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The main purpose of this paper is to study weight-semi-greedy Markushevich bases,
and in particular, find conditions under which such bases are weight-almost greedy.
In this context, we prove that, for a large class of weights, the two notions are
equivalent. We also show that all weight semi-greedy bases are truncation
quasi-greedy and weight-superdemocratic. In all of the above cases, we also bring to
the context of weights the weak greedy and Chebyshev greedy algorithms—which
are frequently studied in the literature on greedy approximation. In the course of our
work, a new property arises naturally and its relation with squeeze symmetric and
bidemocratic bases is given. In addition, we study some parameters involving the
weak thresholding and Chebyshevian greedy algorithms. Finally, we give examples of
conditional bases with some of the weighted greedy-type conditions we study.
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1. Introduction and background

Let X be an infinite dimensional separable Banach space over the real or com-
plex field K. A sequence B = (xi)i∈N is fundamental if it generates the entire
space, that is X = [xi : i ∈ N], and it is minimal or a minimal system if there is a
(unique) sequence B∗ = (x∗

i )i∈N in the dual space X∗ (which we call the biorthogonal
functionals) such that x∗

i (xj) = δi,j for all i, j ∈ N. If in addition B∗ is total, that is if

X∗ = [x∗
i : i ∈ N]

w∗
,

the sequence B is a Markushevich basis for X. When there is C > 0 such that∥∥∥∥∥∥
n∑

j=1

x∗
i (x)xi

∥∥∥∥∥∥ � C‖x‖, ∀x ∈ X, ∀n ∈ N,
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Weak weight-semi-greedy Markushevich bases 1119

the sequence B is a Schauder basis and the minimum C > 0 for which the above
inequality holds is the basis constant of B. A basic sequence is a Schauder basis for
the closure of its span. A Schauder basis B is C-unconditional if∥∥∥∥∥∥

∞∑
j=1

bjx∗
j (x)xj

∥∥∥∥∥∥ � C‖x‖, ∀x ∈ X, ∀(bj)j∈N ⊂ K : |bj | � 1 ∀j ∈ N,

and it is C-suppression unconditional if

‖PA(x)‖ � C‖x‖, ∀x ∈ X, ∀A ∈ N<∞

where PA(x) denotes the projection of x on A (with respect to B), that is

PA(x) =
∑
j∈A

x∗
j (x)xj ,

with the convention that the sum is zero if A is empty.
It is well-known that C-unconditionality entails C-suppression unconditionality,

whereas C-suppression unconditionality entails 2C-unconditionality if K = R and
4C-unconditionality if K = C.

In this paper, unless otherwise stated by a basis B we mean a Markushevich basis
with biorthogonal functionals B∗. We will refer to this sequence as the dual basis
of B. Except in § 2, we will assume that both B and B∗ are bounded and we set

λ := sup
i∈N

‖xi‖, λ′ := sup
i∈N

‖x∗
i ‖, λ′′ := sup

i∈N

‖xi‖‖x∗
i ‖, (1.1)

a notation that we will use for all such bases. As usual, we use supp(x) to denote
the support of x ∈ X, that is the set {i ∈ N : x∗

i (x) �= 0} and we set N<∞ := {A ⊂
N : |A| < ∞}.

Given a basis B for X, the Thresholding Greedy Algorithm (TGA for short) gives
approximations to vectors in X in terms of greedy sums, or equivalently, in terms
of projections on greedy sets. We will consider the more general concept of t-greedy
sets, which are involved in approximations given by Weak Thresholding Greedy
Algorithms (WTGA for short).

Definition 1.1. Let 0 < t � 1. For each m ∈ N, a set A ⊂ N is an m-t-greedy set
for x ∈ X if |A| = m and

min
j∈A

∣∣x∗
j (x)

∣∣ � t max
j∈N\A

∣∣x∗
j (x)

∣∣ . (1.2)

If t = 1, A is called an m-greedy set for x. By G(x,m, t) we denote the set of all
m-t-greedy sets for x, with G(x, 0, t) consisting only of the empty set, and we let
G(x, t) :=

⋃
m∈N

G(x,m, t). Also, by Λm(x) we denote the element of G(x,m, 1) with
the property that for any B ∈ G(x,m, 1) such that B �= Λm(x), we have

max(Λm(x) \ B) < min(B \ Λm(x)).

The TGA was introduced by Temlyakov in [36] in the context of the trigonometric
system, and extended by Konyagin and Temlyakov to general Banach spaces in [31],
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where the authors defined the concepts of greedy and quasi-greedy Schauder bases.
A Schauder basis B for X is greedy with constant C > 0 (or C-greedy) if

‖x − PΛm(x)(x)‖ � Cσm(x), ∀x ∈ X, ∀m ∈ N, (1.3)

where σm(x) is the best m-term approximation error (with respect to B) given by

σm(x) = σm(x)[B, X] = inf
y∈X

| supp(y)|�m

‖x − y‖. (1.4)

Remark 1.2. Note that, due to the continuity of the norm, it is equivalent to take
| supp(y)| = m in (1.4). Also, a standard small perturbation argument (see e.g. [11,
lemmas 10.2.5, 10.2.6]) gives that (1.3) is equivalent to

‖x − PA(x)‖ � Cσm(x), ∀x ∈ X, ∀m ∈ N, ∀A ∈ G(x,m, 1)

and also to

‖x − PA(x)‖ � Cσm(x), ∀x ∈ X, ∀m ∈ N, for some A ∈ G(x,m, 1).

Since their inception, greedy bases have been widely studied; see for example the
book by Temlyakov [38], the more recent articles [1, 6, 9, 17] and the references
therein. Greedy bases are a subclass of quasi-greedy ones, defined as follows: B is
C-quasi-greedy if

‖PΛm(x)(x)‖ � C‖x‖, ∀x ∈ X, ∀m ∈ N.

Following [2], we say that B is C-suppression quasi-greedy if

‖x − PΛm(x)(x)‖ � C‖x‖, ∀x ∈ X, ∀m ∈ N.

Intermediate structures between these two are almost greedy bases—introduced by
Dilworth et al. in [24]—and semi-greedy bases—defined by Dilworth et al. in [23].
A basis is almost greedy with constant C > 0 (or C-almost greedy) if

‖x − PΛm(x)(x)‖ � Cσ̃m(x), ∀x ∈ X, ∀m ∈ N,

where σ̃m(x) is the best m-term approximation error to x via projections (with
respect to B), given by

σ̃m(x) = σ̃m[B, X](x) = inf
B⊂N

|B|=m

‖x − PB(x)‖. (1.5)

Notice that, since B∗ is weak star null, in order to compute (1.5), it is equivalent
to take |B| = m or |B| � m.

On the other hand, B is semi-greedy with constant C > 0 (or C-semi-greedy) if

inf
|supp(y)|⊂Λm(x)

‖x − y‖ � Cσm(x), ∀x ∈ X, ∀m ∈ N.

The algorithm associated with a semi-greedy basis is called a Chebyshev Greedy
Algorithm (CGA for short).
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Remark 1.3. As in the case of greedy bases (remark 1.2), one may replace Λm(x)
by all A ∈ G(x,m, 1) or at least one A ∈ G(x,m, 1) in the definitions of quasi-greedy,
almost greedy and semi-greedy bases, obtaining equivalent notions, with the same
constant C.

Almost greedy bases have been studied, among other papers, in [2, 8, 15, 22,
23], while semi-greedy bases have been studied, for example, in [14, 15, 19, 37].

Originally defined for Schauder bases, the concepts of quasi-, almost and semi-
greediness were extended to and studied in the context of seminormalized minimal
systems with seminormalized biorthogonal functionals (see e.g. [6, 19, 25, 40]). It
is known that quasi-greedy systems are Markushevich bases [6], and that almost
greediness and semi-greediness are equivalent concepts for Markushevich bases (see
[14, theorem 4.2], [15, theorem 1.10] and [23, theorem 5.3]), but not for general
minimal systems [14, example 4.5].

Weaker versions of the TGA and the CGA have also been studied. In the case of
the WTGA, one may mention for example [25, 26, 29, 32, 33], and for the WCGA
see [21, 25, 26, 39] among others. These algorithms consider approximations
involving t-greedy sets, for some 0 < t � 1.

Recently, Dilworth et al. extended the concepts almost greedy and semi-greedy
Schauder bases to the context of sequences of weights [27]. In their work, the
authors follow a similar extension for greedy Schauder bases previously introduced
and studied by Kerkyacharian et al. [30]. In [27] it is shown that weight-almost
greedy bases are weight-semi-greedy and that the converse holds for Schauder bases
if the Banach space has finite cotype. The cotype condition is removed in [16], where
the author raises the question of extending the results to a more general class of
Markushevich bases.

In this context, we focus on weight-semi-greedy bases as well as a weak variant
of them involving weak algorithms, and in particular the implication from (weak)
weight-semi-greediness to weight-almost greediness, under different hypotheses. We
prove that, for a large class of weights, (weak) weight-semi-greedy Markushevich
bases are weight-almost greedy. Also, we prove that if we impose some mild con-
ditions on the basis, the above holds for any weight. Finally, in this context, we
show that for any weight w, a weight semi-greedy basis with weight w is truncation
quasi-greedy and w-superdemocratic. In the course of our study, some new proper-
ties arise naturaly, namely almost semi-greedy Markushevich bases, and its weighted
and weak counterparts. We show that this property turns out to be equivalent to
squeeze symmetry, and can be used to characterize bidemocracy.

Additionally, we study parameters involving the WTGA in the classical context,
that is for constant weights.

The paper is structured as follows: In § 2, we recall results from [14] about the
finite dimensional separation property (FDSP) which is useful to replace arguments
involving the Schauder basis constant when working with Markushevich bases. We
also study a variant of this property for bounded uniformly discrete sequences that
allows us to improve some of the upper bounds that would be obtained by using the
FDSP. In § 3, we study weight-semi-greedy bases. We introduce the weak notions
of weight-almost and semi-greedy bases and prove our main results: theorems 3.22
and 3.23. Our proofs lead us to consider an intermediate notion that we call almost
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semi-greedy bases and the formally weaker versions thereof, as well as their weighted
counterparts. These properties show a tight connection between the CTGA and two
properties generally studied in connection to the TGA: bidemocracy and squeeze
symmetry. This can be found in § 4. To complete the framework for our study of
weighted bases, in § 5, we deal with the formally weaker variant of weight-almost
greedy bases. We show that, as it is the case of weak almost greedy bases (see [14,
proposition 2.3], [26, theorem 6.4]) they are equivalent to the weight almost greedy
property. In § 6, we extend some of the results on the WTGA and CTGA from [14].
In particular, we study parameters that allow us to estimate how the algorithms
involved in said results perform with respect to bases that are not necessarily semi-
greedy. Additionally, for bases that are (weak)-semi-greedy, we improve the known
estimate for the quasi-greedy constant, and give a new estimate for the almost
greedy one. Finally, in § 7, we give some examples of bases with the properties we
study.

Our general notation is standard. In addition to what was set before, unless
otherwise stated, X, Y and Z denote infinite-dimensional Banach spaces, whereas
E and F denote finite dimensional spaces and V stands for a Banach space without
any restrictions on the dimension. Given a Banach space V over K, SV denotes its
unit sphere and V∗ denotes its dual space. For x ∈ V, x̂ denotes the image of x in
the bidual space V∗∗, via the canonical inclusion. The same notation will be used
for subsets of V. The constant κ is set as κ = 1 if K = R, and κ = 2 if K = C.

Given any set A ⊂ N, we define

EA := {ε = (εi)i∈A : |εi| = 1 ∀i ∈ A}

with the convention that EA = ∅ if A = ∅. When A ⊂ N is finite and B = (xi)i∈N

is a basis, for ε ∈ EA, we denote

1ε,A := 1ε,A,[B, X] =
∑
i∈A

εixi

with the convention that any sum over the empty set is zero. Also, if ε ∈ EA and
B ⊂ A, we write 1ε,B considering the natural restriction of ε to B. If εj = 1 for all
j, we write 1A. If B∗ = (x∗

i )i∈N is the dual basis of a basis B, the supremum norm
of x ∈ V is ‖x‖∞ := sup

i∈N

|x∗
i (x)|, whereas for 1 � p < ∞, ‖x‖p denotes the usual �p

norm, when it is defined. Finally, for each x ∈ X we define ε(x) = (sgn(x∗
i (x)))i∈N,

where sgn(0) = 1 and sgn(t)|t| = t for all t ∈ K.
All the remaining relevant terminology and preliminaries will be given in

corresponding sections.

2. Separation properties

In this section, we recall the definition of the FDSP and some results from [14]
used to prove the implication from semi-greedy to almost greedy for Markushevich
bases. Also, we study a related property that allows us to improve some of the
upper bounds that would be obtained by using the FDSP.
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Definition 2.1. ([14, definition 3.1]) A sequence (ui)i∈N ⊆ X has the FDSP if
there is a positive constant M such that for every separable subspace Z ⊂ X and
every ε > 0, there is a basic subsequence (uik

)k∈N with basis constant no greater
than M + ε satisfying the following: for every finite dimensional subspace F ⊂ Z

there is jF,ε = jF,((uik
)k∈N,ε) ∈ N such that

‖x‖ � (M + ε)‖x + z‖, (2.1)

for all x ∈ F and all z ∈ [uik
: k > jF,ε]. We call any such subsequence a finite

dimensional separating sequence for (Z,M, ε), and the minimum M for which this
property holds will be called the FDSP Mfs[(ui)i∈N, X], leaving the sequence and
the space implicit when it is clear.

Remark 2.2. Note that a subsequence (uik
)k∈N is finite dimensional separating for

(Z,M, ε) if and only if (2.1) holds for any x ∈ SF and all z ∈ [uik
: k > jF,ε].

Recall that a subspace Y ⊂ X∗ is said to be r-norming for X, 0 < r � 1, if

r‖x‖ � sup
x∗∈SY

|x∗(x)|.

Additionally, we will say that a set R ⊂ X∗ is r-norming if the subspace it spans in
X∗ is r-norming.

Also recall that a sequence (vi)i∈N is a block basis of a Markushevich basis (xk)k∈N

if there is a sequence of scalars (bk)k∈N and sequences of positive integers (ni)i∈N,
(mi)i∈N with ni � mi < ni+1 for all i such that

vi =
mi∑

k=ni

bkxk,

with at least one nonzero bk for each i ∈ N. In particular, any subsequence of a
Markushevich basis is a block basis of it.

Proposition 2.3. ([14, proposition 3.11]) Let (vi)i∈N ⊂ X be a block basis of
a Markushevich basis (yk)k∈N for a subspace Y ⊂ X with biorthogonal func-
tionals (y∗

k)k∈N. Let (ai)i∈N be a scalar sequence such that (zi := aivi)i∈N is
seminormalized. The following hold:

(i) (zi)i∈N and (vi)i∈N have the FDSP with the same constant, that is
Mfs[(vi)i∈N, X] = Mfs[(zi)i∈N, X].

(ii) If either 0 ∈ {zi}w

i∈N
or X is a dual space and 0 ∈ {zi}w∗

i∈N
, then Mfs = 1.

(iii) If {zi}w

i∈N
is not weakly compact, then

Mfs �
(

2 + inf

{
‖x∗∗‖

dist(x∗∗, X̂)
: x∗∗ ∈ {ẑi∈N}w∗

i∈N
\ X̂

})2

.

(iv) If Y = X and [y∗
k : k ∈ N] is r-norming, then Mfs � r−1.
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(v) If Y = X and (yk)k∈N is a Schauder basis for X with constant Kb, then Mfs �
Kb.

Remark 2.4. Proposition 2.3 remains valid if we replace a block basis with any
sequence of nonzero vectors, that are pairwise disjointly supported.

Next, we prove further results involving a similar property. Given δ > 0, we say
that a set S ⊂ X is δ-uniformly discrete if ‖x − y‖ � δ for all x, y ∈ S, x �= y. For a
sequence (xi)i∈N by δ-uniformly discrete we mean that ‖xi − xj‖ � δ for all i �= j.

Lemma 2.5. Let S ⊂ X be a bounded uniformly discrete set and F ⊂ X a finite-
dimensional subspace. Given ε > 0, there are x �= y ∈ S such that for every b ∈ K

and every z ∈ F,

‖z‖ � (1 + ε)‖z + b(x − y)‖.

Proof. Choose δ > 0 so that S is δ-uniformly discrete, and 0 < ε′ < ε so that

0 <
1

1 − 4δ−1ε′ − ε′
< 1 + ε. (2.2)

Let {z1, . . . , zn} be an ε′-net in SF, and {z∗1 , . . . , z∗n} ⊂ SX∗ so that z∗j (zj) = 1 for
all 1 � j � n. Since S is bounded, there exists z∗∗0 ∈ X∗∗ a w∗-accumulation point
of Ŝ ⊂ X∗∗. Hence, there are x �= y ∈ S, such that for 1 � k � n,

|z∗∗0 (z∗k) − z∗k(x)| � ε′ and |z∗∗0 (z∗k) − z∗k(y)| � ε′.

Fix z ∈ SF, and choose 1 � k � n so that

‖zk − z‖ � ε′.

Now pick b ∈ K. If |b| � 2δ−1, then

‖z + b(x − y)‖ � ‖zk + b(x − y)‖ − ε′ � |z∗k(zk + b(x − y)| − ε′

� 1 − |b||z∗k(x − y)| − ε′

� 1 − 2δ−1|z∗∗0 (zk) − z∗k(x) + z∗k(y) − z∗∗0 (zk)| − ε′

� 1 − 4δ−1ε′ − ε′.

Hence, by (2.2),

‖z‖ = 1 � (1 + ε)‖z + b(x − y)‖.
On the other hand, if |b| > 2δ−1, then

‖z + b(x − y)‖ � |b|‖x − y‖ − ‖z‖ � 1 = ‖z‖.
This completes the proof for z ∈ SF, and hence by scaling for all z ∈ F. �

Lemma 2.6. Let X be a Banach space, and (uj)j∈N ⊆ X a bounded uniformly
discrete sequence. Then, for any separable subspace Z ⊂ X and ε > 0 there is a
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subsequence (ujn
)n∈N such that the sequence {uj2n−1 − uj2n

}n∈N is basic with basis
constant no greater than (1 + ε) and satisfies the following: for any finite dimen-
sional subspace F ⊂ Z and every ξ > 0, there is rF,ξ ∈ N such that for all y ∈ F and
all v ∈ [uj2n−1 − uj2n

: n > rF,ξ],

‖y‖ � (1 + ξ)‖y + v‖.
Proof. The argument is very similar to that of [14, lemma 3.5]; we give a proof for
the sake of completeness.

Fix Z ⊂ X a separable subspace and ε > 0. Choose a sequence (vj)j∈N ⊂ Z, dense

in Z, and a sequence of positive scalars (εj)j∈N so that
∞∏

j=1

(1 + εj) � (1 + ε). Let

j0 := 1. Applying lemma 2.5 to the set {uj}j>j0 , we can find j0 < j1 < j2 so that
for all y ∈ [vk, uk : 1 � k � j0] and all b ∈ K,

‖y‖ � (1 + ε1)‖y + b(uj1 − uj2)‖.
Similarly, we can find j2 < j3 < j4 so that for all y ∈ [vk, uk : 1 � k � j2] and all
b ∈ K,

‖y‖ � (1 + ε2)‖y + b(uj3 − uj4)‖.
By an inductive argument, we obtain a strictly increasing sequence of positive
integers {jn}n∈N such that for all y ∈ [vk, uk : 1 � k � j2n−2], b ∈ K and n ∈ N,

‖y‖ � (1 + εn)‖y + b(uj2n−1 − uj2n
)‖.

Then, for any positive integers m � l, any y ∈ [vk, uk : 1 � k � j2m−2] and any
scalars (an)m�n�l,

‖y‖ �
l∏

n=m

(1 + εn)

∥∥∥∥∥y +
l∑

n=m

an(uj2n−1 − uj2n
)

∥∥∥∥∥
�

∞∏
n=m

(1 + εn)

∥∥∥∥∥y +
l∑

n=m

an(uj2n−1 − uj2n
)

∥∥∥∥∥ .

In particular, (uj2n−1 − uj2n
)n∈N is basic with basis constant no greater than

∞∏
n=1

(1 + εn) � 1 + ε, and, given F ⊂ [vj : 1 � j � n] for some n ∈ N, we can pick

rF,ξ using the above computation. Now, standard density arguments allow us to
obtain the result for any finite dimensional subspace of Z = [vj : j ∈ N]. �

Corollary 2.7. Let B = (xi)i∈N ⊂ X be a seminormalized Markushevich basis
for Y ⊂ X, with finite dimensional separation constant no greater than M. Then
for every separable subspace Z ⊂ X and every ε > 0, there is a basic subsequence
(xik

)k∈N satisfying the following condition: for every finite dimensional subspace
F ⊂ Z, there is sF,ε ∈ N such that for every x ∈ F, every y ∈ [xik

: k � sF,ε] and
every z ∈ [xi2k−1 − xi2k

: k � sF,ε],

‖x‖ � min {(M + ε)‖x + y‖, (1 + ε)‖x + z‖}.
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Proof. Fix Z ⊂ X a separable subspace and ε > 0. An application of proposition 2.3
gives a separating subsequence (xil

)l∈N for (Z,M, ε). Thus, for any finite dimen-
sional F ⊂ Z, every x ∈ F and every y ∈ [xil

: l > jF,ε],

‖x‖ � (M + ε)‖x + y‖.
Let B∗ = (x∗

i )i∈N be the dual basis of B. Since (x∗
i )i∈N is bounded, (xil

)l∈N

is uniformly discrete, then by lemma 2.6 we obtain a further subsequence
(xilk

)k∈N such that for any finite dimensional F ⊂ Z, every x ∈ F and every
z ∈ [xil2k−1

− xil2k
: k > rF,ε],

‖x‖ � (1 + ε)‖x + z‖.
Taking for each F, sF,ε := 1 + max{rF,ε, jF,ε}, it is immediate from the above that
(xilk

)k∈N has the desired properties. �

3. Weak weight-semi-greedy bases

Let w = (wi)i∈N be a sequence of positive numbers, and for each set A ⊂ N, let

w(A) :=
∑
i∈A

wi.

The sequence w is called a weight and, for A ⊂ N, w(A) is the w-measure of A
(which might be infinite if |A| = ∞). In this section, we introduce the weak weight-
semi-greedy property, and study its relation with other notions studied in this
context, in particular the weight-almost greedy property, introduced in [27], which
is a weaker version of the weight greedy property introduced and studied in [30].

Definition 3.1. Let B be a basis for X, w a weight and C > 0. Then:

• B is weight-almost greedy with weight w and constant C (or C-w-almost greedy)
if

‖x − PΛm(x)(x)‖ � C inf
B∈N

<∞
w(B)�w(Λm(x))

‖x − PB(x)‖, ∀x ∈ X, ∀m ∈ N.

• B is weight-semi-greedy with weight w and constant C (or C-w-semi-greedy) if

inf
supp(y)⊂Λm(x)

‖x − y‖ � C inf
z∈X

| supp(z)|<∞
w(supp(z))�w(Λm(x))

‖x − z‖, ∀x ∈ X, ∀m ∈ N.

As in the case of their regular counterparts, these weighted properties can be
defined considering for each x the set Λm(x), or all greedy sets, or at least one,
obtaining equivalent notions. Also, for w-greedy and w-semi-greedy bases, it is
equivalent to consider approximations using vectors with only finite support or any
support, provided that the weight condition is kept. For the sake of completion, we
give the proof for weight-semi-greedy bases; the proof for weight-greedy bases is sim-
ilar. We will use a result that follows at once from the proof of [16, proposition 2.3],
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which is an extension of [27, proposition 4.5] without the Schauder hypothesis, and
which uses the same definition of w-semi-greedy bases given above.

Lemma 3.2. Let B = (xi)i∈N be a basis for X and w = (wi)i∈N a weight. If B is
w-semi-greedy and (wik

)k∈N is a subsequence such that
∑

k wik
< ∞, then (xik

)k∈N

is a basic sequence equivalent to the canonical unit vector basis of c0.

Remark 3.3. Note that under the conditions of lemma 3.2, if A ⊂ N is an infinite
set such that w(A) < ∞, then the projections PA(x) are defined for each x ∈ X,
with unconditional convergence of the sums. Indeed, this follows at once from the
fact that B∗ is weak star null. Also, due to the totality condition, if x has infinite
support and finite w-measure, then

x =
∑
i∈N

x∗
i (x)xi,

again with unconditional convergence. In particular, by [27, theorem 4.3], this holds
for w-almost greedy bases.

Lemma 3.4. Let B be a basis for X, w a weight and C > 0. The following are
equivalent:

(i) For all x ∈ X, m ∈ N and A ∈ G(x,m, 1), there is y ∈ X with supp(y) ⊂ A
such that

‖x − y‖ � C inf
z∈X

w(supp(z))�w(A)

‖x − z‖.

(ii) For all x ∈ X, m ∈ N and A ∈ G(x,m, 1), there is y ∈ X with supp(y) ⊂ A
such that

‖x − y‖ � C inf
z∈X

| supp(z)|<∞
w(supp(z))�w(A)

‖x − z‖.

(iii) For all x ∈ X and m ∈ N, there is y ∈ X with supp(y) ⊂ Λm(x) such that

‖x − y‖ � C inf
z∈X

w(supp(z))�w(Λm(x))

‖x − z‖.

(iv) For all x ∈ X and m ∈ N, there is y ∈ X with supp(y) ⊂ Λm(x) such that

‖x − y‖ � C inf
z∈X

| supp(z)|<∞
w(supp(z))�w(Λm(x))

‖x − z‖.

(v) For all x ∈ X and m ∈ N, there is A ∈ G(x,m, 1) and y ∈ X with supp(y) ⊂ A
such that

‖x − y‖ � C inf
z∈X

w(supp(z))�w(A)

‖x − z‖.
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(vi) For all x ∈ X and m ∈ N, there is A ∈ G(x,m, 1) and y ∈ X with supp(y) ⊂ A
such that

‖x − y‖ � C inf
z∈X

| supp(z)|<∞
w(supp(z))�w(A)

‖x − z‖.

Proof. The implications (i)=⇒ (iii) =⇒ (v) and (ii) =⇒ (iv) =⇒ (vi), as well as (i)
=⇒ (ii), together with (iii) =⇒ (iv) and (v) =⇒ (vi) are immediate.

Let us prove (v) =⇒ (i): Fix A ∈ G(x,m, 1). We may assume x �= PA(x) (else,
we take y = x), so | supp(x)| > m. For each l ∈ N choose zl ∈ X with w(supp(zl)) �
w(A) so that

‖x − zl‖ �
(

1 +
1
l

)
inf
z∈X

w(supp(z))�w(A)

‖x − z‖,

which is possible because A � supp(x) so the infimum above is not zero.
For each n ∈ N, set xn := x + 1

nPA(x). As G(xn,m, 1) = {A} for each n ∈ N, for
each l ∈ N there is yn,l with supp(yn,l) ⊂ A such that

‖xn − yn,l‖ � C‖xn − zl‖.
Given that A ∈ N<∞, for fixed l ∈ N there is yl with supp(yl) ⊂ A and a
subsequence (ynk,l,l)k∈N convergent to yl. Letting k → ∞ in

‖xnk,l
− ynk,l,l‖ � C‖xnk,l

− zl‖,
we obtain

‖x − yl‖ � C‖x − zl‖ � C
(

1 +
1
l

)
inf
z∈X

w(supp(z))�w(A)

‖x − z‖.

Reasoning as before and taking a subsequence if necessary, we may assume that
(yl)l∈N is convergent to some y with supp(y) ⊂ A, so we complete the step letting
l → ∞.

The implication (vi) =⇒ (ii) is proven by the same argument as that given above
to prove (v) =⇒ (i).

Finally, we show that (iv) =⇒ (iii). Fix x ∈ X and m ∈ N. Suppose there is z ∈ X

with | supp(z)| = ∞ and w(supp(z)) � w(Λm(x)). Then by remark 3.3, given ε > 0
there is a finite set B ⊂ supp(z) such that

‖z − PB(z)‖ � ε.

It follows that

inf
z∈X

w(supp(z))�w(Λm(x))

‖x − z‖ = inf
z∈X

| supp(z)|<∞
w(supp(z))�w(Λm(x))

‖x − z‖,

so the proof is complete. �
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It was shown in [27, theorem 4.3] that every w-almost greedy Schauder basis is w-
semi greedy (see also [16, theorem 1.11], which improves the bound for the w-semi-
greedy constant). Both proofs are valid for Markushevich bases. The implication
from w-semi-greedy to w-almost greedy was first proven for Schauder bases in
spaces with finite cotype in [27, theorem 4.15]. The cotype condition in [27, theorem
4.15] was later removed in [16, theorem 1.11]. In these papers, w-almost greedy
bases were characterized as those being quasi-greedy and w-superdemocratic or
w-disjoint-superdemocratic. Below, we find hypotheses weaker than the Schauder
condition under which w-semi-greedy bases are w-almost greedy. Additionally, we
prove that all w-semi-greedy Markushevich bases are w-superdemocratic and that
they have a property, called ‘property (C)’, with roots in [24, lemma 2.2] that was
studied, for instance, in [16, 20]. Before we go on, we give the relevant definitions,
as well as some related notions.

Definition 3.5. Let B be a basis for X, w a weight and C > 0. Then:

• B is weight superdemocratic with weight w and constant C (or C-w-
superdemocratic) if

‖1ε,A‖ � C‖1ε′,B‖, ∀A,B ∈ N<∞, w(A) � w(B), ε ∈ EA, ε′ ∈ EB .

• B is weight disjoint superdemocratic with weight w and constant C (or C-w-
disjoint superdemocratic) if the above holds for A and B disjoint sets.

When taking 1A and 1B instead of 1ε,A and 1ε′,B, the basis B is w-democratic
(see [27, 30]) and w-disjoint democratic, respectively.

Definition 3.6. Let B be a basis for X with dual basis B∗ = (x∗
i )i∈N. We say that

B has property (C) with constant K > 0 if

min
i∈A

|x∗
i (x)|‖1ε,A‖ � K‖x‖, ∀x ∈ X, ∀A ∈ N<∞, ∀ε ∈ EA. (3.1)

When (3.1) holds only for ε = ε(x), this property has been studied under the
name ‘truncation-quasi-greediness’ (see [4, 5]), which reflects the fact that the
restricted truncation operator is bounded (see [6]). These two definitions are equiv-
alent (see [6, proposition 4.16]). We will keep the latter terminology, though some
of our proofs establish also upper bounds for the constant in (3.1).

Remark 3.7. Note that if B is C-truncation quasi-greedy, it has the 2κC2-property
(C). Indeed, given x ∈ X with x∗

i (x) ∈ R�0 for all i, A ∈ G(x,m, 1) and ε ∈ EA, then

min
i∈A

|x∗
i (x)|‖1ε,A‖ � min

i∈A
|x∗

i (x)|κ max
ε′∈EA

ε′
j∈{−1,1}∀j

‖1ε′,A‖ � 2κ min
i∈A

|x∗
i (x)|max

B⊂A
‖1B‖

� 2κ min
i∈A

|x∗
i (x)|C‖1A‖ � 2κC2‖x‖.

The general case follows because for every x ∈ X, the basis Bx = (yi := εixi) where
the εi are chosen so that y∗

i (x) ∈ R�0 for all i is also C-truncation quasi-greedy.
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Note that the above argument also shows that if B is C-truncation quasi-greedy,
‖1ε,A‖ � 2κC‖1ε′,A‖ for any A ∈ N<∞, ε, ε′ ∈ EA.

To prove the implication from w-semi-greedy to w-almost greedy bases, we use
the concept of disjoint w-almost greedy bases, which we define in terms of all greedy
sets for convenience.

Definition 3.8. Let B be a basis for X, w a weight, and C > 0. We say that B
is weight-disjoint almost greedy with weight w and constant C (or C-w-disjoint
almost greedy) if

‖x − PA(x)‖ � C inf
B∈N

<∞
w(B)�w(A)

B∩A=∅

‖x − PB(x)‖, ∀x ∈ X, ∀A ∈ G(x, 1).

We will use the following elementary result, which is a weighted variant of
[6, lemma 6.2]; we give a proof for the sake of completion.

Lemma 3.9. Let B be a basis for X, w a weight and C > 0. Then B is C-w-disjoint
almost greedy if and only if it is C-w-almost greedy.

Proof. Suppose B is C-w-disjoint almost greedy, fix x ∈ X, A ∈ G(x, 1), and B ⊂ N

with w(B) � w(A). If B ∩ A = ∅ or A = B, there is nothing to prove. Else, since
A \ B ∈ G(x − PA∩B(x), 1) and w(B \ A) � w(A \ B), we have

‖x − PA(x)‖ = ‖x − PA∩B(x) − PA\B(x)‖ � C‖x − PA∩B(x) − PB\A(x)‖
= C‖x − PB(x)‖.

�

Remark 3.10. In the definition of w-almost greedy bases, the projections are taken
over finite sets, which guarantees that they are well defined. But if a basis is
w-almost greedy, by remark 3.3, we have

inf
B∈N

<∞
w(B)�w(Λm(x))

‖x − PB(x)‖ = inf
B⊂N

w(B)�w(Λm(x))

‖x − PB(x)‖, ∀x ∈ X, ∀m ∈ N.

Similar considerations hold for the infima taken over all sets A ∈ G(x,m, 1).

Next, we define a property that can be seen as an extension of the weight-semi-
greedy property as well as an extension, to the context of weights, of the weak
semi-greedy property given in [14, definition 1.7] .

Definition 3.11. Let B be a basis for X, w a weight, C > 0 and 0 < s � 1. We
say that B is weak weight-semi-greedy with parameter s, weight w and constant C
(or C-s-w-semi-greedy) if, for every x ∈ X and m ∈ N, there is A ∈ G(x,m, s) and
y ∈ X with supp(y) ⊂ A such that

‖x − y‖ � C inf
z∈X

| supp(z)|<∞
w(supp(z))�w(A)

‖x − z‖. (3.2)

We denote by GS(x,m, s) the subset of G(x,m, s) for which the above holds.
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Remark 3.12. Note that the set GS(x,m, s) depends on C, but we will leave that
implicit if is no risk of ambiguity; else, we will write GS(x,m, s,C). The same
consideration applies to later definitions as is the case with definitions 4.1 and 5.1.

It is known that a basis is greedy, quasi-greedy or almost greedy if and only if the
relevant definition holds for elements with finite support (see e.g. [34, lemma 2.3]
for quasi-greedy bases; similar arguments hold for almost greedy or greedy ones).
We will show that this is also true for weak weight-semi-greedy bases. First, we
need some auxiliary lemmas.

Lemma 3.13. Let B be a basis for X with dual basis B∗ = (xi)i∈N and 0 < t � 1.
Fix x ∈ X and m ∈ N such that | supp(x)| � m, then G(x,m, t) is a finite set and
x∗

i (x) �= 0 for all i ∈ A with A ∈ G(x,m, t).

Proof. Let

B :=
⋃

A∈G(x,m,t)

A and b := inf
i∈B

|x∗
i (x)|,

and pick any j ∈ supp(x). Since B∗ is weak star null, there is i0 ∈ N such that

|x∗
i (x)| < t|x∗

j (x)|, ∀i � i0.

Hence, B ⊂ {1, . . . , i0} and G(x,m, t) is a finite set, so b is a minimum. Now choose
A ∈ G(x,m, t) and n ∈ A with |x∗

n(x)| = b. If b = 0, choose j ∈ supp(x) \ A. Then
0 = b � t|x∗

j (x)| > 0, a contradiction. �

Next, we strengthen [34, lemma 2.2] for Markushevich bases.

Lemma 3.14. Let B be a basis for X, x ∈ X and ε > 0. The following hold:

(i) Given D ∈ N<∞, there is y ∈ X with finite support such that ‖x − y‖ < ε and
PD(x) = PD(y).

(ii) Given m0 ∈ N and 0 < t � 1, there is y ∈ X with finite support such that
‖x − y‖ < ε, and, for each 1 � m � m0, G(x,m, t) = G(y,m, t) and PA(y) =
PA(x) for each A ∈ G(x,m, t).

Proof. To prove (i), choose a finitely supported z so that ‖x − PD(x) − z‖ < (1 +
‖PD‖)−1ε, and define y := z − PD(z) + PD(x). We have

‖x− y‖�‖x− PD(x)− z‖+‖PD(z− x+PD(x)‖�(1+‖PD‖)‖x − PD(x) − z‖<ε.

To prove (ii), set B∗ = (x∗
i )i∈N the dual basis of B. We may assume that x has

infinite support, so the hypotheses of lemma 3.13 hold for m = m0. Let

B :=
⋃

A∈G(x,m0,t)

A, b := min
i∈B

|x∗
i (x)|.

First note that if m0 > 1, 1 � m < m0 and A ∈ G(x,m, t), then A ∪ A1 ∈
G(x,m0, t) for every A1 ∈ G(x − PA(x),m0 − m, 1). Hence, A ⊂ B.
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Since B∗ is weak star null, there is i0 ∈ N such that |x∗
i (x)| < 2−1tb for all i � i0.

Set

D := {1, . . . , i0}, ε1 :=
t min{ε, 1, b}

2(1 + λ′)
,

and let y be obtained by an application of (i) to x, D and ε1. To see that y has the
desired properties, first note that for each n ∈ D and each k �∈ D,

|x∗
k(y)| � |x∗

k(x − y)| + |x∗
k(x)| � λ′‖x − y‖ + 2−1tb < tb � t|x∗

n(x)| = t|x∗
n(y)|.

(3.3)
Since i0 > m0, it follows that G(y,m, t) ⊂ D for all 1 � m � m0. Now fix 1 � m �
m0, and choose A ∈ G(x,m, t), n ∈ A and k �∈ A. If k ∈ D, then

|x∗
n(y)| = |x∗

n(x)| � t|x∗
k(x)| = t|x∗

k(y)|,

whereas if k �∈ D, then t|x∗
k(y)| � |x∗

n(y) by (3.3). Therefore, A ∈ G(y,m, t).
Similarly, choose A ∈ G(y,m, t), n ∈ A and k �∈ A. Since n ∈ D, the case k ∈ D

is handled as before but changing the roles of x and y, whereas if k �∈ D, then
t|x∗

k(x)| < b � |x∗
n(y)| = |x∗

n(x)|. We conclude that A ∈ G(x,m, t). �

Remark 3.15. Note that the proof of lemma 3.13 holds without changes for p-
Banach spaces, for 0 < p < 1, whereas that of lemma 3.14 holds as well, with
only straightforward modifications: just choose z so that ‖x − PD(x) − z‖p <
(1 + ‖PD‖p)−1εp, and use p-convexity. Thus, for Markushevich bases, our result
strengthens [13, lemma 7.2] in addition to [34, lemma 2.2].

Remark 3.16. Note also that the totality hypothesis does not play a role in the
proofs of lemmas 3.13 and 3.14. Moreover, in the proof of lemma 3.14(i), even if
B∗ is not total, we can pick z ∈ [B] and obtain y ∈ [B], in other words we obtain
y as a finite linear combination of the xi’s. Thus, if | supp(x)| � m0, we can also
get y ∈ [B] in lemma 3.14(ii). However, if x �∈ [B] and | supp(x)| < m0, without
totality we cannot obtain y ∈ [B] in lemma 3.14(ii), because in that case, for every
A ∈ G(x,m0 − 1, t) and every n �∈ A, x∗

n(x) = 0 and A ∪ {n} ∈ G(x,m0, t). On the
other hand, with only straightforward modifications, the proofs of [13, lemma 7.2]
and [34, lemma 2.2] yield y ∈ [B] even when B∗ is not total.

Now we can prove the aforementioned equivalence.

Lemma 3.17. Let B be a basis for X, w a weight, C > 0 and 0 < s � 1. Suppose
that the conditions of definition 3.11 hold for x with finite support. Then B is C-s-
w-semi-greedy. Moreover, the conditions of definition 3.11 hold even if the infimum
is taken without the restriction | supp(z)| < ∞.

Proof. Pick x ∈ X \ {0} and m ∈ N. If | supp(x)| < m, then supp(x) ⊂ A for every
A ∈ G(x,m, t), and there is nothing to prove. Otherwise, for every n ∈ N, by lemma
3.14 there is xn ∈ X with finite support such that ‖x − xn‖ � n−1 and G(xn,m, t) =
G(x,m, t). By hypothesis, for each n there are An ∈ G(x,m, t) and yn ∈ X with
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supp(yn) ⊂ An such that

‖xn − yn‖ � C inf
z∈X

| supp(z)|<∞
w(supp(z))�w(An)

‖xn − z‖.

By lemma 3.13, G(x,m, t) is finite. Thus, passing to a subsequence, we may assume
An = A, a fixed set. Passing to a further subsequence, we may also assume that
there is y supported in A such that ‖yn − y‖ � n−1 for all n. Now pick z ∈ X

with w(supp(z)) � w(A). By remark 3.3, for each n ∈ N there is zn ∈ X with finite
support contained in supp(z) such that ‖zn − z‖ � n−1. Hence,

‖x − y‖ � 2n−1 + ‖xn − yn‖ � 2n−1 + C‖xn − zn‖
� C‖x − z‖ + 2n−1(1 + C),∀n ∈ N.

As this holds for every n ∈ N, we get ‖x − y‖ � C‖x − z‖. Now the proof is
completed by taking infimum over all such z. �

Our next result collects some general facts about weak w-semi-greedy, w-
democratic and w-superdemocratic bases. In particular, we give upper bounds for
the norms of vectors of the form ‖1ε,A‖ in terms of the w-measure of A, and for the
unconditionality parameter km = km[B, X] (also known as conditionality constant
or parameter), defined by

km := sup
A⊂N

|A|�m

‖PA‖,

which is used to measure how far a basis is from being unconditional (see e.g. [3,
4, 7, 10, 18, 19, 25]). Below, we appeal to the constants λ and λ′ of (1.1).

Proposition 3.18. Let B = (xi)i∈N be a C-s-w-semi-greedy basis for X, w =
(wi)i∈N a weight, C > 0 and 0 < s � 1, and let

C1 := 3Cs−1(1 + λλ′)λ max{2 inf
j∈N

w−1
j , 1}.

The following hold:

(i) For every finite set A ⊂ N and ε ∈ EA,

‖1ε,A‖ � C1 max{w(A), 1}.
(ii) For every x∗ ∈ SX∗ ,

w({j ∈ N : |x∗(xj)| > C1wj}) � 1.

(iii) For each m ∈ N,

km � C1λ
′ max{ sup

A⊂N

|A|�m

w(A), 1}.
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If B is K-w-disjoint superdemocratic (in particular, if it is K-w-almost greedy),
the above results hold if we replace C1 with

K1 := 4Kλ max{2 inf
j∈N

w−1
j , 1}.

If B is K-w-disjoint democratic, then the above holds with C1 replaced by 2κK1.

Proof. To prove (i), fix 0 < ε < 1, and choose j0 ∈ N so that

w−1
j0

� inf
j∈N

w−1
j + ε.

Given A and ε as in the statement, define the possibly empty set

A1 := {i ∈ A : wi < 2−1wj0}.
We first estimate the norm ‖1ε,A\A1‖:
‖1ε,A\A1‖ � λ|A \ A1| � 2λw−1

j0
w(A) � 2λ(1 + ε)max{ inf

j∈N

w−1
j , 1}max{w(A), 1}

� 1
3
(1 + ε)C1 max{w(A), 1}. (3.4)

If A1 = ∅, as ε is arbitrary there is nothing else to prove. Else, to estimate the norm
‖1ε,A1‖ choose a partition of A1 as follows: first, pick a set A1,1 ⊂ A1 of maximum
cardinality such that w(A1,1) � wj0 . If A1,1 �= A1, then pick A1,2 ⊂ A1 \ A1,1 of
maximum cardinality such that w(A1,2) � wj0 , and so on. By this procedure, we
get a partition of A1 into finitely many sets {A1,k}1�k�k1 with w(A1,k) � wj0 for
all 1 � k � k1. If k1 > 1, then by construction, for every 1 � k � k1 − 1, there is
i ∈ A1 \ A1,k such that w(A1,k) + wi > wj0 , which implies that w(A1,k) > 2−1wj0 .
Thus,

w(A1) >

k1−1∑
k=1

w(A1,k) � 2−1(k1 − 1)wj0 ,

so

k1 � 2w(A1)w−1
j0

+ 1 � 2w(A)w−1
j0

+ 1. (3.5)

For each 1 � k � k1, define

zk := (1 + ε)s−1xj0 + 1ε,A1,k
.

As G(zk, 1, s) = {{j0}}, there is bk ∈ K such that

‖zk − bkxj0‖ � C inf
| supp(z)|<∞

w(supp(z))�wj0

‖zk − z‖ � C(1 + ε)s−1‖xj0‖.

Hence, by the triangle inequality,

‖1ε,A1,k
‖ � ‖zk − bkxj0‖ + ‖((1 + ε)s−1 − bk)xj0‖

� (1 + ε)s−1C‖xj0‖ + |(1 + ε)s−1 − bk|‖xj0‖.
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Let B∗ = (x∗
i )i∈N be the dual basis of B. Since

|(1 + ε)s−1 − bk| = |x∗
j0(zk − bkxj0)| � ‖x∗

j0‖‖zk − bkxj0‖ � C‖x∗
j0‖(1 + ε)s−1‖xj0‖

we obtain

‖1ε,A1,k
‖ � C(1 + ε)s−1(1 + ‖xj0‖‖x∗

j0‖)‖xj0‖.

Using again the triangle inequality and (3.5), we get

‖1ε,A1‖ � (2w(A)w−1
j0

+ 1)C(1 + ε)s−1(1 + ‖xj0‖‖x∗
j0‖)‖xj0‖

� 2C(1 + ε)s−1(1 + λλ′)λ max{2w−1
j0

w(A), 1}

=
2
3
C1(1 + ε)(max{2 inf

j∈N

w−1
j , 1})−1 max{2w−1

j0
w(A), 1}

� 2
3
C1(1 + ε)max{w(A), 1}.

Given that ε is arbitrary, the proof of (i) is completed combining the above
inequality with (3.4).

Now suppose (i) is false, and choose x∗ ∈ SX∗ for which the result does not hold.
Then, there is A ⊂ N finite with w(A) > 1 such that

|x∗(xj)| > C1wj , ∀j ∈ A.

Define ε ∈ EA by

εj :=
|x∗(xj)|
x∗(xj)

, ∀j ∈ A.

As w(A) > 1, using (i) we get

C1w(A) � ‖1ε,A‖ � |x∗(1ε,A)| =
∑
j∈A

|x∗(xj)| >
∑
j∈A

C1wj = C1w(A),

a contradiction.
To prove (iii), fix x ∈ X, m ∈ N and A ⊂ N with |A| � m. By (i),

‖PA(x)‖ � ‖x‖∞ max
ε∈EA

‖1ε,A‖ � λ′C1 max{w(A), 1}‖x‖.

so the proof is completed by taking supremum.
Now suppose that B is K-w-disjoint superdemocratic. Then all of the steps of the

above proof hold with the only modification consisting in replacing C1 with K1,
except for the bounds for ‖1ε,A\A1‖ and ‖1ε,A1‖; we give bounds for these norms
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as follows: First,

‖1ε,A1,k
‖ � K‖xj0‖ � Kλ, ∀1 � k � k1.

Thus, using (3.5),

‖1ε,A1‖ � k1Kλ � Kλ(1 + 2w(A)w−1
j0

) � 1
2
K1(1 + 2ε)max{w(A), 1}.

On the other hand, arguing as in the proof of (3.4) we obtain

‖1ε,A\A1‖ � 2λ(1 + ε)max{1, inf
j∈N

w−1
j }max{w(A), 1} � 1

2
(1 + ε)K1 max{w(A), 1},

and the result follows by the above inequalities.
If B is K-w-disjoint almost greedy, it is K-w-disjoint superdemocratic by

lemma 3.9 and [16, theorem 1.5].
Finally, if B is K-w-disjoint democratic, by convexity we have

‖1ε,A1,k
‖ � 2κ sup

B⊂A1,k

‖1B‖ � 2κK‖xj0‖ � 2κKλ, 1 � k � k1,

and the rest of the proof is the same as that of the K-w-disjoint superdemocratic
case. �

Remark 3.19. It is known that if B-is w-semi-greedy or w-disjoint superdemo-
cratic and w ∈ �1, B is equivalent to the canonical unit vector basis of c0 (see [16,
proposition 2.3], [20, proposition 3.10], [27, proposition 4.5]), whereas the result
for w-disjoint democratic bases can be obtained via a straightforward modifica-
tion of the proof of [20, proposition 3.10]. Using proposition 3.18, we can obtain
some quantitative variants of these results, as well as a similar result for weak
weight-semi-greedy bases. More precisely, if x is finitely supported, then

‖x‖ � ‖x‖∞ max
ε∈Esupp(x)

‖1ε,supp(x)‖ � λ′C2 max{1, ‖w‖1}‖x‖ (3.6)

where, using the notation of proposition 3.18,

C2 =

⎧⎪⎨⎪⎩
C1 if B is C-s-w-semi-greedy;
K1 if B is K-w-disjoint-superdemocratic;
2κK1 if B is K-w-disjoint-democratic.

Since the set of finitely supported elements is dense in X, the bound on the right-
hand side of (3.6) holds for any x ∈ X.

Remark 3.20. It follows from remark 3.19 that lemma 3.2 and remark 3.3 also
hold if we replace the w-semi-greedy property by w-democracy.

Next, we prove that when w �∈ c0, every w-semi-greedy basis is w-almost greedy.
While w-almost greediness entails w-superdemocracy (see [16, 27]), we give a direct
proof of this result, as the upper bounds for the w-superdemocracy constant might
be of interest as well. We also give an upper bound for the truncation quasi-greedy
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constant. First, we prove an auxiliary result which will allow us to pick adequate
s-greedy sets.

Lemma 3.21. Let B be a C-s-w-semi-greedy basis for X, w a weight, C > 0 and
0 < s � 1, and let B∗ = (x∗

i )i∈N be the dual basis of B. For every x ∈ X and every
nonempty finite set A ⊂ N, there is m ∈ N and B ∈ GS(x,m, s) such that A ⊂ B
and for all j ∈ B,

|x∗
j (x)| � s2 min

i∈A
|x∗

i (x)|.

Proof. Let c := mini∈A |x∗
i (x)|. Clearly we may assume c > 0. Since B∗ is weak star

null, there is n0 ∈ N such that for each n � n0, every set in G(x, n, s) contains A.
Let

n1 := min{n ∈ N : ∃B ∈ GS(x, n, s) : B ⊃ A},
and choose B ∈ GS(x, n1, s) containing A. If B = A, there is nothing to prove.
Otherwise, since n1 > 1, we can choose D ∈ GS(x, n1 − 1, s). By the minimality of
n1, it follows that

A �⊂ D.

Hence, for all j ∈ D,

|x∗
j (x)| � sc. (3.7)

Thus, if there exists j0 ∈ D \ B, it follows that for all j ∈ B,

|x∗
j (x)| � s|x∗

j0(x)| � s2c.

On the other hand, if D ⊆ B, given that A �⊂ D and A ⊆ B, there is i1 ∈ A such
that

B = D ∪ {i1},
which implies that (3.7) also holds for all j ∈ B. �

Before going on, we note that the weak w-semi-greedy and w-disjoint and w-
super-democracy properties can be extended from the context of Markushevich
bases to that of general minimal systems. Some minor and straightforward modifi-
cations are necessary to account for the fact that if the system is not a Markushevich
basis, having finite support is not the same as being a finite linear combination of
the elements of the system. In the more general context, the proofs of proposition
3.18 and lemma 3.21 are valid as well. However, we continue working with Marku-
shevich bases as the hypothesis of being a total system is used in the remaining
proofs of this section, in particular to guarantee that we can appeal to the separation
properties studied in § 2.

Next, we prove our first case of the implication from weak weight-semi-greedy
to weight-almost greedy bases. We will use the following notation: given finite sets
A,B ⊂ N, we write A < B to mean that max(A) < min(B), and for j ∈ N, we write
j < A to mean that j < min(A). We use similar conventions for ‘>’, ‘�’ and ‘�’.
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Theorem 3.22. Let B = (xi)i∈N be a C-s-w-semi-greedy basis for X, w = (wi)i∈N

a weight, C > 0 and 0 < s � 1. Suppose that w has a subsequence (wik
)k∈N that is

bounded below, that is

inf
k∈N

wik
> 0.

Let M := Mfs((xik
)k∈N, X) and let B∗ = (x∗

i )i∈N be the dual basis of B. The
following hold:

(i) For every x ∈ X, m ∈ N, 0 < t � 1, A ∈ G(x,m, t), and y with w(supp(y)) �
w(A) and supp(y) ∩ A = ∅,

‖x − PA(x)‖ � CMmax{1 + 8t−1s−1λλ′, 1 + 6Ct−1s−3}‖x − y‖.
Thus, B is w-almost greedy with constant as above taking t = 1.

(ii) For every x ∈ X, every A ∈ N<∞ and every ε ∈ EA, if

w(A) � w({i ∈ N : |x∗
i (x)| � 1})

then

‖1ε,A‖ � 2s−1CMmax{λλ′, 2s−2C}‖x‖.
Thus, B is w-superdemocratic and truncation quasi-greedy, in each case with
constant as above.

Proof. To prove (i), choose 0 < ε < 1 and let (xikj
)j∈N be a subsequence given by

an application of corollary 2.7 to (xik
)k∈N and (X,M, ε). Fix x, m, t and A as in the

statement, and y such that w(supp(y)) � w(A) and supp(y) ∩ A = ∅. We assume
first that both x and y have finite support, and we may also assume x �= PA(x), so

a := min
i∈A

|x∗
i (x)|

is positive. Pick i0 > supp(x) ∪ supp(y), and set F := [xi : 1 � i � i0]. We will
consider two cases:
Case 1. Suppose that there is a set E ⊂ {ikj

}j�sF,ε
such that |E| � 8 and 2w(A) �

w(E). Define

z1 := x − PA(x) + a(1 + ε)t−1s−11E .

Notice that |x∗
i (z1)| = |x∗

i (x)| � t−1a for all i �∈ E, so G(z1, |E|, s) = {E}. Hence,
there is z2 ∈ X with supp(z2) ⊂ E such that

‖z1 − z2‖ � C inf
| supp(z)|<∞

w(supp(z))�w(E)

‖z1 − z‖.

Given that w(supp(y)) + w(A) � w(E), we have

‖z1 − z2‖ � C‖z1 + PA(x) − y‖ � C‖x − y‖ + Ca(1 + ε)t−1s−1‖1E‖
� C‖x − y‖ + 8Ca(1 + ε)t−1s−1λ.
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Pick any i ∈ A. Since A ∩ supp(y) = ∅, we have

a � |x∗
i (x − y)| � λ′‖x − y‖.

Thus,

‖z1 − z2‖ � (C + 8C(1 + ε)t−1s−1λλ′)‖x − y‖.

Given that

‖x − PA(x)‖ � (M + ε)‖z1 − z2‖,

it follows that

‖x − PA(x)‖ � C(M + ε)(1 + 8(1 + ε)t−1s−1λλ′)‖x − y‖. (3.8)

Case 2. Suppose there is j0 > sF,ε such that

w(A) > 4wikj
, ∀j � j0. (3.9)

Choose l1, l2 � 3 so that

w({ik2(j0+d)−1 , ik2(j0+d) : 1 � d < l1})
� w(A) � w({ik2(j0+d)−1 , ik2(j0+d) : 1 � d � l1});

w({ik2(j0+l1+d)−1 , ik2(j0+l1+d) : 1 � d < l2})
� w(A) � w({ik2(j0+l1+d)−1 , ik2(j0+l1+d) : 1 � d � l2}).

Set

E1,1 := {ik2(j0+d)−1 : 1 � d < l1}; E1,2 := {ik2(j0+d) : 1 � d < l1};
E2,1 := {ik2(j0+l1+d)−1 : 1 � d < l2}; E2,2 := {ik2(j0+l1+d) : 1 � d < l2};
E3,1 := {ik2(j0+l1)−1 , ik2(j0+l1+l2)−1}; E3,2 := {ik2(j0+l1) , ik2(j0+l1+l2)};

E :=
3⋃

b=1

2⋃
d=1

Eb,d.

It follows from our choices and (3.9) that

max
1�b�3

w(Eb,1 ∪ Eb,2) � w(A) � w(E)
2

. (3.10)

Now define

z3 := x − PA(x) − as−1t−1(1 + ε)

(
3∑

b=1

1Eb,1 − 1Eb,2

)
.
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As before, we have |x∗
i (z3)| = |x∗

i (x − PA(x))| � at−1 for all i �∈ E, so G(z3, |E|, s) =
{E}. Hence, there is z4 with supp(z4) ⊂ E such that

‖z3 − z4‖ � C inf
z∈X

w(supp(z))�w(E)
| supp(z)|<∞

‖z3 − z‖.

Since w(supp(y)) + w(A) � 2w(A) � w(E), we have

‖x − PA(x)‖ � (M + ε)‖z3 − z4‖ � C(M + ε)‖z3 + PA(x) − y‖

� C(M + ε)‖x − y‖ + C(M + ε)as−1t−1(1 + ε)‖
3∑

b=1

1Eb,1 − 1Eb,2‖.

(3.11)

To estimate ‖∑3
b=1 1Eb,1 − 1Eb,2‖, set

z5 := x − y + as2(1 − ε)(1E1,1 − 1E1,2).

By lemma 3.21, there is a set D ⊃ A with D ∈ GS(z5, |D|, s) such that

min
j∈D

|x∗
j (z5)| � s2 min

i∈A
|x∗

i (z5)| = s2 min
i∈A

|x∗
i (x)| = s2a,

which implies that D ⊂ {1, . . . , i0}. Choose z6 with supp(z6) ⊂ D so that

‖z5 − z6‖ � C inf
z∈X

w(supp(z))�w(D)
| supp(z)|<∞

‖z5 − z‖.

Given that z6 ∈ F, using (3.10) and the fact that w(A) � w(D) we infer that

‖as2(1 − ε)(1E1,1 − 1E1,2)‖ � ‖z5 − z6‖ + ‖x − y − z6‖ � (2 + ε)‖z5 − z6‖
� (2 + ε)C‖z5 − as2(1 − ε)(1E1,1 − 1E1,2)‖
= (2 + ε)C‖x − y‖.

The same argument gives

‖as2(1 − ε)(1Eb,1 − 1Eb,2)‖ � (2 + ε)C‖x − y | ∀2 � b � 3.

Combining these inequalities with (3.11), by the triangle inequality we get

‖x − PA(x)‖ � C(M + ε)(1 + 3(2 + ε)C(1 + ε)(1 − ε)−1t−1s−3)‖x − y‖. (3.12)

As ε is arbitrary, a combination of (3.8) and (3.12) gives (i) for x, y ∈ X with finite
support. Now choose again x,m, t, A and y as in the statement, x �= PA(x), fix δ > 0,
and let K := CMmax{1 + 8t−1s−1λλ′, 1 + 6Ct−1s−3}. By lemma 3.14, there is
x1 ∈ X with finite support such that A ∈ G(x1,m, t), PA(x1) = PA(x) and ‖x −
x1‖ � δ. Also, remark 3.3 gives y1 ∈ X with finite support such that supp(y1) ⊂

https://doi.org/10.1017/prm.2023.53 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.53


Weak weight-semi-greedy Markushevich bases 1141

supp(y) and ‖y − y1‖ � δ. Applying the result for vectors with finite support, we
obtain

‖x − PA(x)‖ � ‖x1 − x‖ + ‖x1 − PA(x1)‖ � δ + K‖x1 − y1‖
� δ + K‖x − y‖ + K‖x1 − x‖ + K‖y − y1‖ � 3δ + K‖x − y‖.

Since δ is arbitrary, the proof of (i) is complete.
To prove (ii), choose 0 < ε < 1, let (xikj

)j∈N be as in the proof of (i), and let
A, ε and x be as in the statement, and suppose x has finite support. Choose
i0 > A ∪ supp(x), and set

F := [xi : 1 � i � i0].

We will consider again two cases:
Case 1. Suppose there are j2 > j1 > sF,ε such that

w(A) � wikj1
+ wikj2

.

Set

E := {ikj1
, ikj2

} and z1 := 1ε,A + (1 + ε)s−11E .

Since G(z1, 2, s) = {E}, there is z2 ∈ N with supp(z2) ⊂ E such that

‖z1 − z2‖ � C inf
| supp(z)|<∞

w(supp(z))�w(E)

‖z1 − z‖.

Hence,

‖1ε,A‖ � (M + ε)‖z1 − z2‖ � (M + ε)C(1 + ε)s−1‖1E‖.

Given that

‖1E‖ � 2λ � 2λλ′‖x‖,

we obtain

‖1ε,A‖ � 2(M + ε)C(1 + ε)s−1λλ′‖x‖. (3.13)

Case 2. Suppose that there is j0 > sF,ε such that

w(A) � 2w(ikj
), ∀j � j0,

and choose l1 � 2 so that

w
({ik2(j0+d)−1 , ik2(j0+d) : 1 � d < l1}

)
� w(A)

� w
({ik2(j0+d)−1 , ik2(j0+d) : 1 � d � l1}

)
.
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Define

E1,1 := {ik2(j0+d)−1 : 1 � d < l1}; E1,2 := {ik2(j0+d) : 1 � d < l1};
E2,1 := {ik2(j0+l1)−1}; E2,2 := {ik2(j0+l1)};

E :=
2⋃

b=1

2⋃
d=1

Eb,d.

Note that max{w(E1,1 ∪ E1,2), w(E2,1 ∪ E2,2)} � w(A) � w(E). Let

B := {i ∈ N : |x∗
i (x)| � 1} and z1 := x + s2(1 − ε)(1E1,1 − 1E1,2).

By lemma 3.21, there is a set D ⊃ B with D ∈ GS(z1, |D|, s) and a vector z2 with
supp(z2) ⊂ D such that

min
j∈D

|x∗
j (x)| � s2,

and

‖z1 − z2‖ � C inf
z∈X

w(supp(z))�w(D)
| supp(z)|<∞

‖z1 − z‖.

Since D ⊂ {1, . . . , i0}, considering that w(D) � w(B) � w(A) � w(E1,1) + w(E1,2),
we have

‖s2(1 − ε)(1E1,1 − 1E1,2)‖ � ‖z1 − z2‖ + ‖x − z2‖ � (2 + ε)‖z1 − z2‖
� (2 + ε)C‖x‖.

The same argument gives

‖s2(1 − ε)(1E2,1 − 1E2,2)‖ � (2 + ε)C‖x‖.
To finish the proof, define

z3 := 1ε,A + s−1(1 + ε)

(
2∑

b=1

1Eb,1 − 1Eb,2

)
.

Since G(z3, |E|, s) = {E}, there is z4 with supp(z4) ⊂ E such that

‖z3 − z4‖ � C inf
z∈X

w(supp(z))�w(E)
| supp(z)|<∞

‖z3 − z‖.

Therefore,

‖1ε,A‖ � (M + ε)‖z3 − z4‖ � C(M + ε)s−1(1 + ε)

∥∥∥∥∥
2∑

b=1

1Eb,1 − 1Eb,2

∥∥∥∥∥
� 2C2(M + ε)s−3(1 + ε)(1 − ε)−1(2 + ε)‖x‖.

Now the proof is completed combining the above result with (3.13), and letting ε
tend to zero. �
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We have yet to consider the case of w ∈ c0 \ �1, which (to us) is more intricate.
The main obstacle is that we are not able to take a separating sequence of B given by
an application of proposition 2.3 or corollary 2.7 to prove that (weak) w-semi-greedy
bases are w-almost greedy, because we cannot guarantee that there is one such
sequence (xik

)k∈N with w({ik}k∈N) = ∞, and if the w-measure were finite, there
would be greedy sets with arbitrarily greater w-measure than the entire sequence,
precluding the kind of approximation we have used in our proofs so far. Even so,
if B∗ is r-norming for some 0 < r � 1, we can still prove that weak w-semi-greedy
bases are w-almost greedy. Our next result handles this case.

Theorem 3.23. Let B be C-s-w-semi-greedy a basis for X, w = (wi)i∈N a weight,
C > 0 and 0 < s � 1. Suppose that w has a subsequence (wik

)k∈N ∈ c0 \ �1 and that
there is M > 0 such that

Mfs((vk)k∈N, X) � M,

for every block basis (vk)k∈N of B with the property that (w(supp(vk)))k∈N is
bounded. Then, the following hold:

(i) For all x ∈ X, m ∈ N, 0 < t � 1, A ∈ G(x,m, t) and y ∈ X with w(supp(y)) �
w(A),

‖x − PA(x)‖ � CM(1 + 6Ct−1s−3)‖x − y‖.

In particular, B is w-almost greedy with constant as above taking t = 1.

(ii) Let B∗ = (x∗
i )i∈N be the dual basis of B. For every nonempty finite set A ⊂ N,

every ε ∈ EA and every x ∈ X, if

w(A) � w({i ∈ N : |x∗
i (x)| � 1})

then

‖1ε,A‖ � 4s−3C2M‖x‖.

Thus, B is w-superdemocratic and truncation quasi-greedy, in each case with
constant as above.

In addition, if B∗ is r-norming for some 0 < r � 1, the above conditions hold
with M = r−1.

Proof. The statement for the case of an r-norming dual basis follows from
proposition 2.3, so we need to prove (i) and (ii). To prove the former, fix x, m,
t and A as in the statement, and y with w(supp(y)) � w(A). We may assume
x �= PA(x), and we will also assume that both x and y have finite support. Set

a := min
i∈A

|x∗
i (x)|,

choose i0 > supp(x) ∪ supp(y), and set F := [xi : 1 � i � i0]. Given that (wik
)k∈N ∈

c0 \ �1, there is a sequence of finite sets of positive integers (Ak)k∈N such that for
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all k ∈ N, i0 < Ak < Ak+1 and

w(A)
3

� w(Ak) � w(A)
2

. (3.14)

By hypothesis Mfs((1Ak
)k∈N, X) � M. To simplify our notation, we may assume

that (1Ak
)k∈N is already a separating sequence for (X,M, ε). By proposition 3.18,

(1Ak
)k∈N is bounded. Since it is also λ′−1-uniformly discrete, we may choose 0 <

ε < 1 and apply lemma 2.6 to (1Ak
)k∈N. Again, we assume that (1Ak

)k∈N is already
the subsequence given by the lemma. Set

L := {k ∈ 5N : k > max{rF,(1An )n∈N,ε, jF,(1An )n∈N,ε, }},
and for every k ∈ L, define

z1,k := x − PA(x) + s−1t−1a(1 + ε)
3∑

l=1

(1A2k+2l−1 − 1A2k+2l
);

z2,k,l := x − y − s2(1 − ε)a(1A2k+2l−1 − 1A2k+2l
), ∀1 � l � 3.

Fix k as above and 1 � l � 3. By lemma 3.21, there is a set D ⊃ A such that
D ∈ GS(z2,k,l, |D|, s) and

min
j∈D

|x∗
j (z2,k,l)| � s2 min

j∈A
|x∗

j (z2,k,l)| = s2 min
j∈A

|x∗
j (x)| = s2a.

It follows that D ⊂ {1, . . . , i0}, so there is z3,k,l ∈ F such that

‖z2,k,l − z3,k,l‖ � C inf
z∈X

| supp(z)|<∞
w(supp(z))�w(D)

‖z2,k,l − z‖.

As D ⊃ A, using the above inequality and (3.14) we get

‖z2,k,l − z3,k,l‖ � C‖x − y‖.
Hence,

‖s2(1 − ε)a(1A2k+2l−1 − 1A2k+2l
)‖ � ‖z2,k,l − z3,k,l‖ + ‖x − y − z3,k,l‖

� (2 + ε)‖z2,k,l − z3,k,l‖ � C(2 + ε)‖x − y‖.
(3.15)

Now we consider z1,k: set

Bk :=
3⋃

l=1

A2k+2l−1 ∪ A2k+2l.

Notice that G(z1,k, |Bk|, s) = {Bk}. Hence, there is z4,k with supp(z4,k) ⊂ Bk such
that

‖z1,k − z4,k‖ � C inf
z∈X

| supp(z)|<∞
w(supp(z))�w(Bk)

‖z1,k − z‖.
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By (3.14), 2w(A) � w(Bk). Since w(supp(y)) � w(A), this gives

‖z1,k − z4,k‖ � C‖z1,k + PA(x) − y‖

� C‖x − y‖ + Ca(1 + ε)s−1t−1

∥∥∥∥∥
3∑

l=1

(1A2k+2l−1 − 1A2k+2l
)

∥∥∥∥∥ . (3.16)

Note that the sequence(
uk := a(1 + ε)s−1t−1

3∑
l=1

(1A2k+2l−1 − 1A2k+2l
) − z4,k

)
k∈L

has the FDSP with constant � M. Indeed, if uk = 0 for infinitely many values of
k, the sequence has this property with constant 1, whereas if this is not the case,
there is k0 ∈ L such that the subsequence beginning in k0 is a block basis of B, so
we have this bound by hypothesis. In particular, it follows that there is k ∈ L such
that

‖x − PA(x)‖ � (M + ε)

∥∥∥∥∥x − PA(x)

+ a(1 + ε)s−1t−1
3∑

l=1

(1A2k+2l−1 − 1A2k+2l
) − z4,k

∥∥∥∥∥
= (M + ε)‖z1,k − z4,k‖,

which, when combined with (3.15), (3.16) and the triangle inequality gives

‖x − PA(x)‖ � C(M + ε)(1 + 3C(1 + ε)(1 − ε)−1(2 + ε)t−1s−3)‖x − y‖.

As ε is arbitrary, this completes the proof of (i) for x and y with finite support, and
the general case is proven by the argument given in the proof of theorem 3.22.

The proof of (ii) is similar: fix A, ε and x as in the statement, set

B := {i ∈ N : |x∗
i (x)| � 1},

choose 0 < ε < 1 and i0 > A ∪ supp(x). Now choose a sequence of sets of positive
integers (Ak)k∈N so that for all k, i0 < Ak < Ak+1 and

w(A)
4

� w(Ak) � w(A)
2

. (3.17)

As before, we assume that (1Ak
)k∈N is already a separating sequence for (X,M, ε),

and that we have applied lemma 2.6. Set

F := [xi : 1 � i � i0];

L := {k ∈ 5N : k > max{rF,(1An )n∈N,ε, jF,(1An )n∈N,ε, }}.
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For each k ∈ L, define

z1,k := 1ε,A + s−1(1 + ε)
2∑

l=1

(1A2k+2l−1 − 1A2k+2l
);

z2,k,l := x − s2(1 − ε)(1A2k+2l−1 − 1A2k+2l
), ∀1 � l � 2.

Fix k ∈ L and 1 � l � 2. By lemma 3.21, there is a set D ⊃ B such that D ∈
GS(z2,k,l, |D|, s) and

min
j∈D

|x∗
j (z2,k,l)| � s2 min

j∈B
|x∗

j (z2,k,l)| = s2 min
j∈B

|x∗
j (x)| � s2,

which implies that D ⊂ {1, . . . , i0}. Hence, there is z3,k,l ∈ F such that

‖z2,k,l − z3,k,l‖ � C inf
z∈X

| supp(z)|<∞
w(supp(z))�w(D)

‖z2,k,l − z‖.

As D ⊃ B, using the above inequality, (3.17) and the fact that w(A) � w(B) we
get

‖z2,k,l − z3,k,l‖ � C‖x‖.
Thus, the property of lemma 2.6 gives

‖s2(1 − ε)(1A2k+2l−1 − 1A2k+2l
)‖ � ‖z2,k,l − z3,k,l‖ + ‖x − z3,k,l‖

� (2 + ε)‖z2,k,l − z3,k,l‖ � C(2 + ε)‖x‖. (3.18)

For fixed k ∈ L, set

Bk :=
2⋃

l=1

A2k+2l−1 ∪ A2k+2l.

Note that G(z1,k, |Bk|, s) = {Bk}. Thus, there is z4,k with support contained in Bk

such that

‖z1,k − z4,k‖ � C inf
z∈X

| supp(z)|<∞
w(supp(z))�w(Bk)

‖z1,k − z‖.

By (3.17), w(A) � w(Bk), so

‖z1,k − z4,k‖ � C‖z1,k − 1ε,A‖ = C(1 + ε)s−1

∥∥∥∥∥
2∑

l=1

(1A2k+2l−1 − 1A2k+2l
)

∥∥∥∥∥ . (3.19)

As before, the sequence(
(1 + ε)s−1

2∑
l=1

(1A2k+2l−1 − 1A2k+2l
) − z4,k

)
k∈L
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has the FDSP with constant � M. In particular, there is k ∈ L such that

‖1ε,A‖ � (M + ε)‖z1,k − z4,k‖
which, when combined with (3.18), (3.19) and the triangle inequality gives

‖1ε,A‖ � 2C2(M + ε)(1 + ε)(1 − ε)−1(2 + ε)s−3‖x‖.
As ε is arbitrary, the proof is complete. �

It remains to study the general case w ∈ c0 \ �1. We do not know whether all
(weak) w-semi-greedy bases are quasi-greedy, but we can prove that they are w-
superdemocratic and truncation quasi-greedy. To do so, we only need to address
the cases that do not meet the conditions of theorem 3.22 or 3.23. The following
result covers all such cases.

Proposition 3.24. Let B be a C-s-w-semi-greedy basis for X, w a weight, C > 0
and 0 < s � 1. Let B∗ = (x∗

i )i∈N be the dual basis of B and suppose that B has a
seminormalized block basis (vk)k∈N with (w(supp(vk))k∈N bounded that is not weakly
null. Then, there is K > 0 such that

(i) For all x ∈ X and all A ∈ N<∞,

min
i∈A

|x∗
i (x)|w(A) � K‖x‖.

(ii) For all A ∈ N<∞ and all ε ∈ EA,

max{w(A), 1}K−1 � ‖1ε,A‖ � Kmax{w(A), 1}.
(iii) For all x ∈ X, all A ∈ N<∞ and all ε ∈ EA,

min
i∈A

|x∗
i (x)|‖1ε,A‖ � K‖x‖.

(iv) For all A,B ∈ N<∞ with w(A) � w(B), and all ε ∈ EA, ε′ ∈ EB,

‖1ε,A‖ � K‖1ε′,B‖.

Proof. As this is not a quantitative result, we will not keep track of the constants
(even so, note that the right-hand side of the inequality in (ii) was estimated in
proposition 3.18).

Note that (ii) follows from (i), proposition 3.18 and the fact that ‖x‖∞ � λ′‖x‖
for all x ∈ X; (iii) follows from that fact together with (i) and (ii), whereas (iv)
follows from (ii). Thus, we only need to prove (i). Moreover, by lemma 3.14, it is
sufficient to prove (i) for x with finite support.

Let B = (xi)i∈N. Since (vk)k∈N is not weakly null, passing to a subsequence we
may assume there is ε > 0 and x∗ ∈ SX∗ such that

|x∗(vk)| � ε, ∀k ∈ N.

For each k ∈ N, set Ak := supp(vk), and define c1 := max{1, ‖(‖vk‖∞)k∈N‖∞}.
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Note that c1 is a well-defined positive number because B∗ and (vk)k∈N are both
bounded. For each k ∈ N, choose ε(k) ∈ EAk

so that

ε
(k)
j x∗(xj) � 0, ∀j ∈ Ak.

Note that (1ε(k),Ak
)k∈N is bounded by proposition 3.18. Let ε1 := εc−1

1 . For each
k ∈ N, we have

x∗(1ε(k),Ak
) =

∑
j∈Ak

|x∗(xj)| � c−1
1

∑
j∈Ak

|x∗
j (vk)||x∗(xj)| � c−1

1 |x∗

⎛⎝∑
j∈Ak

x∗
j (vj)xj

⎞⎠ |

= c−1
1 |x∗(vk)| � c−1

1 ε = ε1 > 0. (3.20)

Set

a = lim inf
k→∞

w(Ak).

By hypothesis, a is a nonnegative real number. We claim that a > 0. Otherwise,
there would be a subsequence (1

ε(kj),Akj

)j∈N such that (w(Akj
))j∈N ∈ �1. By lemma

3.2, ((xi)i∈Akj
)j∈N would be equivalent to the canonical unit vector basis of c0, so

all of its bounded block bases would be weakly null, contradicting (3.20). Thus,
passing to a subsequence if necessary we may assume that

a

2
� w(Ak) � 2a, ∀k ∈ N. (3.21)

Let M := Mfs((1ε(k),Ak
)k∈N, X). Applying proposition 2.3, again we may assume

that (1ε(k),Ak
)k∈N is already a separating sequence with the properties of definition

2.1 for (X,M, 1).
Now fix x ∈ X with finite support, A a finite nonempty subset of N and ε ∈ EA.

We may assume that A ⊂ supp(x). If w(A) � 3a, pick any i ∈ A. We have

min
i∈A

|x∗
i (x)|w(A) � 3a|x∗

i (x)| � 3aλ′‖x‖. (3.22)

On the other hand, if w(A) > 3a, define b := mini∈A |x∗
i (x)|, and set

F := [xn : n ∈ supp(x)].

By (3.21), there is B > jF,1 such that∑
k∈B

w(Ak) � w(A) � 2
∑
k∈B

w(Ak). (3.23)

Set

z1 := x +
bs2

2

∑
k∈B

1ε(k),Ak
.

By lemma 3.21, there is D ⊃ A such that D ∈ GS(z1, |D|, s) and

min
j∈D

|x∗
j (z1)| � s2 min

j∈A
|x∗

j (z1)| = s2 min
j∈A

|x∗
j (x)| = bs2.
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It follows that D ⊂ supp(x), so there is z2 ∈ F such that

‖z1 − z2‖ � C inf
z∈X

| supp(z)|<∞
w(supp(z))�w(D)

‖z1 − z‖.

Thus, using (3.23) and the separating condition on (1ε(k),Ak
)k∈N we deduce that∥∥∥∥∥bs2

2

∑
k∈B

1ε(k),Ak

∥∥∥∥∥ � ‖z1 − z2‖ + ‖x − z2‖ � (M + 2)‖z1 − z2‖ � (M + 2)C‖x‖.

On the other hand, by (3.20), (3.21) and (3.23),∥∥∥∥∥∑
k∈B

1ε(k),Ak

∥∥∥∥∥ � |x∗
(∑

k∈B

1ε(k),Ak

)
| � ε1|B| � ε1

∑
k∈B

w(Ak)
2a

� ε1
4a

w(A).

Hence,

min
i∈A

|x∗
i (x)|w(A) = bw(A) � 8aε−1

1 s−2C(M + 2)‖x‖.

The proof is completed combining the above inequality and (3.22). �

In [20], the authors introduced and studied the weighted property (A), extending
to the weight setting a property that arises naturally in the context of the TGA.
Property (A) has been studied for example in [2, 12, 17].

Definition 3.25. ([20, definition 1.3]) Let B be a basis for X, w a weight and
C > 0. We say that B has the C-w-Property (A) if

‖x + 1ε,A‖ � C‖x + 1ε′,B‖,
for any x ∈ X, ‖x‖∞ � 1, for any A,B ∈ N<∞ such that w(A) � w(B) with A ∩
B = ∅ and supp(x) ∩ (A ∪ B) = ∅, and for any ε ∈ EA, ε′ ∈ EB.

From our previous results, we have the following corollary, which extends [20,
theorem 5.2].

Corollary 3.26. Let B be a basis for X, w a weight and 0 < s � 1. If B is s-w-
semi-greedy, it is truncation quasi-greedy and w-superdemocratic. Hence, it has the
w-property (A).

Proof. Note that if w ∈ c0 \ �1 and the hypotheses of proposition 3.24 do not hold,
then by proposition 2.3 the hypotheses of theorem 3.23 do, with M = 1. Hence,
it follows from theorems 3.22, 3.23, proposition 3.24 and lemma 3.2 that if B is
s-w-semi-greedy, it is truncation quasi-greedy and w-superdemocratic. Then, by
[20, proposition 3.13], it has the w-property (A). �

Before we end this section, there are two questions about weak weight-semi-
greedy bases that need to be addressed. First, in definition 3.11, we require the
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existence of one s-greedy set for which (3.2) holds; this is in line with similar
definitions in [14, 26]. An alternative would have been to require that (3.2) holds for
all s-greedy sets; this would have been similar to the definition of n-s-quasi greedy
bases in [34]. So, one question is whether the two approaches are equivalent. The
second is whether a basis that is s-w-semi-greedy for some 0 < s � 1 and weight
w, is also t-w-semi-greedy for all 0 < t � 1. After proving that weak weight-semi-
greedy bases are truncation quasi-greedy, we are able to tackle and answer both
questions in the affirmative. In order to do so, we will use the following definition
(see e.g. [6]).

Definition 3.27. A basis B is suppression unconditional for constant coefficients
with constant C (C-SUCC) if

‖1ε,B‖ � C‖1ε,A‖
for all B ⊂ A ∈ N<∞ and all ε ∈ EA.

Clearly a basis that is either C-truncation quasi-greedy or C-w-superdemocratic
for some weight w is also C-SUCC. Hence, by corollary 3.26, any weak weight-
semi-greedy basis is SUCC.

Theorem 3.28. Let B be a basis for X, w a weight and 0 < s � 1. If B is s-w-
semi-greedy, then for every 0 < t � 1 there is C(s, t) > 0 such that for every x ∈ X,
m ∈ N and A ∈ G(x,m, t), there is y ∈ X with supp(y) ⊂ A such that

‖x − y‖ � C(s, t) inf
z∈X

w(supp(z))�w(A)

‖x − z‖. (3.24)

In particular, B is t-w-semi-greedy for all 0 < t � 1.

Proof. Set B = (xi)i∈N and B∗ = (x∗
i )i∈N its dual basis. Suppose B is C1-s-w-

semi-greedy. By the previous remarks and corollary 3.26, B is C2-SUCC and
C3-truncation quasi-greedy for some positive constants C2 � C3.

Set x,m, t, A as in the statement. If x = PA(x), there is nothing to prove. Oth-
erwise, take a := mini∈A |x∗

i (x)| > 0 because A ∈ G(x,m, t). Choose y ∈ [xi : i ∈ A]
so that

‖x − y‖ = min
z∈X

supp(z)⊂A

‖x − z‖, (3.25)

pick ε > 0, and set

u := x + at−1s−1(1 + ε)1ε(x),A.

For every i ∈ A and k �∈ A,

|x∗
k(u)| = |x∗

k(x)| � t−1a < s|x∗
i (u)|.

Hence, G(u,m, s) = {A}. By lemma 3.17, there is y1 ∈ [xi : i ∈ A] such that

‖u − y1‖ � C1 inf
z∈X

w(supp(z))�w(A)

‖u − z‖.
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Thus, setting

y2 := −at−1s−1(1 + ε)1ε(x),A + y1,

we get

‖x − y2‖ = ‖u − y1‖ � C1 inf
z∈X

w(supp(z))�w(A)

‖x − z + at−1s−1(1 + ε)1ε(x),A‖. (3.26)

Now choose v ∈ X with w(supp(v)) � w(A). If supp(v) ⊂ A, then ‖x − y‖ � ‖x −
v‖. Otherwise, set

A1 := A ∩ supp(v), A2 := A \ supp(v).

By (3.26),

‖x − y2‖ � C1‖x − v − at−1s−1(1 + ε)1ε(x),A1 + at−1s−1(1 + ε)1ε(x),A‖
� C1‖x − v‖ + aC1t

−1s−1(1 + ε)‖1ε(x),A2‖. (3.27)

Note that A2 �= ∅. Let A3 be a greedy set for x − v of minimum cardinality
containing A2. We have

min
i∈A3

|x∗
i (x − v)| = min

i∈A2
|x∗

i (x − v)| = min
i∈A2

|x∗
i (x)| � min

i∈A
|x∗

i (x)| = a.

Since A2 ⊂ A3,

a‖1ε(x),A2‖ = a‖1ε(x−v),A2‖ � C2a‖1ε(x−v),A3‖ � C2C3‖x − v‖.
Combining the above with (3.25) and (3.27) it follows that

‖x − y‖ � C1(1 + C2C3t
−1s−1(1 + ε))‖x − v‖.

Taking infimum over all such v and letting ε → 0, we conclude that (3.24) holds for
C(s, t) = C1(1 + C2C3t

−1s−1). �

4. Weak weight-almost semi-greedy bases

An examination of the proofs of proposition 3.18, theorems 3.22(ii), 3.23(ii), propo-
sition 3.24 and corollary 3.26 shows that these results do not need the full strength
of the C-s-w-semi-greedy property, but can be obtained using approximations by
projections. This suggests an ‘almost semi-greedy’ property, and its corresponding
weak and weighted versions. In this section, we study the position of such bases
with respect to the already known ones.

Definition 4.1. Let B be a basis for X, w a weight, C > 0 and 0 < s � 1. We say
that B is weak weight-almost semi-greedy with parameter s, weight w and constant
C (or C-s-w-almost semi-greedy) if, for every x ∈ X and m ∈ N, there is A ∈
G(x,m, s) and y ∈ X with supp(y) ⊂ A such that

‖x − y‖ � C inf
B∈N

<∞
w(B)�w(A)

‖x − PB(x)‖. (4.1)

We denote by GAS(x,m, s) the subset of G(x,m, s) for which the above holds. In
case s = 1 and wn = 1 for all n ∈ N, we say that B is C-almost semi-greedy.
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As pointed out, the same proofs of the aforementioned results hold ver-
batim under this weaker hypothesis, obtaining the same estimates when we
replace the s-w-semi-greedy constant with the s-w-almost semi-greedy one.
Thus, in particular, any s-w-almost semi-greedy basis is truncation quasi-greedy
and w-superdemocratic. It turns out that truncation quasi-greediness and w-
superdemocracy characterize w-almost semi-greediness and its weak variant, as
we prove next.

Proposition 4.2. Let B be a basis for X and w a weight. The following are
equivalent:

(i) B is truncation quasi-greedy and w-superdemocratic.

(ii) B is truncation quasi-greedy and w-democratic.

(iii) For every 0 < s � 1, B is s-w-almost semi-greedy.
Moreover, there is C(s) > 0 such that for each x ∈ X and m ∈ N,
GAS(x,m, s,C(s)) = G(x,m, s) and, for each A ∈ G(x,m, s), there is D ⊂ A
such that (4.1) holds for C = C(s) and y = PD(x).

(iv) There is 0 < s � 1 such that B is s-w-almost semi-greedy.

(v) For each 0 < s � 1 there is C(s) such that

‖x‖ � C(s)‖x − PB(x)‖,

for all x ∈ X and B ∈ N<∞ such that there is m ∈ N and A ∈ G(x,m, s)
disjoint from B with w(B) � w(A).

Proof. The implications (i) =⇒ (ii) and (iii) =⇒ (iv) are immediate, whereas (iv)
=⇒ (i) is the counterpart of corollary 3.26.

To prove (v) =⇒ (iii), fix 0 < s � 1, x ∈ X, m ∈ N, A ∈ G(x,m, s) and B ∈ N<∞

so that w(B) � w(A). Let E := A ∩ B, A1 := A \ B, B1 := B \ A and D ⊂ A so
that ‖x − PD(x)‖ � ‖x − PS(x)‖ for all S ⊂ A. Since A1 ∈ G(x − PE(x), |A1|, s)
and w(B1) � w(A1), we have

‖x − PD(x)‖ � ‖x − PE(x)‖
� C(s)‖x − PE(x) − PB1(x − PE(x))‖ = ‖x − PB(x)‖.

Now the result follows by taking infimum.
To prove (ii) =⇒ (i), suppose that B is C1-truncation quasi-greedy and

C2-w-democratic, and fix A,B ∈ N<∞ with w(A) � w(B), ε ∈ EA, ε′ ∈ EB . By
remark 3.7,

‖1ε,A‖ � 2κC1‖1A‖ � 2κC1C2‖1B‖ � 4κ2C2
1C2‖1ε′,B‖.

Finally, set B∗ = (x∗
i )i∈N the dual basis of B to prove (i) =⇒(v). Suppose B is C1-

truncation quasi-greedy and C2-w-superdemocratic, and choose s, x,m,B and A
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as in the statement. Let A1 be a greedy set for x − PB(x) containing A of minimum
cardinality. Given that w(B) � w(A1), A ∈ G(x − PB(x),m, s) and

min
i∈A

|x∗
i (x)| = min

i∈A
|x∗

i (x − PB(x))| = min
i∈A1

|x∗
i (x − PB(x))|,

we have

‖x‖ � ‖x − PB(x)‖ + ‖PB(x)‖ � ‖x − PB(x)‖ + max
i∈B

|x∗
i (x)|max

ε∈EB

‖1ε,B‖

� ‖x − PB(x)‖ + s−1 min
i∈A1

|x∗
i (x − PB(x))|C2‖1ε(x−PB(x)),A1‖

� (1 + s−1C1C2)‖x − PB(x)‖.
�

Remark 4.3. Note that the proof of the implication (iv) =⇒ (i) of proposition 4.2
is the only one in which the totality condition on B∗ is used. For that implication,
the condition is essential: indeed, [14, example 4.5] shows that even semi-greedy
systems need not be democratic. In fact, it is easily shown that the system of
[14, example 4.5] is not truncation quasi-greedy, either, or even unconditional for
constant coefficients (see [40, definition 3]).

Next, we give an analogue of lemma 3.17 for weak weight-almost semi-greedy
bases, which is proved in a similar manner.

Lemma 4.4. Let B be a basis for X, w a weight and 0 < s � 1. Suppose that there is
C > 0 such that the conditions of definition 4.1 hold for x with finite support. Then
B is C-s-w-almost semi-greedy. Moreover, the conditions of definition 4.1 hold even
if the infimum is taken without the restriction |B| < ∞.

Proof. Pick x ∈ X \ {0} and m ∈ N. As in the proof of lemma 3.17, we assume
| supp(x)| � m and, for every n ∈ N, we choose xn ∈ X with finite support such
that ‖x − xn‖ � n−1 and G(xn,m, t) = G(x,m, t). By hypothesis, for each n there
are An ∈ G(x,m, t) and yn ∈ X with supp(yn) ⊂ An such that

‖xn − yn‖ � C inf
D∈N

<∞
w(D)�w(An)

‖xn − PD(xn)‖.

Passing to a subsequence, we assume An = A and there is y supported in A such
that ‖yn − y‖ � n−1 for all n. Given B ∈ N<∞ with w(B) � w(A),

‖x − y‖ � 2n−1 + ‖xn − yn‖ � 2n−1 + C‖xn − PB(xn)‖
� n−1(2 + C + C‖PB‖) + C‖x − PB(x)‖.

As this holds for every n ∈ N, it follows that ‖x − y‖ � C‖x − PB(x)‖. Thus,
taking infimum over all such B, we obtain that B is C-w-almost semi-greedy.

Now set x,m as before, choose A ∈ G(x,m, t) and y ∈ X with supp(y) ⊂ A so
that (4.1) holds, and suppose there is B ⊂ N with |B| = ∞ and w(B) � w(A). By
proposition 4.2, B is w-superdemocratic. Hence, by remarks 3.3 and 3.20, PB(x)
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is well-defined and, for each n ∈ N, there is Bn ⊂ B such that Bn ∈ N<∞ and
‖PB(x) − PBn

(x)‖ � n−1. Thus,

‖x − y‖ � C‖x − PBn
(x)‖ � C‖x − PB(x)‖ + Cn−1.

As n is arbitrary, we conclude that ‖x − y‖ � C‖x − PB(x)‖, and the proof is
completed by taking supremum. �

In many cases, equivalent weights w ≈ w′ (those satisfying C1wn � w′
n � C2wn

for all n ∈ N, for some 0 < C1 � C2 < ∞) produce the same weighted bases. This
happens for the w-property (A), w-superdemocracy and w-democracy which are
equivalent to their respective w′-counterparts (see [20, proposition 3.5, remark
3.6]). This extends to w-almost greedy bases characterized as quasi-greedy and w-
democratic [27, theorem 2.6]. Proposition 4.2 combined with the aforementioned
result for w-democracy gives the following natural result.

Corollary 4.5. Let B be a basis for X, 0 < s � 1. If w and w′ are equivalent
weights, then B is s-w-almost semi-greedy if and only if it is s-w′-almost semi-
greedy.

In the case of constant weights, proposition 4.2 sheds light on some of the connec-
tions between the Chebyshevian Thresholding Greedy algorithm with bidemocratic
and squeeze symmetric bases, which are defined below.

Recall that squeeze symmetric bases are those that can be sandwiched between
two symmetric bases of quasi-Banach spaces with equivalent fundamental functions
(see [3, 6] for further definitions and results).

Definition 4.6. Let B be a basis for X. We say that B is squeeze symmetric
if there are quasi-Banach spaces Y, Z with symmetric bases B1 = (yn)n∈N and
B2 = (zn)n∈N and bounded linear operators T : Y → X and S : X → Z such that
by T (yn) = xn and S(xn) = zn, and there is C > 0 such that

‖1ε,A[B1, X]‖ � C‖1ε,A[B2, X]‖, ∀A ∈ N<∞, ∀ε ∈ EA.

It was proven in [6, proposition 9.4, corollary 9.15] that a basis is squeeze symmet-
ric if and only if it is truncation quasi-greedy and superdemocratic (or democratic,
[6, proposition 4.16]). In our context, that is when B is Markushevich basis for a
Banach space X, a combination of the aforementioned results with proposition 4.2
gives the following.

Corollary 4.7. Let B be a basis for X. The following are equivalent:

• B is almost semi-greedy.

• B is truncation quasi-greedy and superdemocratic.

• B is truncation quasi-greedy and democratic.

• B is squeeze symmetric.
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Bidemocratic basis were introduced in [24] to study duality in connection to the
TGA. A central result is that a quasi-greedy basis B is bidemocratic if and only if
both B and B∗ are almost greedy, or partially greedy [24, theorem 5.4].

Definition 4.8. A basis B is bidemocratic if there is C > 0 such that, for each
m ∈ N,

sup
A⊂N

|A|�m

sup
B⊂N

|B|�m

‖1A‖‖1∗
B‖ � Cm.

Bidemocratic bases have also been studied for their own sake in [4], where it was
proven that a basis B for a Banach space X is bidemocratic if and only if both
B and B∗ are truncation quasi-greedy and (super)democratic [4, corollary 2.6]. In
the case of Markushevich bases, we can combine this result with proposition 4.2 to
obtain the following.

Corollary 4.9. A basis B is bidemocratic if and only if both B and B∗ are almost
semi-greedy.

5. Weak weight-almost greedy bases

It is known that in the standard case—equivalently, in the case of constant
weights—almost greediness with respect to the weak algorithm is equivalent to
almost greediness ([14, proposition 2.3] and [26, theorem 6.4]). Thus, it is natural
to ask whether this equivalence has an extension to general weights. In this section,
we answer this question in the affirmative. To do so, we introduce and briefly study
a weighted extension of the notion of weak almost greedy bases from [14]—which
can also be seen as a weak-algorithm extension of the concept of weight-almost
greedy bases from [27] (see remarks after definition 3.1).

Definition 5.1. Let B be a basis for X, w a weight, C > 0 and 0 < s � 1. We say
that B is weak weight almost greedy with parameter s, weight w and constant C (or
C-s-w-almost-greedy) if, for every x ∈ X and m ∈ N, there is A ∈ G(x,m, s) such
that

‖x − PA(x)‖ � C inf
B∈N

<∞
w(B)�w(A)

‖x − PB(x)‖.

We denote by GA(x,m, s) the subset of G(x,m, s) for which the above bound holds.

Remark 5.2. First, note that every C-s-w-almost-greedy is Cs−1-w-disjoint
superdemocratic. Indeed, given disjoint nonempty sets A,B ∈ N<∞ with w(A) �
w(B), ε ∈ EA, ε′ ∈ EB , for every ε > 0 we have

‖1ε,A‖ = ‖1ε,A + (1 + ε)s−11ε′,B − (1 + ε)s−11ε′,B‖ � C(1 + ε)s−1‖1ε′,B‖,
where we used that G(1ε,A + (1 + ε)s−11ε′,B , |B|, s) = {B}. Finally, as in addition
B is w- semi greedy, proposition 3.18 applies to these bases. In particular, if w ∈ �1,
then B is equivalent to the canonical unit vector basis of c0.
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To prove that w-s-almost greedy bases are quasi-greedy, we need an auxiliary
result analogous to lemma 3.21.

Lemma 5.3. Let B be a C-s-w-almost greedy basis for X and let B∗ = (x∗
i )i∈N be

the dual basis of B. For every x ∈ X and every nonempty set A ∈ N<∞, there is
m ∈ N and E ∈ GA(x,m, s) such that A ⊂ E and for all j ∈ E,

|x∗
j (x)| � s2 min

i∈A
|x∗

i (x)|.

Proof. This is proven by the same argument as lemma 3.21. �

Now we can prove the main result of this section. The proof is based on that of
[14, proposition 2.3], which in turn is based on the arguments of the proof of [26,
proposition 4.4].

Theorem 5.4. Let B = (xi)i∈N be a C-s-w-almost greedy basis for X, with C > 0,
0 < s � 1 and w a weight such that w �∈ �1, and set

K := Cs−1 max{2Cs−1, λλ′}.

The following hold:

(i) For all A,B ∈ N<∞ with w(A) � w(B), if (ai)i∈A, (bi)i∈B are scalars such
that

max
i∈A

|ai| � min
i∈B

|bi|,

then ∥∥∥∥∥∑
i∈A

aixi

∥∥∥∥∥ � K

∥∥∥∥∥∑
i∈B

bixi

∥∥∥∥∥ .

(ii) For every 0 < t � 1, x ∈ X, m ∈ N and A ∈ G(x,m, t),

‖PA(x)‖ � (1 + t−1s−2K)(1 + C)‖x‖.

In particular, B is quasi-greedy with constant as above taking t = 1.

Proof. To prove (i), fix A,B, (ai)i∈A, (bi)i∈B as in the statement with

a := max
i∈A

|ai| > 0,

and consider two cases:
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First, suppose there is j > A such that wj � w(A). As a � λ′‖∑i∈B bixi‖, by
remark 5.2 and convexity∥∥∥∥∥∑

i∈A

aixi

∥∥∥∥∥ � a sup
ε∈EA

‖1ε,A‖ � as−1C‖xj‖ � as−1Cλ � s−1Cλλ′
∥∥∥∥∥∑

i∈B

bixi

∥∥∥∥∥ . (5.1)

On the other hand, if there is no such j, since w �∈ �1 we can choose two finite sets
of positive integers A2 > A1 > A ∪ B so that

max{w(A1), w(A2)} � w(A) � w(A1) + w(A2).

As before, by remark 5.2, convexity and the triangle inequality,∥∥∥∥∥∑
i∈A

aixi

∥∥∥∥∥ � as−1C‖1A1 + 1A2‖ � as−1C‖1A1‖ + as−1C‖1A2‖. (5.2)

Fix 0 < ε < 1, and set

z1 :=
∑
i∈B

bixi + (1 − ε)as1A1 .

Given that G(z1, |B|, s) = {B} and w(A1) � w(B), we have

‖(1 − ε)as1A1‖ = ‖z1 − PB(z1)‖ � C‖z1 − PA1(z1)‖ = C

∥∥∥∥∥∑
i∈B

bixi

∥∥∥∥∥ .

By the same argument, the above bound also holds for ‖(1 − ε)as1A2‖. From this
and (5.2) we deduce that∥∥∥∥∥∑

i∈A

aixi

∥∥∥∥∥ � 2C2s−2(1 − ε)−1

∥∥∥∥∥∑
i∈B

bixi

∥∥∥∥∥ .

As ε is arbitrary, the proof of (i) is completed combining the above estimate and
(5.1).

Now, set B∗ = (x∗
i )i∈N the dual basis of B. Fix t, x, m and A as in (ii), assuming

x �= PA(x), and set

a := min
i∈A

|x∗
i (x)|.

By lemma 5.3, there is A ⊂ D ∈ GA(x, |D|, s) such that

min
i∈D

|x∗
i (x)| � s2a.

Let B := D \ A. If B = ∅, then ‖PA(x)‖ � ‖x‖ + ‖x − PD(x)‖ � (C + 1)‖x‖. Oth-
erwise,

max
i∈B

|x∗
i (x)| � t−1a � t−1s−2 min

i∈D
‖x∗

i (x)‖.
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Hence, by (i)

‖PB(x)‖ � t−1s−2K‖PD(x)‖.
Thus, by the triangle inequality,

‖PA(x)‖ � ‖PB(x)‖ + ‖PD(x)‖ � (1 + t−1s−2K)‖PD(x)‖
� (1 + t−1s−2K)(‖x‖ + ‖x − PD(x)‖) � (1 + t−1s−2K)(1 + C)‖x‖.

�

Finally, we have:

Remark 5.5. If w ≈ w′ and 0 < s � 1, then a basis B is s-w-almost greedy if and
only if it is s-w′-almost greedy. This follows by theorem 5.4 and the remarks before
corollary 4.5.

6. Lebesgue and Chebyshevian Lebesgue parameters

In this section, we study some parameters that involve the (weak) TGA and
CGA, and also improve the known bounds for the quasi-greedy and almost greedy
constants of weak semi-greedy bases.

We will use the following auxiliary definitions.

Definition 6.1. Let B be a basis for X, 0 < t � 1 and m ∈ N.

• The t-quasi-greedy parameter g(m, t) is defined by

g(m, t) := inf
C>0

{‖PA(x)‖ � C‖x‖, ∀x ∈ X, ∀A ∈ G(x,m, t)} .

• The suppression t-quasi-greedy parameter ĝ(m, t) is defined by

ĝ(m, t) := inf
C>0

{‖x − PA(x)‖ � C‖x‖, ∀x ∈ X, ∀A ∈ G(x,m, t)} .

For t = 1, the parameter g(m, 1) has been considered in [4], and the quasi-greedy
parameter given by gm := maxn�m g(n, 1) has been studied as well, for example
in [19]. Next we define the Chebyshevian Lebesgue parameters associated to weak
thresholding greedy algorithms.

Definition 6.2. Let B be a basis for X, 0 < t � 1 and m ∈ N.

• The upper Chebyshevian Lebesgue parameter, Lu
ch(m, t) = Lu

ch(m, t)[B, X], is
given by

Lu
ch(m, t) := inf

C>0

{
‖x − y‖ � Cσm(x) :

∀x ∈ X, ∀A ∈ G(x,m, t),
∃y ∈ X : supp(y) ⊂ A

}
.

• The lower Chebyshevian Lebesgue parameter, Ll
ch(m, t) = Ll

ch(m, t)[B, X], is
given by

Ll
ch(m, t) := inf

C>0

{
‖x − y‖ � Cσm(x) :

∀x ∈ X, ∃A ∈ G(x,m, t),
∃y ∈ X : supp(y) ⊂ A

}
.
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As usual, to simplify our notation we leave the space and basis implicit when clear.

Remark 6.3. Under the conditions of definition 6.2, it is clear that there is a
smallest C > 0 in the definition of Lu

ch(m, t), so the parameter is attained. The same
holds for Ll

ch(m, t), since for each x ∈ X with | supp(x)| > m, the set G(x,m, t) is
finite.

Remark 6.4. The upper Chebyshevian Lebesgue parameter is the Chebyshevian
Lebesgue constant introduced in [25] and also studied in [19].

Next, we study a relation between ĝ, Mfs and Ll
ch, which in particular gives a

slight improvement of the known bound for the suppression quasi-greedy constant of
semi-greedy bases. More precisely, [14, theorem 4.2] gives that if B is C-s-weak semi-
greedy, it is K-suppression quasi-greedy with K � MfsC(1 + (Mfs + 1)Cs−2),
whereas theorem 3.22 avoids the quadratic factor M2

fs at the cost of involv-
ing λ and λ′, and gives K � MfsCs−1 max{Cs−2, λλ′}. Our next result gives
K � MfsC(1 + 2Cs−2).

Proposition 6.5. Let B be a basis for X. For all 0 < s � 1, 0 < t � 1 and m ∈ N,
we have the following estimates:

ĝ(m, t) � MfsLl
ch

(
2
⌊

m + 1
2

⌋
, s

)(
1 + 2Ll

ch

(
2
⌊

m + 1
2

⌋
, s

)
t−1s−2

)
. (6.1)

Hence, if B is C-s-weak semi-greedy, it is MfsC(1 + 2Cs−2)-suppression quasi-
greedy.

Proof. Set B = (xi)i∈N and B∗ = (x∗
i )i∈N. Choose 0 < ε < 1, and let (xik

)k∈N be a
subsequence given by an application of corollary 2.7 to B and (X,Mfs, ε).

Fix x ∈ X with finite support, and A ∈ G(x,m, t). We may assume x �= PA(x).
Set

a := max
i
∈A

|x∗
i (x)|,

and pick i0 > supp(x). Set

n :=
⌊

m + 1
2

⌋
;

F := [xi : 1 � i � i0];

E1 := {i2(sF,ε+j)−1 : 1 � j � n};
E2 := {i2(sF,ε+j) : 1 � j � n};

z := x + ats(1 − ε) (1E1 − 1E2) .

Note that sF,ε > i0 (otherwise, xsF,ε
∈ F and ‖xsF,ε

‖ � (Mfs + ε)‖xsF,ε
− xsF,ε

‖ =
0). So, the sets E1, E2 and A are pairwise disjoint. Since A ∈ G(x,m, t), we have

|{1 � i � i0 : |x∗
i (z)| � at}| � |A| + 1 = m + 1 � 2n.
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Thus,

D ⊂ {1, . . . , i0}, ∀D ∈ G(z, 2n, s).

It follows that there is u ∈ F such that

‖z − u‖ � Ll
ch(2n, s)σ2n(z) � Ll

ch(2n, s)‖x‖.

Hence, by corollary 2.7,

ats(1 − ε)‖1E1 − 1E2‖ � ‖z − u‖ + ‖x − u‖ � (2 + ε)‖z − u‖
� (2 + ε)Ll

ch(2n, s)‖x‖. (6.2)

Now set

y := x − PA(x) − s−1(1 + ε)a (1E1 − 1E2) .

Given that

|x∗
i (x − PA(x))| � a, ∀i ∈ N,

we have G(y, 2n, s) = {E1 ∪ E2}. Thus, there is v ∈ X with supp(v) ⊂ E1 ∪ E2 such
that

‖y − v‖ � Ll
ch(2n, s)σ2n(y)

� Ll
ch(2n, s)‖x‖ + Ll

ch(2n, s)s−1(1 + ε)a‖1E1 − 1E2‖. (6.3)

Again, by corollary 2.7, combining (6.2) and (6.3) we obtain

‖x − PA(x)‖ � (Mfs + ε)‖y − v‖
� (Mfs + ε)Ll

ch(2n, s)(1 + Ll
ch(2n, s)t−1s−2(1 + ε)(2 + ε)(1 − ε)−1)‖x‖.

As ε is arbitrary, the proof of (6.1) is complete for x with finite support. The general
case is handled as in the proof of theorem 3.22.

Now if B is C-s-weak semi-greedy, then

sup
m∈N

ĝ(m, 1)�Mfs sup
n∈N

n is even

Ll
ch(n, s)

⎛⎝1+2 sup
n∈N

n is even

Ll
ch(n, s)s−2

⎞⎠
� MfsC(1 + 2Cs−2). �

Remark 6.6. Note that the linear factor Mfs in (6.1) is necessary. Indeed, [14,
example 4.4] shows that for each α > 0, there is a basis B for a subspace X of
�1 that has quasi-greedy constant Cα > α and semi-greedy constant Kα � 4; the
first computation of the proof implies that B is a Schauder basis equivalent to the
canonical unit vector basis of �1 with basis constant no greater than 3 + 2α, and
the constant Mfs is no greater than the basis constant by proposition 2.3(v).
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Next, we consider the following Lebesgue-type parameters.

Definition 6.7. Let B be a basis for X, 0 < t � 1 and m ∈ N.

• The Lebesgue parameter, L(m, t) = L(m, t)[B, X], is given by

L(m, t) := inf
C>0

{
‖x − PA(x)‖ � C‖x − y‖ :

∀x ∈ X, ∀A ∈ G(x,m, t),
∀y ∈ X : | supp(y)| � m

}
.

• The disjoint Lebesgue parameter, Ld(m, t) = Ld(m, t)[B, X], is given by

Ld(m, t)

:= inf
C>0

{
‖x − PA(x)‖ � C‖x − y‖ :

∀x ∈ X, ∀A ∈ G(x,m, t),∀y ∈ X :
| supp(y)| � m, supp(y) ∩ A = ∅

}
.

The Lebesgue parameter for t = 1 has been widely studied in the literature, for
example in [18, 19, 28, 35], among others. The parameter involving the WTGA
for any 0 < t � 1 has been studied for example in [19, 25]. The disjoint parameters
are weaker variants suggested by theorem 3.22. Our next result gives upper bounds
for the disjoint Lebesgue parameter in terms of the lower Chebyshevian Lebesgue
parameter.

Proposition 6.8. Let B be a basis for X and M := Mfs(B, X). For all 0 < s � 1,
0 < t � 1 and m ∈ N, we have the following estimates:

(i) Ld(m, t) � MLl
ch(2m, s)(1 + 2(M + 1)Ll

ch(m, s)t−1s−2).

(ii) If m is even, in addition we have:

Ld(m, t) � MLl
ch(2m, s)(1 + 4Ll

ch(m, s)t−1s−2).

(iii) If m is odd, m > 1, in addition we have:

Ld(m, t) � MLl
ch(2m, s)(1 + (4Ll

ch(m − 1, s) + 2Ll
ch(2, s))t−1s−2).

In particular, if B is C-s-weak semi-greedy, it is K-almost greedy with

K � min
{
MC(1 + 2C(M + 1)s−2,max{MC(1 + 6Cs−2), 1 + λλ′ + λ′′}} .

Proof. Set B = (xi)i∈N and B∗ = (x∗
i )i∈N. Choose 0 < ε < 1, and let (xik

)k∈N be a
subsequence given by corollary 2.7 for (X,M, ε). To prove (i), fix x ∈ X with finite
support and A ∈ G(x,m, t). We may assume that PA(x) �= x, so | supp(x)| > m.
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Pick y ∈ X so that

| supp(y)| � m and supp(y) ∩ A = ∅,

set a := mini∈A |x∗
i (x)| and choose i0 > supp(x) ∪ supp(y). Now define

F := [xi : 1 � i � i0];

El := {i2sF,ε+j+lm : 1 � j � m}, ∀l ∈ {0, 1};
z := x − PA(x) + a(1 + ε)s−1t−1(1E0 + 1E1).

We have

|x∗
i (z)| = |x∗

i (x − PA(x))| � t−1a, ∀i �∈ E0 ∪ E1.

Thus,

G(z, 2m, s) = {E0 ∪ E1}.
It follows that there is v ∈ X with supp(v) ⊂ E0 ∪ E1 such that

‖z − v‖ � Ll
ch(2m, s)σ2m(z).

Hence,

‖x − PA(x)‖ � (M + ε)‖z − v‖ � (M + ε)Ll
ch(2m, s)‖z + PA(x) − y‖

� (M + ε)Ll
ch(2m, s)(‖x − y‖ + a(1 + ε)s−1t−1‖1E0 + 1E1‖). (6.4)

Set

ul := x − y − a(1 − ε)s1El
, ∀l ∈ {0, 1}.

Given that supp(y) ∩ A = ∅, we have

|{1 � i � i0 : |x∗
i (x − y)| � a}| � |A| = m.

It follows that for l ∈ {0, 1}, every element of G(ul,m, s) is contained in {1, . . . , i0},
so there is vl ∈ F such that

‖ul − vl‖ � Ll
ch(m, s)σm(ul), ∀l ∈ {0, 1}.

This entails that

a(1 − ε)s‖1El
‖ � ‖ul − vl‖ + ‖x − y − vl‖ � (1 + M + ε)‖ul − vl‖

� (1 + M + ε)Ll
ch(m, s)σm(ul)

� (1 + M + ε)Ll
ch(m, s)‖x − y‖, ∀l ∈ {0, 1}. (6.5)

Combining the above estimate with (6.4), we get

‖x − PA(x)‖
� (M + ε)Ll

ch(2m, s)(1 + 2(1 + M + ε)Ll
ch(m, s)(1 + ε)(1 − ε)−1s−2t−1)‖x − y‖.

As ε is arbitrary, the proof of (i) is complete.
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To prove (ii), we use the same argument, with only the following modifications:
for l ∈ {0, 1} and n ∈ N, define εn := (−1)n+1, and substitute 1ε,El

for 1El
in the

definitions of z and ul.
When |El| = m is even, 1ε,El

is a sum that meets the conditions of corollary 2.7,
so instead of (6.5) we obtain

a(1 − ε)s‖1ε,El
‖ � ‖ul − vl‖ + ‖x − y − vl‖ � (1 + 1 + ε)‖ul − vl‖

� (2 + ε)Ll
ch(m, s)σm(ul) � (2 + ε)Ll

ch(m, s)‖x − y‖ ∀l ∈ {0, 1},
and the result follows as before.

Finally, suppose m is odd, m > 1. The proof is as that for m even, with the
following modifications: for l ∈ {0, 1}, let

El := {i2sF,ε+j+l(m−1) : 1 � j � m − 1},
and let E2 := {i2sF,ε+2m−1, i2sF,ε+2m}, with εn := (−1)n+1 as before. Set

z := x − PA(x) + a(1 + ε)s−1t−1(1ε,E0 + 1ε,E1 + 1ε,E2).

Since |E0| = |E1| = m − 1, for l ∈ {0, 1} we get

a(1 − ε)s‖1ε,El
‖ � ‖ul − vl‖ + ‖x − y − vl‖ � (1 + 1 + ε)‖ul − vl‖

� (2 + ε)Ll
ch(m − 1, s)σm−1(ul) � (2 + ε)Ll

ch(m − 1, s)‖x − y‖,
whereas |E2| = 2, so

a(1 − ε)s‖1ε,E2‖ � ‖u2 − v2‖ + ‖x − y − v2‖ � (1 + 1 + ε)‖u2 − v2‖
� (2 + ε)Ll

ch(2, s)σ2(u2) � (2 + ε)Ll
ch(2, s)‖x − y‖.

and the proof is completed as in the even case.
Finally, suppose that B is C-s-weak semi-greedy. Combining (i), (ii), (iii) we get

that

Ld(m, 1) � MCmin{1 + 2C(M + 1)s−2, 1 + 6Cs−2}
for all m � 2. Hence, using lemma 3.9, to complete the proof of the remaining
inequality, we only need to prove that if A = {k} ∈ G(x, 1, 1) and j �= k, then

‖x − PA(x)‖ � (1 + λλ′ + λ′′)‖x − x∗
j (x)xj‖.

But this follows easily from the triangle inequality and the fact that A is a greedy
set for x:

‖x − PA(x)‖ � ‖x − x∗
j (x)xj‖ + ‖PA(x)‖ + ‖x∗

j (x)xj‖
= ‖x − x∗

j (x)xj‖ + ‖PA(x − x∗
j (x)xj)‖ + |x∗

j (x)|‖xj‖
� (1 + λ′′)‖x − x∗

j (x)xj‖ + |x∗
k(x − x∗

j (x)xj)|λ
� (1 + λ′′ + λλ′)‖x − x∗

j (x)xj‖.
�
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Next, we consider parameters involving only projections rather than arbitrary
vectors.

Definition 6.9. Let B be a basis for X, 0 < t � 1 and m ∈ N.

• The almost greedy parameter, La(m, t) = La(m, t)[B, X], is given by

La(m, t) := inf
C>0

{
‖x − PA(x)‖ � C‖x − PB(x)‖ :

∀x ∈ X, ∀A ∈ G(x,m, t),
∀B⊂N, |B| = m

}
.

• The disjoint almost greedy parameter, La,d(m, t) = La,d(m, t)[B, X], is given by

La,d(m, t)

:= inf
C>0

{
‖x − PA(x)‖ � C‖x − PB(x)‖ :

∀x ∈ X, ∀A ∈ G(x,m, t),
B ⊂ N, |B| = m : B ∩ A = ∅

}
.

In the case t = 1, the almost greedy parameter has been studied for example in
[3, 18, 28]. The disjoint variants are weaker versions naturally suggested by lemma
3.9. It is immediate that La,d(m, t) � min{La(m, t),Ld(m, t)}, and the arguments
of lemma 3.9 show that

La(m, t) � max
1�j�m

La,d(m, t).

Indeed, if x ∈ X, A ∈ G(x,m, t) and B ⊂ N, with |B| = m, are such that 0 <
min{|A ∩ B|, |A \ B|}, then A \ B ∈ G(x − PA∩B(x), |A \ B|, t), so

‖x − PA(x)‖ = ‖x − PA∩B(x) − PA\B(x − PA∩B(x))‖
� La,d(|A \ B|, t)‖x − PA∩B(x) − PB\A(x − PA∩B(x))‖
� max

1�j�m
La,d(j, t)‖x − PB(x)‖.

Thus, proposition 6.8 also can be used to obtain bounds for La(m, t). In the case
t = 1, another route to find such upper bounds is to combine proposition 6.5 and
the results of § 2 with [3, theorem 3.3]. First, we find estimates for the squeeze
symmetry parameter, defined as follows.

Definition 6.10. [3, lemma 1.4(iii)] Let B be a basis for X with dual basis B∗ =
(x∗

i )i∈N and m ∈ N. The m-squeeze symmetry parameter, λm = λm[B, X], is given
by

λm := inf
C>0

{
min
n∈A

|x∗
n(x)|‖1ε,B‖ � C‖x‖ :

∀x ∈ X, ∀A ∈ G(x,m, 1),
∀B ⊂ N : |B| = m, ε ∈ EB

}
.

Proposition 6.11. Let B be a basis for X and M := Mfs(B, X). For all 0 < s � 1
and m ∈ N we have the following estimates:

(i) λm � (Ll
ch(m, s))2M(1 + M)s−2, ∀m ∈ N.

(ii) λm � 2(Ll
ch(m, s))2Ms−2, ∀m ∈ 2N.

(iii) λm � 2(Ll
ch(m − 1, s))2Ms−2 + λλ′, ∀m ∈ 2N − 1, where Lch(0, s) := 0.
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Proof. The proof is very similar to those of proposition 6.8 and theorem 3.22(ii) but
simpler, so we shall be brief. Set B = (xi)i∈N and B∗ = (x∗

i )i∈N. Choose 0 < ε < 1,
and let (xik

)k∈N be a subsequence given by corollary 2.7 for (X,M, ε). Now fix
x ∈ X with finite support, A ∈ G(x,m, 1) and B ⊂ N, |B| = m. We may assume
a := mini∈A |x∗

i (x)| > 0. Choose i0 > B ∪ supp(x), and set

F := [xi : 1 � i � i0]; E0 := {i2sF,ε+j : 1 � j � m}; z := a1ε,B + a(1 + ε)s−11E0 .

Since G(z,m, s) = {E0}, there is v ∈ X with supp(v) ⊂ E0 such that ‖z − v‖ �
Ll

ch(m, s)σm(z). Hence,

‖a1ε,B‖ � (M + ε)‖z − v‖ � (M + ε)Ll
ch(m, s)‖z − a1ε,B‖

= (M + ε)Ll
ch(m, s)a(1 + ε)s−1‖1E0‖.

Let u := x − a(1 − ε)s1E0 . Since every element of G(u,m, s) is contained in
{1, . . . , i0}, there is v ∈ F such that

‖u − v‖ � Ll
ch(m, s)σm(u).

This entails that

a(1 − ε)s‖1E0‖ � ‖u − v‖ + ‖x − v‖ � (1 + M + ε)‖u − v‖
� (1 + M + ε)Ll

ch(m, s)‖x‖. (6.6)

Combining the above estimates and taking into account that ε is arbitrary, we get

‖a1ε,B‖ � (Ll
ch(m, s))2M(1 + M)s−2‖x‖,

so the proof of (i) for finitely supported vectors is complete. The general case follows
using some of the arguments of theorem 3.22.

The proof of (ii) is like that of (i), with only the following differences: the set
E0 has a partition E1 ·∪ E2 with |E1| = |E2| = m

2 resulting from an application of
corollary 2.7, and instead of 1E0 we define z and u using 1E1 − 1E2 , so that instead
of (6.6) we get

a(1 − ε)s‖1E1 − 1E2‖ � ‖u − v‖ + ‖x − v‖ � (1 + 1 + ε)‖u − v‖
� (2 + ε)Ll

ch(m, s)‖x‖.
Finally, to prove (iii), write B = B0 ·∪ {j0} and A = A0 ∪ {k0}. Then

a‖xj0‖ � λλ′‖x‖
and, if m > 1, by (ii) we have

a‖1ε,B0‖ � min
n∈A0

|x∗
n(x)|‖1ε,0‖ � 2(Ll

ch(m − 1, s))2Ms−2‖x‖.

Applying the triangle inequality we get the desired result. �

Combining propositions 6.5 and 6.11 with [3, theorem 3.3], we obtain the
following.
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Corollary 6.12. Let B be a basis for X and M := Mfs(B, X). For 0 < s � 1 and
m ∈ N let

pm := max
1�j�m

Ll
ch

(
2
⌊

j + 1
2

⌋
, s

)(
1 + 2Ll

ch

(
2
⌊

j + 1
2

⌋
, s

)
s−2

)
.

The following hold:

La(m, 1) � Mpm + (Ll
ch(m, s))2M(1 + M)s−2 ∀m ∈ N;

La(m, 1) � Mpm + 2(Ll
ch(m, s))2Ms−2 ∀m ∈ 2N;

La(m, 1) � Mpm + 2(Ll
ch(m − 1, s))2Ms−2 + λλ′ ∀m ∈ 2N − 1.

In particular, if B is C-s-weak semi-greedy, it is K-almost greedy with

K � MC(1 + 2Cs−2) + min{C2M(1 + M)s−2, 2C2Ms−2 + λλ′}.

7. Examples

In this section, we construct bases with some of the properties we have studied. We
leave aside the case w ∈ �1 because in that case any w-democratic basis is equivalent
to the canonical unit vector basis of c0 (see remark 3.19). Similar considerations
apply to the case w �∈ �∞ (see [16, 27]). Also, it is known that if w ∈ �∞ is a
weight, there is a w-greedy basis which is not equivalent to the canonical basis of
c0. Indeed, for 1 < p < ∞, if Xp is the completion of c00 with the norm

‖(an)n∈N‖ = max

⎧⎨⎩‖(an)n∈N‖∞,

(∑
n∈N

wn|an|p
) 1

p

⎫⎬⎭ , (7.1)

the canonical vector basis Bp of Xp is 1-unconditional, and ‖1ε,A‖ =
max{1, (w(A))

1
p } for all A ∈ N<∞ (see [27, remark 4.10]) for p = 2). For this

reason, we will focus on constructing conditional bases. When w is seminormal-
ized, the weighted properties are equivalent to their standard counterparts—that
is, those involving constant weights—and there are many examples of conditional
bases showing a broad overview of the particularities of the different greedy-type
bases (see e.g. [4, 6, 8, 22, 23, 31, 40], among others). On the other hand, we are
not aware of any examples in the literature of conditional w-almost greedy bases
in either of the following cases: w ∈ c0 \ �1, and w ∈ �∞ \ c0 with (w−1

n )n∈N �∈ �∞.
Our purpose, in this section, is to give examples of such bases, as well as examples
of w-almost semi-greedy bases that are not w-almost greedy. We begin with the
weight in c0 \ �1 defined by

w(1) :=
(
n− 1

2 log(n + 1)
)

n∈N

.

Our first task is to construct a conditional w(1)-almost greedy basis or, equivalently
by [27, theorem 2.6], quasi-greedy and w(1)-democratic. We will need an elementary
lemma.
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Lemma 7.1. For all A ∈ N<∞,

∑
n∈A

n− 3
4 � 4

(∑
n∈A

n− 1
2 log(n + 1)

) 1
2

.

Proof. By induction on |A|. If |A| = 1, the result follows by an immediate compu-
tation. Fix n0 ∈ N, and suppose the result holds for 1 � |A| � n0. If |A| = n0 + 1,
let n1 := max A, and A1 := A \ {n1}. Using the inductive hypothesis, we obtain(∑

n∈A

n− 3
4

)2

=

(∑
n∈A1

n− 3
4

)2

+ n
− 3

2
1 + 2n

− 3
4

1

(∑
n∈A1

n− 3
4

)

� 16
∑

n∈A1

n− 1
2 log(n + 1) + n

− 3
2

1 + 8n
− 3

4
1

(∑
n∈A1

n− 1
2 log(n + 1)

) 1
2

= 16
∑
n∈A

n− 1
2 log(n + 1) + 8n− 3

4
1

(∑
n∈A1

n− 1
2 log(n + 1)

) 1
2

+ n
− 3

2
1 − 16n

− 1
2

1 log(n1 + 1)

� 16
∑
n∈A

n− 1
2 log(n + 1) + 8n− 3

4
1

(∑
n∈A1

n− 1
2 log(n + 1)

) 1
2

− 15n
− 1

2
1 log(n1 + 1)

� 16
∑
n∈A

n− 1
2 log(n + 1)

+ n
− 1

2
1 log

1
2 (n1 + 1)

⎛⎝8n
− 1

4
1

(∑
n∈A1

n− 1
2

) 1
2

− 15 log
1
2 (n1 + 1)

⎞⎠
� 16

∑
n∈A

n− 1
2 log(n + 1) + n

− 1
2

1 log
1
2 (n1 + 1)

(
8
√

2 − 15 log
1
2 (3)

)
< 16

∑
n∈A

n− 1
2 log(n + 1),

and the proof is complete. �

Now we can construct the example, which is a variant of one given in [31]
(see also [38, page 35] or [37, page 266]).

Example 7.2. For each (an)n∈N ∈ c00, define

‖(an)n∈N‖� := ‖((w(1)
n )

1
2 an)n∈N‖2 and ‖(an)n∈N‖◦ := sup

m∈N

∣∣∣∣∣
m∑

n=1

n− 3
4 an

∣∣∣∣∣ .
Let X be the completion of c00 with the norm

‖(an)n∈N‖ := max{‖(an)n∈N‖�, ‖(an)n∈N‖◦, ‖(an)n∈N‖∞},
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and let B be the canonical vector basis and B∗ its dual basis. Then B is a normalized
monotone conditional w(1)-almost greedy Schauder basis.

Proof. It is clear that B is a normalized monotone Schauder basis. Now fix A ∈ N<∞

and ε ∈ EA. We have

‖1ε,A‖� = (w(1)(A))
1
2

and, by lemma 7.1,

‖1ε,A‖◦ �
∑
n∈A

n− 3
4 � 4(w(1)(A))

1
2 .

Thus,

max{1, (w(1)(A))
1
2 } � ‖1ε,A‖ � max{1, 4(w(1)(A))

1
2 }.

It follows that B is 4-w(1)-superdemocratic. To prove that it is quasi-greedy, fix
x ∈ X with ‖x‖ = 1, m ∈ N, A ∈ G(x,m, 1), and define a := minn∈A |x∗

n(x)|. We
may assume a > 0. Let k0 :=

⌊
a−4

⌋
and B := {1, . . . , k0}. We have

‖PA∩B(x)‖◦ � ‖PB(x)‖◦ + ‖PB\A(x)‖◦ � 1 + a
∑
n∈B

n− 3
4 � 1 + 4ak

1
4
0 � 5,

whereas, for n > k0, n ∈ A, |x∗
n(x)| > n− 1

4 , and we have

‖PA\B(x)‖◦ �
∑
n∈A
n>k0

n− 3
4 |x∗

n(x)| �
∑
n∈A
n>k0

n− 1
2 |x∗

n(x)|2

�
∑
n∈A

n− 1
2 log(n + 1)|x∗

n(x)|2 � 1.

As the respective inequalities are immediate for ‖ · ‖� and ‖ · ‖∞, this proves that
B is 6-quasi-greedy. It only remains to prove that it is conditional. For each m ∈ N,
define

ym :=
m∑

n=1

n− 1
4 log−1(n + 1)xn and zm :=

m∑
n=1

(−1)nn− 1
4 log−1(n + 1)xn.

Then ‖ym‖∞ = ‖zm‖∞ = log−1(2) and

‖ym‖� = ‖zm‖� =

(
m∑

n=1

n−1 log−1(n + 1)

) 1
2

.

On the other hand,

‖ym‖◦ =
m∑

n=1

n−1 log−1(n + 1),
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whereas

‖zm‖◦ = max
1�k�m

∣∣∣∣∣
k∑

n=1

(−1)nn−1 log−1(n + 1)

∣∣∣∣∣ � 2‖zm‖∞ = 2 log−1(2).

Thus,

‖zm‖−1‖ym‖ −−−−→
m→∞ ∞,

and the proof is complete. �

Next, we modify example 7.2 to obtain a w(1)-almost semi-greedy basis that is
neither quasi-greedy nor, in any order, a Schauder basis. For the construction, we
also adapt some of the arguments from [4, theorem 3.13 and proposition 4.17].

Example 7.3. Let (Am)m∈N ⊂ N<∞ be a sequence of nonempty integer intervals
such that Am < Am+1 for all m, and( ∑

n∈Am

n−1 log−1(n + 1)

)
m∈N

⊂ (1,∞)

is an unbounded sequence. For each (an)n∈N ∈ c00, define

‖(an)n∈N‖� := sup
m∈N

∣∣∣∣∣ ∑
n∈Am

n− 3
4 an

∣∣∣∣∣ ,
and let ‖ · ‖� be as in example 7.2. Let X be the completion of c00 with the norm

‖(an)n∈N‖ := max{‖(an)n∈N‖�, ‖(an)n∈N‖�, ‖(an)n∈N‖∞},
and let B be the canonical vector basis with B∗ its dual basis. Then B is a normalized
w(1)-almost semi-greedy basis that is not quasi-greedy nor, in any order, a Schauder
basis.

Proof. It is clear that B is normalized. First, we prove that B is a Markushevich
basis: suppose otherwise, and fix x ∈ X \ {0} with x∗

k(x) = 0 for all k ∈ N. Pick a
sequence (xn)n∈N ⊂ [B] \ {0} so that ‖x − xn‖ � n−1 for each n ∈ N. Now choose
a strictly increasing sequence (m(n))n∈N ⊂ N so that for each n ∈ N, Am(n) >
max1�k�n supp(xk), and set Bn := {1, . . . , cn := max(Am(n))}. Let n1 := 1 and
y1 = x1. Given that for each k ∈ N,

|x∗
k(xn)| −−−−→

n→∞ 0 < inf
n∈N

‖xn‖,

there is n2 > cn1 such that ‖PBn1
(xn2)‖ � 2−1 and xn2 �= PBn1

(xn2). Hence, if y2 :=
xn2 − PBn1

(xn2), then

y2 �= 0, supp(y2) > Bn1 ⊃ supp(y1),

‖y2 − x‖ � ‖xn2 − x‖ + ‖PBn1
(xn2)‖ � 2−1 + 2−1.

In addition, for each m ∈ N, if Am ∩ supp(y2) �= ∅, then Am > supp(y1). Similarly,
we can find n3 > cn2 so that ‖PBn2

(xn3)‖ � 3−1 and xn3 �= PBn2
(xn3). Hence, if
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y3 := xn3 − PBn2
(xn3),

y3 �= 0, supp(y3) > Bn2 ⊃ supp(y2), ‖y3 − x‖ � ‖xn3 − x‖ + ‖PBn2
(xn3)‖ � 2

3
,

and for each m ∈ N, if Am ∩ supp(y3) �= ∅, then Am > supp(y2). In this manner,
we find an increasing sequence (nk)k∈N so that (yk := xnk

− PBnk
(xnk

))k∈N has the
following properties: for each k ∈ N,

yk ∈ [B] \ {0}, supp(yk+1) > Bnk
⊃ supp(yk), ‖yk − x‖ � 2k−1

and, for every m, k ∈ N, if Am ∩ supp(yk) �= ∅ then Am ∩ supp(yj) = ∅ for all j �=
k.

For a contradiction, let us show that (yk)k∈N converges to 0 and consequently
x = 0. First, notice that as supp(yk+1) ∩ supp(yk) = ∅, ‖yk‖∞ � ‖yk − yk+1‖∞ and
‖yk‖� � ‖yk − yk+1‖�. Also, as each Am intersects with only one supp(yj), ‖yk‖� �
‖yk − yk+1‖�. Thus,

‖yk‖ � ‖yk − yk+1‖ � 4k−1 −−−−→
k→∞

0.

Therefore, B is a Markushevich basis.
Next, we prove that B is w(1)-almost semi-greedy: by proposition 4.2, it suffices

to show that B is truncation quasi-greedy and w(1)-superdemocratic. To prove the
former, fix x ∈ X, m ∈ N and A ∈ G(x,m, 1). Let a := minn∈A |x∗

n(x)|. For each
m ∈ N for which A ∩ Am �= ∅ and every ε ∈ EA, by lemma 7.1 we have

a

∣∣∣∣∣ ∑
n∈Am∩A

n− 3
4 εn

∣∣∣∣∣ � a
∑

n∈A∩Am

n− 3
4 � 4a

( ∑
n∈A∩Am

n− 1
2 log(n + 1)

) 1
2

� 4

( ∑
n∈A∩Am

n− 1
2 log(n + 1)|x∗

n(x)|2
) 1

2

� 4‖x‖.

We conclude that B is 4-truncation quasi-greedy. Now fix A ∈ N<∞ and ε ∈ EA,
and let ‖ · ‖e2 be the norm on c00 defined in example 7.2. By the computations in
the aforementioned example, we have

(w(1)(A))
1
2 = ‖1ε,A‖� � ‖1ε,A‖ � ‖1ε,A‖e2 � 4(w(1)(A))

1
2 .

Thus, B is 4-w(1)-superdemocratic.
Finally, we prove that B is neither quasi-greedy nor, in any order, a Schauder

basis. Fix π : N → N a bijection, and let Bπ := (xπ(n))n∈N be the reordered basis.
For each m ∈ N�2, let dm := |Am|, and write Dm := π−1(Am) = {lm,1 < · · · <
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lm,dm
}. Now consider 1 � jm < dm defined by

jm := min
1�k<dm

⎧⎨⎩
dm∑

j=k+1

π(lm,j)−1 log−1(π(lm,j) + 1)

�
k∑

j=1

π(lm,j)−1 log−1(π(lm,j) + 1)

⎫⎬⎭ ,

Then, we have

dm∑
j=jm+1

π(lm,j)−1 log−1(π(lm,j) + 1) �
jm∑
j=1

π(lm,j)−1 log−1(π(lm,j) + 1)

� 1 +
dm∑

j=jm+1

π(lm,j)−1 log−1(π(lm,j) + 1).

(7.2)

For each m � 2, define

zm :=
jm∑
j=1

π(lm,j)−
1
4 log−1(π(lm,j) + 1)xπ(lm,j)

−
dm∑

j=jm+1

π(lm,j)−
1
4 log−1(π(lm,j) + 1)xπ(lm,j), (7.3)

that satisfies

‖zm‖∞ � 1, ‖zm‖� � 1, ‖zm‖� =

( ∑
n∈Am

n−1 log−1(n + 1)

) 1
2

; (7.4)

∥∥∥∥∥∥
jm∑
j=1

x∗
π(lm,j)

(zm)xπ(lm,j)

∥∥∥∥∥∥
�

=
jm∑
j=1

π(lm,j)−1 log−1(π(lm,j) + 1)

� 2−1
∑

n∈Am

n−1 log−1(n + 1). (7.5)

Hence,

lim inf
m→∞

‖zm‖
‖∑jm

j=1 x∗
π(lm,j)

(zm)xπ(lm,j)‖
= 0,

so Bπ is not a Schauder basis. Moreover, when π is the identity mapping on N, we
have Dm = Am and Em := {lm,1, . . . , lm,jm

} ∈ G(zm, jm, 1), which proves that B is
not quasi-greedy. �
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In our next example, we use the previous one to construct a w(1)-almost semi-
greedy conditional Schauder basis that is not quasi-greedy. In the construction, we
will use the following lemma.

Lemma 7.4. Let B = (xn)n∈N be a basis for X and w a weight. Define Y as the
completion of c00 with the norm

‖(an)n∈N‖Y = sup
m∈N

sup
1�k�m

∥∥∥∥∥
m∑

n=k

anxn

∥∥∥∥∥
X

,

and let B1 := (yn)n∈N be the canonical basis of Y. The following hold:

(i) B is a monotone Schauder basis and ‖yn‖Y = ‖xn‖X for all n ∈ N.

(ii) For every A ∈ N<∞ and every ε ∈ EA,

‖1ε,A‖Y � max
B⊂A

‖1ε,B‖X.

(iii) If B is C-w-(super)democratic, so is B1.

(iv) If B is C-truncation quasi-greedy, B1 is 2κC2-truncation quasi-greedy.

Proof. (i) and (ii) are immediate from the definitions. To prove (iii), we consider
the superdemocracy case, as the democracy one is proven in the same manner. Fix
A,B ∈ N<∞ with w(A) � w(B), ε ∈ EA and ε′ ∈ EB . By (ii),

‖1ε,A‖Y � max
D⊂A

‖1ε,D‖X � C‖1ε′,B‖X � C‖1ε′,B‖Y.

Now suppose B is C-truncation quasi-greedy. Let (x∗
i )i∈N and (y∗

i )i∈N be the dual
bases of B and B1, respectively. Given y ∈ Y with finite support and A ∈ G(y,m, 1)
for some m ∈ N, set x :=

∑
n∈supp(y) y

∗
n(y)xn. It follows from (ii) and remark 3.7

that

min
n∈A

|y∗
n(y)|‖1ε(y),A‖Y � min

n∈A
|x∗

n(x)| max
B⊂A

‖1ε(x),B‖X � 2κC2‖x‖X � 2κC2‖y‖Y.

This completes the proof of (iv) and of the lemma. �

Remark 7.5. Note that lemma 7.4 does not require a totality hypothesis on B∗.
Also, one could note that the basis B1 obtained by this method inherits from B
several properties studied in the context of greedy approximation in addition to
those stated in the lemma, such as quasi-greediness, quasi-greediness for largest
coefficients, unconditionality for constant coefficients and bidemocracy.

Example 7.6. There is a w(1)-almost semi-greedy Schauder basis that is not quasi-
greedy.

Proof. We will use the construction and notation of example 7.3 unless otherwise
specified, with X the space, B the w(1)-almost semi-greedy basis of that example
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respectively, and π : N → N the identity mapping. Take (zm)m∈N as in (7.3). Then
for each m ∈ N,

‖zm‖� � 1 and |x∗
n(zm)| � 1 ∀n ∈ Am = supp(zm).

Also, it follows from (7.2) and (7.3) that

0 �
∑

n∈Am

n− 3
4 x∗

n(zm) � 1.

From the above inequalities, we deduce that there is a bijection ρm : Am → Am

such that

max
k∈Am

∣∣∣∣∣∣
∑
n�k

ρm(n)−
3
4 x∗

ρm(n)(zm)

∣∣∣∣∣∣ � 1, (7.6)

which entails that

max
j,k∈Am

j�k

∣∣∣∣∣∣
k∑

n=j

ρm(n)−
3
4 x∗

ρm(n)(zm)

∣∣∣∣∣∣ � 2. (7.7)

Define ρ : N → N by

ρ(n) :=

{
ρm(n) if n ∈ Am;
n if n �∈ ⋃

m∈N
Am.

Then ρ : N → N is a bijection. For each n ∈ N, let zn := xρ(n), and let B0 :=
(zn)n∈N. As suppB0

(zm) = suppB(zm) = Am for each m ∈ N, it follows from (7.7)
that

sup
m∈N

sup
j,k∈Am

j�k

∣∣∣∣∣∣
k∑

n=j

ρ(n)−
3
4 z∗n(zm)

∣∣∣∣∣∣ � 2. (7.8)

On the other hand, for each m ∈ N, it follows from (7.5) that

‖Pρ−1(Em),B0(zm)‖ = ‖PEm,B(zm)‖ � 2−1
∑

n∈Am

n−1 log−1(n + 1).

Let B1 = (yn)n∈N be the Schauder basis obtained from B0 by an application of
lemma 7.4. Then B1 is truncation quasi-greedy and w(1)-superdemocratic since, B0

(which is a reordering of B) has these properties. Hence, by proposition 4.2, B1 is
w(1)-almost semi-greedy.
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For each m ∈ N, let

ym :=
∑
n∈N

z∗n(zm)ym.

We have

‖Pρ−1(Em),B1(ym)‖Y � ‖Pρ−1(Em),B0(zm)‖ � 2−1
∑

n∈Am

n−1 log−1(n + 1), ∀m ∈ N.

On the other hand, it follows from (7.4) and (7.8) that

‖ym‖Y = sup
j,k∈Am

j�k

∥∥∥∥∥∥
k∑

n=j

z∗n(zm)zn

∥∥∥∥∥∥
X

= max

⎧⎪⎨⎪⎩‖zm‖∞, ‖zm‖�, sup
j,k∈Am

j�k

∣∣∣∣∣∣
k∑

n=j

ρ(n)−
3
4 z∗n(zm)

∣∣∣∣∣∣
⎫⎪⎬⎪⎭

� 2 +

( ∑
n∈Am

n−1 log−1(n + 1)

) 1
2

.

It follows that

lim inf
m→∞

‖ym‖Y

‖Pρ−1(Em),B1(ym)‖Y

= 0.

Since Em ∈ GB(zm, dm, 1), we have ρ−1(Em) ∈ GB0(zm, dm, 1) = GB1(ym, dm, 1).
Therefore, B1 is not quasi-greedy. �

Remark 7.7. While not the focus of this paper, we point out that remark 7.5
combined with the proof of example 7.6 suggests a way of using the constructions
of [4, theorems 3.6, 3.13] to obtain bidemocratic Schauder bases that are not quasi-
greedy, for a wide range of fundamental functions.

Now we turn to the case of w ∈ �∞ \ c0 with (w−1
n )n∈N �∈ �∞. Here, we have

more flexibility constructing conditional bases: given two weights w, w′, define
their combined weight W(w,w′) by

W2n−1(w,w′) := wn and W2n(w,w′) := w′
n.

We will show that given w ∈ c0 and w′ seminormalized, there is a W(w,w′)-almost
greedy conditional Schauder basis, and obtain similar results for the weighted
almost semi-greedy property. To that end, we will combine the w-greedy basis
Bp of the space Xp which we defined using (7.1), with suitable conditional bases.
First, we need a technical lemma.
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Lemma 7.8. Let w,w′ be weights, C > 0, and B1 = (xn)n∈N, B2 = (yn)n∈N bases
for X and Y respectively. Suppose that for all A,B ∈ N<∞, ‖1A‖X � C‖1B‖Y

whenever w(A) � w′(B). Then, for all A,B ∈ N<∞ such that w(A) � 2w′(B),

‖1A‖X � (2C + λ0λ
′
0)‖1B‖Y,

where λ0 and λ′
0 are the maxima between the constants λ and λ′ in (1.1) for B1

and B2.

Proof. Fix A,B ∈ N<∞ with w(A) � 2w′(B). First choose two (possibly empty)
sets A1, A2 as follows: A1 is a subset of A with maximum w-measure such that
w(A1) � w′(B), and A2 is a subset of A \ A1 with the same property. Now let A3 :=
A \ (A1 ∪ A2). We claim that |A3| � 1. Indeed, if this is false, choose m1,m2 ∈ A \
(A1 ∪ A2), with m1 �= m2. Then by our choice of A1 and A2, w(A1 ∪ {m1}) > w′(B)
and w(A2 ∪ {m2}) > w′(B). Hence, w(A) > 2w′(B), a contradiction. We conclude
that

‖1A‖X � ‖1A1‖X + ‖1A2‖X + ‖1A3‖X � (2C + λ0λ
′
0)‖1B‖Y. �

Remark 7.9. Note that lemma 7.8 can be applied to a weight w and a C-w-
democratic basis B, taking B1 = B2 = B and X = Y.

The next lemma forms the basis of our final construction.

Lemma 7.10. Let B1 = (xn)n∈N be a basis for X and B2 = (yn)n∈N a basis for
Y. Define Z := X ⊕ Y with the norm ‖(x, y)‖Z := max{‖x‖X, ‖y‖Y}, and let B =
(zn)n∈N be given by

z2n−1 := (xn, 0) and z2n := (0,yn).

Then B is a basis for Z, and the following hold:

(i) B is a Schauder basis if and only if B1 and B2 are Schauder bases.

(ii) B is unconditional (quasi-greedy) if and only if B1 and B2 are unconditional
(quasi-greedy).

(iii) B is truncation quasi-greedy if and only if B1 and B2 are truncation-quasi-
greedy.

(iv) B is W(w,w′)-democratic if and only if B1 is w-democratic, B2 is w′-
democratic, and there is C > 0 such that for all A,B ∈ N<∞, we have

‖1A‖X � C‖1B‖Y

if w(A) � w′(B), and

‖1A‖Y � C‖1B‖X

if w′(A) � w(B).
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Proof. (i) and (iii) are clear. To prove (iii), suppose that Bj is Cj-truncation quasi-
greedy, j = 1, 2, and fix z ∈ Z, m ∈ N and A ∈ G(z,m, 1). Let a := mini∈A |z∗i (z)|
with (z∗i )i∈N the dual basis of B. Write z = (x, y), and set

A1 := {n ∈ N : 2n − 1 ∈ A}, A2 := {n ∈ N : 2n ∈ A}.
Note that A1 ∈ G(x, |A1|, 1) and A2 ∈ G(y, |A2|, 1). Hence, taking ε(z), ε(x) and
ε(y) with respect to the respective bases, we have

a‖1ε(z),A‖Z � max{a‖1ε(x),A1‖X, a‖1ε(y),A2‖Y} � max{C1‖x‖X,C2‖y‖Y}
� max{C1,C2}‖z‖Z.

This proves that B is max{C1,C2}-truncation quasi-greedy.
On the other hand, if B is C-truncation quasi-greedy, it is immediate that so are

B1 and B2.
It only remains to prove (iv). Suppose first that B is C-W(w,w′)-democratic,

and fix A,B ∈ N∞ with w(A) � w(B). Given that w(D) = W (w,w′)(2D − 1) for
all D ∈ N<∞, we have

‖1A‖X = ‖12A−1‖Z � C‖12B−1‖Z = C‖1B‖X.

Hence, B1 is C-w-democratic. Similarly, B2 is C-w-democratic. Now fix A,B ∈ N∞

with w(A) � w′(B). We have

‖1A‖X = ‖12A−1‖Z � C‖12B‖Z = C‖1B‖Y.

The case w′(A) � w(B) is proven in the same manner.
Now suppose that B1 is C1-w-democratic and B2 is C2-w-democratic, and let

C be as in the statement. Fix A,B ∈ N with W (w,w′)(A) � W (w,w′)(B), and
define

A1 := {n ∈ N : 2n − 1 ∈ A}, A2 := {n ∈ N : 2n ∈ A};
B1 := {n ∈ N : 2n − 1 ∈ B}, B2 := {n ∈ N : 2n ∈ B}.

Since W (w,w′)(A) = w(A1) + w′(A2) and the same holds for B, we have

w(A1) + w′(A2) � w(B1) + w′(B2) � 2max{w(B1), w′(B2)}.
Suppose first that the maximum above is w(B1). Then max{w(A1), w′(A2)} �
2w(B1). Taking λ and λ′ with respect to the basis B of Z, an application of lemma
7.8 yields

‖1A‖Z = max{‖1A1‖X, ‖1A2‖Y} � max{(2C1 + λλ′)‖1B1‖X, (2C + λλ′)‖1B1‖X}
� (λλ′ + 2max{C,C1})‖1B‖Y.

The same argument holds if the maximum is w′(B2)—we just get C2 instead of
C1 in the upper bound. Thus, we conclude that B is (λλ′ + 2max{C,C1,C2})-
W(w,w′)-democratic. �
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Corollary 7.11. Let w,w′ be weights, with w ∈ c0 and w′ seminormalized. The
following hold:

(i) There exists a conditional W(w,w′)-almost greedy Schauder basis.

(ii) There exists a conditional W(w,w′)-almost semi-greedy Schauder basis that
is not quasi-greedy.

(iii) There exists a conditional W(w,w′)-almost semi-greedy basis that is not
quasi-greedy nor, in any order, a Schauder basis.

Proof. Due to the equivalence of the above properties for equivalent weights, we
may assume that w′ is constant. To prove (i), pick 1 < p < ∞, and let Bp be the
basis of the space Xp defined using (7.1). Now choose a conditional almost greedy
Schauder basis with ‖1A‖ ≈ |A| 1p for all A ∈ N<∞ (e.g. apply [4, theorem 4.9]), and
then apply lemma 7.10. Now (ii) is proven by the same argument as (i), with the
only difference that, as the second basis in our construction, instead of a conditional
almost greedy Schauder basis we choose an almost semi-greedy Schauder basis that
is not quasi-greedy (in light of corollary 4.9, bases with such properties can be found
in [4, proposition 3.17]). Finally, (iii) is again proven using the above construction,
but in this case, our second basis is almost semi-greedy but neither quasi-greedy
nor, in any order, a Schauder basis (e.g. we can find such bases in [4, theorem
3.13]). �

8. Open questions

In theorem 3.23, we proved that if w ∈ c0 \ �1, B∗ is norming and B is (weak)
w-semi-greedy, B is also w-almost greedy. However, we do not know whether this
holds in general, so a salient question is whether it does. In light of corollary 3.26
and [27, theorem 4.3], this is equivalent to ask whether such bases are quasi-greedy.

Question 8.1. Let w ∈ c0 \ �1. Is every (weak) w-semi-greedy Markushevich basis
quasi-greedy, and thus w-almost greedy?

There are further questions about the case w ∈ c0 \ �1 that arise from our
research: we proved that in that case, if B is a (weak) w-(almost) semi-greedy basis,
it is w-superdemocratic and truncation quasi-greedy, but in the proof we used a
non-constructive argument and we were not able to obtain quantitative results, that
is upper bounds for the w-superdemocracy and truncation quasi-greedy constants
depending on the (weak) w-(almost)-semi-greedy constant and other known and
simple properties of B.

Question 8.2. Let w ∈ c0 \ �1 and suppose B is t-w-(almost) semi-greedy. Is there
an upper bound for the w-superdemocracy constant and the truncation quasi-greedy
constant depending on the t-w-(almost) semi-greedy constant and perhaps other,
simple properties of the basis?
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The weighted variants of (weak) almost (semi) greediness, democracy and
superdemocracy are all preserved under equivalent weights. On the other hand,
given question 8.1, the following problem remains open.

Question 8.3. Let w and w′ be equivalent weights, with w,w′ ∈ c0 \ �1, and let
0 < s � 1. If B is s-w-semi-greedy, is it s-w′-semi-greedy?
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