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Introduction

1.1 Boundary Value Problems of Differential Equations

We discuss numerical solutions of problems involving ordinary differential
equations (ODEs) or partial differential equations (PDEs), especially linear
first- and second-order ODEs and PDEs, and problems involving systems of
first-order differential equations.

A differential equation involves derivatives of an unknown function of one
independent variable (say u(x)), or the partial derivatives of an unknown
function of more than one independent variable (say u(x, y), or u(t, x), or
u(t, x, y, z), etc.). Differential equations have been used extensively to model
many problems in daily life, such as pendulums, Newton’s law of cooling,
resistor and inductor circuits, population growth or decay, fluid and solid
mechanics, biology, material sciences, economics, ecology, kinetics, thermo-
dynamics, sports and computer sciences.1 Examples include the Laplace equa-
tion for potentials, the Navier–Stokes equations in fluid dynamics, biharmonic
equations for stresses in solid mechanics, and Maxwell equations in electro-
magnetics. For more examples and for the mathematical theory of PDEs, we
refer the reader to Evans (1998) and references therein.

However, although differential equations have such wide applications, too
few can be solved exactly in terms of elementary functions such as polynomials,
log x, ex, trigonometric functions (sin x, cos x, . . .), etc. and their combina-
tions. Even if a differential equation can be solved analytically, considerable
effort and sound mathematical theory are often needed, and the closed form
of the solution may even turn out to be too messy to be useful. If the analytic
solution of the differential equation is unavailable or too difficult to obtain, or

1 There are other models in practice, for example, statistical models.
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Figure 1.1. A flowchart of a problem-solving process.

takes some complicated form that is unhelpful to use, we may try to find an
approximate solution. There are two traditional approaches:

1. Semi-analytic methods. Sometimes we can use series, integral equations,
perturbation techniques, or asymptotic methods to obtain an approximate
solution expressed in terms of simpler functions.

2. Numerical solutions. Discrete numerical values may represent the solution
to a certain accuracy. Nowadays, these number arrays (and associated tables
or plots) are obtained using computers, to provide effective solutions of
many problems that were impossible to obtain before.

In this book, we mainly adopt the second approach and focus on numeri-
cal solutions using computers, especially the use of finite difference (FD) or
finite element (FE) methods for differential equations. In Figure 1.1, we show
a flowchart of the problem-solving process.

Some examples of ODE/PDEs are as follows.

1. Initial value problems (IVP). A canonical first-order system is

dy
dt

= f(t, y), y(t0)= y0 ; (1.1)

and a single higher-order differential equation may be rewritten as a first-
order system. For example, a second-order ODE

u′′(t) + a(t)u′(t) + b(t)u(t)= f(t),

u(0)= u0, u′(0)= v0 .
(1.2)
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can be converted into a first-order system by setting y1(t)= u and
y2(t)= u′(t).

An ODE IVP can often be solved using Runge–Kutta methods, with
adaptive time steps. InMatlab, there is theODE-Suite which includes ode45,
ode23, ode23s, ode15s, etc. For a stiff ODE system, either ode23s or ode15s
is recommended; see Appendix for more details.

2. Boundary value problems (BVP). An example of an ODE BVP is

u′′(x) + a(x)u′(x) + b(x)u(x)= f(x), 0< x< 1,

u(0)= u0, u(1)= u1 ;
(1.3)

and a PDE BVP example is

uxx + uyy= f(x, y), (x, y)∈Ω,

u(x, y)= u0(x, y), (x, y)∈ ∂Ω,
(1.4)

where uxx= ∂2u
∂x2 and uyy= ∂2u

∂y2 , in a domain Ω with boundary ∂Ω. The above
PDE is linear and classified as elliptic, and there are two other classifications
for linear PDE, namely, parabolic and hyperbolic, as briefly discussed below.

3. BVP and IVP, e.g.,

ut= auxx + f(x, t),

u(0, t)= g1(t), u(1, t)= g2(t), BC

u(x, 0)= u0(x), IC,

(1.5)

where BC and IC stand for boundary condition(s) and initial condition,
respectively, where ut= ∂u

∂t .
4. Eigenvalue problems, e.g.,

u′′(x)=λu(x),

u(0)= 0, u(1)= 0.
(1.6)

In this example, both the function u(x) (the eigenfunction) and the scalar λ
(the eigenvalue) are unknowns.

5. Diffusion and reaction equations, e.g.,

∂u
∂t

=∇ · (β∇u) + a · ∇u+ f(u) (1.7)

where a is a vector, ∇ · (β∇u) is a diffusion term, a · ∇u is called an
advection term, and f(u) a reaction term.
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6. Systems of PDE. The incompressible Navier–Stokes model is an important
nonlinear example:

ρ (ut + (u · ∇)u)=∇p+ µ∆u+ F,

∇ · u= 0.
(1.8)

In this book, we will consider BVPs of differential equations in one dimen-
sion (1D) or two dimensions (2D).A linear second-order PDEhas the following
general form:

a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy

+ d(x, y)ux + e(x, y)uy + g(x, y)u(x, y)= f(x, y) (1.9)

where the coefficients are independent of u(x, y) so the equation is linear in u
and its partial derivatives. The solution of the 2D linear PDE is sought in some
bounded domain Ω; and the classification of the PDE form (1.9) is:

• Elliptic if b2 − ac< 0 for all (x, y)∈Ω,
• Parabolic if b2 − ac= 0 for all (x, y)∈Ω, and
• Hyperbolic if b2 − ac> 0 for all (x, y)∈Ω.

The appropriate solution method typically depends on the equation class. For
the first-order system

∂u
∂t

=A(x)
∂u
∂x
, (1.10)

the classification is determined from the eigenvalues of the coefficient
matrix A(x).

Finite difference and finite element methods are suitable techniques to
solve differential equations (ODEs and PDEs) numerically. There are other
methods as well, for example, finite volume methods, collocation methods,
spectral methods, etc.

1.1.1 Some Features of Finite Difference and Finite
Element Methods

Many problems can be solved numerically by some finite difference or finite
element methods. We strongly believe that any numerical analyst should be
familiar with both methods and some important features listed below.
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Finite difference methods:

• Often relatively simple to use, and quite easy to understand.
• Easy to implement for regular domains, e.g., rectangular domains in Carte-

sian coordinates, and circular or annular domains in polar coordinates.
• Their discretization and approximate solutions are pointwise, and the

fundamental mathematical tool is the Taylor expansion.
• There are many fast solvers and packages for regular domains, e.g., the

Poisson solvers Fishpack (Adams et al.) and Clawpack (LeVeque, 1998).
• Difficult to implement for complicated geometries.
• Have strong regularity requirements (the existence of high-order derivatives).

Finite element methods:

• Very successful for structural (elliptic type) problems.
• Suitable approach for problems with complicated boundaries.
• Sound theoretical foundation, at least for elliptic PDE, using Sobolev space

theory.
• Weaker regularity requirements.
• Many commercial packages, e.g., Ansys, Matlab PDE Tool-Box, Triangle,

and PLTMG.
• Usually coupled with multigrid solvers.
• Mesh generation can be difficult, but there are now many packages that do

this, e.g., Matlab, Triangle, Pltmg, Fidap, Gmsh, and Ansys.

1.2 Further Reading

This textbook provides an introduction to finite difference and finite element
methods. There are many other books for readers who wish to become expert
in finite difference and finite element methods.

For FD methods, we recommend Iserles (2008); LeVeque (2007);
Morton and Mayers (1995); Strikwerda (1989) and Thomas (1995). The text-
books by Strikwerda (1989) and Thomas (1995) are classical, while Iserles
(2008); LeVeque (2007) and Morton and Mayers (1995) are relatively new.
With LeVeque (2007), the readers can find the accompanyingMatlab code from
the author’s website.

A classic book on FE methods is Ciarlet (2002), while Johnson (1987) and
Strang and Fix (1973) have been widely used as graduate textbooks. The series
by Carey and Oden (1983) not only presents the mathematical background
of FE methods, but also gives some details on FE method programming in
Fortran. Newer textbooks include Braess (2007) and Brenner and Scott (2002).
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