The section f is perfect if and only if any quadratic
relation

(4-2) "2 *$paxt*i = 0 (J>ti = pu)
l I

satisfied by all the minimal vectors common to f and g, is necessarily of the form

(4.3)

PROOF. After applying a suitable integral unimodular transformation,
we may take (4.1) to be

in which case
/(*i. • " . * « ) = gfo , •••**„.0),

and (4.3) becomes

(i) If any quadratic relation satisfied by the minimal vectors common
to / and g is of the form (4.4), then / is perfect, since for all such vectors,
*«+i is identically zero.

(ii) Assume / is perfect. Now in (4.2) we have

P» = 0 (1 £•£/£«)
and the relation becomes

which is essentially the same as (4.4).

4.2. The Adjoint of a Section. L e t f(xt, •••,xn, xn+1) =
be a positive quadratic form with inverse Ffa, • • •, yn) yn+1) =
2 2 i ^ESii^uyiy/' We define g(zi,'",xn) to D e * n e »-dimensional section
of / obtained by the elimination of *B+1 using the relation

(4.5) fpiXl = 0.
I
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T H E O R E M 4.2. The adjoint of g(xlt • • • , * „ ) *s a multiple of

(4.6) m{yx, •••,yn) = icFfa, • • •, y n , yn+1) - ( 2

where y n + 1 = 0, and

(4.8) qt
t

PROOF. In this proof and in § 4.3 it is convenient to obtain the section
of f(xl, • ", xn,xn+1) by eliminating the first variable. We therefore cycli-
cally permute the variables to bring xn+l into the first position and rename
it x0.

Since / is a positive definite form, there now exists a transformation
(x0, • • -,xn) = T(z0, • • •, z j , where T is a regular (»+ l ) X («+l ) triangular
matrix with elements tt) (0 :£ * ^ / 5jjjjj »), such that

(4-9) / 0 > W . *») = !>?•
o

Under this transformation (4.5) becomes

(4.10) £ 0 1 ^ = 0
0

for some coefficients a,.
We now need the following result:

LEMMA 4.1. In the variables zt, g(xlt • • • , * „ ) is given by

(4.n) *(«!.•••.*.) = 2*!+

obtained by eliminating z0 between (4.9) and (4.10).

PROOF. Under the transformation T we have

Let U = (uu) (0 ̂  i ^ ; <: n) be the inverse of T. Now if A is the matrix
of the form /,

(4.13) U'U = A,

and z0, • • • ,z n , and x0, • • • ,xn are related by
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(4.14) : :

Eliminating a;0 from both sides of (4.12), using (4.14) and the relation

o
we obtain

g(*l. • • •• *.) = {^ ( ) }

EUminating z0 between (4.9) and (4.10) we obtain a form h say, where

2-**) +2*?-
1 «0 / 1

We shall now prove that the forms g{xlt • • •,»„), h(zlt • • -,zB) are identical.
Clearly it will suffice to show that

From (4.5) and (4.10) we have

= ao(«0Oa:o+Mola;1H

Since z1,---,zn do not involve x0, we have

(4.16) fi0 = OoUpo,
n n

(4.17) 2 /"I** = «xo(«w*i H r- Mo-a'n) + 2 «<V
l l1

Equation (4.15) now follows immediately from (4.16) and (4.17), and this
completes the proof of the lemma.

The adjoint of the form (4.11), in variables contragredient to those in
(4.11), is easily found to be

Giu,,--',y) = y ( i + y (—\ wi) — 2 y y (—\(—\wtwt^of i . .y») i | + 2 L I i\ . ^ . 1 . 1 1 . 1 * *

(4.18) *+*
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Clearly "%%w\ is the inverse of the form (4.9), and (4.18) can be written

(4.19) <4G(ylt • • •, yn) = ( £ A £ »» - (£ a<W<)\

subject to the condition

(4.20) w0 = 0.

Finally, applying the transformation (w0, • • •, wn) = T'(y0, • • •, yn) to
(4.19) and (4.20), and writing <o[ylt • • •, yH) = <4G(yi>'' '< Vn). we obtain

(4.21) <w(j/1( • • •, yn) = KF(y0, yx, • • •, yn) - \2

where

and ft, • • •, <?» are coefficients to be determined.
It now only remains to prove (4.7) and (4.8).
From (4.5) and (4.10), using (4.14) we now obtain

(4.22) *,- ;£«,««.

Similarly, (y0, • • •, yH) = U'(w0, • • •, wn), and from (4.19) and (4.21) we
have

(4.23) «< = £&««•

Substituting (4.23) in (4.22) now gives

Pi =

= 2 (2 ««««)?*

using (4.13).
Hence

(4.24)

as required.

https://doi.org/10.1017/S1446788700022746 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022746


i k

[16] On perfect and extreme forms 71

Now

= 2 (2 2 ?*?*«««

from (4.23). Changing the order of summation,

(4-13)),

using the e ill (4.24).

4.3. TAe Determinant of a Section. In the terminology of §4.2, the form

(4-25)

is easily found to have determinant KJO.\. The form gfo, •••,£„) is
transformed into (4.25) under the transformation (a?o> *i»"" •»*«) =
T{z0, z1,' • •, zn). Since the transforming matrix consists of only the last
» rows and columns of T, we have

Substituting £>(/) = 1/17*1*, #c = F(p) and

r
we obtain

Z)(g) = I

5. The form S o ^ , r2, • • •, r*)

5.1. Definition, Minimum and Conditions for Perfection. For convenience,
in this section we write m = »+ l .

We define Sn = Sn(rlt r2, • • •, rk) to be the section of Rm{rx, rz, • •', rk)
given by

(5-1) / W = 2 ^ ( A : " ) ) , ( r 1 2 s r 2 ^ - - . ^ r f c : g l , i r t = m),
4 - 1 1

where
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(5.2) 2*, = 0.
I

We shall show that

M(SJ = 2, D(Sn) = A(Sm) = ± (jft (rt+l)) (i 2 ',(',+1) (',+«)) •

Since the values taken by SB form a subset of the values taken by the
corresponding Rm, it follows that M(Sn) = 2, and the minimal vectors of
Sn are just those minimal vectors of Rm which satisfy (5.2).

We have an immediate analogue of Lemma 3.1 which we merely state.

LEMMA 5.1. If the form Sn defined by (5.1) and (5.2) is perfect, then so is
the form Sn+rt(r0 ^ rx):

/0(x. *«>)=/(*)
where

2>

Now we need only consider those forms which cannot be obtained in
this way.

By applying Theorem 4.1 to the forms Rm, we find that the correspon-
ding section Sn is perfect if and only if either

(i) Sn contains a single term Am, and m 2? 8; or
(ii) Sn contains just two terms AT ,Ar (rt ^ r2 ^ 2>

r1->[-ri = m) and rt ^ 5; or

(iii) Sn contains three terms Ar , Ar , Ar , (rt ^ rt ^ r3 ^ 2, ^ r, = m),
(or SB can be obtained from one of these using Lemma 5.1).

5.2. Calculation of the Determinant of Sn. From § 4.3 we see that the
determinant D of Sn is given by

D = ± D(f) • F(p),

where here

P = (Pi. P*. • • • • # » ) = ( L i . • • • . ! ) ;

/ is the form of the corresponding Rm, and F its adjoint.
Now

where

i(r+l)A*(x) = 2«J + 2 (**
i i
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) _
6 I | 2 /

Therefore

and

Also, it is easily verified that

Hence

n 1 ^(^+1)^

5.3. Equivalences amongst the Forms Sn. We have the following equiv-
alences:

(i) S7 (4,2,2) ~ S, (6,2), under the transformation

1

- 1

I 1

(ii) S, (8) r>j S7 (5,3) under the transformation

• - 1

- 1 - 1 • - 1 - 1 —1 - 1

1 1

https://doi.org/10.1017/S1446788700022746 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700022746


74 P. R. Scott

(iii) Sg (9) ~ Ss (5,4) under the transformation

[19]

• 1
• 1
• 1
1 1
1

1 1

5.4 The Adjoint and Eutaxy of Sn. We generally take Sn to be the form ob-
tained by eliminating xm between (5.1) and (5.2). Then from § 4.2, we find
that the adjoint of Sn is given by a multiple of

(m

where ym = 0, F(y, ym) is the inverse of Rm(rlt • • •, rk), and

Also

^ i ^ tn)

Now the (*, j)th component of an arbitrary A* from the adjoint of Rn

is found to be for ; ^ *

2

r+1
Hence

1-1 i-l i-i
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Thus the q( corresponding to the *th variable of an arbitrary Ar is
given by

qt = i(r-i

Having identified the adjoint wn of 5B, we now apply Voronoi's criterion
for eutactic forms, and test whether or not a>n can be expressed as

(5.3) coB = iPkXl (Pk>0,k=l, • • • , * ) .
l

This is in general difficult; we have however the following simple case.
Suppose

<5.4) rx > r2 >

Now, subject to (5.4), the only terms X\ in (5.3) which give rise to the product
t/tt/r^i, contain the square of the difference y1—yTt+1. Thus if Sn is eutactic,
the coefficient of ytyr +1 in a>n must be negative.

Hence we must have

«—rr ('i-^-'ifo+iM'i-'*) < o;

that is

(5.5) 2K<rl(

We find that the following forms Sn do not satisfy (5.5):

S7(3,2,2,l). S8(3,2,2,2), S8(3,2,2,l,l), S,(4,3,3),

5,(4,2,2,2). 5,(4,2,2,1,1), 5,(3,2,2,2,1), 5,(3,2,2,1,1,1).

It follows that these forms are not eutactic, and so not extreme.
In Table 2 are listed the new forms 5B(r1( • • •, rk) for n = 7, 8, 9.

The columns give respectively the value of n; the values of the parameters
rlt • • •, rt as a partition of » + l ; the quantity A = (2/Af)nD; and the
number s of pairs of opposite minimal vectors. All these forms have
been shown to be perfect; those known to be non-extreme are denoted
by a (P).
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TABLE 2

The forms S . ^ , , . . . , r») for n = 7, 8, 9.

M

7

8

9

Partition of m

6 + 2
5 + 3
5+2+1
3+2+2+1

8+1
7+2
6 + 3
5 + 4

6+2+1
5+3+1
5+2+2
4+3+2
3+3+3
5+2+1+1
4+2+2+1
3+2+2+2
3+2+2+1+1

10
9 + 1
8 + 2
7 + 3
6 + 4
5 + 5
8+1 + 1
7+2+1
6+3+1
6+2+2
6+4+1
5+3+2
4+4+2
4+3+3
6+2+1+1
6+3+1+1
5+2+2+1
4+3+2+1
4+2+2+2
3+3+3+1
3+3+2+2
4+2+2+1+1
3+3+2+1+1
3+2+2+2+1
3+2+2+1+1+1

A

3« . 5 . 7/2«
3». 5/2*
3«. 5/2«

3«. 19/2»

3 . ll/2>
3 . 7 . 11/2*

3 . 5". 11/2*
3 . 7 . 61/2*

3 . 23/2«
3». 43/21

3 . 5 . 17/2*
3.5/2«

3«. 41/2«
3« . 5 . 29/2»

3«. ll/2«
3« . 5/2'

5.11V2»
5 . 83/2'

3». 31/2«
47/2*

5 . 7 . 19/2"
3 l . 5 . 7/2'

3«. 61/2»
3 . 89/2*
7 . 67/2'
3« . 7/2«

3 . 5 . 7/2»
3». 7«/2'

3 . 5 " . ll/2«
5V2«

3 . 7 . 31/2'
3 .47/2 1

a«.n/2«
3 . 5 1 . 7/2'

5.3'/2*
31/2

3«. 7/2«
3». 5«/2'
3 . 13/2«

3". 23/2'
3«. 7/2»

s

30
34
28
29(P)

42
42
46
50
38
42
40
43
45
36
38
40(P)
37 (P)

60
59
57
61
66
69
51
51
55
52
59
56
58

47
51
49
52
51 (P>
64
45
47(P)
49
49(P)
46(P)
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