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Abstract. Let ( p : R x M - » M b e a continuous flow on a compact C°° two-manifold
M. It is proved that there exists a C1 flow i/» on M which is topologically equivalent
to q>, and that the following conditions are equivalent:

(a) any minimal set of <p is trivial;
(b) <p is topologically equivalent to a C2 flow;
(c) <p is topologically equivalent to a C°° flow.

Also proved is a structure and an existence theorem for continuous flows with
non-trivial recurrence.

1. Introduction
Let M be a two-manifold and let <p, i/rlRx M-» M be continuous flows on M. We
say that <p and ip are topologically equivalent if there is a homeomorphism of M
that takes trajectories of <p onto trajectories of i/», preserving the natural orientation
of the trajectories. A non-empty compact set A c M invariant under <p is said to be
a minimal set (of <p) if A contains no compact non-empty proper subset which is
invariant under <p. A subset A c M is a trivial minimal set (of <p) if it is either a
closed trajectory or a fixed point or else the whole manifold M, provided that A = M
is the torus and <p is (topologically equivalent to) an irrational flow.

Our main result is the following theorem, which can be seen as the converse of
Denjoy-Schwartz theorem [De], [Sch].

SMOOTHING THEOREM. Let <p:UxM-» M be a continuous flow on a compact C°°
two-manifold M. Then there exists a C1 flow i/> on M which is topologically equivalent
to (p. Furthermore, the following conditions are equivalent:

(a) any minimal set of <p is trivial;
(b) ip is topologically equivalent to a C2 flow,
(c) <p is topologically equivalent to a C°° flow.

The assertion that (b) implies (a) is precisely the Denjoy-Schwartz theorem. The
proof of this theorem works word-for-word to give the following corollary which
is useful for applications.

SMOOTHING COROLLARY. Let 2F be a continuous one dimensional orientable foliation
with singularities on a compact C°° boundaryless two-manifold M. If the set of
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18 C. Gutierrez

singularities of 9 is compact, then there exists a C1 flow \fi on M which is topologically
equivalent to 9.

The structure theorem below describes the dynamical structure of flows on two-
manifolds around its non-trivial recurrent trajectories; that is, trajectories y such that
y - y 3 y. As a consequence of this result, we shall see that the existence theorem
below provides a constructive way of obtaining 'essentially all' continuous flows
with non-trivial recurrence. The smoothing properties of the flows constructed in
this way will be detected at once.

We shall need some definitions to state the results more precisely.
Let E:U/Z-*R/Z be an interval exchange transformation, that is, E is an injective

differentiable map defined everywhere except possibly at finitely many points and,
for all xeDom(£) (its domain of definition), |£'(x)| = l. Let T:R/ZH>|R/Z be a
continuous map that covers E; that is, T is injective, its domain of definition Dom (T)
is an open subset of R/Z, and for some monotone continuous map /i:R/Z-»IR/Z
of degree one, /i(x)eDom(£) and E ° h(x) = h ° T(x), for all xeDom(T). Let
JVE be the quotient manifold obtained from

R/Zx[- l , l ] -{(R/Z-Dom(£))x{l})u(R/Z-Dom(£" 1 )x{- l})}

by identifying (x, 1) and (E(x), -1), for all x e Dom (£). The pair (9, NE), where
3F is an oriented one-dimensional continuous foliation on NE, is said to be a
suspension of the pair (T, E), if the following two conditions are satisfied:

(Sj) 9 is transversal to R/Z x {0} and the set of singularities of 9 is either empty
or compact.

(S2) The forward Poincare map R/Zx{0}->R/Zx{0} induced by 9 is (x, 0 ) ^

Given E, T and h as above, we shall also say that T covers E via h.

STRUCTURE THEOREM. Let <p:Ux M -> M be a continuous flow on a compact C°°
two-manifold M. The closure of the non-trivial recurrent trajectories of (p determine
finitely many compact ̂ -invariant subsets £lu Cl2,..., flm of Msuch that any non-trivial
recurrent trajectory of<p is dense in some ft,-. Moreover, given i,je{l,2,..., m), there
exists an open connected subset V, ofM (offinite type) such that the following conditions
are verified.

(St 1) If i j^j, Vj n Vj = 0 . Moreover Vj contains all non-trivial recurrent trajectories
meeting flf.

(St 2) Each Vj is a region of recurrence associated to fl,. That is:
(a) There exists a circle C, c Vt transversal to <p, passing through ilh and such

that the forward Poincare map Tt: C, -» C, induced by <p covers an interval exchange
transformation £,: R/Z -» R/Z which has every orbit dense and which cannot be extended
continuously to a bigger subset of R/Z.

(b) The pair (<p|Vi, Vj) is (topologically equivalent to) a suspension of (Th £,-).
Also, the frontier 9r(Vt) of Vt can only contain fixed points, regular trajectories
connecting fixed points and finitely many transversal segments that connect fixed points.
Moreover, there is no arc of trajectory of <p lying in Vt and connecting two points of
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(St 3) If V'i is any other region of recurrence associated to ft,-, then Vt and V\ are
homeomorphic. Moreover, when <p has finitely many fixed points and no other region
of recurrence associated to O, contains fewer fixed points than Vt (resp. VJ), the
foliations (<p\Vl, Vj) and ((p|V;, VJ) are topologically equivalent.

(St4) The circle C,c Vt can be taken so that either ClinCi = Q or C.-nftj is a
Cantor set.

The next theorem needs some more definitions. Let /:R/Z->R/Z be an injective
map not necessarily defined everywhere. The domain of definition of/ will be denoted
by Dom (/). The positive (resp. negative) semi-orbit of xeR/Z is the set

d+(x) = { f W / n e Z , n>OandxeDom(/")}

(resp. 6~{x) = {/"(x)/n e Z, n < 0 and x e Dom (/")}), where/0 denotes the identity
map of R/Z. The orbit of x e R/Z is the set 0(x) = 6+(x) u 0~(x). Let x e R/Z, we
say that y e {x, 0(x)} is non-trivial recurrent if 6(x) - 6(x) => d(x). When Dom (/) is
an open subset of R/Z, we shall say that a non-empty compact set A g Dom (/) is
a non-trivial minimal set (of / ) if, for all x e A, 0(x) is non-trivial recurrent and

EXISTENCE THEOREM. Let £:R/Z-»R/Z be an interval exchange transformation
which has every orbit dense and which cannot be extended continuously to a bigger
subset of R/Z. Let h : R/Z -»• R/Z be a monotone" continuous map of degree one. Denote
by "#(£, h) the set of continuous maps that cover E via h. Then:

(El) Suspension item: For all Te ^(E, h) there exists a suspension of (T, E).
(E 2) Covering item: There exists Te<€(E, h), called maximal, such that

Dom (f) = /|-'(Dom (£)-A(£, h), where A.(E,h) = {xeDom(E)/h~\x) and
h~\E(x)) are not bijective sets}. Moreover, for all Te <<?(£, h), it is verified that:

(a) Dom(T)cDom(f) ;
(b) the maps T and T are equal when restricted to the non-trivial recurrent orbits

ofT; ^
(c) the map T has non-trivial recurrent points if and only if A(£, h) has empty

interior.
(E3) Recurrence item: Let Te •#(£, h). The following statements are equivalent:

(a) The map T (resp. any suspension of (T, £)) has a non-trivial recurrent point.
(a') h(Dom (T)) contains an open and dense subset of R/Z.

(E 4) Minimal set item: Let Te^(E,h). The following statements are equivalent:
(a) The map T (resp. any suspension of (T, £)) has a non-trivial minimal set.
(a') The map h is not a homeomorphism, the set S = {xe U/Z/h'l(x) meets both

Dom(T) and R/Z -Dom (T)} is at most finite, and Dom (T) => fc~'(R/Z - S). (In
particular A(£, h) = 0) .

(E 5) Smoothing item: Let Te <#(£, h) and let (9, NE) be a suspension of (T, £) .
There exists a Cx flow <p:RxMi-»Mon a smooth compact connected boundaryless
two-manifold M such that for some empty or finite set F of fixed points of<p, the pair
(<P\M-F, M — F) is topologically equivalent to the pair (3F, NE). Moreover, except when
T has a non-trivial minimal set, the flow <p can be taken to be smooth.
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20 C. Gutierrez

The existence of C1 flows which are not topologically equivalent to C2 flows was
proved by Denjoy [De], [Swe, see appendix]. The smoothing theorem cannot be
extended to higher dimensional manifolds. If M is three-dimensional then neither
(b) implies (c) nor (c) implies (a). More precisely, J. Harrison [Hr] proved that if
r<s are non-negative real numbers, then there exists a Cr flow which is not
equivalent to any Cs flow; besides, by suspending the 'horse-shoe' of Smale [Sm,
§ 1.5] we get a smooth flow which possesses exotic minimal sets. See also [Chw].

We gave in [Gu.5] the main lines of the proof of our results for flows with finitely
many fixed points. Partial results related with our theorems are those of [Ne.2] and
[Gu.2]. The structure theorem for flows with finitely many fixed points has also
been proved by Veech [Ve.2]; see also [Ga], [St]. The extension of the structure
theorem to non-orientable foliations with finitely many singularities has been done by
H. Rosenberg [Ro], G. Levitt ([Le.l], [Le.2] and [Le.3]) and L.H. Mendes [Me].

The extension of our results to non-orientable foliations (on two-manifolds) with
arbitrarily many singularities is done in [Gu.3].

Interval exchange transformations are studied in [Ka], [Ke], [Ve.l]. The existence
of interval exchange transformations having derivative -1 somewhere and having
every orbit dense is shown in [Gu.l].

The only things one needs from § 3 to read § 4 are the structure theorem, corollary
(3.1) and proposition (3.2). The only things one needs from §§ 3, 4 to read § 5 are
proposition (3.2) and proposition (4.3). § 6 does not depend on any of §§ 3, 4 and
5.

In § 2 we introduce some terminology and notation that will be used throughout
the paper.

We wish to say something about the proof of our main result. Let <p be a flow as
in the smoothing theorem and let F be the set of fixed points of <p. Suppose that any
minimal set of <p is trivial. To prove that <p is topologically equivalent to a smooth
flow we decompose the manifold M - F into submanifolds which are almost flow
boxes of (p and for which we have smooth 'models'. Disguised as 'T-sequences'
these submanifolds appear in § 4 ((4.4)). They are densely distributed in M — F but
they may not cover it. Nevertheless, starting in proposition (4.2) and using the
structure theorem, we organize these T-sequences in such a way that we are able
to construct a new differentiable structure for M-F with respect to which the
foliation that <p induces in M - F is smooth. From this point, following an idea
introduced by D. Neumann [Ne.2] we can prove that <p is topologically equivalent
to a smooth flow.

2. Preliminaries
As we said, we shall introduce some terminology and notation that will be used
throughout the paper.

We will always denote by M a smooth compact two-manifold and by <p: U x M -» M
a continuous flow on M.

The positive semi-trajectory (resp. negative semi-trajectory) of p e M is the set

y+
P=W(t,p)/te[0,co)}
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(resp. yp = {<p(t, p)/1 e (-00,0]). The trajectory yp u y~ of p will be denoted by yp.
A point p e M i s a regular point of <p if p is not a fixed point of <p. We say that
xe{p, yp} is periodic if p is not a fixed point and <p(t,p)=p for some f >0. A point
qe M is an (o-limit point (resp. a-limit point) of either p e M or ^ if there is a
sequence of real numbers tk-*oo (resp. tk^>— 00) such that <p(tk;p)^> q. The set of
co-limit points (resp. a-limit points) of xe{/>, yp} is denoted by a>(x) (resp. a(x)).
We say that xe{p, yp) is to-recurrent (resp. a-recurrent) if yp<= w(yp) (resp. yp<=
a(yp)). xe{p, yp} is recurrent if it is either w- or a-recurrent; thus xe{p, yp} is
non-trivial recurrent if yp is neither a fixed point nor a closed trajectory.

The notation pq will be used for an oriented arc of trajectory (of <p) starting at
p and ending at q. The orientation will be that induced by the flow.

Let TV be a submanifold of M disjoint of the fixed points of <p. We will say that
TV is a flow box (of tp) if there exists a rectangle A = [a, b]x[c, d]<=R2 and a
homeomorphism d:A->N such that, for all se[c, d], 6([a, b]x{s}) is an arc of
trajectory of <p. Such a homeomorphism 6:A->N will also be called a flow box.
The segments 0({a} x [c, d]), and 0({b} x [c, d]) (resp. 0([a, b] x {c}) and 0([a, b] x
{d})) will be called transversal (respectively not transversal) edges of (the flow box)
TV. A point p e {6(x, y)/x e {a, b}, y e {c, d}} will be said to be a corner of TV. If p
is a regular point of <p, there exists a neighbourhood of p which is a flow box (see
[B-S, theorem 2.9, p. 50] and [Wt]). A segment or a circ/e C is said to be transversal
to <p if for p e C which is not an endpoint of it, there exists a flow box 6: [-1,1] x
[-1,1]-* TV such that 6(0,0)= p and 0({O}x[-l, 1]) = TVn C.

Let ^! (resp. S2) be either a segment or a circle transversal to (p. The forward
(resp. backward) Poincare map induced by <p is the map/ : 5^ -» 22 (resp. g< *LX -» 22).
not necessarily defined everywhere, such that p e Dom (/) (resp. p e Dom (g)) and
f(p) ~ Q (resp. g(p) = q) if and only if (p(r, p) = <je22 f°r some T > 0 (resp. T < 0 )
and {<p(t, p)/0<t<T} (resp. {0(t, p)/r< t <0}) is disjoint from Siu2 2 .

Let/ g:R/Z^R/Z be continuous maps not necessarily defined everywhere. We
say that / and g are topologically conjugate if there is a homeomorphism h: R/Z -»
R/Z such that /i(Dom (/)) = Dom (g) and, for all x e Dom (/), /i °/(x) = g ° /i(x).

A segment S which is an open interval and is transversal to <p will be said to be
wandering (or <p-wandering) if any trajectory of <p intersects S at most once. A point
p e M is said to be wandering if it is regular and there is a wandering transversal
open interval containing p.

A subset X c M i s invariant if xe X implies that yx<= X.
The set of positive integers will be denoted by N.

3. Structure theorem
The main results proved in this section are the structure theorem and proposition
3.2. The proof of the following corollary of the structure theorem will be given in
(3.12).

(3.1) COROLLARY. Under the conditions and notation of the structure theorem, denote
by Rec (Cf) the union of the arcspT,{p) such that either p e H, n Dom (Tt) orp belongs to
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a connected component ofQ-ilj which is contained in Dom {Ti).IfQ,iisa non-trivial
minimal set, then:

(a) The set Rec(C,) is a (topological) compact connected two-manifold whose
boundary d(Rec (C,)) (when non-empty) is made up of circles formed by finitely many
disjoint arcs of trajectory joined by the same number of subintervals of C,.

(b) 0 ; c Rec (C,) c V, and there is no arc of trajectory of<p contained in Rec (Cf) -
d(Rec (C,)) and connecting two points of d(Rec (C,-)).

(3.2) PROPOSITION. Let us assume that <p has fixed points. Let ilu il2,..., ilm and
Cu C2, • • •, Cm be as in the structure theorem. Then, for all i e M, there exists a
two-dimensional C° compact submanifold with boundary M, ofM, and also there exists
a subset F; of M, made up of finitely many pairwise disjoint compact arcs transversal
to <p, satisfying the following:

(i) M,n(U™=, Cj) = 0. For all ieN, int(M,)=>M,+1 and dMt is formed by
two-sided circles. These circles are made up of finitely many transversal segments
connected to each other by the same number of arcs of trajectory.

(ii) DT=i Mi - F is the set affixed points of (p.
(iii) Let Mo= M and r o = Ur=i c<- For al1 ' e N > r,n,9M, is the union of all

transversal segments to <p contained in dM, and ^ - ( r . n d M , ) is contained in the
interior of M,. , - M,.

(iv) / / T = Ur=o r » then both the forward T:T^T and the backward T"1: T -* T
Poincare maps induced by cp are defined everywhere. Moreover, for Se{-\, 1}, Ts

restricted to a connected component of T is discontinuous at finitely many points.
(v) For all i e N, there is a positive integer A, such that ifpq is an arc of trajectory

meeting [JJL, Q exactly at their endpoints p and q then pqnTt has at most A, elements.

To prove these results we shall need some definitions and lemmas.

(3.3) An equivalence relation. Let 5^ and 22 be compact segments or circles which
are transversal to (p. Suppose that if Sx n 22 ^ 0 , then 2j u 12 is either a circle or a
segment. Denote by/:2,-> 12 the forward Poincare map induced by <p. Let a, be2,.
We say that a ~ b if, and only if, there exists a closed subinterval p~q of 5^ (with
endpoints p, qe Dom (/)) containing {a, b} and also there exists an open disc Dpq

disjoint of X, u 22 and whose boundary is equal to

where f{p)f(q) denotes a closed subinterval of 12 with endpoints f(p) and f{q).
It may happen that ~pq and f(p)f(q) are not disjoint.

This equivalence relation ~ (defined in an open subset of 2, which contains
Dom (/)) will be called the relation ~ associated to f. Any disc Dpq as above will
be said to be a disc associated to the triple (p, q, ~ ) .

(3.4) LEMMA. Let f: S,-»S2 be as in (3.3). Then
(a) The relation ~ associated to f has finitely many equivalence classes. They are

open and connected subsets of Sx.
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(b) Let T be either a compact segment or a circle. Ifr is transversal to <p and disjoint
from S, u 22» then there exists A e N such that for all x e Dom (/) xf{x) n r has less
than A points.

Proof, (a) is proved in [Ne.2, lemmas 2.5 and 2.8].
Let A be an equivalence class of ~. To simplify matters suppose that A is an

interval with two endpoints p and q. Certainly there exist monotone sequences {/?„}
and {qn} in An Dom (/) such that limp,, = p and lim qn = q. Let Dn be the open
disc associated to the triple (pn, qm ~) . We may choose DN such that {endpoints
of T} n (Un A i ) c Av- Observe that T may intersect the boundary of Av in at most
finitely many points. Thus rnDN has finitely many connected components. Since
Av is a disc, if x e Dom (/) n A then x/(x) may intersect a connected component
of T n DN in at most one point. Therefore if B is a connected component of A-pnqN,
where pNqN is the closed subinterval of A with endpoints / v and qN, then the
cardinal number of the set xf{x) n T is finite and the same for all x e B n Dom (/).
The proof of (b) follows at once from (a) and from these remarks. •

(3.5) The map fc. Let y be a non-trivial a- or w-recurrent trajectory of <p passing
through a transversal circle C. We consider the set si(C) made up by all the closed
intervals [a, b~\ of C such that either [a, fc] is the closure of a connected component
of C-ynC or a = b and a does not belong to the closure of any connected
component of C - y n C. It follows from the fact that y is non-trivial recurrent that
si{C) is a partition of C.

Let / : C -* C be the forward Poincare map induced by <p. If [a, fc], [c, d] e ^ (C)
are such that [a, fc] n y is a one point set, say {/>}, and /(/>) s [c, d], we shall write

If [a, fc], [c, d] e .stf(C) are such that [a, b] n y is not a one point set, we shall write

fc([a,b]) =

provided that there exist sequences {pn}, {qn } on Dom (/) n y satisfying the following
two conditions

(i) \\mpn = a, lim<7n = fc, {lim/(/>n), lim f(qn)} = {c, d)
(ii) If ~ is the relation associated t o / then a~b~pn~qn.

See figure 1.

•/(<?„)

/(/>„)

FIGURE 1
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Therefore, we have established the map

whose domain of definition is in general properly contained in $i{C). Similarly/^1

induces the map

Since si(C) is a partition of C it will be provided with the quotient topology.

(3.6) LEMMA. Under the conditions of (3.5) above, ^ ( C ) - D o m (/c) is a finite set.

Proof. Let [a, ft] esd{C)-Dom (/ c) . Let ~ be the relation associated to / : C-> C.
By lemma (3.4), the equivalence classes of ~ are finitely many open intervals
Aj, A2,..., An. Since y accumulates on both endpoints of [a, ft], and y n C c A j U
A2 u • • • u An, there exist i, j e {1,2 , . . . , «} such that a = \imkpk, ft = lim^ qk for some
sequences {pk} in Atny and {qk} in Ajny. It must be i^j, because otherwise
Pk ~ qk, for all k 6 N, and therefore [a, ft] would belong to Dom (/c) . It is also clear
that given a pair (AhAj), there are at most two elements of si{C) intersecting
both At and Ay Since the set {Au...,An} is finite, ^ ( C ) - D o m ( / C ) is also
finite. •

The proof of the following two lemmas can be found in [Gu.4, lemma 2 of § 1,
p. 312] and [Gu.2, lemma 5] respectively.

(3.7) LEMMA. Let y be a non-trivial recurrent trajectory of (p. Let X be an open segment
transversal to <p and passing through y. Denote by )3(2, y) the set of two-sided simple
closed curves of the form pq u ~pq, where p~q is a subsegment of 2 and pq is a subarc
of y. Then /?(£, y) is not empty and any circle pqup~q of P(L, y) can be arbitrarily
approximated (in the C° topology) by a circle which is transversal to <p.

(3.8) LEMMA. Let C be a circle and T:C-> C be a continuous injective map defined
everywhere except possibly at finitely many points. If T has dense positive semi-orbit
then T is topologically conjugate to an interval exchange map.

(3.9) LEMMA. Let U be an open subset of M such that there is no arc of trajectory of
<p contained in U and connecting two points of ?Fr(U). If y is a non-trivial recurrent
trajectory which is not contained in U, then there exist a circle C and an open set V
containing C such that:

(St 1)' U n V = 0 and either ynC = CorynCisa Cantor subset of C;
(St2)' the pair {<p\v, V) is a region of recurrence associated to y.

Proof. Using lemma 3.7, we may construct a circle C <= M — U transversal to <p
passing through y. Le t / : C^> C be the forward Poincare map induced by (p. What
we shall do to prove this lemma is to show that C can be constructed so that the
map fc:si{C)^si{C) defined in (3.5) is (topologically conjugate to) an interval
exchange transformation, and also that there exists a suspension {<p\v, V) of (f,fc)
as desired in this lemma. To do so, first it will be proved that (for C as at the very
beginning), there are at most finitely many elements of s£{C) which do not satisfy:

(1) If [a, ft]e sd{C), then yr\[a, ft] is either empty or {a} or else {ft}.
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Certainly, if [a, b]<= .stf(C), with a^b, satisfies [a, b] n y = {a, b} then we may
assume that b=fN{a) for some positive integer N. Thus, there exists ne
{0,1 , . . . , N} such that (fc)" is not defined in [a, b]. Otherwise, (/c)N([a, b])n
[a, b] => {b} would imply that (fc)N([a, b]) = [a, b] contradicting the fact that y is
not periodic. Similarly, there exists n e {1,2,. . . , N} such that (gc)" is not defined
in [a, fc], where g=f~\ By lemma (3.6), (^ (C)-Dom ( / c ) ) u ( ^ ( C ) - D o m (gc))
is a finite set. These facts imply our claim above.

Let SjC C be an open segment intersecting y. We may take 1^6/3(2,, y) such
that F, n U = 0 . If X, is disjoint from those elements of M(C) which do not verify
(i), and C is a circle very close to T, and transversal to q>, then any element of
si{C) will satisfy (1). The choices of 2i and C as above are possible by lemma
(3.7). Therefore, from now on, we will assume that:

(2) there exists a circle C transversal to <p, passing through y, such that (1) is
satisfied.
It is claimed that:

(3) si(C) is homeomorphic to C.
In fact, when y n C contains a subinterval of C obviously (3) is true. When y n C
has empty interior in C, then y n C is a Cantor set. In this case, identify C with
R/Z (via a homeomorphism) and take a Cantor function [Ha] ££:C-*C which is
a monotone continuous map of degree one. The map S£ is constant in a closed
subinterval of C if and only if this interval is the closure of a connected component
of C - y. Certainly the quotient space C/££ is homeomorphic to C. Therefore, since
C/2 is precisely sd(C), (3) is verified.

Now, let aes4{C) intersecting y. Because of (2), and the fact that any positive
semi-trajectory of y intersects C infinitely many times, it follows that ( / c)n is defined
in <T, for all « = 0,1,2, . . . . These facts imply that:

(4) {(/c)"(o-)/n = 0,1,2....} is a semi-orbit dense in M(C).
By (2), fc is injective. It is clear that fc is continuous. Thus, lemma (3.6) and (4)
permit us to apply lemma (3.8) to conclude:

(5) fc is (topologically conjugate to) an interval exchange transformation
£:R/Z->M/Z which has a dense orbit.
Some of the properties of this map E are the following [Ke]: Any of its orbits is
either finite or dense. It has only finitely many finite orbits. The point xeR/Z
belongs to a finite orbit of E if and only if there exist positive integers n, m such
that both E" and E~m are not defined for x.

Let %2 be an open interval of si(C) disjoint of the finite orbits of fc. Then:
(6) Any orbit of fc meeting S2 is dense on it. Moreover y intersects the subinterval

22 of C, generated by 22> infinitely many times._
Let r2e/?(22, y)- It follows from (6) that if C js a circle,transverse to <p close
enough to r2, then any orbit of fc is dense in st(C), where/: C -» C is the forward
Poincare map induced by <p.

Summarizing we may construct C so that:
(7) fc is in interval exchange transformation having every orbit dense and

f:C-*C covers fc via the quotient map h: C^si(C).
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Now, either C -ynC is dense in C or y n C contains an open subsegment S3 of
C. In the second case, proceeding as above we may construct a new circle C
transverse to <p and close to an element of j3(23, y). Certainly ynC = C.

Therefore, we may construct C so that not only (7) is satisfied but also:
(8) CnV = 0 and either ynC = C or ynC is a Cantor subset of C.

We remark that, by its definition,
(9) The interval exchange transformation fc cannot be extended continuously to

a bigger subset of si(C).
Now, we proceed to construct a suspension of (f,fc)- We shall use the concepts
introduced in (3.3). Let ~ (resp. ~') be the relation associated to / : C-» C (resp.
toj~l: C-* C). By lemma (3.4) the relation ~ (resp. ~') has finitely many equivalence
classes AuA2,...,An (resp. A\, A'2,..., A'n). We may suppose that given ie
{1,2,. . . ,«} and xeA,nDom(/ ) , /(x)eAJ. It follows from (9) and from the
definition of ~ that:

(10) For all i e {1,2,.. . ,«} there exists a connected component /; of Dom (fc)
such that /, c h(A{)<= /j and /c(/ ,) c h(A\) <=JcW).
To simplify matters, from now on, we shall assume that n > 2. This implies that if
p, q 6 A, n Dom (/) then there is a unique disc DM associated to the triple {p, q, ~) .
Let V(Aj) be the union of A, u A\ and all the open discs Dpq such that p, qeAtn
Dom (/). We have that:

(11) For all i e { l , 2 , . . . , n}, V(A,-) —A,-u AJ is an open disc whose frontier
contains Afu A{. Moreover, V(A,) is disjoint from U.
Actually, we shall only prove that V(A,) n t/ = 0 . To do this it is enough to show
that, for all p, q e Dom (/) n Af, (Dpq - Dpq) nU = 0. Observe that pf{p) u qf\q) is
disjoint from U because {p, q,f(p),f(q)} n U = 0 and there is no arc of trajectory
contained in U and connecting two points of !Wr( U). As C n U = 0 , (Dpq — Dpq) n
l/ = 0 which implies (11).

Let i e {1, 2 , . . . , n}. We claim that:
(12) If a is an endpoint of A; (resp. A't) then y^ (resp. y~) is contained in

S'X V(A,)) - U and o>(ya) (resp. «(?„)) is a fixed point. Moreover, the complement
of these semi-trajectories in S'r(V(Ai)) can only contain fixed points and regular
trajectories that connect fixed points. See figure 2.

A, V(A,)

b'

FIGURE 2

In fact, let a be an endpoint of A,. The proof that y* c 3Fr( V(A,)) - U is similar to
that of (11). Now suppose that w(-ya) contains a regular point p. Let 1 be a compact
interval transversal to p and such that p e 2 - {endpoints of £}. As (?„ - {a}) n C = 0 ,
-ŷ  meets £ infinitely many times. Using (b) of lemma 3.4 we may easily obtain a
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contradiction. Therefore (o(y^) is a fixed point. The remainder of (12) is proved
similarly.

Let V(A,) = V(Aj)u y^ u yt u y^u y^ and A, be a continuous simple curve
embedded in V(A,) - A, u A\ that connects the fixed points a{y+

a) and w(-yb), where
a and b (resp. a' and 5') are the endpoints of A, (resp. AJ). See figure 2. Let
V = U"=, V(A,). We have that:

(13) If C = U"=i A = LJT=i ^ 1 . t n e n ^ i s a n °Pe n s e t a nd (<p|v, V) is a region of
recurrence.
In fact, in this case, V-UT=i >̂ ' s homeomorphic to C x (-1,1) and so, using (12)
and the fact that / covers /Cl V can be seen as the manifold obtained from
C x [ - l , l ] - { ( C - D o m ( / c ) ) x { l } u ( C D o m ( / c 1 ) x { l - l } } by identifying each
interval /, x {1} with the interval / c ( / , -)x {~1}, where i e {1,2, . . . , n}. Under these
conditions (See (7), (9) and (12) it is easy to check that (^|v, V) is the region of
recurrence desired to prove this lemma.

Finally, if (C - U i l i A ) u (C -\J"=l AO ^ 0 , then &X V) n V consists of finitely
many segments 21( 2 2 , . . . , 2/t of one of the forms B^i y^u yt or B'vy^u yZ,
where B (resp. B') is the closure of a connected component of C -{J"i=l A{ (resp.
C~Ur=i ^5) w*tn endpoints a and b. For each 2, we may choose an open disc
Dj=>1j such that &r(Dj)n(M —V) is an arc transversal to <p connecting the
endpoints of 2,- (which are fixed points) and the foliation (p\D. is, up to orientation,
that of figure 3. Certainly we may choose these discs so small that, if V = V u
(U,=i Dj), by an argument similar to that of the proof of (13), we have that (<p\v, V)
is the region of recurrence desired to prove this lemma.

FIGURE 3

The proof of the following lemma can be found in [Pe, lemma 1].

(3.10) LEMMA. There exists a positive integer Nsuch that if n> Nandyu y2, • • •, yn <=
M are pairwise disjoint simple closed curves, bounding no discs, then two of them
enclose a cylinder of M.

(3.11) Proof of the structure theorem. To obtain the pairwise disjoint regions of
recurrence Vu V2,...,Vm of this theorem we may use inductively lemma 3.9. By
lemma 3.10 applied to the circles Q<= Vj, there can be only finitely many of such
regions of recurrence. This proves (St 1) and (St2).

Now, given V- as in (St3), let CJc v\, T't and E\ be objects which are as Q, Tt

and E, of (St2), respectively. To prove (St3), observe that (Tj)c.:^(C,)^
j^(C,)(resp. (T'i)Cj :si{C'i)-> $i{C'i)) and £, (resp. E\) are topologically conjugate.
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Using this, it is easy to see that any orbit of E, determines a unique orbit in E\ in
such a way that:

(1) Each p e R / Z - D o m ( £ / ) (resp. qeU/Z-Dom (EJ1)) is in correspondence
with a unique p'elR/Z-Dom (£') (resp. q'eU/Z-Dom ((£')"'); and

(2) For p e R / Z - D o m (£) and g e R / Z - D o m (£" ' ) , there exists an interval
/ € D o m ( £ ) such that pel and qeE{I) if and only if, for some interval /'<=
Dom (£'), p' e / ' and g' e E~\T).

By the definition of suspension, we have that (1) and (2) imply that V and V
are homeomorphic. The proof of the remainder of (St 3) can be found in [Me], [Ga].
See also [Gu.5, theorem B].

The proof of (St 4) is the same as that of (St 1)' of lemma (3.9). •

(3.12) Proof of corollary (3.1). Because of the structure of 9r{ Vx) and since fl ,c Vh

we may easily see that if the interval / c Dom (Tj) is the closure of a connected
component of C, -ft,, then {pT](*p)/p e 1}c V;, Thus Rec (C,) <= V,. We observe that
as ft, n Ci is compact, it is contained in finitely many connected components of
Dom (Tj). Therefore there is a set 2 made up of finitely many closed subintervals
of C, n Dom (Tt) such that Rec (C,) = U p e 2 pT\(p)- Using this fact and the structure
theorem, the proof can easily be completed. •

(3.13) Proof of proposition (3.2). First we shall prove that:
(1) There exists a denumerable family {V,/i = 1,2,...} of open subsets of M such

that
(la) M - U r = i Q: = V, ̂  V, 3 V23 V2z> V33 • • • 3 yn 3 Vn+1 3 • • • = F.
(lb) For all i = 1, 2 , . . . , d(F, M- Vi+1)<|min {1/i, rf(F, M - V;)} and dV,,=

V; - V|- is made up of finitely many pairwise disjoint two-sided circles.

In fact, let 2ex <min {1, d(F, UJli C,)}- Since F is compact, if e, is small enough,
there are finitely many open geodesic balls Bu B2,..., Bki strongly convex with the
same radius e, centred at points of F and such that F ^ U , ! ] Bf = V,. Certainly
d Vj = Vi — V, is made up of continuous two-sided simple closed curves intersecting
between each other only tangentially and in at most finitely many points. Keep the
centre of the balls B,, B2,..., Bki fixed but reduce their radii by an appropriately
small amount so that the new balls, still denoted by Bu B2,..., Bkl, continue covering
F but now d Vi is made up of pairwise disjoint two-sided circles. With this procedure
it is easy to construct inductively the family {V,/i = 1, 2,...} required to prove (1).

Using tubular flow boxes centred at points of dVt, i = 1,2,..., approximate each
circle of 3 Vt by a circle contained in Vt — Vi+l and made up of finitely many segments,
transversal to <p, connected to each other by arcs of trajectories. The union of all
of these new circles form the boundary of a compact bidimensional manifold M,
satisfying Vi+1 <= Int (M,) <= M, c V).

Using (1) we can see that the family {M,/i = 1, 2,...} satisfies (i) and (ii) of this
proposition. Now, we claim that:

(2) For all ieN, the union of all closed orbits of <p contained in Mj^t — Mj is
compact.
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In fact, let {yn} be a sequence of closed orbits in M.^ -M, accumulating on an
orbit y. Since, by the structure theorem, [Jn yn is disjoint of Ui l i Q, y is also
disjoint from UHi Q- Therefore, the minimal sets of w(y), being contained in
Mi_i — Mi, must be closed orbits. This implies that <o(y) is a closed orbit. Since y
is accumulated by closed orbits, we must have that w(y) = y is a closed orbit. This
proves (2).

Given ie!̂ J and a closed orbit >"= M.-^-M,, we may choose a pair (V^S,,),
formed by an open neighbourhood Vy of y and a compact interval 2 r transversal
to <p passing through y, satisfying:

(3) 2y is contained in the interior of M^^-Mj. Moreover, for all (p, S)e
VT x {-1,1} there exists t e (0, oo) such that <p(8t, p) e S r

By compactness, given ieH, there exist finitely many pairs (Vn,1n),
(Vf2,2i2),..., (Vin_, 1in.) as above such that UJl i Vj,- contains the set of closed orbits
of <p contained in M,_! - Mt. Define F, as the union of U"ii 2S and the transversal
segments to <p contained in dMt. Given p e F, the co-limit set of p (resp. a-limit set
of p) contains either a fixed point or a closed orbit or else a non-trivial recurrent
point. In any case, by the construction of F, the fact that the positive (resp. negative)
semi-trajectory starting at p has to return to F. This implies (iii) and (iv) of this
proposition. Item (v) follows from lemma (3.4) and from the fact that each F, has
finitely many connected components.

4. Decomposition in smoothable flow boxes
The main results of this section are the following two propositions. To state them
we shall need some terminology.

(4.1) ^-coordinates. Let a be an oriented closed segment starting at a and ending
at b. A measure /x on the Borel algebra of a will be said to be a distinguished
measure on o- if 0</A(CT)<OO and the map ft:er-»[0, /A(O-)] given by h(x) = fi.(ax)
is a homeomorphism, where ax is the subsegment of o- with endpoints a and x.
This map h will be said to be the ^-homeomorphism of a. Let 2 = {o-j},e/ be such
that the connected components of each cr,, / e /, are either circles or segments, n is
said to be a distinguished measure on (the family) 1 if, for all iel, and for all
oriented closed segments A c a-,-, n\x is a distinguished measure on A. When the
family has only one term we shall identify the family with the term.

Let B be a flow box of ip having transversal edges A} and A2. Let T: AX -* A2 be
the Poincare map induced by <p\B (the restriction of <p to B). Suppose that Ax and
A2 are oriented so that r preserves orientation. Suppose also that {Au A2} is provided
with a distinguished measure /x. Denote by h^ and h2 the /i.-homeomorphisms of
Ax and A2, respectively. Either the map r of the flow box B is said to be /A-smooth
(resp. /A-C1) if the /x-coordinate expression ofr,

r = h2 o T o hi1: [0, M^i)] •* [0, lt(A2)],

is smooth (resp. C1).
Let / be an interval of R. Let /, g: I -> IR be smooth maps. We define

||/||0 = sup{|/(x)|/x€/},
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and for keN,

Let e>0. We say that / i s e-close to g in the Ck-topology if | | /-g| | f c«e.

(4.2). PROPOSITION. Under the considerations of proposition (3.2), there exists a
distinguished measure /xonT and a non-negative integer n0 such that: for each segment
2 contained in T whose image T(2) is also a segment it is established that:

(a) TU:2->T(2) is/i-C1;
(b) if 2 <= r , and i > n0, then T|2: 2-» T(2) is fi-smooth;
(c) if the minimal sets of <p are trivial then n0 = 0.

(4.3) PROPOSITION. Suppose that the set F of fixed points of <p is not empty. Then
M — F can be expressed as the union of flow boxes 6t, with i e N, such that:

(a) each compact set of M — F is contained in finitely many flow boxes 0,;
(b) if i *j, then 0, n0j=d6in 50,;
(c) there exists noeN and a distinguished measure /A on the transversal edges of

the flow boxes 0,- such that, for all i e N, 0,- is /x-C1 and, for all i s= n0, 0, is fi-smooth;
(d) if the minimal sets of<p are trivial then no= 1.

(4.4) T-sequences. Let r e {T, T"1}. A finite sequence 2 = {2^ 2 2 , . . . , £„} of open
segments of F, pairwise disjoint, is said to be a r-sequence if any two consecutive
terms 2,- and 2,+, of it satisfy T(2J) = 2,+,.

Let 2 = [Lu 2 2 , . . . , 2n} be a r-sequence with re{T, T"1}, then:
(a) S is said to be attracting if Tn(2,) <= S,, T"|2 I admits continuous extension to

S] and this extension has a unique fixed point which is an attractor and is situated
at one of the endpoints of 2 , .

(b) 2 is said to be periodic if r (2n) = 2 , and each />e 2 ; is a fixed point of T".
(c) 2 is said to be wandering if 2j is ^p-wandering.
(d) When 2 is attracting, the half-open segment 2 , -7 (2 , , ) will be called a

fundamental domain of 2.
(e) The union of all terms of 2 will be denoted by span (2).

(4.5) LEMMA. Under the conditions and notation of the structure theorem and corollary
(3.1), suppose that H;+l, n / + 2 , . . . , n / + t ) are the non-trivial minimal sets of (p. Given
i,je{l+l,l + 2,...,l+v} it is verified that: IfV) {resp. V^1') denotes the union of
the transversal segments of d(Rec (C,)) from where the trajectories enter (resp. exit)
Rec (C;) and /I is a distinguished measure on V] u V^1', the gate of Rec (Ct), then
there exists a distinguished measure \x, on C,- extending fi, and such that, in ^-coordinates,

is C1 and has derivative equal to 1 at all the endpoints of the connected components

Proof. It follows from the structure theorem and corollary (3.1) that:
(1) V) and V(i~x) have the same number of (closed) connected components. Also,

if V?,, V?2,...,V?S, denote those of Vf, 5 e { - l , l } , then, for all (n,j)e
N x { 1 , 2 , . . . , s^, TnS> is defined in V|.
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(2) There exists Jcf^J and a family of closed subintervals {Zj}isJ of Ct —
(V,1 u Vr1) not reduced to points such that for all (n,j)eZx J, T" is defined in Zj
and the family {T"(Zj),TmS(Vfk)\neZ, jeJ, meNu{0}, Se{ l , -1} , ke
{1,2, . . . , Sj}} is made up of pairwise disjoint intervals whose union is a dense subset
of C-.
Suppose now that M is the torus, that Rec (C,) = M (in particular Dom (Tt) = C,)
and that J = {1}. In this case, by Denjoy [De] there is a measure fi on C, such that

(3) M(C,) = 1, M (C 1 -U n e Z ^" (^ i ) ) = 0and Tr.Q^ Q is n-C1.
It is not difficult to see that, even when /<= N is arbitrary (because of (1) and (2)),
the same idea can be used to construct a measure n on Ct extending /I and satisfying
this lemma. •

The proof of the following lemma can be found in [S-T], [Ne.l].

(4.7) LEMMA. The interior of the set of non-wandering points of<p consists of recurrent
points.

(4.8) LEMMA. With the conditions and notation of the structure theorem and proposition
(3.2), suppose that i e { l , 2 , . . . , / } (resp. i e { / + l , 1 + 2,..., l+v}) if and only if
fl; n Cj = Ci (resp. fl, is a non trivial minimal set of <p). Given a e {A, P, W} there is
a set Aa = {CTJ, <T2, ..., crm ...}, at most denumerable, such that

(i) Each A( (resp. Pt) is an attracting (resp. periodic) Ts'-sequence (Te'-sequence)
with 5,e{—1,1} (resp. e,e{—1,1}). Each Wt is a wandering open interval.

(ii) Ifi^j, then span (cr,)n span (oy) = 0 and

(iii) The closure of the set UtJ (span (A,) u span (Pj)) is a neighbourhood (in T)
of the set of points of T which belong to closed orbits of <p.

(iv) Ufc Wk is disjoint from (Jij, (span (A^-D,) u (span (Pj)), U |_ , U_ Tn(C,)
and Urt"/+i [Rec (Cr) - Gr] n T. Here D, denotes the fundamental domain ofAt and
Gr denotes the gate of Rec (Cr).

(v) The union of the sets Uu(span(i4l)uspan(PJ)), UkUn Tn(Wk),
U L i UB T"(Ct) and U't"+, (Rec (Cr)nT) is an open and dense subset of T.

(vi) For all Ate /\A and all re {/+1,1 + 2,..., l+v}, Uk Un T"( Wk) intersects
neither {endpoints of Dt} nor {endpoints of connected components of Gr}.

Proof. Let MP (resp. s£A) be the set characterized as follows: A € s£P (resp. A 6 siA)
if and only if:

(1) Any element of A is a periodic (resp. attracting) T*-sequence, with 8 € {—1,1}.
Moreover any pair A1; A2eA satisfies span (A)) n span (A2) = 0 .
Let cr e {P, A}. If sAv ̂  0 , the inclusion of sets' <= ' determines a partial order relation
in sir It is clear that Zorn's lemma can be used to find out a maximal element
A^ E sia for this partial order relation.

To continue, suppose that
(2) /\A = {AJi = 1,2,...} and AP = {Pj/j = 1,2,...}.
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Since A^ with <re{A, P}, is a maximal element of the partial order relation '<=' in
Mm (iii) of this lemma holds.

Let i/f be the set of all trajectories of <p which pass through the endpoints of the
fundamental domain of elements of AP It is clear that

(3) tj)nT is a discrete subset of T.
Let A be the complement in F of the union of [Jtj (span (At) - A ) u span (/$)],
U!=iU n T"(C, ) and U ' t " + 1 [ R e c ( C r ) - G r ] n r , where D, is the fundamental
domain of At and Gr is the gate of Rec (Cr). Let A be the interior of the wandering
points of A — 4>. Since (iii) is true, it follows from lemma (4.7) and (3) that

(4) A is (open) and dense in A.
Let siw be the set characterized as follows: A € sdw if and only if:

(5) Any element of A is a ^-wandering open segment contained in A. Moreover,
any pair \ u A2e A satisfies

(ur(A,))n(ur(A2))=0.

If A contains some <p- wandering segment, then s$w ^ 0 . Proceeding as above, there
is a maximal element /hw = {Wk\k = l,2,.. .}es£w for the partial order relation
determined by the inclusion of sets ' c ' . Certainly /\w is at most denumerable.
Maximality of A w and the fact that each W, is open imply that

(6) Ufc U n T"(Wk) is open and dense in A.
It follows, from the construction of the sequences foA, AP and {Wk} that (i)-(v) of
this lemma are verified. Since ijj is disjoint from A, each Wk is a wandering
interval and also (for re{Z + l, 1 + 2,..., l+v}) each endpoint of any connected
components of Gr meets fln we conclude that (vi) of this lemma is true. •

(4.9) LEMMA. Let re{T, T"1} and 2 = [S.u 2 2 , . . . , 2n} be an attracting r-sequence.
For any e e (0,1) and keN, there exists p > 0 such that if {L is a distinguished measure
on the fundamental domain Dofi such that /1(D) < p, then there exists a canonical
distinguished measure /J, on 2, extending /I, having order k and size e. That is, if Sj
is also denoted by Sn+1, then:

(a) For all i e { l , 2 , . . . , n} and for appropriate orientations of Sf and £,+,, the
^.-coordinate expression ^-.[0, /u.(2,)]-»[0, ^,(2,+,)] of T^:£,•-*£,•+! is smooth,
2~k-close to the identity map of [0, (i(2.j)] in the Ck-topology and its derivative T\ has
infinite order contact at xe {0, AI(2,)} with the constant map =1.

(b) i r . , /*(2 , )£B.

Proof. Let 0:U^[0,1] be a smooth function such that 0~\O) = {-<x>,0], 6~\l) =
[l,oo) and, for all re(0,1), 6'{t)>0. Given e > 0 and keN, we define

(1)

Let /I be a distinguished measure on the fundamental domain D of 1 such that
/l(D) = p<p. We define o-:R->[R by o-(t) = t-p0(t/(e/n)). The following facts are
easily verified.
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(2) The map cr is a diffeomorphism which is e-close to the identity map of R in
the Cfc-topology. Also, o- has infinite order contact at 0 (resp. at e/n) with the map
t-> t (resp. t-*t — p) defined in U. Moreover cr|[Ol,/n) has 0 as a unique fixed point
which is an attractor. Finally o~((0, e/n) = (0, e/n-p).

Certainly T " : 2 1 - » S I and o-|(0,e/n):(0, e/n)-»(0, e/n-p) are topologically conju-
gate. Let h:1x^(Q, e/n) be the unique homeomorphism which conjugates T" and
Îfo.e/n) and such that h\D- e/n + p is a /i-homeomorphism of D (where D is a

fundamental domain of T").
The Lebesgue measure of (0, e/n) (resp. (0,e/n—p) induces, via h (resp. via

o-° h° T~1|22:S2-»(0, e/n-p)) a distinguished measure on Sj (resp. 22). Extend p.
to a distinguished measure on 2 by defining /x|s.+2 = /u, • T~'|2.+2, I = 1, 2 , . . . , n — 2.
It follows from the construction of p. that the /i-coordinate expression of T|2I : 2, -» 22

is precisely a-|(0,e/n) :(0, e/n)-»(0, e / n - p ) and moreover that the yu.-coordinate
expression of T^. :2,-»2j+1, i = 2 ,3 , . . . , n, is the identity map of (0, e/« — p). This
together with (2) implies (a) and (b) of this lemma. •

The proof of the following lemma is similar to that of (4.9).

(4.10) LEMMA. Let re{T, T~1} and 2 = {£ , ,2 2 , . . . , £„, Sn +J be a T-sequence. Let
p. be a distinguished measure on J.t. Then, for any e>0 , there exists a canonical
distinguished measure p. on 2 extending p, and having size e. That is if any term of
2 is oriented so that, for all i = 1,2,...,«, T|2.:2i-»2j+1 is orientation preserving, then

(a) The continuous extension T, :[0, /U.(XJ)]-»[0, p(2.2)] °f tne p-coordinate
expression of T^, (defined in (0,^(2,)) is smooth and its derivative r\ has infinite
order contact with the constant map =1.

(b) For all i = 2, 3 , . . . , n, the p-coordinate expression O/T|S. is the identity map of
(0,e/n).

(4.11) LEMMA. Let 1 = {S1; 2 2 , . . . , 2 , , . . .} be an infinite sequence, such that for all
neN, {£,, S 2 , . . . , !.„} is a T-sequence (resp. T~l-sequence). Suppose that for some
p e ^ the w-limit set ofp (resp. a-limit set ofp) contains a fixed point of (p. Then for
any keH there exist j , leN such that 12+jc r(+fc.

Proof. Consider only the case in which 2,+1= T(2,) for ieN. Let keN be given.
Certainly 23c=rN for some N eN. If N>k, this lemma follows immediately by
taking j = 1 and 1= N -k. So assume that N < fc Since w(p) contains a fixed point
of <p, there exists jeI\J such that TJ+\p)erk+1. Therefore, using the fact that
{2,, 12, • • •, 2,+2} is a T-sequence, it follows that TJ+1(^i) = 2,+2<= rfc+i. The lemma
is proved. •

The proof of the following lemma of calculus will be omitted.

(4.12) LEMMA. Let f:\_a, b]-*[c, d] be an increasing homeomorphism. Then f is
smooth (in [a, b]) and has infinite order contact at xe{a, b} with the map t-*
t-x +f(x) if for some sequence {[at, b,]/ i e N} ofpairwise disjoint closed subintervals
of [a, b], the following conditions are satisfied:

(A) [a, b] = U " , K b,l Iti (*« -ai) = b-a and Zf-i (f(b,) -/(a,)) = d-c.
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(B) For all i e (̂  and for x e {at, fc,}, /![„,,(>,] is smooth and has infinite order contact
at x with the map t>-^t — x+f(x) defined on [a,, ft,].

(C) There exists N such that for all positive integers i > N,

where Id is the identity map of R.

(4.13) Proof of proposition (4.2). Consider the notations and facts stated in lemma
(4.8). It is clear (by such lemma) that

(1) The sets U,span(Pj), U|_, UB T"(C,), U, (span (A f ) -A) , U »* and
Ur="+i {Rec (Cr)nT- GT) are pairwise disjoint and their union is open and dense
in F, where

U^ [Rec(Cr)nr-Gr]JJ.

Start denning a distinguished measure n on Uj span (Pj). Let Pj = {1U 2 2 , . . . , £„}
be an arbitrary element of Ap By definition Pj is a resequence, for some 8 e {-1,1}.
Define (j. on Pj so that for i = 1,2,..., n (and for appropriate orientations of S,
and T6(£,)) the ^-coordinate expression of Ts|Si:2,-> T*(2f) is the identity map
of (0,2~'/n). This is possible because each pe1t is a fixed point of T". Hence:

(2) /A is a distinguished measure on U, span (P7-) such that /t(U; span (P7))s 1
and if / and T(I) are open intervals of U, span (Pj) then the /A-coordinate expression
of T\j: /H> T(/) is the identity map of (0, /*(/)).

Proceed to define ju. on U r = i U n T"(Ct). By assumption (lemma (4.8)), when
i e {1 ,2 , . . . , / } , there is a non-trivial recurrent trajectory dense in C,. Therefore, by
the structure theorem, there is a homeomorphism hj-.C^R/Z conjugating the
Poincare map Tj-.C^ Q induced by (p with an interval exchange transformation.
The Lebesgue measure of R/Z induces, via hh a distinguished measure (i on C,,
i = 1,2,... ,/ , which is 7>invariant. Let / be an open interval of U,=i C,. If for
8€{-1,1} and neN, TnS(I) is an interval, define /i|r»«(/) = /x» T~"s\T»\n. This is
well defined because each fi\Ci is 7>invariant when i = 1, 2 , . . . , / . Also by (iv) of
proposition (3.2), given n e N, 8 e {-1,1} and i e {1 ,2 , . . . , /} , T"*|C|.: C, -» T is discon-
tinuous at finitely many points. Thus, n is already defined in Ul=i U n T"(C,) except
for a denumerable subset which only accumulates outside U L i U n T"(C,). Take
the fi measure of this denumerable set to be zero. To show that /x is a distinguished
measure on LJ,=i U n T"(C,) it will be seen that

(3) For ulljeN, /i([U!=, UB TB(Ct) ]nry)< /A,, where A; is as in (v) of proposi-
tion (3.2).
In fact, from (v) of proposition (3.2) and from the existence of a trajectory of <p
which is dense in any circle C, with ie{l , 2 , . . . , / } , it follows that: Given ie
{1, 2 , . . . , / } and j e M, any arc of trajectory, intersecting Q at one of its endpoints
and having its other endpoint at Tj, meets F, at most A, times. This implies (3).

Under these conditions

(4) fi is a distinguished measure on U!=i U n T"(Ct) such that if / and T(I) are
open subintervals of this set, then the /i-coordinate expression of T|7: /-» T(I) is
the identity map of (0, fi(I)).
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Now, we will define a distinguished measure (j. on {Jk $&k. By lemma (4.9), given
any term At of AA there exists a positive real number cri e (0,1) such that

(5) If /I is a distinguished measure in the fundamental domain D, of A, satisfying
0 < /I(A) < o-,; then there exists a canonical distinguished measure fi on At extending
/I, having order i and size 2~'.
Given (8, s) e {-1,1} x ftj and an open interval A contained in [Jk U n T"(Wk) define
G(S, s,\) as the maximal sequence of the form {A, TS(A), . . . , TnS(\),...} that
satisfy:

(6) Any one of its terms is an open interval (of [Jk U n T"{ Wk)) disjoint from
the union of {Ju (span (A,)-D,) andU't";+i [Rec ( C , ) n F - G r ] . Moreover, except
possibly for A and Ts(\), any term of 2 is contained in U;=oFj.
Let A be an open interval of F. An open non-empty subinterval / of A is said to
be a Ts-derived subinterval of A if it is maximal with respect to the following
property: TS(I) is an open segment of F. Since, given ieNu{0} and Se{-1,1},
Ts| r .:F,-»r is discontinuous at finitely many points ((iv) of proposition (3.2)), it
is verified that:

(7) Given 8 e {-1,1}, the closure of any interval A <= F is the finite union of the
closure of its T5-derived subintervals.
For each Wk e A w and s e Z - {0}, define inductively on 5 finite or empty families
Z l = iZli» £it2> • • • > ^Lt l °f wandering resequences, with 8 = s/\s\, as follows.

(8) When s = 8e{-1,1}, then sk = 1 and 21, = G(S, k, Wk). Suppose that ls
k~

l

has been defined then 1k = {G(S, k\s\, A)/A is an open interval T*-derived of the
last term of ~Lkj\ wi th ;e{1 ,2 , . . . , (s-l)fc}}.
Observe that by lemma (4.11) each G(8, k\s\, A) above has finitely many terms, i.e.
G(8, k\s\, A) is in fact a resequence. Now:

(9) Foragivenr^thefamilylSL/seZ-fOLfcG^A . . . , « , . . . } , r e{ l , 2 , . . . , sk}
and its first term is contained in Tj} is finite.
To prove this, first notice that, since j is fixed, there are only finitely many terms
of the form ?.skr with (k - l)\s\ <y +1. Now if some XL, with k > 2 and (k - l)\s\ >j +1
has its first term / in rjt then for 8 = \s\/s, I is not only T8-derived of the last term
of some sequence of XJT1 but also is properly contained in such a last term.
This implies that Ts is discontinuous at one of the endpoints of /. (9) follows
from the fact that Ts| r j has finitely many discontinuity points (see (iv) of
proposition (3.2)).

Observe that by (vi) of lemma (4.8), the last term of any non-empty sequence
2fc! as above is either contained in some D^ or is disjoint from U* A- Therefore if
n{s) denotes the number of all of the terms of the sequences forming 2£ and 1ZS

and if S^eXfc is non-empty, we may define:
(10) o-{lkj) is either [2~Ms|/n(s)] • aio or 2~k~M/n(s) according to whether the

last term of ££, is contained in some D^ or is disjoint from U, A, respectively.
Now, proceed to define /x on Uj=i UseZ-{o} s P a n (^y)-

Let WkeJ\w. Let //. be a distinguished measure on Wk such that fi(Wk) =
<r(1ki) • o-iZZl). If 5 G { - 1 , 1} and TSJ(Wk) is a term of 2JL define /A on TSj{Wk)
as fi ° T~Si\r^j(Wk). This implies that:
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(11) If Aj and A2 are two consecutive terms of 1s
kl, then the ^-coordinate

expression of Ts: A,-» A2 is the identity map of (0, //,(Wk)).
Let seN. Suppose that the distinguished measure /x has been defined on all ~LkJe1'k,
when t e {-s + l,-s+ 2,... ,-2,-1,1,2,... ,s-2,s-l} and je{l,2,..., tk}. Pro-

ceed inductively to define /x on all sequences of 2^s u££ as follows: Let 5 e {—1,1}
and 2*jeZfcSu2fc. Certainly, fi has already been defined in the first term of 2*j.
Using lemma (4.10) there exists a canonical distinguished measure on 2^J extending
fj, and having size cr(2£j). In this way we may assume that:

(12) fi has been defined in the terms of all sequences of ££ for keN and s e Z — {0}.
Moreover if {2 , ,2 2 , . . . ,2n + 1}e2£, with Jt>2; then for i = 2, 3 , . . . , n and 5 = |s|/s,
the /i-coordinate expression of rs | s . :£,-»Z,+ 1 is the identity map of (0, /*(£,'))•
Since, for j e f̂  u {0}, T|z is discontinuous at finitely many points, and by the way
that the sequences 2fc, with fceN and seZ-{0} , were constructed, it follows that

(13) For all fceN, UJ=i UseZ-{o}sPan (^1/) is contained in S8k and fails to be
equal to it by a set which is at most denumerable.
Extend fi to a distinguished measure on each S8fc by defining

(14) j * ( » f c - m U span (Si,) ) = 0 .
\ U=l seZ-{0} J /

Calculations show that
(15) M(UIC ^k)=ZfcZjiiI!s£z-{o}M[sPan(2fcj)]sl.

Next, /x will be extended to a distinguished measure on U, (span (A()).
By (v) of lemma (4.8), for all Dh (\Jk ®k) n D, = D, is open and dense in D,,

Since /oi is defined in U t f̂c (see (13) and (14)), /t can be extended to D, by defining
fx(Di - A ) = 0. An easy computation, using (10), implies that 0 < /x(D,) < tr,. There-
fore, by (5):

(16) For all At e AA, î can be extended to a canonical distinguished measure on
A, having order i and size 2~\
It follows from this construction that

(17) ju.(l_J,- span (A,)) = Xf /i(span (A,))s l.
Finally, /i will be extended to U't"+, Rec (Cr)nF.

By (iv) and (v) of lemma (4.8), for all re {/+1,1 + 2,..., l + v}, (\Jk S8k) nGr = Gr

is open and dense in Gn Since /J. is defined in U& 3&k, extend /x to Gr by defining
fx(Gr-Gr) = 0. Using lemma (4.6) /u. can be extended to Urt"+i Cr Let / be an
open interval of Urt"+i Cr If for some neN, T"(I) is an interval and (UT=i T'(I)) n
(U't";+i Cr) = 0 , define ix\T\i) = ix° T~"\T»(n. Thus again, as in (3), by (iv) of
proposition (3.2), /x is already defined in | J r = ° + 1 Rec (Cr) n F except for a denumer-
able subset. Take the /x measure of this denumerable set to be zero. As in the
proof of (3) it can be seen that

(18) ForalljeM, /u(U't"+i Rec(Cr)nF,)<oo.
Under these circumstances, by (1), /x is defined in an open and dense subset of F.
Extend fi to the whole of F by making of measure zero the remainder set where fx
has not yet been defined.

Now it will be proved that T is ^-smooth. It follows by (2), (3), (15), (17) and
(18) that for all j e N, /A(F,) < oo. By this and by the manner that /x was constructed,
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it is verified that:
(19) ix is a distinguished measure on F.

Let 2 c F be such that both 2 and T(2) are segments. Orient 2 and T(2) in such
a way that T|2: £-> T(S) is orientation preserving. By the construction of /x, the
connected components of the intersection of 2 with the union of U,- span (Pj),
UL, Un r"(C), U, (span (A,) - A), U* »* and U'tu

/+1 {Rec (Cr)nF- Gr} form
a family {/s}seS of subintervals of 2 such that

(20) I i e S / * U ) = M(2).
By enlarging 2 if necessary we may assume that

(21) The endpoints of X are disjoint from 1 J J E S IS.

It follows from (9), (12), (13) and (14) that there are at most finitely many terms
Is of the family {/s}sss such that Is^iJk 5&k and the ^-coordinate expression of
T\j\ IS-> T(IS) is not the identity map of [0, /*(/$)]. Similarly, proceeding to check
the ^.-coordinate expression of T\js for every interval Is of {/s}ses, it can be seen,
by (20) and (21), that lemma (4.12) can be used to prove that the /^-coordinate
expression f of 7"|s:£-» T(2) is C1 (resp. smooth) when 2 meets (resp. does not
meet) [Jr

+Jl+i R
ec (C-), and also that if xe {0, ̂ (2)}, the derivative T" of T satisfies

T'{x) = 1 (resp. T" has infinite order contact at x with the constant map =1). This
finishes the proof of the proposition because Urt"+i Rec (Cr) is far away from the
fixed points of <p which implies, by (ii) and (iii) of proposition (3.2), the existence
of a non-negative integer n0 such that, for all i s n0,

r,n( U Rec(Cr))=0. •
\r=l+l /

(4.14) Proof of proposition (4.3). Let us assume all considerations and notation of
propositions (3.2) and (4.2). Let A be the union of the set of arcs of trajectory pq
of <p such that: p, qeT, T(p) = q and either T is discontinuous at p or T"1 is
discontinuous at q. Let °H be the set of connected components of M - ( F u A u T ) .
The closure Y of V e "3/ may fail to be a flow box only because the 'transversal
edges' meet each other. However Y can be expressed as the union of two flow boxes
Yt and Y2 such that Ytn Y2 is a global cross-section for <p\y and also each Yh

i = \, 2, shares with Y exactly one transversal edge. Let <€ be the union of all
transversal edges of Y,, with ie{l,2} and Ye <$. From this construction:

(i) « = r.
By (iv) of proposition (3.2), given lef̂ J, there are only finitely many connected
components of M - ( F u A u F ) intersecting M — Mj. Therefore the family {YJie
{1,2} and y e <3/} of the closure of the connected components o fM-(FuAu < i? )
can be enumerated as 0,, 02,..., 0j,... so that for all i e hi, there exists k(i) e N such
that i f ;> k(i) then djn{M-Mi) = 0. Certainly

(2) M-F = UjO,
Since any compact subset of M — F is contained in some M — Mh (a) of this
proposition is true, (b) is verified by construction of {0,-},-.

The distinguished measure /J. on F will be extended to <€. Denote by T\c€^c€
the forward Poincare map induced by <p. Given Ye<2/ assume that the flow box
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crosses Ytn Y2 from V, to Y2. Define n\Y,r>Y2
 = M ° "* |y,r,y2- It follows from this

and from proposition (4.2), that (c) and (d) of this proposition are verified. •

5. Proof of the smoothing theorem
It is obvious that (c)=^>(b). From the Denjoy & Schwartz theorem we have (b)=>(a),
so we will only prove (a)=>(c). To do this, we shall begin by supposing that

(1) All minimal sets of <p are trivial.
First, assume that <p has no fixed point. Then M is either the torus or the Klein
bottle. If <p has no non-trivial recurrent trajectories, then (as <p has no fixed point)
by Neumann's smoothing theorem [Ne.2], <p is topologically equivalent to a smooth
flow. If q> has a non-trivial recurrent trajectory, by the Poincare-Bendixson theorem
for the Klein bottle [Ma], Mis the torus; this fact and (1) imply that <p is topologically
equivalent to an irrational flow which - in particular - is smooth. Therefore we shall
proceed with the proof assuming that:

(2) The set F of fixed points of <p is not empty.
Also, we shall assume that

(3) Any subinterval of R is provided with the canonical positive orientation.
Let M-F = UH=i 0» where du B2,...,Bit... are the flow boxes of <p satisfying all
the conditions of proposition (4.3). A closed arc of trajectory a with the positive
orientation induced by cp will be called a tangent elementary arc if it is contained
in the boundary of some 0, and intersects the set formed by all the corners of the
flow boxes 0i, 82, • • •, Bh ... exactly at their endpoints. Let o-u o-2,...,an be all the
tangent elementary arcs forming one of the edges of a flow box dt. Choose positive
real numbers o-x(i), <r2(i),..., o-n(i) such that £"=1 o-j(i) = 1.

Let cr be a tangent elementary arc. Since a is in the boundary of two flow boxes,
say 0, and 0,, we have chosen two real numbers cr(i) and cr(j). Now, proceed to
choose for each ke{i,j} an orientation preserving homeomorphism h^k):o-^*
[0, cr(fc)] such that h^ ° h^l^ is a smooth difeomorphism having derivative =1 in
a neighbourhood of 0 and o-(j).

The smooth submanifold M - F of M considered as a set of points without its
differentiable structure will be denoted by M - F. A new smooth structure on M - F
will be constructed. Given 0, denote by An and Ai2 the transversal edges of 0,.
Assume that the flow goes from An to Ai2. Given ye{1,2}, there are two fi-
homeomorphisms gijk: Ay-»[0, fi(A,j)], k = l,2, determined by the two possible
orientations of Atj. For each gijk choose a surjective continuous flow box of <p:

such that
(4 a) For all te[0, //.(A,-,)], aiJk([l, 2]x{t}) is an arc of trajectory of ip\e,
(4 b) (ttj/fe)"1 restricted to each (oriented) tangent elementary arc o- = ab of 0,,

starting at a, coincides with /v( l ) + first coordinate of ajjl(a).
(4c) (a9ky

l\Al. is the M-homeomorphism giJk: A^{jJx[0, niAy)].
Let ^ i = {a1jfc = aIjfc|(i,2)x(0>/ t (Ai>.)):(l,2)x(0,/i(Aj/))-»M-F, such t h a t ^ f c e { l , 2 }
and i e N}. This set will form part of the new coordinate system for M -F. Notice
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that all changes of coordinates aijk ° a^, with./, k, j,ke {1,2}, i = 1,2,... are smooth
because, by proposition (4.3), the flow box 0, is jtt-smooth.

Let <T be a tangent elementary arc. Suppose that a is contained in d0,nd0(.
Choose orientations on An and An, that is choose fc, fce{l, 2}, so that

<r = ailk([en,ei2\x{n(Ail)})

= «iik([en, e/2]x{0}),

where [en , el2] and [eM) e,2] are subintervals of [1,2]. Let e =min {/j.(An), fi(An)}.
Define /3(<r): (e(1, en) x ( -e , e) -» M - F as follows

if r < 0 .
(5) /8(a)(s,0 = '

-e

FIGURE 4

Notice that KU): a^[0, e l 2 -e , i ] and /IC T ( / ) :O-^[0, e / 2 -e ( 1 ] . It follows from (4b) that
P(o-) is well denned. All possible changes of coordinates involving jS(o-), ank; ank

are smooth because h^ ° A"',) is smooth. This implies that all possible changes of
coordinates involving elements of M2 = {fi(o-)/(r is a tangent elementary a r c } u ^ ,
are smooth.

An oriented closed segment transverse to the flow <p will be called a transversal
elementary arc if it is contained in the boundary of some 0, and intersects the set
formed by all the corners of the flow boxes 01; 0 2 , . . . , 0 n , . . . exactly at their
endpoints. Let S be a transversal elementary arc. Suppose that 2<= Ai2n An, where
Ai2 and An are transversal edges of 0, and 0(, respectively, and moreover that the
flow q> crosses 2 from fy to d,. Extend the orientation of S to an orientation of both
Ai2 and An. Let fc, fce{l,2} be such that gi2k: A,2->[0, fi(Ai2)] and gnk:An^>
[0, n(An)] preserve orientations. Let [Si, S2]<= [0, fi(A,2)] and [eu e 2 ] c [0,
be such that

2 = o(2k({2}x[S1,S2]) = ,

It follows from (4c) that for all ( e 2

(6) gj2fc(f)~£i = £/i£(f)~ei- In particular e2 — ei = 82 — 8X.
Define /?(2): (1,3) x(8U 82)^M^F as follows

\ai2k(s,t), ifs 6(1,2],

la/u-(s-l, f + e,-8,), ifse[2,3).- { :
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Because of (6), fi (1) is well defined. It is clear that all possible changes of coordinates
involving /?(£), ai2k and a,,£ are smooth. This implies that all possible changes of
coordinates involving elements of s4?, = $£2vj{p{1)/1. is a transversal elementary
arc} are smooth.

Now, we will construct coordinate systems around the corners of the flow boxes
6l, d2,..., 6n,.... Let p be a corner of an arbitrary 0,. There are three cases to be
considered

(7 a) The set {OjreN, 0r meets />} = {#;, 6h 8n, 6S} and/? is a corner of all of them.
(7b) (resp. (7 c)). The set {6r/reN, 6r meets p} = {dt, 6,, dn}, p is an endpoint of

two consecutive tangent (resp. transversal) elementary arcs of 6, and p is a corner
of dn and 6j. See figure 5.

A<2 A, I

CASE

P

0.,

(7a)

en

a p cr

CASE (7b)

FIGURE 5

e, P

CASE

8,

en

(7c)

Suppose that p is as in case (7b). Let <r (resp. a) be the elementary arc of 6, and
0, (resp. 8n) having p as an endpoint. Suppose that the flow <p passes by a before
passing cr. See figure 5. Choose orientations of Ai2, Anl and An, that is choose k,
k, ke{l,2}, so that for some subintervals [en, e|2], [e(2, e,3], [e,,, el2], [en], en2] of
[1,2] it holds that

o" = ank([en, e,2] x {(i(An)}) = a,2fc([e,i, e.-2]
 x W)

o1 = «dfc([e;2, e,3] x {/*(AM)}) = anik"([enl, en2] x {0}).

Let 2 be the transversal elementary arc contained in A2i and having p as an endpoint.
(8) Take e e (0, /i(2)) so small that for all s e [0, e],

Define )3(p):(-e, e )x( -e , e)-» M ^ F as follows

(9) j8(|>)(s,0 = |ai2iE(s + ei2,0, 5<0 and r>0
[anU-(5 + enl, 0, s > 0 a n d / > 0 .

It follows from (4b), (4c) and (8) that /3(p) is not only well defined but also that
all change of coordinates involving /?(/>), fi(cr), /8(cr) and )3(2) are smooth.

The construction of coordinate systems when p is either as in case (7a) or (7c)
is similar to the case above. Therefore, si = sd3<j{ji{p)/p is a corner of some 0,,
( = 1,2,...} gives a smooth system of coordinates for M - F which provides it with
a smooth manifold structure denoted by M — F. It is claimed that
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(10) The foliation <p| M^F on M-F is smooth and topologically equivalent to
the continuous foliation <P\M-F on M — F.
In fact, the elements of si are also smooth flow boxes for (p\^frp, this implies that
<P|MTF is a smooth foliation on M-F. Since each element of sd is a continuous
flow box of <p: U x M -» M, the identity map Id: M - F^> M - F is a homeomorphism
which provides the required topological equivalence. This proves (10).

Proceeding as D. Neumann [Ne.2, theorem 5.1], by [Mu, theorem 6.3], there is
a C00 diffeomorphism k of M-F onto M-F (theorem (6.3) is stated for 3-
manifolds but the theorem and its proof are valid for arbitrary manifolds of
dimension w<3), in fact k can be chosen within any pre-assigned continuous
function 5: M-F^ (0, oo) of the identity. Observe that k:M-F^M-F is a
homeomorphism because, as we said above, the identity M-F^M-F is a. homeo-
morphism. It may be assumed that S(x) tends to zero as x approaches any point
of F and hence that k extends to a homeomorphism of M that fixes each rest point
of ip.

Let 3F be the smooth orientable foliation on M-F such that k(3!) = <P\MTF- It
will be seen that:

(11) There is a smooth vector field YG3E°°(M) whose set of singularities is
precisely F and such that y|M_F and 3> have the same phase portrait.
In fact, let XeX°°(M-F) be such that the foliation that it induces is 9. Using
proposition (3.2), there is a family {MJi = 2,..., n,..:} of compact subsets of M
such that Hi l l Mt = F and for all i = 1, 2 , . . . , « , . . . , Mi+1 c Int (M,). It may be
assumed that M1 = M. Define V, = Int (Mf) - M,+2. Certainly {VJi = 1,2,..., n,...}
is a locally finite open covering of M. Let {(/<,: M-» [0, l]/i = 1, 2 , . . . , n,...} be a
partition of unity strictly subordinate to this covering. Thus, the support of i/f, is
contained in Vj. For r = 0,1,2, . . . , give a norm || ||r on 3£°°(M) compatible with its
Cr-topology and such that, for̂ all Z e 3T°(M), ||Z||r+1 > ||Z||r Extend X to a vector
field X on M by defining X(p)=0 for all peF. Certainly each ^, • Xe3£°°(M).
Given i = 1,2,... let ct be a real positive number such that || c^X || ,< s 1/2'. Since,
for all r = l , 2 , 3 , . . . ,

the series (X™li c.'A.OX = XH=i c"i«A,-̂  converges to a smooth vector field Y as required
to prove (11).

The induced flow i/» of the vector field Y, obtained in (11), is smooth and
topologically equivalent, under k, to ip. This proves the theorem under the assumption
(1).

Now suppose that ip has non-trivial minimal sets. Proceeding as above and using
the same notation in the corresponding cases, M-F can be provided with a C1

manifold structure denoted by M-F so that (see (10)):
(10') The foliation <P|MTF on M-F is C1 and topologically equivalent to the

continuous foliation <P|M-F on M-F. Moreover there exists a compact subset
Kc M — F such that the submanifold M — ( F u K) of M — F is smooth and

^F^K) is smooth.
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Taking an appropriate subatlas, we may assume that M - F is smooth. Certainly,
even in this new structure <P|A?=F is only C1. However, under these conditions, by
(10'), the proof that <p is topologically equivalent to a C1 flow, can be done in the
same way as the one above under the assumption (1).

6. The existence theorem
In the following proof, given a topological space X, a subset A <= X and an injective
function f:A-*X such that f(A)nA = 0, we shall denote by X/f the quotient
space obtained from X by identifying x with f(x), for all x e A.

(6.1) Proof of the existence theorem. First, let us prove (E 1). Let 3ft be the equivalence
relation on R/Z x [-1,1] such that the equivalence class containing a point p is the
union of {/>} and the connected component of

{(R/Z - Dom (T)) x {1}} u {(R/Z - Dom (T'1)) x {-1}}

which contains p.
This relation *3l has been defined so that the map (x, l)>-»(T(x)-l) (defined in

Dom (T)x{l})), admits an extension to a homeomorphism

T: [(R/Z x'{l})/m -{Pu P2,..., Pn}]-» [(R/Z x {-\})/®-{P_u P_2, . . . , P_n}],

where ps. i, Ps. 2, • • •, Ps • ™ with 8 e {-1,1} are the points of [(R/Z - Dom (Ts)) x
{5}]/9? which are not contained in t r ' (Dom (Es)) x {8}]/3ft. Let N be the quotient
manifold

[(R/Z x [-1, l ] ) /« - { P , , . . . , Pn, P_, , . . . , P_n}]/r.

It is clear that the constant vector field (0,1) induces an orientable foliation & on
N (see figure 6) whose set of singularities is

[(R/Z-Dom (7)) x{l}]/» - { P , , . . . , Pm P_, , . . . , P_n}.

Certainly there exists a C°° compact manifold M and a finite subset Fez M such
that, up to a homeomorphism, N = M — F. Therefore, using the smoothing corollary,
up to topological equivalence, there exists a C1 flow ij/iUxM-> M such that
IA|M_F= ^. As (IA|M-F, M — F) is a suspension of (T, £), (E 1) is proved.

It is easy to see that (E 3a) implies (E 3a'). Let us show that (E 3a') implies (E 3a).
Let sd be the family of residual subsets of R/Z. Let A = {xe P|n e Z Dom (E")/h~\x)

Singularity of 3"

P-2

FIGURE 6
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is a one point set} and T = T|h-i(A). The injectivity of h\h-\A) and T will be used to
prove that

(1) For all neZ, h{r"(Dom (T")) <z M.
In fact, by assumption Dom (T)n h~\A) = Dom (T) and so fi(Dom(T))n/l =
/i(Dom(r). Therefore h(Dom (r))e jtf. Suppose inductively that for some ne^J,
/i(TB(Dom (Tn))e ^ . This implies that

h[T"(Dom (T")) n Dom (r)] = *(T"(Dom (rn)) n fc(Dom(r) e si.

Therefore

£fi[r"(Dom (T")) n Dom(r)] = /iT[Tn(Dom (T")) n Dom (T)] G jtf

but

T[Tn(Dom (T")) n Dom (T)] «= r"+1(Dom (r"+1)).

Therefore /i(T"+1(Dom T"+ 1)) e J£

Now observe that h(Dom (T))e .stf implies that £/i(Dom (T)) =
h{T(Dom (T)) = ft (Dom ( r ' ) e ^ . Therefore, proceeding as above, for all neN,
Ji(T~"(Dom T " " ) ) e i This finishes the proof of (1).

It follows from (1) that P | n e Z /i(r"(Dom ( T " » G J*. If y e (~)neZ M^fDom (T")) ,

it is clear that, for all neZ,ye Dom (7"1). Moreover, as T covers an interval exchange
transformation (via h), y is a non-trivial recurrent point of T. Therefore (E3a')
implies (E 3a).

Using (E 3), it is easy to see that (E 4a') implies (E 4a). Let us prove that (E 4a)
implies (E4a'). It is clear that h cannot be a homeomorphism. Since T has a
non-trivial minimal set il, il n R/Z is a compact subset of Dom (T). It follows from
this that there exists finitely many connected components V,, V2,. . . , Vn of Dom (T)
whose union contains ftnR/Z. Therefore, as Te %{E, h), if Uu U2,... ,Un are the
connected components of R/Z-U" = 1 Vj then h{Ut) is a one point set but /i~1(h([/i))
is not a one point set. By defining S = {h{Ui), h(U2),. • •, h(Un)}, we may easily
check that (E4a) implies (E4a').

The existence of T, as in (E 2), is obvious. The remainder of the proof of (E 2)
is trivial.

(E 5) is a corollary of the smoothing theorem and of the smoothing corollary.
•

(6.2) Examples. Let J?a:IR/Z-»R/Z be a non-periodic geometric rotation defined
everywhere. Let ft, (resp. ft2):R/Z-»R/Z be a monotone continuous map of degree
one such that, for some xoeR/Z, the set {xeR/Z such that hTl(x) (resp. /ij!(^))
is not a one point set} is precisely the orbit G(x) (resp. the half-orbit G+(x)) of Ra.
Let Txe

c€{E,hx) (resp. T2£
(€{E,h2)) be maximal as in (E2) (of the existence

theorem). Let >>oeR/Z be such that h'\h(y0)) = y0 and define T3 = T\|R/Z_{),o}. Given
Te{Tu T2 and T3} denote by <pT the differentiable flow obtained by applying (E 5)
to the suspension of (T, E) constructed in the proof of (E 1). Then:

(a) <ptt is the Denjoy example [De].
(b) <pf2 is 'essentially' a smooth version of the Cherry example [Chr].
(c) <pTi is the Katok example.
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